Table of Contents
Introduction 1.1
General HTTP Handling 1.2
HTTP Interface 1.3
Databases 1.4
To-Endpoint 1.4.1
Management 1.4.2
Notes on Databases 1.4.3
Collections 1.5
Creating 1.5.1
Getting Information 1.5.2
Modifying 1.5.3
Documents 1.6
Basics and Terminology 1.6.1
Working with Documents 1.6.2
Edges 1.7
Address and Etag 1.7.1
Working with Edges 1.7.2
General Graph 1.8
Management 1.8.1
Vertices 1.8.2
Edges 1.8.3
Traversals 1.9
AQL Query Cursors 1.10
Query Results 1.10.1
Accessing Cursors 1.10.2
AQL Queries 1.11
AQL Query Cache 1.12
AQL User Functions Management 1.13
Simple Queries 1.14
Async Result Handling 1.15
Bulk Import / Export 1.16
JSON Documents 1.16.1
Headers & Values 1.16.2
Batch Requests 1.16.3
Exporting data 1.16.4
Indexes 1.17
Working with Indexes 1.17.1
Hash 1.17.2
Skiplist 1.17.3
Persistent 1.17.4
Geo-Spatial 1.17.5
Fulltext 1.17.6
Views 1.18
Creating 1.18.1
Deleting 1.18.2
Modifying 1.18.3
Retrieving 1.18.4
ArangoSearch Views 1.18.5
Transactions 1.19
Replication 1.20
Replication Dump 1.20.1
Replication Logger 1.20.2
Replication Applier 1.20.3
Other Replication Commands 1.20.4
Write-Ahead Log 1.20.5
Administration & Monitoring 1.21
Endpoints 1.22
Foxx Services 1.23
Management 1.23.1
Configuration 1.23.2
Miscellaneous 1.23.3
User Management 1.24
Tasks 1.25
Cluster 1.26
Server ID 1.26.1
Server Role 1.26.2
Cluster Statistics 1.26.3
Cluster Health 1.26.4
Agency 1.26.5
Miscellaneous functions 1.27
Repair Jobs 1.28
ArangoDB v3.4.devel 08. Sep 2018 HTTP API Documentation
Welcome to the ArangoDB HTTP API documentation! This documentation is for API developers. As a user or administrator of ArangoDB you should not need the information provided herein.
In general, as a user of ArangoDB you will use one of the language drivers.
Interactive Swagger documentation
Please note that your ArangoDB comes with an interactive version of this documentation using Swagger:
We also have a blog post explaining how to work with the Swagger API.
General HTTP Request Handling in ArangoDB
Protocol
ArangoDB exposes its API via HTTP, making the server accessible easily with a variety of clients and tools (e.g. browsers, curl, telnet). The communication can optionally be SSL-encrypted.
ArangoDB uses the standard HTTP methods (e.g. GET, POST, PUT, DELETE) plus the PATCH method described in RFC 5789.
Most server APIs expect clients to send any payload data in JSON format. Details on the expected format and JSON attributes can be found in the documentation of the individual server methods.
Clients sending requests to ArangoDB must use either HTTP 1.0 or HTTP 1.1. Other HTTP versions are not supported by ArangoDB and any attempt to send a different HTTP version signature will result in the server responding with an HTTP 505 (HTTP version not supported) error.
ArangoDB will always respond to client requests with HTTP 1.1. Clients should therefore support HTTP version 1.1.
Clients are required to include the Content-Length HTTP header with the correct content length in every request that can have a body (e.g. POST, PUT or PATCH) request. ArangoDB will not process requests without a Content-Length header - thus chunked transfer encoding for POST-documents is not supported.
HTTP Keep-Alive
ArangoDB supports HTTP keep-alive. If the client does not send a Connection header in its request, and the client uses HTTP version 1.1, ArangoDB will assume the client wants to keep alive the connection. If clients do not wish to use the keep-alive feature, they should explicitly indicate that by sending a Connection: Close HTTP header in the request.
ArangoDB will close connections automatically for clients that send requests using HTTP 1.0, except if they send an Connection: Keep-Alive header.
The default Keep-Alive timeout can be specified at server start using the --http.keep-alive-timeout parameter.
Establishing TCP connections is expensive, since it takes several ping pongs between the communication parties. Therefore you can use connection keepalive to send several HTTP request over one TCP-connection; Each request is treated independently by definition. You can use this feature to build up a so called connection pool with several established connections in your client application, and dynamically re-use one of those then idle connections for subsequent requests.
Blocking vs. Non-blocking HTTP Requests
ArangoDB supports both blocking and non-blocking HTTP requests.
ArangoDB is a multi-threaded server, allowing the processing of multiple client requests at the same time. Request/response handling and the actual work are performed on the server in parallel by multiple worker threads.
Still, clients need to wait for their requests to be processed by the server, and thus keep one connection of a pool occupied. By default, the server will fully process an incoming request and then return the result to the client when the operation is finished. The client must wait for the server's HTTP response before it can send additional requests over the same connection. For clients that are single-threaded and/or are blocking on I/O themselves, waiting idle for the server response may be non-optimal.
To reduce blocking on the client side, ArangoDB offers a generic mechanism for non-blocking, asynchronous execution: clients can add the HTTP header x-arango-async: true to any of their requests, marking them as to be executed asynchronously on the server. ArangoDB will put such requests into an in-memory task queue and return an HTTP 202 (accepted) response to the client instantly and thus finish this HTTP-request. The server will execute the tasks from the queue asynchronously as fast as possible, while clients can continue to do other work. If the server queue is full (i.e. contains as many tasks as specified by the option "--server.maximal-queue-size"), then the request will be rejected instantly with an HTTP 500 (internal server error) response.
Asynchronous execution decouples the request/response handling from the actual work to be performed, allowing fast server responses and greatly reducing wait time for clients. Overall this allows for much higher throughput than if clients would always wait for the server's response.
Keep in mind that the asynchronous execution is just "fire and forget". Clients will get any of their asynchronous requests answered with a generic HTTP 202 response. At the time the server sends this response, it does not know whether the requested operation can be carried out successfully (the actual operation execution will happen at some later point). Clients therefore cannot make a decision based on the server response and must rely on their requests being valid and processable by the server.
Additionally, the server's asynchronous task queue is an in-memory data structure, meaning not-yet processed tasks from the queue might be lost in case of a crash. Clients should therefore not use the asynchronous feature when they have strict durability requirements or if they rely on the immediate result of the request they send.
For details on the subsequent processing read on under Async Result handling.
Authentication
Client authentication can be achieved by using the Authorization HTTP header in client requests. ArangoDB supports authentication via HTTP Basic or JWT.
Authentication is turned on by default for all internal database APIs but turned off for custom Foxx apps. To toggle authentication for incoming requests to the internal database APIs, use the option --server.authentication. This option is turned on by default so authentication is required for the database APIs.
Please note that requests using the HTTP OPTIONS method will be answered by ArangoDB in any case, even if no authentication data is sent by the client or if the authentication data is wrong. This is required for handling CORS preflight requests (see Cross Origin Resource Sharing requests). The response to an HTTP OPTIONS request will be generic and not expose any private data.
There is an additional option to control authentication for custom Foxx apps. The option --server.authentication-system-only controls whether authentication is required only for requests to the internal database APIs and the admin interface. It is turned on by default, meaning that other APIs (this includes custom Foxx apps) do not require authentication.
The default values allow exposing a public custom Foxx API built with ArangoDB to the outside world without the need for HTTP authentication, but still protecting the usage of the internal database APIs (i.e. /_api/, /_admin/) with HTTP authentication.
If the server is started with the --server.authentication-system-only option set to false, all incoming requests will need HTTP authentication if the server is configured to require HTTP authentication (i.e. --server.authentication true). Setting the option to true will make the server require authentication only for requests to the internal database APIs and will allow unauthenticated requests to all other URLs.
Here's a short summary:
Whenever authentication is required and the client has not yet authenticated, ArangoDB will return HTTP 401 (Unauthorized). It will also send the WWW-Authenticate response header, indicating that the client should prompt the user for username and password if supported. If the client is a browser, then sending back this header will normally trigger the display of the browser-side HTTP authentication dialog. As showing the browser HTTP authentication dialog is undesired in AJAX requests, ArangoDB can be told to not send the WWW-Authenticate header back to the client. Whenever a client sends the X-Omit-WWW-Authenticate HTTP header (with an arbitrary value) to ArangoDB, ArangoDB will only send status code 401, but no WWW-Authenticate header. This allows clients to implement credentials handling and bypassing the browser's built-in dialog.
Authentication via JWT
To authenticate via JWT you must first obtain a JWT. To do so send a POST request to
/_open/auth
containing username and password JSON-encoded like so:
{"username":"root","password":"rootPassword"}
Upon success the endpoint will return a 200 OK and an answer containing the JWT in a JSON- encoded object like so:
{"jwt":"eyJhbGciOiJIUzI1NiI..x6EfI"}
This JWT should then be used within the Authorization HTTP header in subsequent requests:
Authorization: bearer eyJhbGciOiJIUzI1NiI..x6EfI
Please note that the JWT will expire after 1 month and needs to be updated.
ArangoDB uses a standard JWT authentication. The secret may either be set using --server.jwt-secret or will be randomly generated upon server startup.
For more information on JWT please consult RFC7519 and https://jwt.io
Error Handling
The following should be noted about how ArangoDB handles client errors in its HTTP layer:
if clients request an HTTP method that is not supported by the server, ArangoDB will return with HTTP 405 (Method Not Allowed). ArangoDB offers general support for the following HTTP methods:
Please note that not all server actions allow using all of these HTTP methods. You should look up up the supported methods for each method you intend to use in the manual.
Requests using any other HTTP method (such as for example CONNECT, TRACE etc.) will be rejected by ArangoDB as mentioned before.
Cross-Origin Resource Sharing (CORS) requests
ArangoDB will automatically handle CORS requests as follows:
Preflight
When a browser is told to make a cross-origin request that includes explicit headers, credentials or uses HTTP methods other than GET or POST , it will first perform a so-called preflight request using the OPTIONS method.
ArangoDB will respond to OPTIONS requests with an HTTP 200 status response with an empty body. Since preflight requests are not expected to include or even indicate the presence of authentication credentials even when they will be present in the actual request, ArangoDB does not enforce authentication for OPTIONS requests even when authentication is enabled.
ArangoDB will set the following headers in the response:
access-control-allow-credentials : will be set to false by default. For details on when it will be set to true see the next section on cookies.
access-control-allow-headers : will be set to the exact value of the request's access-control-request-headers header or omitted if no such header was sent in the request.
access-control-allow-methods : will be set to a list of all supported HTTP headers regardless of the target endpoint. In other words that a method is listed in this header does not guarantee that it will be supported by the endpoint in the actual request.
access-control-allow-origin : will be set to the exact value of the request's origin header.
access-control-expose-headers : will be set to a list of response headers used by the ArangoDB HTTP API.
access-control-max-age : will be set to an implementation-specific value.
Actual request
If a request using any other HTTP method than OPTIONS includes an origin header, ArangoDB will add the following headers to the response:
access-control-allow-credentials : will be set to false by default. For details on when it will be set to true see the next section on cookies.
access-control-allow-origin : will be set to the exact value of the request's origin header.
access-control-expose-headers : will be set to a list of response headers used by the ArangoDB HTTP API.
When making CORS requests to endpoints of Foxx services, the value of the access-control-expose-headers header will instead be set to a list of response headers used in the response itself (but not including the access-control- headers). Note that Foxx services may override this behavior.
Cookies and authentication
In order for the client to be allowed to correctly provide authentication credentials or handle cookies, ArangoDB needs to set the access-control-allow-credentials response header to true instead of false .
ArangoDB will automatically set this header to true if the value of the request's origin header matches a trusted origin in the http.trusted-origin configuration option. To make ArangoDB trust a certain origin, you can provide a startup option when running arangod like this:
--http.trusted-origin "http://localhost:8529"
To specify multiple trusted origins, the option can be specified multiple times. Alternatively you can use the special value "*" to trust any origin:
--http.trusted-origin "*"
Note that browsers will not actually include credentials or cookies in cross-origin requests unless explicitly told to do so:
When using the Fetch API you need to set the credentials option to include.
fetch("./", { credentials:"include" }).then(/* … */)
When using XMLHttpRequest you need to set the withCredentials option to true.
var xhr = new XMLHttpRequest();
xhr.open('GET', 'https://example.com/', true);
xhr.withCredentials = true;
xhr.send(null);
When using jQuery you need to set the xhrFields option:
$.ajax({
url: 'https://example.com',
xhrFields: {
withCredentials: true
}
});
HTTP method overriding
ArangoDB provides a startup option --http.allow-method-override. This option can be set to allow overriding the HTTP request method (e.g. GET, POST, PUT, DELETE, PATCH) of a request using one of the following custom HTTP headers:
This allows using HTTP clients that do not support all "common" HTTP methods such as PUT, PATCH and DELETE. It also allows bypassing proxies and tools that would otherwise just let certain types of requests (e.g. GET and POST) pass through.
Enabling this option may impose a security risk, so it should only be used in very controlled environments. Thus the default value for this option is false (no method overriding allowed). You need to enable it explicitly if you want to use this feature.
Load-balancer support
When running in cluster mode, ArangoDB exposes some APIs which store request state data on specific coordinator nodes, and thus subsequent requests which require access to this state must be served by the coordinator node which owns this state data. In order to support function behind a load-balancer, ArangoDB can transparently forward requests within the cluster to the correct node. If a request is forwarded, the response will contain the following custom HTTP header whose value will be the ID of the node which actually answered the request:
The following APIs may use request forwarding:
Note: since forwarding such requests require an additional cluster-internal HTTP request, they should be avoided when possible for best performance. Typically this is accomplished either by directing the requests to the correct coordinator at a client-level or by enabling request "stickiness" on a load balancer. Since these approaches are not always possible in a given environment, we support the request forwarding as a fall-back solution.
Note: some endpoints which return "global" data, such as GET /_api/tasks will only return data corresponding to the server on which the request is executed. These endpoints will generally not work well with load-balancers.
HTTP Interface
Following you have ArangoDB's HTTP Interface for Documents, Databases, Edges and more.
There are also some examples provided for every API action.
You may also use the interactive Swagger documentation in the ArangoDB webinterface to explore the API calls below.
HTTP Interface for Databases
Address of a Database
Any operation triggered via ArangoDB's HTTP REST API is executed in the context of exactly one database. To explicitly specify the database in a request, the request URI must contain the database name in front of the actual path:
http://localhost:8529/_db/mydb/...
where ... is the actual path to the accessed resource. In the example, the resource will be accessed in the context of the database mydb. Actual URLs in the context of mydb could look like this:
http://localhost:8529/_db/mydb/_api/version
http://localhost:8529/_db/mydb/_api/document/test/12345
http://localhost:8529/_db/mydb/myapp/get
Database-to-Endpoint Mapping
If a database name is present in the URI as above, ArangoDB will consult the database-to-endpoint mapping for the current endpoint, and validate if access to the database is allowed on the endpoint. If the endpoint is not restricted to an array of databases, ArangoDB will continue with the regular authentication procedure. If the endpoint is restricted to an array of specified databases, ArangoDB will check if the requested database is in the array. If not, the request will be turned down instantly. If yes, then ArangoDB will continue with the regular authentication procedure.
If the request URI was http:// localhost:8529/_db/mydb/..., then the request to mydb will be allowed (or disallowed) in the following situations:
Endpoint-to-database mapping Access to *mydb* allowed?
---------------------------- -------------------------
[] yes
["_system"] no
["_system", "mydb"] yes
["mydb"] yes
["mydb", "_system"] yes
["test1", "test2"] no
In case no database name is specified in the request URI, ArangoDB will derive the database name from the endpoint-to-database mapping of the endpoint the connection was coming in on.
If the endpoint is not restricted to an array of databases, ArangoDB will assume the _system database. If the endpoint is restricted to one or multiple databases, ArangoDB will assume the first name from the array.
Following is an overview of which database name will be assumed for different endpoint-to-database mappings in case no database name is specified in the URI:
Endpoint-to-database mapping Database
---------------------------- --------
[] _system
["_system"] _system
["_system", "mydb"] _system
["mydb"] mydb
["mydb", "_system"] mydb
Database Management
This is an introduction to ArangoDB's HTTP interface for managing databases.
The HTTP interface for databases provides operations to create and drop individual databases. These are mapped to the standard HTTP methods POST and DELETE. There is also the GET method to retrieve an array of existing databases.
Please note that all database management operations can only be accessed via the default database (_system) and none of the other databases.
Managing Databases using HTTP
Information of the database
retrieves information about the current database
GET /_api/database/current
Retrieves information about the current database
The response is a JSON object with the following attributes:
name: the name of the current database
id: the id of the current database
path: the filesystem path of the current database
isSystem: whether or not the current database is the _system database
Return Codes
200: is returned if the information was retrieved successfully.
400: is returned if the request is invalid.
404: is returned if the database could not be found.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/database/current
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
List of accessible databases
retrieves a list of all databases the current user can access
GET /_api/database/user
Retrieves the list of all databases the current user can access without specifying a different username or password.
Return Codes
200: is returned if the list of database was compiled successfully.
400: is returned if the request is invalid.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/database/user
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
List of databases
retrieves a list of all existing databases
GET /_api/database
Retrieves the list of all existing databases
Note: retrieving the list of databases is only possible from within the _system database.
Note: You should use the GET user API to fetch the list of the available databases now.
Return Codes
200: is returned if the list of database was compiled successfully.
400: is returned if the request is invalid.
403: is returned if the request was not executed in the _system database.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/database
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Create database
creates a new database
POST /_api/database
A JSON object with these properties is required:
Creates a new database
The response is a JSON object with the attribute result set to true.
Note: creating a new database is only possible from within the _system database.
Return Codes
201: is returned if the database was created successfully.
400: is returned if the request parameters are invalid or if a database with the specified name already exists.
403: is returned if the request was not executed in the _system database.
409: is returned if a database with the specified name already exists.
Examples
Creating a database named example.
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/database <<EOF
{
"name" : "example"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Creating a database named mydb with two users.
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/database <<EOF
{
"name" : "mydb",
"users" : [
{
"username" : "admin",
"passwd" : "secret",
"active" : true
},
{
"username" : "tester",
"passwd" : "test001",
"active" : false
}
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Drop database
drop an existing database
DELETE /_api/database/{database-name}
Path Parameters
Drops the database along with all data stored in it.
Note: dropping a database is only possible from within the _system database. The _system database itself cannot be dropped.
Return Codes
200: is returned if the database was dropped successfully.
400: is returned if the request is malformed.
403: is returned if the request was not executed in the _system database.
404: is returned if the database could not be found.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/database/example
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Notes on Databases
Please keep in mind that each database contains its own system collections, which need to set up when a database is created. This will make the creation of a database take a while. Replication is configured on a per-database level, meaning that any replication logging or applying for a new database must be configured explicitly after a new database has been created. Foxx applications are also available only in the context of the database they have been installed in. A new database will only provide access to the system applications shipped with ArangoDB (that is the web interface at the moment) and no other Foxx applications until they are explicitly installed for the particular database.
Database
ArangoDB can handle multiple databases in the same server instance. Databases can be used to logically group and separate data. An ArangoDB database consists of collections and dedicated database-specific worker processes. A database contains its own collections (which cannot be accessed from other databases), Foxx applications and replication loggers and appliers. Each ArangoDB database contains its own system collections (e.g. _users, _graphs, ...).
There will always be at least one database in ArangoDB. This is the default database named _system. This database cannot be dropped and provides special operations for creating, dropping and enumerating databases. Users can create additional databases and give them unique names to access them later. Database management operations cannot be initiated from out of user-defined databases.
When ArangoDB is accessed via its HTTP REST API, the database name is read from the first part of the request URI path (e.g. /_db/_system/...). If the request URI does not contain a database name, the database name is automatically determined by the algorithm described in Database-to-Endpoint Mapping .
Database Name
A single ArangoDB instance can handle multiple databases in parallel. When multiple databases are used, each database must be given an unique name. This name is used to uniquely identify a database. The default database in ArangoDB is named system. The database name is a string consisting of only letters, digits and the (underscore) and - (dash) characters. User-defined database names must always start with a letter. Database names are case-sensitive.
Database Organization
A single ArangoDB instance can handle multiple databases in parallel. By default, there will be at least one database which is named _system. Databases are physically stored in separate sub-directories underneath the database directory, which itself resides in the instance's data directory.
Each database has its own sub-directory, named database-. The database directory contains sub-directories for the collections of the database, and a file named parameter.json. This file contains the database id and name.
In an example ArangoDB instance which has two databases, the filesystem layout could look like this:
data/ # the instance's data directory
databases/ # sub-directory containing all databases' data
database-<id>/ # sub-directory for a single database
parameter.json # file containing database id and name
collection-<id>/ # directory containing data about a collection
database-<id>/ # sub-directory for another database
parameter.json # file containing database id and name
collection-<id>/ # directory containing data about a collection
collection-<id>/ # directory containing data about a collection
Foxx applications are also organized in database-specific directories inside the application path. The filesystem layout could look like this:
apps/ # the instance's application directory
system/ # system applications (can be ignored)
databases/ # sub-directory containing database-specific applications
<database-name>/ # sub-directory for a single database
<app-name> # sub-directory for a single application
<app-name> # sub-directory for a single application
<database-name>/ # sub-directory for another database
<app-name> # sub-directory for a single application
`
HTTP Interface for Collections
This is an introduction to ArangoDB's HTTP interface for collections.
Collections
A collection consists of documents. It is uniquely identified by its collection identifier. It also has a unique name that clients should use to identify and access it. Collections can be renamed. This will change the collection name, but not the collection identifier. Collections have a type that is specified by the user when the collection is created. There are currently two types: document and edge. The default type is document.
Collection Identifier
A collection identifier lets you refer to a collection in a database. It is a string value and is unique within the database. Up to including ArangoDB 1.1, the collection identifier has been a client's primary means to access collections. Starting with ArangoDB 1.2, clients should instead use a collection's unique name to access a collection instead of its identifier. ArangoDB currently uses 64bit unsigned integer values to maintain collection ids internally. When returning collection ids to clients, ArangoDB will put them into a string to ensure the collection id is not clipped by clients that do not support big integers. Clients should treat the collection ids returned by ArangoDB as opaque strings when they store or use them locally.
Note: collection ids have been returned as integers up to including ArangoDB 1.1
Collection Name
A collection name identifies a collection in a database. It is a string and is unique within the database. Unlike the collection identifier it is supplied by the creator of the collection. The collection name must consist of letters, digits, and the _ (underscore) and - (dash) characters only. Please refer to Naming Conventions in ArangoDB for more information on valid collection names.
Key Generator
ArangoDB allows using key generators for each collection. Key generators have the purpose of auto-generating values for the _key attribute of a document if none was specified by the user. By default, ArangoDB will use the traditional key generator. The traditional key generator will auto-generate key values that are strings with ever-increasing numbers. The increment values it uses are non-deterministic.
Contrary, the auto increment key generator will auto-generate deterministic key values. Both the start value and the increment value can be defined when the collection is created. The default start value is 0 and the default increment is 1, meaning the key values it will create by default are:
1, 2, 3, 4, 5, ...
When creating a collection with the auto increment key generator and an increment of 5, the generated keys would be:
1, 6, 11, 16, 21, ...
The auto-increment values are increased and handed out on each document insert attempt. Even if an insert fails, the auto-increment value is never rolled back. That means there may exist gaps in the sequence of assigned auto-increment values if inserts fails.
The basic operations (create, read, update, delete) for documents are mapped to the standard HTTP methods (POST, GET, PUT, DELETE).
Address of a Collection
All collections in ArangoDB have a unique identifier and a unique name. ArangoDB internally uses the collection's unique identifier to look up collections. This identifier however is managed by ArangoDB and the user has no control over it. In order to allow users use their own names, each collection also has a unique name, which is specified by the user. To access a collection from the user perspective, the collection name should be used, i.e.:
http://server:port/_api/collection/collection-name
For example: Assume that the collection identifier is 7254820 and the collection name is demo, then the URL of that collection is:
http://localhost:8529/_api/collection/demo
Creating and Deleting Collections
Create collection
creates a collection
POST /_api/collection
Creates a new collection with a given name. The request must contain an object with the following attributes.
A JSON object with these properties is required:
The traditional key generator generates numerical keys in ascending order. The autoincrement key generator generates numerical keys in ascending order, the inital offset and the spacing can be configured The padded key generator generates keys of a fixed length (16 bytes) in ascending lexicographical sort order. This is ideal for usage with the RocksDB engine, which will slightly benefit keys that are inserted in lexicographically ascending order. The key generator can be used in a single-server or cluster. The uuid key generator generates universally unique 128 bit keys, which are stored in hexadecimal human-readable format. This key generator can be used in a single-server or cluster to generate "seemingly random" keys. The keys produced by this key generator are not lexicographically sorted.
Query Parameters
waitForSyncReplication (optional): Default is 1 which means the server will only report success back to the client if all replicas have created the collection. Set to 0 if you want faster server responses and don't care about full replication.
enforceReplicationFactor (optional): Default is 1 which means the server will check if there are enough replicas available at creation time and bail out otherwise. Set to 0 to disable this extra check.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{
"name" : "testCollectionBasics"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{
"name" : "testCollectionEdges",
"type" : 3
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{
"name" : "testCollectionUsers",
"keyOptions" : {
"type" : "autoincrement",
"increment" : 5,
"allowUserKeys" : true
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Drops a collection
drops a collection
DELETE /_api/collection/{collection-name}
Path Parameters
Query Parameters
Drops the collection identified by collection-name.
If the collection was successfully dropped, an object is returned with the following attributes:
error: false
id: The identifier of the dropped collection.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Using an identifier:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/102371
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a name:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products1
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Dropping a system collection
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/_example?isSystem=true
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Truncate collection
truncates a collection
PUT /_api/collection/{collection-name}/truncate
Path Parameters
Removes all documents from the collection, but leaves the indexes intact.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/truncate
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/truncate
x-content-type-options: nosniff
Show response body
Getting Information about a Collection
Return information about a collection
returns a collection
GET /_api/collection/{collection-name}
Path Parameters
The result is an object describing the collection with the following attributes:
id: The identifier of the collection.
name: The name of the collection.
status: The status of the collection as number.
Every other status indicates a corrupted collection.
type: The type of the collection as number.
isSystem: If true then the collection is a system collection.
Return Codes
Read properties of a collection
reads the properties of the specified collection
GET /_api/collection/{collection-name}/properties
Path Parameters
In addition to the above, the result will always contain the waitForSync attribute, and the doCompact, journalSize, and isVolatile attributes for the MMFiles storage engine. This is achieved by forcing a load of the underlying collection.
waitForSync: If true then creating, changing or removing documents will wait until the data has been synchronized to disk.
doCompact: Whether or not the collection will be compacted. This option is only present for the MMFiles storage engine.
journalSize: The maximal size setting for journals / datafiles in bytes. This option is only present for the MMFiles storage engine.
keyOptions: JSON object which contains key generation options:
isVolatile: If true then the collection data will be kept in memory only and ArangoDB will not write or sync the data to disk. This option is only present for the MMFiles storage engine.
In a cluster setup, the result will also contain the following attributes:
numberOfShards: the number of shards of the collection.
shardKeys: contains the names of document attributes that are used to determine the target shard for documents.
replicationFactor: contains how many copies of each shard are kept on different DBServers.
shardingStrategy: the sharding strategy selected for the collection.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Using an identifier:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/102766/properties
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/102766/properties
x-content-type-options: nosniff
Show response body
Using a name:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/properties
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/properties
x-content-type-options: nosniff
Show response body
Return number of documents in a collection
Counts the documents in a collection
GET /_api/collection/{collection-name}/count
Path Parameters
In addition to the above, the result also contains the number of documents. Note that this will always load the collection into memory.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Requesting the number of documents:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/count
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/count
x-content-type-options: nosniff
Show response body
Return statistics for a collection
Fetch the statistics of a collection
GET /_api/collection/{collection-name}/figures
Path Parameters
In addition to the above, the result also contains the number of documents and additional statistical information about the collection. Note : This will always load the collection into memory.
Note: collection data that are stored in the write-ahead log only are not reported in the results. When the write-ahead log is collected, documents might be added to journals and datafiles of the collection, which may modify the figures of the collection.
Additionally, the filesizes of collection and index parameter JSON files are not reported. These files should normally have a size of a few bytes each. Please also note that the fileSize values are reported in bytes and reflect the logical file sizes. Some filesystems may use optimizations (e.g. sparse files) so that the actual physical file size is somewhat different. Directories and sub-directories may also require space in the file system, but this space is not reported in the fileSize results.
That means that the figures reported do not reflect the actual disk usage of the collection with 100% accuracy. The actual disk usage of a collection is normally slightly higher than the sum of the reported fileSize values. Still the sum of the fileSize values can still be used as a lower bound approximation of the disk usage.
HTTP 200 A json document with these Properties is returned:
Returns information about the collection:
Return Codes
Response Body
figures:
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Using an identifier and requesting the figures of the collection:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/figures
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/figures
x-content-type-options: nosniff
Show response body
Return collection revision id
Retrieve the collections revision id
GET /_api/collection/{collection-name}/revision
Path Parameters
In addition to the above, the result will also contain the collection's revision id. The revision id is a server-generated string that clients can use to check whether data in a collection has changed since the last revision check.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Retrieving the revision of a collection
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/revision
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/revision
x-content-type-options: nosniff
Show response body
Return checksum for the collection
returns a checksum for the specified collection
GET /_api/collection/{collection-name}/checksum
Path Parameters
Query Parameters
withRevisions (optional): Whether or not to include document revision ids in the checksum calculation.
withData (optional): Whether or not to include document body data in the checksum calculation.
Will calculate a checksum of the meta-data (keys and optionally revision ids) and optionally the document data in the collection.
The checksum can be used to compare if two collections on different ArangoDB instances contain the same contents. The current revision of the collection is returned too so one can make sure the checksums are calculated for the same state of data.
By default, the checksum will only be calculated on the _key system attribute of the documents contained in the collection. For edge collections, the system attributes _from and _to will also be included in the calculation.
By setting the optional query parameter withRevisions to true, then revision ids (_rev system attributes) are included in the checksumming.
By providing the optional query parameter withData with a value of true, the user-defined document attributes will be included in the calculation too. Note: Including user-defined attributes will make the checksumming slower.
The response is a JSON object with the following attributes:
checksum: The calculated checksum as a number.
revision: The collection revision id as a string.
Note: this method is not available in a cluster.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Retrieving the checksum of a collection:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/checksum
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/checksum
x-content-type-options: nosniff
Show response body
Retrieving the checksum of a collection including the collection data, but not the revisions:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/checksum?withRevisions=false&withData=true
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/checksum
x-content-type-options: nosniff
Show response body
reads all collections
returns all collections
GET /_api/collection
Query Parameters
Returns an object with an attribute collections containing an array of all collection descriptions. The same information is also available in the names as an object with the collection names as keys.
By providing the optional query parameter excludeSystem with a value of true, all system collections will be excluded from the response.
Return Codes
Examples
Return information about all collections:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/collection
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Modifying a Collection
Load collection
loads a collection
PUT /_api/collection/{collection-name}/load
Path Parameters
Loads a collection into memory. Returns the collection on success.
The request body object might optionally contain the following attribute:
On success an object with the following attributes is returned:
id: The identifier of the collection.
name: The name of the collection.
count: The number of documents inside the collection. This is only returned if the count input parameters is set to true or has not been specified.
status: The status of the collection as number.
type: The collection type. Valid types are:
isSystem: If true then the collection is a system collection.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/load
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/load
x-content-type-options: nosniff
Show response body
Unload collection
unloads a collection
PUT /_api/collection/{collection-name}/unload
Path Parameters
Removes a collection from memory. This call does not delete any documents. You can use the collection afterwards; in which case it will be loaded into memory, again. On success an object with the following attributes is returned:
id: The identifier of the collection.
name: The name of the collection.
status: The status of the collection as number.
type: The collection type. Valid types are:
isSystem: If true then the collection is a system collection.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/unload
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/unload
x-content-type-options: nosniff
Show response body
Load Indexes into Memory
Load Indexes into Memory
PUT /_api/collection/{collection-name}/loadIndexesIntoMemory
Path Parameters
This route tries to cache all index entries of this collection into the main memory. Therefore it iterates over all indexes of the collection and stores the indexed values, not the entire document data, in memory. All lookups that could be found in the cache are much faster than lookups not stored in the cache so you get a nice performance boost. It is also guaranteed that the cache is consistent with the stored data.
For the time being this function is only useful on RocksDB storage engine, as in MMFiles engine all indexes are in memory anyways.
On RocksDB this function honors all memory limits, if the indexes you want to load are smaller than your memory limit this function guarantees that most index values are cached. If the index is larger than your memory limit this function will fill up values up to this limit and for the time being there is no way to control which indexes of the collection should have priority over others.
On sucess this function returns an object with attribute result set to true
Return Codes
200: If the indexes have all been loaded
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/collection/products/loadIndexesIntoMemory
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/loadIndexesIntoMemory
x-content-type-options: nosniff
Show response body
Change properties of a collection
changes a collection
PUT /_api/collection/{collection-name}/properties
Path Parameters
Changes the properties of a collection. Expects an object with the attribute(s)
waitForSync: If true then creating or changing a document will wait until the data has been synchronized to disk.
journalSize: The maximal size of a journal or datafile in bytes. The value must be at least 1048576 (1 MB). Note that when changing the journalSize value, it will only have an effect for additional journals or datafiles that are created. Already existing journals or datafiles will not be affected.
On success an object with the following attributes is returned:
id: The identifier of the collection.
name: The name of the collection.
waitForSync: The new value.
journalSize: The new value.
status: The status of the collection as number.
type: The collection type. Valid types are:
isSystem: If true then the collection is a system collection.
isVolatile: If true then the collection data will be kept in memory only and ArangoDB will not write or sync the data to disk.
doCompact: Whether or not the collection will be compacted.
keyOptions: JSON object which contains key generation options:
Note: except for waitForSync, journalSize and name, collection properties cannot be changed once a collection is created. To rename a collection, the rename endpoint must be used.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection/products/properties <<EOF
{
"waitForSync" : true
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/properties
x-content-type-options: nosniff
Show response body
Rename collection
renames a collection
PUT /_api/collection/{collection-name}/rename
Path Parameters
Renames a collection. Expects an object with the attribute(s)
It returns an object with the attributes
id: The identifier of the collection.
name: The new name of the collection.
status: The status of the collection as number.
type: The collection type. Valid types are:
isSystem: If true then the collection is a system collection.
If renaming the collection succeeds, then the collection is also renamed in all graph definitions inside the _graphs collection in the current database.
Note: this method is not available in a cluster.
Return Codes
400: If the collection-name is missing, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection/products1/rename <<EOF
{
"name" : "newname"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products1/rename
x-content-type-options: nosniff
Show response body
Rotate journal of a collection
rotates the journal of a collection
PUT /_api/collection/{collection-name}/rotate
Path Parameters
Rotates the journal of a collection. The current journal of the collection will be closed and made a read-only datafile. The purpose of the rotate method is to make the data in the file available for compaction (compaction is only performed for read-only datafiles, and not for journals).
Saving new data in the collection subsequently will create a new journal file automatically if there is no current journal.
It returns an object with the attributes
Note: this method is specific for the MMFiles storage engine, and there it is not available in a cluster.
Return Codes
400: If the collection currently has no journal, HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Rotating the journal:
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection/products/rotate <<EOF
{
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
location: /_api/collection/products/rotate
x-content-type-options: nosniff
Show response body
Rotating if no journal exists:
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection/products/rotate <<EOF
{
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Documents
In this chapter we describe the REST API of ArangoDB for documents.
Basics and Terminology
Documents, Keys, Handles and Revisions
Documents in ArangoDB are JSON objects. These objects can be nested (to any depth) and may contain lists. Each document has a unique primary key which identifies it within its collection. Furthermore, each document is uniquely identified by its document handle across all collections in the same database. Different revisions of the same document (identified by its handle) can be distinguished by their document revision. Any transaction only ever sees a single revision of a document.
Here is an example document:
{
"_id" : "myusers/3456789",
"_key" : "3456789",
"_rev" : "14253647",
"firstName" : "John",
"lastName" : "Doe",
"address" : {
"street" : "Road To Nowhere 1",
"city" : "Gotham"
},
"hobbies" : [
{name: "swimming", howFavorite: 10},
{name: "biking", howFavorite: 6},
{name: "programming", howFavorite: 4}
]
}
All documents contain special attributes: the document handle is stored as a string in _id , the document's primary key in _key and the document revision in _rev . The value of the _key attribute can be specified by the user when creating a document. _id and _key values are immutable once the document has been created. The _rev value is maintained by ArangoDB automatically.
Document Handle
A document handle uniquely identifies a document in the database. It is a string and consists of the collection's name and the document key (_key attribute) separated by / .
Document Key
A document key uniquely identifies a document in the collection it is stored in. It can and should be used by clients when specific documents are queried. The document key is stored in the _key attribute of each document. The key values are automatically indexed by ArangoDB in a collection's primary index. Thus looking up a document by its key is a fast operation. The _key value of a document is immutable once the document has been created. By default, ArangoDB will auto-generate a document key if no _key attribute is specified, and use the user-specified _key otherwise.
This behavior can be changed on a per-collection level by creating collections with the keyOptions attribute.
Using keyOptions it is possible to disallow user-specified keys completely, or to force a specific regime for auto-generating the _key values.
Document Revision
As ArangoDB supports MVCC (Multiple Version Concurrency Control), documents can exist in more than one revision. The document revision is the MVCC token used to specify a particular revision of a document (identified by its _id). It is a string value currently containing an integer number and is unique within the list of document revisions for a single document. Document revisions can be used to conditionally query, update, replace or delete documents in the database. In order to find a particular revision of a document, you need the document handle or key, and the document revision.
ArangoDB uses 64bit unsigned integer values to maintain document revisions internally. When returning document revisions to clients, ArangoDB will put them into a string to ensure the revision is not clipped by clients that do not support big integers. Clients should treat the revision returned by ArangoDB as an opaque string when they store or use it locally. This will allow ArangoDB to change the format of revisions later if this should be required. Clients can use revisions to perform simple equality/non-equality comparisons (e.g. to check whether a document has changed or not), but they should not use revision ids to perform greater/less than comparisons with them to check if a document revision is older than one another, even if this might work for some cases.
Document Etag
ArangoDB tries to adhere to the existing HTTP standard as far as possible. To this end, results of single document queries have the HTTP header Etag set to the document revision enclosed in double quotes.
The basic operations (create, read, exists, replace, update, delete) for documents are mapped to the standard HTTP methods (POST, GET, HEAD, PUT, PATCH and DELETE).
If you modify a document, you can use the If-Match field to detect conflicts. The revision of a document can be checking using the HTTP method HEAD.
Multiple Documents in a single Request
Beginning with ArangoDB 3.0 the basic document API has been extended to handle not only single documents but multiple documents in a single request. This is crucial for performance, in particular in the cluster situation, in which a single request can involve multiple network hops within the cluster. Another advantage is that it reduces the overhead of the HTTP protocol and individual network round trips between the client and the server. The general idea to perform multiple document operations in a single request is to use a JSON array of objects in the place of a single document. As a consequence, document keys, handles and revisions for preconditions have to be supplied embedded in the individual documents given. Multiple document operations are restricted to a single document or edge collections. See the API descriptions for details.
Note that the GET, HEAD and DELETE HTTP operations generally do not allow to pass a message body. Thus, they cannot be used to perform multiple document operations in one request. However, there are other endpoints to request and delete multiple documents in one request. FIXME: ADD SENSIBLE LINKS HERE.
URI of a Document
Any document can be retrieved using its unique URI:
http://server:port/_api/document/<document-handle>
For example, assuming that the document handle is demo/362549736 , then the URL of that document is:
http://localhost:8529/_api/document/demo/362549736
The above URL schema does not specify a database name explicitly, so the default database _system will be used. To explicitly specify the database context, use the following URL schema:
http://server:port/_db/<database-name>/_api/document/<document-handle>
Example:
http://localhost:8529/_db/mydb/_api/document/demo/362549736
Note: The following examples use the short URL format for brevity.
The document revision is returned in the "Etag" HTTP header when requesting a document.
If you obtain a document using GET and you want to check whether a newer revision is available, then you can use the If-None-Match header. If the document is unchanged, a HTTP 412 (precondition failed) error is returned.
If you want to query, replace, update or delete a document, then you can use the If-Match header. If the document has changed, then the operation is aborted and an HTTP 412 error is returned.
Working with Documents using REST
Read document
reads a single document
GET /_api/document/{document-handle}
Path Parameters
Header Parameters
If-None-Match (optional): If the "If-None-Match" header is given, then it must contain exactly one Etag. The document is returned, if it has a different revision than the given Etag. Otherwise an HTTP 304 is returned.
If-Match (optional): If the "If-Match" header is given, then it must contain exactly one Etag. The document is returned, if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned.
Returns the document identified by document-handle. The returned document contains three special attributes: _id containing the document handle, _key containing key which uniquely identifies a document in a given collection and _rev containing the revision.
Return Codes
200: is returned if the document was found
304: is returned if the "If-None-Match" header is given and the document has the same version
404: is returned if the document or collection was not found
412: is returned if an "If-Match" header is given and the found document has a different version. The response will also contain the found document's current revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.
Examples
Use a document handle:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103478
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9YK--_"
x-content-type-options: nosniff
Show response body
Use a document handle and an Etag:
shell> curl --header 'If-None-Match: "_XUJy9eK--_"' --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103550
Unknown document handle:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/unknownhandle
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
The rev query parameter has been withdrawn. The same effect can be achieved with the If-Match HTTP header.
Read document header
reads a single document head
HEAD /_api/document/{document-handle}
Path Parameters
Header Parameters
If-None-Match (optional): If the "If-None-Match" header is given, then it must contain exactly one Etag. If the current document revision is not equal to the specified Etag, an HTTP 200 response is returned. If the current document revision is identical to the specified Etag, then an HTTP 304 is returned.
If-Match (optional): If the "If-Match" header is given, then it must contain exactly one Etag. The document is returned, if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned.
Like GET, but only returns the header fields and not the body. You can use this call to get the current revision of a document or check if the document was deleted.
Return Codes
200: is returned if the document was found
304: is returned if the "If-None-Match" header is given and the document has the same version
404: is returned if the document or collection was not found
412: is returned if an "If-Match" header is given and the found document has a different version. The response will also contain the found document's current revision in the Etag header.
Examples
shell> curl -X HEAD --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103535
Changes in 3.0 from 2.8:
The rev query parameter has been withdrawn. The same effect can be achieved with the If-Match HTTP header.
Read all documents
reads all documents from collection
PUT /_api/simple/all-keys
Query Parameters
A JSON object with these properties is required:
Returns an array of all keys, ids, or URI paths for all documents in the collection identified by collection. The type of the result array is determined by the type attribute.
Note that the results have no defined order and thus the order should not be relied on.
Return Codes
201: All went well.
404: The collection does not exist.
Examples
Return all document paths
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/all-keys <<EOF
{
"collection" : "products"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Return all document keys
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/all-keys <<EOF
{
"collection" : "products",
"type" : "id"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Collection does not exist
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/doesnotexist
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
The collection name should now be specified in the URL path. The old way with the URL path /_api/document and the required query parameter collection still works.
Create document
creates documents
POST /_api/document/{collection}
Path Parameters
Request Body (required)
A JSON representation of a single document or of an array of documents.
Query Parameters
collection (optional): The name of the collection. This is only for backward compatibility. In ArangoDB versions < 3.0, the URL path was /_api/document and this query parameter was required. This combination still works, but the recommended way is to specify the collection in the URL path.
waitForSync (optional): Wait until document has been synced to disk.
returnNew (optional): Additionally return the complete new document under the attribute new in the result.
returnOld (optional): Additionally return the complete old document under the attribute old in the result. Only available if the overwrite option is used.
silent (optional): If set to true, an empty object will be returned as response. No meta-data will be returned for the created document. This option can be used to save some network traffic.
overwrite (optional): If set to true, the insert becomes a replace-insert. If a document with the same _key already exists the new document is not rejected with unique constraint violated but will replace the old document.
Creates a new document from the document given in the body, unless there is already a document with the _key given. If no _key is given, a new unique _key is generated automatically.
The body can be an array of documents, in which case all documents in the array are inserted with the same semantics as for a single document. The result body will contain a JSON array of the same length as the input array, and each entry contains the result of the operation for the corresponding input. In case of an error the entry is a document with attributes error set to true and errorCode set to the error code that has happened.
Possibly given _id and _rev attributes in the body are always ignored, the URL part or the query parameter collection respectively counts.
If the document was created successfully, then the Location header contains the path to the newly created document. The Etag header field contains the revision of the document. Both are only set in the single document case.
If silent is not set to true, the body of the response contains a JSON object (single document case) with the following attributes:
In the multi case the body is an array of such objects.
If the collection parameter waitForSync is false, then the call returns as soon as the document has been accepted. It will not wait until the documents have been synced to disk.
Optionally, the query parameter waitForSync can be used to force synchronization of the document creation operation to disk even in case that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync query parameter can be used to force synchronization of just this specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
If the query parameter returnNew is true, then, for each generated document, the complete new document is returned under the new attribute in the result.
Return Codes
201: is returned if the documents were created successfully and waitForSync was true.
202: is returned if the documents were created successfully and waitForSync was false.
400: is returned if the body does not contain a valid JSON representation of one document or an array of documents. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
409: is returned in the single document case if a document with the same qualifiers in an indexed attribute conflicts with an already existing document and thus violates that unique constraint. The response body contains an error document in this case. In the array case only 201 or 202 is returned, but if an error occurred, the additional HTTP header X-Arango-Error-Codes is set, which contains a map of the error codes that occurred together with their multiplicities, as in: 1205:10,1210:17 which means that in 10 cases the error 1205 "illegal document handle" and in 17 cases the error 1210 "unique constraint violated" has happened.
Examples
Create a document in a collection named products. Note that the revision identifier might or might not by equal to the auto-generated key.
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9P6--_"
location: /_db/_system/_api/document/products/103397
x-content-type-options: nosniff
Show response body
Create a document in a collection named products with a collection-level waitForSync value of false.
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9M6--B"
location: /_db/_system/_api/document/products/103373
x-content-type-options: nosniff
Show response body
Create a document in a collection with a collection-level waitForSync value of false, but using the waitForSync query parameter.
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products?waitForSync=true <<EOF
{ "Hello": "World" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Wy--_"
location: /_db/_system/_api/document/products/103464
x-content-type-options: nosniff
Show response body
Unknown collection name
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Illegal document
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ 1: "World" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Insert multiple documents:
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
[{"Hello":"Earth"}, {"Hello":"Venus"}, {"Hello":"Mars"}]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
{
"_id" : "products/103411",
"_key" : "103411",
"_rev" : "_XUJy9Ry--_"
},
{
"_id" : "products/103415",
"_key" : "103415",
"_rev" : "_XUJy9Ry--B"
},
{
"_id" : "products/103417",
"_key" : "103417",
"_rev" : "_XUJy9Ry--D"
}
]
Use of returnNew:
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products?returnNew=true <<EOF
{"Hello":"World"}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9TG--_"
location: /_db/_system/_api/document/products/103431
x-content-type-options: nosniff
Show response body
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World", "_key" : "lock" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Ue--_"
location: /_db/_system/_api/document/products/lock
x-content-type-options: nosniff
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products?overwrite=true <<EOF
{ "Hello": "Universe", "_key" : "lock" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Uu--B"
location: /_db/_system/_api/document/products/lock
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
The collection name should now be specified in the URL path. The old way with the URL path /_api/document and the required query parameter collection still works. The possibility to insert multiple documents with one operation is new and the query parameter returnNew has been added.
Replace document
replaces a document
PUT /_api/document/{document-handle}
Request Body (required)
A JSON representation of a single document.
Path Parameters
Query Parameters
waitForSync (optional): Wait until document has been synced to disk.
ignoreRevs (optional): By default, or if this is set to true, the _rev attributes in the given document is ignored. If this is set to false, then the _rev attribute given in the body document is taken as a precondition. The document is only replaced if the current revision is the one specified.
returnOld (optional): Return additionally the complete previous revision of the changed document under the attribute old in the result.
returnNew (optional): Return additionally the complete new document under the attribute new in the result.
silent (optional): If set to true, an empty object will be returned as response. No meta-data will be returned for the replaced document. This option can be used to save some network traffic.
Header Parameters
Replaces the document with handle with the one in the body, provided there is such a document and no precondition is violated.
If the If-Match header is specified and the revision of the document in the database is unequal to the given revision, the precondition is violated.
If If-Match is not given and ignoreRevs is false and there is a _rev attribute in the body and its value does not match the revision of the document in the database, the precondition is violated.
If a precondition is violated, an HTTP 412 is returned.
If the document exists and can be updated, then an HTTP 201 or an HTTP 202 is returned (depending on waitForSync, see below), the Etag header field contains the new revision of the document and the Location header contains a complete URL under which the document can be queried.
Optionally, the query parameter waitForSync can be used to force synchronization of the document replacement operation to disk even in case that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync query parameter can be used to force synchronization of just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
If silent is not set to true, the body of the response contains a JSON object with the information about the handle and the revision. The attribute _id contains the known document-handle of the updated document, _key contains the key which uniquely identifies a document in a given collection, and the attribute _rev contains the new document revision.
If the query parameter returnOld is true, then the complete previous revision of the document is returned under the old attribute in the result.
If the query parameter returnNew is true, then the complete new document is returned under the new attribute in the result.
If the document does not exist, then a HTTP 404 is returned and the body of the response contains an error document.
Return Codes
201: is returned if the document was replaced successfully and waitForSync was true.
202: is returned if the document was replaced successfully and waitForSync was false.
400: is returned if the body does not contain a valid JSON representation of a document. The response body contains an error document in this case.
404: is returned if the collection or the document was not found.
412: is returned if the precondition was violated. The response will also contain the found documents' current revisions in the _rev attributes. Additionally, the attributes _id and _key will be returned.
Examples
Using a document handle
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103566 <<EOF
{"Hello": "you"}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9fm--_"
location: /_db/_system/_api/document/products/103566
x-content-type-options: nosniff
Show response body
Unknown document handle
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103600 <<EOF
{}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Produce a revision conflict
shell> curl -X PUT --header 'If-Match: "_XUJy9g6--_"' --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103582 <<EOF
{"other":"content"}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9g2--B"
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
There are quite some changes in this in comparison to Version 2.8, but few break existing usage:
There should be very few changes to behavior happening in real-world situations or drivers. Essentially, one has to replace usage of the rev query parameter by usage of the If-Match header. The non-sensical combination of If-Match given and policy=last no longer works, but can easily be achieved by leaving out the If-Match header.
The collection name should now be specified in the URL path. The old way with the URL path /_api/document and the required query parameter collection still works.
Replace documents
replaces multiple documents
PUT /_api/document/{collection}
Request Body (required)
A JSON representation of an array of documents.
Path Parameters
Query Parameters
waitForSync (optional): Wait until the new documents have been synced to disk.
ignoreRevs (optional): By default, or if this is set to true, the _rev attributes in the given documents are ignored. If this is set to false, then any _rev attribute given in a body document is taken as a precondition. The document is only replaced if the current revision is the one specified.
returnOld (optional): Return additionally the complete previous revision of the changed documents under the attribute old in the result.
returnNew (optional): Return additionally the complete new documents under the attribute new in the result.
Replaces multiple documents in the specified collection with the ones in the body, the replaced documents are specified by the _key attributes in the body documents.
If ignoreRevs is false and there is a _rev attribute in a document in the body and its value does not match the revision of the corresponding document in the database, the precondition is violated.
If the document exists and can be updated, then an HTTP 201 or an HTTP 202 is returned (depending on waitForSync, see below).
Optionally, the query parameter waitForSync can be used to force synchronization of the document replacement operation to disk even in case that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync query parameter can be used to force synchronization of just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
The body of the response contains a JSON array of the same length as the input array with the information about the handle and the revision of the replaced documents. In each entry, the attribute _id contains the known document-handle of each updated document, _key contains the key which uniquely identifies a document in a given collection, and the attribute _rev contains the new document revision. In case of an error or violated precondition, an error object with the attribute error set to true and the attribute errorCode set to the error code is built.
If the query parameter returnOld is true, then, for each generated document, the complete previous revision of the document is returned under the old attribute in the result.
If the query parameter returnNew is true, then, for each generated document, the complete new document is returned under the new attribute in the result.
Note that if any precondition is violated or an error occurred with some of the documents, the return code is still 201 or 202, but the additional HTTP header X-Arango-Error-Codes is set, which contains a map of the error codes that occurred together with their multiplicities, as in: 1200:17,1205:10 which means that in 17 cases the error 1200 "revision conflict" and in 10 cases the error 1205 "illegal document handle" has happened.
Return Codes
201: is returned if the documents were replaced successfully and waitForSync was true.
202: is returned if the documents were replaced successfully and waitForSync was false.
400: is returned if the body does not contain a valid JSON representation of an array of documents. The response body contains an error document in this case.
404: is returned if the collection was not found.
Changes in 3.0 from 2.8:
The multi document version is new in 3.0.
Update document
updates a document
PATCH /_api/document/{document-handle}
Request Body (required)
A JSON representation of a document update as an object.
Path Parameters
Query Parameters
keepNull (optional): If the intention is to delete existing attributes with the patch command, the URL query parameter keepNull can be used with a value of false. This will modify the behavior of the patch command to remove any attributes from the existing document that are contained in the patch document with an attribute value of null.
mergeObjects (optional): Controls whether objects (not arrays) will be merged if present in both the existing and the patch document. If set to false, the value in the patch document will overwrite the existing document's value. If set to true, objects will be merged. The default is true.
waitForSync (optional): Wait until document has been synced to disk.
ignoreRevs (optional): By default, or if this is set to true, the _rev attributes in the given document is ignored. If this is set to false, then the _rev attribute given in the body document is taken as a precondition. The document is only updated if the current revision is the one specified.
returnOld (optional): Return additionally the complete previous revision of the changed document under the attribute old in the result.
returnNew (optional): Return additionally the complete new document under the attribute new in the result.
silent (optional): If set to true, an empty object will be returned as response. No meta-data will be returned for the updated document. This option can be used to save some network traffic.
Header Parameters
Partially updates the document identified by document-handle. The body of the request must contain a JSON document with the attributes to patch (the patch document). All attributes from the patch document will be added to the existing document if they do not yet exist, and overwritten in the existing document if they do exist there.
Setting an attribute value to null in the patch document will cause a value of null to be saved for the attribute by default.
If the If-Match header is specified and the revision of the document in the database is unequal to the given revision, the precondition is violated.
If If-Match is not given and ignoreRevs is false and there is a _rev attribute in the body and its value does not match the revision of the document in the database, the precondition is violated.
If a precondition is violated, an HTTP 412 is returned.
If the document exists and can be updated, then an HTTP 201 or an HTTP 202 is returned (depending on waitForSync, see below), the Etag header field contains the new revision of the document (in double quotes) and the Location header contains a complete URL under which the document can be queried.
Optionally, the query parameter waitForSync can be used to force synchronization of the updated document operation to disk even in case that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync query parameter can be used to force synchronization of just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
If silent is not set to true, the body of the response contains a JSON object with the information about the handle and the revision. The attribute _id contains the known document-handle of the updated document, _key contains the key which uniquely identifies a document in a given collection, and the attribute _rev contains the new document revision.
If the query parameter returnOld is true, then the complete previous revision of the document is returned under the old attribute in the result.
If the query parameter returnNew is true, then the complete new document is returned under the new attribute in the result.
If the document does not exist, then a HTTP 404 is returned and the body of the response contains an error document.
Return Codes
201: is returned if the document was updated successfully and waitForSync was true.
202: is returned if the document was updated successfully and waitForSync was false.
400: is returned if the body does not contain a valid JSON representation of a document. The response body contains an error document in this case.
404: is returned if the collection or the document was not found.
412: is returned if the precondition was violated. The response will also contain the found documents' current revisions in the _rev attributes. Additionally, the attributes _id and _key will be returned.
Examples
Patches an existing document with new content.
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103330 <<EOF
{
"hello" : "world"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Ju--_"
location: /_db/_system/_api/document/products/103330
x-content-type-options: nosniff
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103330 <<EOF
{
"numbers" : {
"one" : 1,
"two" : 2,
"three" : 3,
"empty" : null
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9J2--_"
location: /_db/_system/_api/document/products/103330
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103330
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9J2--_"
x-content-type-options: nosniff
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103330?keepNull=false <<EOF
{
"hello" : null,
"numbers" : {
"four" : 4
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9KK--_"
location: /_db/_system/_api/document/products/103330
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103330
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9KK--_"
x-content-type-options: nosniff
Show response body
Merging attributes of an object using mergeObjects :
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103352
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9LW--_"
x-content-type-options: nosniff
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103352?mergeObjects=true <<EOF
{
"inhabitants" : {
"indonesia" : 252164800,
"brazil" : 203553000
}
}
EOF
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103352
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Li--_"
x-content-type-options: nosniff
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/document/products/103352?mergeObjects=false <<EOF
{
"inhabitants" : {
"pakistan" : 188346000
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Lu--_"
location: /_db/_system/_api/document/products/103352
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103352
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Lu--_"
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
There are quite some changes in this in comparison to Version 2.8, but few break existing usage:
There should be very few changes to behavior happening in real-world situations or drivers. Essentially, one has to replace usage of the rev query parameter by usage of the If-Match header. The non-sensical combination of If-Match given and policy=last no longer works, but can easily be achieved by leaving out the If-Match header.
The collection name should now be specified in the URL path. The old way with the URL path /_api/document and the required query parameter collection still works.
Update documents
updates multiple documents
PATCH /_api/document/{collection}
Request Body (required)
A JSON representation of an array of document updates as objects.
Path Parameters
Query Parameters
keepNull (optional): If the intention is to delete existing attributes with the patch command, the URL query parameter keepNull can be used with a value of false. This will modify the behavior of the patch command to remove any attributes from the existing document that are contained in the patch document with an attribute value of null.
mergeObjects (optional): Controls whether objects (not arrays) will be merged if present in both the existing and the patch document. If set to false, the value in the patch document will overwrite the existing document's value. If set to true, objects will be merged. The default is true.
waitForSync (optional): Wait until the new documents have been synced to disk.
ignoreRevs (optional): By default, or if this is set to true, the _rev attributes in the given documents are ignored. If this is set to false, then any _rev attribute given in a body document is taken as a precondition. The document is only updated if the current revision is the one specified.
returnOld (optional): Return additionally the complete previous revision of the changed documents under the attribute old in the result.
returnNew (optional): Return additionally the complete new documents under the attribute new in the result.
Partially updates documents, the documents to update are specified by the _key attributes in the body objects. The body of the request must contain a JSON array of document updates with the attributes to patch (the patch documents). All attributes from the patch documents will be added to the existing documents if they do not yet exist, and overwritten in the existing documents if they do exist there.
Setting an attribute value to null in the patch documents will cause a value of null to be saved for the attribute by default.
If ignoreRevs is false and there is a _rev attribute in a document in the body and its value does not match the revision of the corresponding document in the database, the precondition is violated.
If the document exists and can be updated, then an HTTP 201 or an HTTP 202 is returned (depending on waitForSync, see below).
Optionally, the query parameter waitForSync can be used to force synchronization of the document replacement operation to disk even in case that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync query parameter can be used to force synchronization of just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
The body of the response contains a JSON array of the same length as the input array with the information about the handle and the revision of the updated documents. In each entry, the attribute _id contains the known document-handle of each updated document, _key contains the key which uniquely identifies a document in a given collection, and the attribute _rev contains the new document revision. In case of an error or violated precondition, an error object with the attribute error set to true and the attribute errorCode set to the error code is built.
If the query parameter returnOld is true, then, for each generated document, the complete previous revision of the document is returned under the old attribute in the result.
If the query parameter returnNew is true, then, for each generated document, the complete new document is returned under the new attribute in the result.
Note that if any precondition is violated or an error occurred with some of the documents, the return code is still 201 or 202, but the additional HTTP header X-Arango-Error-Codes is set, which contains a map of the error codes that occurred together with their multiplicities, as in: 1200:17,1205:10 which means that in 17 cases the error 1200 "revision conflict" and in 10 cases the error 1205 "illegal document handle" has happened.
Return Codes
201: is returned if the documents were updated successfully and waitForSync was true.
202: is returned if the documents were updated successfully and waitForSync was false.
400: is returned if the body does not contain a valid JSON representation of an array of documents. The response body contains an error document in this case.
404: is returned if the collection was not found.
Changes in 3.0 from 2.8:
The multi document version is new in 3.0.
Removes a document
removes a document
DELETE /_api/document/{document-handle}
Path Parameters
Query Parameters
waitForSync (optional): Wait until deletion operation has been synced to disk.
returnOld (optional): Return additionally the complete previous revision of the changed document under the attribute old in the result.
silent (optional): If set to true, an empty object will be returned as response. No meta-data will be returned for the removed document. This option can be used to save some network traffic.
Header Parameters
If silent is not set to true, the body of the response contains a JSON object with the information about the handle and the revision. The attribute _id contains the known document-handle of the removed document, _key contains the key which uniquely identifies a document in a given collection, and the attribute _rev contains the document revision.
If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
If the query parameter returnOld is true, then the complete previous revision of the document is returned under the old attribute in the result.
Return Codes
200: is returned if the document was removed successfully and waitForSync was true.
202: is returned if the document was removed successfully and waitForSync was false.
404: is returned if the collection or the document was not found. The response body contains an error document in this case.
412: is returned if a "If-Match" header or rev is given and the found document has a different version. The response will also contain the found document's current revision in the _rev attribute. Additionally, the attributes _id and _key will be returned.
Examples
Using document handle:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103219
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9-6--_"
location: /_db/_system/_api/document/products/103219
x-content-type-options: nosniff
Show response body
Unknown document handle:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103287
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Revision conflict:
shell> curl -X DELETE --header 'If-Match: "_XUJy9Am--B"' --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103235
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9Am--_"
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
There are only very few changes in this in comparison to Version 2.8:
There should be very few changes to behavior happening in real-world situations or drivers. Essentially, one has to replace usage of the rev query parameter by usage of the If-Match header. The non-sensical combination of If-Match given and policy=last no longer works, but can easily be achieved by leaving out the If-Match header.
Removes multiple documents
removes multiple document
DELETE /_api/document/{collection}
Request Body (required)
A JSON array of strings or documents.
Path Parameters
Query Parameters
waitForSync (optional): Wait until deletion operation has been synced to disk.
returnOld (optional): Return additionally the complete previous revision of the changed document under the attribute old in the result.
ignoreRevs (optional): If set to true, ignore any _rev attribute in the selectors. No revision check is performed.
The body of the request is an array consisting of selectors for documents. A selector can either be a string with a key or a string with a document handle or an object with a _key attribute. This API call removes all specified documents from collection. If the selector is an object and has a _rev attribute, it is a precondition that the actual revision of the removed document in the collection is the specified one.
The body of the response is an array of the same length as the input array. For each input selector, the output contains a JSON object with the information about the outcome of the operation. If no error occurred, an object is built in which the attribute _id contains the known document-handle of the removed document, _key contains the key which uniquely identifies a document in a given collection, and the attribute _rev contains the document revision. In case of an error, an object with the attribute error set to true and errorCode set to the error code is built.
If the waitForSync parameter is not specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync query parameter cannot be used to disable synchronization for collections that have a default waitForSync value of true.
If the query parameter returnOld is true, then the complete previous revision of the document is returned under the old attribute in the result.
Note that if any precondition is violated or an error occurred with some of the documents, the return code is still 200 or 202, but the additional HTTP header X-Arango-Error-Codes is set, which contains a map of the error codes that occurred together with their multiplicities, as in: 1200:17,1205:10 which means that in 17 cases the error 1200 "revision conflict" and in 10 cases the error 1205 "illegal document handle" has happened.
Return Codes
200: is returned if waitForSync was true.
202: is returned if waitForSync was false.
404: is returned if the collection was not found. The response body contains an error document in this case.
Examples
Using document handle:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103271
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9DG--_"
location: /_db/_system/_api/document/products/103271
x-content-type-options: nosniff
Show response body
Unknown document handle:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103313
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Revision conflict:
shell> curl -X DELETE --header 'If-Match: "_XUJy9B2--B"' --header 'accept: application/json' --dump - http://localhost:8529/_api/document/products/103253
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: "_XUJy9B2--_"
x-content-type-options: nosniff
Show response body
Changes in 3.0 from 2.8:
This variant is new in 3.0. Note that it requires a body in the DELETE request.
HTTP Interface for Edges
This is an introduction to ArangoDB's REST interface for edges.
ArangoDB offers graph functionality; Edges are one part of that.
Address and Etag of an Edge
All documents in ArangoDB have a document handle. This handle uniquely identifies a document. Any document can be retrieved using its unique URI:
http://server:port/_api/document/<document-handle>
Edges are a special variation of documents. To access an edge use the same URL format as for a document:
http://server:port/_api/document/<document-handle>
For example, assumed that the document handle, which is stored in the _id attribute of the edge, is demo/362549736, then the URL of that edge is:
http://localhost:8529/_api/document/demo/362549736
The above URL scheme does not specify a database name explicitly, so the default database will be used. To explicitly specify the database context, use the following URL schema:
http://server:port/_db/<database-name>/_api/document/<document-handle>
Example:
http://localhost:8529/_db/mydb/_api/document/demo/362549736
Note: that the following examples use the short URL format for brevity.
Working with Edges using REST
This is documentation to ArangoDB's REST interface for edges.
Edges are documents with two additional attributes: _from and _to. These attributes are mandatory and must contain the document-handle of the from and to vertices of an edge.
Use the general document REST api for create/read/update/delete.
Read in- or outbound edges
get edges
GET /_api/edges/{collection-id}
Path Parameters
Query Parameters
vertex (required): The id of the start vertex.
direction (optional): Selects in or out direction for edges. If not set, any edges are returned.
Returns an array of edges starting or ending in the vertex identified by vertex-handle.
Return Codes
200: is returned if the edge collection was found and edges were retrieved.
400: is returned if the request contains invalid parameters.
404: is returned if the edge collection was not found.
Examples
Any direction
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
In edges
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=in
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Out edges
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=out
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
General Graphs
This chapter describes the REST interface for the multi-collection graph module. It allows you to define a graph that is spread across several edge and document collections. There is no need to include the referenced collections within the query, this module will handle it for you.
Manage your graphs
The graph module provides functions dealing with graph structures. Examples will explain the REST API on the social graph:
List all graphs
Lists all graphs known to the graph module.
GET /_api/gharial
Lists all graph names stored in this database.
Return Codes
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Create a graph
Create a new graph in the graph module.
POST /_api/gharial
The creation of a graph requires the name of the graph and a definition of its edges. See also edge definitions.
A JSON object with these properties is required:
Return Codes
201: Is returned if the graph could be created and waitForSync is enabled for the _graphs collection. The response body contains the graph configuration that has been stored.
202: Is returned if the graph could be created and waitForSync is disabled for the _graphs collection. The response body contains the graph configuration that has been stored.
409: Returned if there is a conflict storing the graph. This can occur either if a graph with this name is already stored, or if there is one edge definition with a the same edge collection but a different signature used in any other graph.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial <<EOF
{
"name" : "myGraph",
"edgeDefinitions" : [
{
"collection" : "edges",
"from" : [
"startVertices"
],
"to" : [
"endVertices"
]
}
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2NK--B
x-content-type-options: nosniff
Show response body
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial <<EOF
{
"name" : "myGraph",
"edgeDefinitions" : [
{
"collection" : "edges",
"from" : [
"startVertices"
],
"to" : [
"endVertices"
]
}
],
"isSmart" : true,
"options" : {
"numberOfShards" : 9,
"smartGraphAttribute" : "region"
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2QO--B
x-content-type-options: nosniff
Show response body
Get a graph
Get a graph from the graph module.
GET /_api/gharial/{graph-name}
Gets a graph from the collection _graphs. Returns the definition content of this graph.
Path Parameters
Return Codes
200: Returned if the graph could be found.
404: Returned if no graph with this name could be found.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/myGraph
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Drop a graph
delete an existing graph
DELETE /_api/gharial/{graph-name}
Removes a graph from the collection _graphs.
Path Parameters
Query Parameters
Return Codes
201: Is returned if the graph could be dropped and waitForSync is enabled for the _graphs collection.
202: Returned if the graph could be dropped and waitForSync is disabled for the _graphs collection.
404: Returned if no graph with this name could be found.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social?dropCollections=true
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
List vertex collections
Lists all vertex collections used in this graph.
GET /_api/gharial/{graph-name}/vertex
Lists all vertex collections within this graph.
Path Parameters
Return Codes
200: Is returned if the collections could be listed.
404: Returned if no graph with this name could be found.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/vertex
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Add vertex collection
Add an additional vertex collection to the graph.
POST /_api/gharial/{graph-name}/vertex
Adds a vertex collection to the set of collections of the graph. If the collection does not exist, it will be created.
Path Parameters
Return Codes
201: Returned if the edge collection could be added successfully and waitForSync is true.
202: Returned if the edge collection could be added successfully and waitForSync is false.
404: Returned if no graph with this name could be found.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex <<EOF
{
"collection" : "otherVertices"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2Je--B
x-content-type-options: nosniff
Show response body
Remove vertex collection
Remove a vertex collection form the graph.
DELETE /_api/gharial/{graph-name}/vertex/{collection-name}
Removes a vertex collection from the graph and optionally deletes the collection, if it is not used in any other graph.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the vertex collection.
Query Parameters
Return Codes
201: Returned if the vertex collection was removed from the graph successfully and waitForSync is true.
202: Returned if the request was successful but waitForSync is false.
400: Returned if the vertex collection is still used in an edge definition. In this case it cannot be removed from the graph yet, it has to be removed from the edge definition first.
404: Returned if no graph with this name could be found.
Examples
You can remove vertex collections that are not used in any edge collection:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/vertex/otherVertices
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy3G2--_
x-content-type-options: nosniff
Show response body
You cannot remove vertex collections that are used in edge collections:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/vertex/male
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
List edge definitions
Lists all edge definitions
GET /_api/gharial/{graph-name}/edge
Lists all edge collections within this graph.
Path Parameters
Return Codes
200: Is returned if the edge definitions could be listed.
404: Returned if no graph with this name could be found.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/edge
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Add edge definition
Add a new edge definition to the graph
POST /_api/gharial/{graph-name}/edge
Adds an additional edge definition to the graph.
This edge definition has to contain a collection and an array of each from and to vertex collections. An edge definition can only be added if this definition is either not used in any other graph, or it is used with exactly the same definition. It is not possible to store a definition "e" from "v1" to "v2" in the one graph, and "e" from "v2" to "v1" in the other graph.
A JSON object with these properties is required:
Path Parameters
Return Codes
201: Returned if the definition could be added successfully and waitForSync is enabled for the _graphs collection.
202: Returned if the definition could be added successfully and waitForSync is disabled for the _graphs collection.
400: Returned if the defininition could not be added, the edge collection is used in an other graph with a different signature.
404: Returned if no graph with this name could be found.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge <<EOF
{
"collection" : "works_in",
"from" : [
"female",
"male"
],
"to" : [
"city"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2B---B
x-content-type-options: nosniff
Show response body
Replace an edge definition
Replace an existing edge definition
PUT /_api/gharial/{graph-name}/edge/{definition-name}
Change one specific edge definition. This will modify all occurrences of this definition in all graphs known to your database.
A JSON object with these properties is required:
Path Parameters
graph-name (required): The name of the graph.
definition-name (required): The name of the edge collection used in the definition.
Return Codes
201: Returned if the request was successful and waitForSync is true.
202: Returned if the request was successful but waitForSync is false.
400: Returned if no edge definition with this name is found in the graph.
404: Returned if no graph with this name could be found.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation <<EOF
{
"collection" : "relation",
"from" : [
"female",
"male",
"animal"
],
"to" : [
"female",
"male",
"animal"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy3OK--_
x-content-type-options: nosniff
Show response body
Remove an edge definition from the graph
Remove an edge definition form the graph
DELETE /_api/gharial/{graph-name}/edge/{definition-name}
Remove one edge definition from the graph. This will only remove the edge collection, the vertex collections remain untouched and can still be used in your queries.
Path Parameters
graph-name (required): The name of the graph.
definition-name (required): The name of the edge collection used in the definition.
Query Parameters
Return Codes
201: Returned if the edge definition could be removed from the graph and waitForSync is true.
202: Returned if the edge definition could be removed from the graph and waitForSync is false.
400: Returned if no edge definition with this name is found in the graph.
404: Returned if no graph with this name could be found.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/edge/relation
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2di--D
x-content-type-options: nosniff
Show response body
Handling Vertices
Examples will explain the REST API to the graph module on the social graph:
Create a vertex
create a new vertex
POST /_api/gharial/{graph-name}/vertex/{collection-name}
Adds a vertex to the given collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the vertex collection the vertex belongs to.
Query Parameters
Request Body (required)
The body has to be the JSON object to be stored.
Return Codes
201: Returned if the vertex could be added and waitForSync is true.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph or no vertex collection with this name could be found.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/male <<EOF
{
"name" : "Francis"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2Fe--E
x-content-type-options: nosniff
Show response body
Get a vertex
fetches an existing vertex
GET /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}
Gets a vertex from the given collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the vertex collection the vertex belongs to.
vertex-key (required): The _key attribute of the vertex.
Header Parameters
Return Codes
200: Returned if the vertex could be found.
404: Returned if no graph with this name, no vertex collection or no vertex with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2nK--_
x-content-type-options: nosniff
Show response body
Modify a vertex
replace an existing vertex
PATCH /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}
Updates the data of the specific vertex in the collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the vertex collection the vertex belongs to.
vertex-key (required): The _key attribute of the vertex.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
keepNull (optional): Define if values set to null should be stored. By default the key is not removed from the document.
returnOld (optional): Define if a presentation of the deleted document should be returned within the response object.
returnNew (optional): Define if a presentation of the newly create
Header Parameters
Request Body (required)
The body has to contain a JSON object containing exactly the attributes that should be replaced.
Return Codes
200: Returned if the vertex could be updated.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no vertex collection or no vertex with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice <<EOF
{
"age" : 26
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy272--_
x-content-type-options: nosniff
Show response body
Replace a vertex
replaces an existing vertex
PUT /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}
Replaces the data of a vertex in the collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the vertex collection the vertex belongs to.
vertex-key (required): The _key attribute of the vertex.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
keepNull (optional): Define if values set to null should be stored. By default the key is not removed from the document.
returnOld (optional): Define if a presentation of the deleted document should be returned within the response object.
returnNew (optional): Define if a presentation of the newly create
Header Parameters
Request Body (required)
The body has to be the JSON object to be stored.
Return Codes
200: Returned if the vertex could be replaced.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no vertex collection or no vertex with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice <<EOF
{
"name" : "Alice Cooper",
"age" : 26
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy3SG--B
x-content-type-options: nosniff
Show response body
Remove a vertex
removes a vertex from a graph
DELETE /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}
Removes a vertex from the collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the vertex collection the vertex belongs to.
vertex-key (required): The _key attribute of the vertex.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
returnOld (optional): Define if a presentation of the deleted document should be returned within the response object.
returnNew (optional): Define if a presentation of the newly created document should be returned within the response object.
Header Parameters
Return Codes
200: Returned if the vertex could be removed.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no vertex collection or no vertex with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Handling Edges
Examples will explain the REST API for manipulating edges of the graph module on the knows graph:
Create an edge
Creates an edge in an existing graph
POST /_api/gharial/{graph-name}/edge/{collection-name}
Creates a new edge in the collection. Within the body the has to contain a _from and _to value referencing to valid vertices in the graph. Furthermore the edge has to be valid in the definition of this edge collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the edge collection the edge belongs to.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
_from (required):
_to (required):
Request Body (required)
The body has to be the JSON object to be stored.
Return Codes
201: Returned if the edge could be created.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no edge collection or no edge with this id could be found.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation <<EOF
{
"type" : "friend",
"_from" : "female/alice",
"_to" : "female/diana"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy186--D
x-content-type-options: nosniff
Show response body
Get an edge
fetch an edge
GET /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}
Gets an edge from the given collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the edge collection the edge belongs to.
edge-key (required): The _key attribute of the vertex.
Header Parameters
Return Codes
200: Returned if the edge could be found.
404: Returned if no graph with this name, no edge collection or no edge with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/edge/relation/101019
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy2gu--D
x-content-type-options: nosniff
Show response body
Examples will explain the API on the social graph:
Modify an edge
modify an existing edge
PATCH /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}
Updates the data of the specific edge in the collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the edge collection the edge belongs to.
edge-key (required): The _key attribute of the vertex.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
keepNull (optional): Define if values set to null should be stored. By default the key is not removed from the document.
returnOld (optional): Define if a presentation of the deleted document should be returned within the response object.
returnNew (optional): Define if a presentation of the newly create
keepNull (optional): Define if values set to null should be stored. By default the key is not removed from the document.
Request Body (required)
The body has to be a JSON object containing the attributes to be updated.
Return Codes
200: Returned if the edge could be updated.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no edge collection or no edge with this id could be found.
Examples
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation/101622 <<EOF
{
"since" : "01.01.2001"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy3_2--_
x-content-type-options: nosniff
Show response body
Replace an edge
replace the content of an existing edge
PUT /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}
Replaces the data of an edge in the collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the edge collection the edge belongs to.
edge-key (required): The _key attribute of the vertex.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
keepNull (optional): Define if values set to null should be stored. By default the key is not removed from the document.
returnOld (optional): Define if a presentation of the deleted document should be returned within the response object.
returnNew (optional): Define if a presentation of the newly create
Header Parameters
Request Body (required)
The body has to be the JSON object to be stored.
Return Codes
201: Returned if the request was successful but waitForSync is true.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no edge collection or no edge with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation/101705 <<EOF
{
"type" : "divorced",
"_from" : "female/alice",
"_to" : "male/bob"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
etag: _XUJy3DO--_
x-content-type-options: nosniff
Show response body
Remove an edge
removes an edge from graph
DELETE /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}
Removes an edge from the collection.
Path Parameters
graph-name (required): The name of the graph.
collection-name (required): The name of the edge collection the edge belongs to.
edge-key (required): The _key attribute of the vertex.
Query Parameters
waitForSync (optional): Define if the request should wait until synced to disk.
returnOld (optional): Define if a presentation of the deleted document should be returned within the response object.
Header Parameters
Return Codes
200: Returned if the edge could be removed.
202: Returned if the request was successful but waitForSync is false.
404: Returned if no graph with this name, no edge collection or no edge with this id could be found.
412: Returned if if-match header is given, but the documents revision is different.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/gharial/social/edge/relation/100712
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Traversals
Traversals
ArangoDB's graph traversals are executed on the server. Traversals can be initiated by clients by sending the traversal description for execution to the server.
Traversals in ArangoDB are used to walk over a graph stored in one edge collection. It can easily be described which edges of the graph should be followed and which actions should be performed on each visited vertex. Furthermore the ordering of visiting the nodes can be specified, for instance depth-first or breadth-first search are offered.
Executing Traversals via HTTP
executes a traversal
execute a server-side traversal
POST /_api/traversal
Starts a traversal starting from a given vertex and following. edges contained in a given edgeCollection. The request must contain the following attributes.
A JSON object with these properties is required:
If the Traversal is successfully executed HTTP 200 will be returned. Additionally the result object will be returned by the traversal.
For successful traversals, the returned JSON object has the following properties:
error: boolean flag to indicate if an error occurred (false in this case)
code: the HTTP status code
result: the return value of the traversal
If the traversal specification is either missing or malformed, the server will respond with HTTP 400.
The body of the response will then contain a JSON object with additional error details. The object has the following attributes:
error: boolean flag to indicate that an error occurred (true in this case)
code: the HTTP status code
errorNum: the server error number
errorMessage: a descriptive error message
Return Codes
200: If the traversal is fully executed HTTP 200 will be returned.
400: If the traversal specification is either missing or malformed, the server will respond with HTTP 400.
404: The server will responded with HTTP 404 if the specified edge collection does not exist, or the specified start vertex cannot be found.
500: The server will responded with HTTP 500 when an error occurs inside the traversal or if a traversal performs more than maxIterations iterations.
Examples
In the following examples the underlying graph will contain five persons Alice, Bob, Charlie, Dave and Eve. We will have the following directed relations:
The starting vertex will always be Alice.
Follow only outbound edges
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Follow only inbound edges
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "inbound"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Follow any direction of edges
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "any",
"uniqueness" : {
"vertices" : "none",
"edges" : "global"
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Excluding Charlie and Bob
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound",
"filter" : "if (vertex.name === \"Bob\" || vertex.name === \"Charlie\") { return \"exclude\";}return;"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Do not follow edges from Bob
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound",
"filter" : "if (vertex.name === \"Bob\") {return \"prune\";}return;"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Visit only nodes in a depth of at least 2
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound",
"minDepth" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Visit only nodes in a depth of at most 1
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound",
"maxDepth" : 1
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a visitor function to return vertex ids only
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound",
"visitor" : "result.visited.vertices.push(vertex._id);"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Count all visited nodes and return a list of nodes only
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "outbound",
"init" : "result.visited = 0; result.myVertices = [];",
"visitor" : "result.visited++; result.myVertices.push(vertex);"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Expand only inbound edges of Alice and outbound edges of Eve
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"expander" : "var connections = [];if (vertex.name === \"Alice\") {config.datasource.getInEdges(vertex).forEach(function (e) {connections.push({ vertex: require(\"internal\").db._document(e._from), edge: e});});}if (vertex.name === \"Eve\") {config.datasource.getOutEdges(vertex).forEach(function (e) {connections.push({vertex: require(\"internal\").db._document(e._to), edge: e});});}return connections;"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Follow the depthfirst strategy
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "any",
"strategy" : "depthfirst"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using postorder ordering
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "any",
"order" : "postorder"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using backward item-ordering:
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "any",
"itemOrder" : "backward"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Edges should only be included once globally, but nodes are included every time they are visited
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "any",
"uniqueness" : {
"vertices" : "none",
"edges" : "global"
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
If the underlying graph is cyclic, maxIterations should be set
The underlying graph has two vertices Alice and Bob. With the directed edges:
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{
"startVertex" : "persons/alice",
"graphName" : "knows_graph",
"direction" : "any",
"uniqueness" : {
"vertices" : "none",
"edges" : "none"
},
"maxIterations" : 5
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
All examples were using this graph:
HTTP Interface for AQL Query Cursors
Database Cursors
This is an introduction to ArangoDB's HTTP Interface for Queries. Results of AQL and simple queries are returned as cursors in order to batch the communication between server and client. Each call returns a number of documents in a batch and an indication if the current batch has been the final batch. Depending on the query, the total number of documents in the result set might or might not be known in advance. In order to free server resources the client should delete the cursor as soon as it is no longer needed.
To execute a query, the query details need to be shipped from the client to the server via an HTTP POST request.
Retrieving query results
Select queries are executed on-the-fly on the server and the result set will be returned back to the client.
There are two ways the client can get the result set from the server:
Single roundtrip
The server will only transfer a certain number of result documents back to the client in one roundtrip. This number is controllable by the client by setting the batchSize attribute when issuing the query.
If the complete result can be transferred to the client in one go, the client does not need to issue any further request. The client can check whether it has retrieved the complete result set by checking the hasMore attribute of the result set. If it is set to false, then the client has fetched the complete result set from the server. In this case no server side cursor will be created.
> curl --data @- -X POST --dump - http://localhost:8529/_api/cursor
{ "query" : "FOR u IN users LIMIT 2 RETURN u", "count" : true, "batchSize" : 2 }
HTTP/1.1 201 Created
Content-type: application/json
{
"hasMore" : false,
"error" : false,
"result" : [
{
"name" : "user1",
"_rev" : "210304551",
"_key" : "210304551",
"_id" : "users/210304551"
},
{
"name" : "user2",
"_rev" : "210304552",
"_key" : "210304552",
"_id" : "users/210304552"
}
],
"code" : 201,
"count" : 2
}
Using a cursor
If the result set contains more documents than should be transferred in a single roundtrip (i.e. as set via the batchSize attribute), the server will return the first few documents and create a temporary cursor. The cursor identifier will also be returned to the client. The server will put the cursor identifier in the id attribute of the response object. Furthermore, the hasMore attribute of the response object will be set to true. This is an indication for the client that there are additional results to fetch from the server.
Examples:
Create and extract first batch:
> curl --data @- -X POST --dump - http://localhost:8529/_api/cursor
{ "query" : "FOR u IN users LIMIT 5 RETURN u", "count" : true, "batchSize" : 2 }
HTTP/1.1 201 Created
Content-type: application/json
{
"hasMore" : true,
"error" : false,
"id" : "26011191",
"result" : [
{
"name" : "user1",
"_rev" : "258801191",
"_key" : "258801191",
"_id" : "users/258801191"
},
{
"name" : "user2",
"_rev" : "258801192",
"_key" : "258801192",
"_id" : "users/258801192"
}
],
"code" : 201,
"count" : 5
}
Extract next batch, still have more:
> curl -X PUT --dump - http://localhost:8529/_api/cursor/26011191
HTTP/1.1 200 OK
Content-type: application/json
{
"hasMore" : true,
"error" : false,
"id" : "26011191",
"result": [
{
"name" : "user3",
"_rev" : "258801193",
"_key" : "258801193",
"_id" : "users/258801193"
},
{
"name" : "user4",
"_rev" : "258801194",
"_key" : "258801194",
"_id" : "users/258801194"
}
],
"code" : 200,
"count" : 5
}
Extract next batch, done:
> curl -X PUT --dump - http://localhost:8529/_api/cursor/26011191
HTTP/1.1 200 OK
Content-type: application/json
{
"hasMore" : false,
"error" : false,
"result" : [
{
"name" : "user5",
"_rev" : "258801195",
"_key" : "258801195",
"_id" : "users/258801195"
}
],
"code" : 200,
"count" : 5
}
Do not do this because hasMore now has a value of false:
> curl -X PUT --dump - http://localhost:8529/_api/cursor/26011191
HTTP/1.1 404 Not Found
Content-type: application/json
{
"errorNum": 1600,
"errorMessage": "cursor not found: disposed or unknown cursor",
"error": true,
"code": 404
}
Modifying documents
The _api/cursor endpoint can also be used to execute modifying queries.
The following example appends a value into the array arrayValue of the document with key test in the collection documents . Normal update behavior is to replace the attribute completely, and using an update AQL query with the PUSH() function allows to append to the array.
curl --data @- -X POST --dump http://127.0.0.1:8529/_api/cursor
{ "query": "FOR doc IN documents FILTER doc._key == @myKey UPDATE doc._key WITH { arrayValue: PUSH(doc.arrayValue, @value) } IN documents","bindVars": { "myKey": "test", "value": 42 } }
HTTP/1.1 201 Created
Content-type: application/json; charset=utf-8
{
"result" : [],
"hasMore" : false,
"extra" : {
"stats" : {
"writesExecuted" : 1,
"writesIgnored" : 0,
"scannedFull" : 0,
"scannedIndex" : 1,
"filtered" : 0
},
"warnings" : []
},
"error" : false,
"code" : 201
}
Setting a memory limit
To set a memory limit for the query, the memoryLimit option can be passed to the server. The memory limit specifies the maximum number of bytes that the query is allowed to use. When a single AQL query reaches the specified limit value, the query will be aborted with a resource limit exceeded exception. In a cluster, the memory accounting is done per shard, so the limit value is effectively a memory limit per query per shard.
> curl --data @- -X POST --dump - http://localhost:8529/_api/cursor
{ "query" : "FOR i IN 1..100000 SORT i RETURN i", "memoryLimit" : 100000 }
HTTP/1.1 500 Internal Server Error
Server: ArangoDB
Connection: Keep-Alive
Content-Type: application/json; charset=utf-8
Content-Length: 115
{"error":true,"errorMessage":"query would use more memory than allowed (while executing)","code":500,"errorNum":32}
If no memory limit is specified, then the server default value (controlled by startup option --query.memory-limit will be used for restricting the maximum amount of memory the query can use. A memory limit value of 0 means that the maximum amount of memory for the query is not restricted.
Accessing Cursors via HTTP
Create cursor
create a cursor and return the first results
POST /_api/cursor
A JSON object describing the query and query parameters.
A JSON object with these properties is required:
The query details include the query string plus optional query options and bind parameters. These values need to be passed in a JSON representation in the body of the POST request.
HTTP 201 A json document with these Properties is returned:
is returned if the result set can be created by the server.
HTTP 400 A json document with these Properties is returned:
is returned if the JSON representation is malformed or the query specification is missing from the request. If the JSON representation is malformed or the query specification is missing from the request, the server will respond with HTTP 400. The body of the response will contain a JSON object with additional error details. The object has the following attributes:
Return Codes
Response Body
id: id of temporary cursor created on the server (optional, see above)
400: is returned if the JSON representation is malformed or the query specification is missing from the request.
If the JSON representation is malformed or the query specification is missing from the request, the server will respond with HTTP 400.
The body of the response will contain a JSON object with additional error details. The object has the following attributes:
Response Body
If the query specification is complete, the server will process the query. If an error occurs during query processing, the server will respond with HTTP 400. Again, the body of the response will contain details about the error.
A list of query errors can be found here.
404: The server will respond with HTTP 404 in case a non-existing collection is accessed in the query.
405: The server will respond with HTTP 405 if an unsupported HTTP method is used.
Examples
Execute a query and extract the result in a single go
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR p IN products LIMIT 2 RETURN p",
"count" : true,
"batchSize" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Execute a query and extract a part of the result
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR p IN products LIMIT 5 RETURN p",
"count" : true,
"batchSize" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using the query option "fullCount"
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR i IN 1..1000 FILTER i > 500 LIMIT 10 RETURN i",
"count" : true,
"options" : {
"fullCount" : true
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Enabling and disabling optimizer rules
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR i IN 1..10 LET a = 1 LET b = 2 FILTER a + b == 3 RETURN i",
"count" : true,
"options" : {
"maxPlans" : 1,
"optimizer" : {
"rules" : [
"-all",
"+remove-unnecessary-filters"
]
}
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Execute instrumented query and return result together with execution plan and profiling information
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "LET s = SLEEP(0.25) LET t = SLEEP(0.5) RETURN 1",
"count" : true,
"options" : {
"profile" : 2
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Execute a data-modification query and retrieve the number of modified documents
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR p IN products REMOVE p IN products"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Execute a data-modification query with option ignoreErrors
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "REMOVE 'bar' IN products OPTIONS { ignoreErrors: true }"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Bad query - Missing body
shell> curl -X POST --header 'accept: application/json' --dump - http://localhost:8529/_api/cursor
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Bad query - Unknown collection
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR u IN unknowncoll LIMIT 2 RETURN u",
"count" : true,
"batchSize" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Bad query - Execute a data-modification query that attempts to remove a non-existing document
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "REMOVE 'foo' IN products"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Read next batch from cursor
return the next results from an existing cursor
PUT /_api/cursor/{cursor-identifier}
Path Parameters
If the cursor is still alive, returns an object with the following attributes:
Note that even if hasMore returns true, the next call might still return no documents. If, however, hasMore is false, then the cursor is exhausted. Once the hasMore attribute has a value of false, the client can stop.
Return Codes
200: The server will respond with HTTP 200 in case of success.
400: If the cursor identifier is omitted, the server will respond with HTTP 404.
404: If no cursor with the specified identifier can be found, the server will respond with HTTP 404.
Examples
Valid request for next batch
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR p IN products LIMIT 5 RETURN p",
"count" : true,
"batchSize" : 2
}
EOF
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/cursor/103051
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Missing identifier
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/cursor
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Unknown identifier
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/cursor/123123
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Delete cursor
dispose an existing cursor
DELETE /_api/cursor/{cursor-identifier}
Path Parameters
Deletes the cursor and frees the resources associated with it.
The cursor will automatically be destroyed on the server when the client has retrieved all documents from it. The client can also explicitly destroy the cursor at any earlier time using an HTTP DELETE request. The cursor id must be included as part of the URL.
Note: the server will also destroy abandoned cursors automatically after a certain server-controlled timeout to avoid resource leakage.
Return Codes
202: is returned if the server is aware of the cursor.
404: is returned if the server is not aware of the cursor. It is also returned if a cursor is used after it has been destroyed.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR p IN products LIMIT 5 RETURN p",
"count" : true,
"batchSize" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/cursor/102972
Show response body
HTTP Interface for AQL Queries
Explaining and parsing queries
ArangoDB has an HTTP interface to syntactically validate AQL queries. Furthermore, it offers an HTTP interface to retrieve the execution plan for any valid AQL query.
Both functionalities do not actually execute the supplied AQL query, but only inspect it and return meta information about it.
Explain an AQL query
explain an AQL query and return information about it
POST /_api/explain
A JSON object describing the query and query parameters.
A JSON object with these properties is required:
To explain how an AQL query would be executed on the server, the query string can be sent to the server via an HTTP POST request. The server will then validate the query and create an execution plan for it. The execution plan will be returned, but the query will not be executed.
The execution plan that is returned by the server can be used to estimate the probable performance of the query. Though the actual performance will depend on many different factors, the execution plan normally can provide some rough estimates on the amount of work the server needs to do in order to actually run the query.
By default, the explain operation will return the optimal plan as chosen by the query optimizer The optimal plan is the plan with the lowest total estimated cost. The plan will be returned in the attribute plan of the response object. If the option allPlans is specified in the request, the result will contain all plans created by the optimizer. The plans will then be returned in the attribute plans.
The result will also contain an attribute warnings, which is an array of warnings that occurred during optimization or execution plan creation. Additionally, a stats attribute is contained in the result with some optimizer statistics. If allPlans is set to false, the result will contain an attribute cacheable that states whether the query results can be cached on the server if the query result cache were used. The cacheable attribute is not present when allPlans is set to true.
Each plan in the result is a JSON object with the following attributes:
nodes: the array of execution nodes of the plan. The array of available node types can be found here
estimatedCost: the total estimated cost for the plan. If there are multiple plans, the optimizer will choose the plan with the lowest total cost.
collections: an array of collections used in the query
rules: an array of rules the optimizer applied. An overview of the available rules can be found here
variables: array of variables used in the query (note: this may contain internal variables created by the optimizer)
Return Codes
200: If the query is valid, the server will respond with HTTP 200 and return the optimal execution plan in the plan attribute of the response. If option allPlans was set in the request, an array of plans will be returned in the allPlans attribute instead.
400: The server will respond with HTTP 400 in case of a malformed request, or if the query contains a parse error. The body of the response will contain the error details embedded in a JSON object. Omitting bind variables if the query references any will also result in an HTTP 400 error.
404: The server will respond with HTTP 404 in case a non-existing collection is accessed in the query.
Examples
Valid query
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{
"query" : "FOR p IN products RETURN p"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
A plan with some optimizer rules applied
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{
"query" : "FOR p IN products LET a = p.id FILTER a == 4 LET name = p.name SORT p.id LIMIT 1 RETURN name"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using some options
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{
"query" : "FOR p IN products LET a = p.id FILTER a == 4 LET name = p.name SORT p.id LIMIT 1 RETURN name",
"options" : {
"maxNumberOfPlans" : 2,
"allPlans" : true,
"optimizer" : {
"rules" : [
"-all",
"+use-index-for-sort",
"+use-index-range"
]
}
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Returning all plans
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{
"query" : "FOR p IN products FILTER p.id == 25 RETURN p",
"options" : {
"allPlans" : true
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
A query that produces a warning
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{
"query" : "FOR i IN 1..10 RETURN 1 / 0"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Invalid query (missing bind parameter)
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{
"query" : "FOR p IN products FILTER p.id == @id LIMIT 2 RETURN p.n"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
The data returned in the plan attribute of the result contains one element per AQL top-level statement (i.e. FOR , RETURN , FILTER etc.). If the query optimizer removed some unnecessary statements, the result might also contain less elements than there were top-level statements in the AQL query.
The following example shows a query with a non-sensible filter condition that the optimizer has removed so that there are less top-level statements.
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ "query" : "FOR i IN [1, 2, 3] FILTER 1 == 2 RETURN i" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Parse an AQL query
parse an AQL query and return information about it
POST /_api/query
This endpoint is for query validation only. To actually query the database, see /api/cursor .
A JSON object with these properties is required:
Return Codes
200: If the query is valid, the server will respond with HTTP 200 and return the names of the bind parameters it found in the query (if any) in the bindVars attribute of the response. It will also return an array of the collections used in the query in the collections attribute. If a query can be parsed successfully, the ast attribute of the returned JSON will contain the abstract syntax tree representation of the query. The format of the ast is subject to change in future versions of ArangoDB, but it can be used to inspect how ArangoDB interprets a given query. Note that the abstract syntax tree will be returned without any optimizations applied to it.
400: The server will respond with HTTP 400 in case of a malformed request, or if the query contains a parse error. The body of the response will contain the error details embedded in a JSON object.
Examples
a valid query
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/query <<EOF
{ "query" : "FOR i IN 1..100 FILTER i > 10 LIMIT 2 RETURN i * 3" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
an invalid query
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/query <<EOF
{ "query" : "FOR i IN 1..100 FILTER i = 1 LIMIT 2 RETURN i * 3" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Query tracking
ArangoDB has an HTTP interface for retrieving the lists of currently executing AQL queries and the list of slow AQL queries. In order to make meaningful use of these APIs, query tracking needs to be enabled in the database the HTTP request is executed for.
Returns the properties for the AQL query tracking
returns the configuration for the AQL query tracking
GET /_api/query/properties
Returns the current query tracking configuration. The configuration is a JSON object with the following properties:
enabled: if set to true, then queries will be tracked. If set to false, neither queries nor slow queries will be tracked.
trackSlowQueries: if set to true, then slow queries will be tracked in the list of slow queries if their runtime exceeds the value set in slowQueryThreshold. In order for slow queries to be tracked, the enabled property must also be set to true.
trackBindVars: if set to true, then bind variables used in queries will be tracked.
maxSlowQueries: the maximum number of slow queries to keep in the list of slow queries. If the list of slow queries is full, the oldest entry in it will be discarded when additional slow queries occur.
slowQueryThreshold: the threshold value for treating a query as slow. A query with a runtime greater or equal to this threshold value will be put into the list of slow queries when slow query tracking is enabled. The value for slowQueryThreshold is specified in seconds.
maxQueryStringLength: the maximum query string length to keep in the list of queries. Query strings can have arbitrary lengths, and this property can be used to save memory in case very long query strings are used. The value is specified in bytes.
Return Codes
200: Is returned if properties were retrieved successfully.
400: The server will respond with HTTP 400 in case of a malformed request,
Changes the properties for the AQL query tracking
changes the configuration for the AQL query tracking
PUT /_api/query/properties
A JSON object with these properties is required:
The properties need to be passed in the attribute properties in the body of the HTTP request. properties needs to be a JSON object.
After the properties have been changed, the current set of properties will be returned in the HTTP response.
Return Codes
200: Is returned if the properties were changed successfully.
400: The server will respond with HTTP 400 in case of a malformed request,
Returns the currently running AQL queries
returns a list of currently running AQL queries
GET /_api/query/current
Returns an array containing the AQL queries currently running in the selected database. Each query is a JSON object with the following attributes:
id: the query's id
query: the query string (potentially truncated)
bindVars: the bind parameter values used by the query
started: the date and time when the query was started
runTime: the query's run time up to the point the list of queries was queried
state: the query's current execution state (as a string)
Return Codes
200: Is returned when the list of queries can be retrieved successfully.
400: The server will respond with HTTP 400 in case of a malformed request,
Returns the list of slow AQL queries
returns a list of slow running AQL queries
GET /_api/query/slow
Returns an array containing the last AQL queries that are finished and have exceeded the slow query threshold in the selected database. The maximum amount of queries in the list can be controlled by setting the query tracking property maxSlowQueries . The threshold for treating a query as slow can be adjusted by setting the query tracking property slowQueryThreshold .
Each query is a JSON object with the following attributes:
id: the query's id
query: the query string (potentially truncated)
bindVars: the bind parameter values used by the query
started: the date and time when the query was started
runTime: the query's total run time
state: the query's current execution state (will always be "finished" for the list of slow queries)
Return Codes
200: Is returned when the list of queries can be retrieved successfully.
400: The server will respond with HTTP 400 in case of a malformed request,
Clears the list of slow AQL queries
clears the list of slow AQL queries
DELETE /_api/query/slow
Clears the list of slow AQL queries
Return Codes
200: The server will respond with HTTP 200 when the list of queries was cleared successfully.
400: The server will respond with HTTP 400 in case of a malformed request.
Killing queries
Running AQL queries can also be killed on the server. ArangoDB provides a kill facility via an HTTP interface. To kill a running query, its id (as returned for the query in the list of currently running queries) must be specified. The kill flag of the query will then be set, and the query will be aborted as soon as it reaches a cancelation point.
Kills a running AQL query
kills an AQL query
DELETE /_api/query/{query-id}
Path Parameters
Kills a running query. The query will be terminated at the next cancelation point.
Return Codes
200: The server will respond with HTTP 200 when the query was still running when the kill request was executed and the query's kill flag was set.
400: The server will respond with HTTP 400 in case of a malformed request.
404: The server will respond with HTTP 404 when no query with the specified id was found.
HTTP Interface for the AQL query cache
This section describes the API methods for controlling the AQL query cache.
Clears any results in the AQL query results cache
clears the AQL query results cache
DELETE /_api/query-cache
clears the query cache
Return Codes
200: The server will respond with HTTP 200 when the cache was cleared successfully.
400: The server will respond with HTTP 400 in case of a malformed request.
Returns the global properties for the AQL query results cache
returns the global configuration for the AQL query results cache
GET /_api/query-cache/properties
Returns the global AQL query results cache configuration. The configuration is a JSON object with the following properties:
mode: the mode the AQL query results cache operates in. The mode is one of the following values: off, on or demand.
maxResults: the maximum number of query results that will be stored per database-specific cache.
Return Codes
200: Is returned if the properties can be retrieved successfully.
400: The server will respond with HTTP 400 in case of a malformed request,
Globally adjusts the AQL query results cache properties
changes the configuration for the AQL query results cache
PUT /_api/query-cache/properties
After the properties have been changed, the current set of properties will be returned in the HTTP response.
Note: changing the properties may invalidate all results in the cache. The global properties for AQL query cache. The properties need to be passed in the attribute properties in the body of the HTTP request. properties needs to be a JSON object with the following properties:
A JSON object with these properties is required:
Return Codes
200: Is returned if the properties were changed successfully.
400: The server will respond with HTTP 400 in case of a malformed request,
HTTP Interface for AQL User Functions Management
AQL User Functions Management
This is an introduction to ArangoDB's HTTP interface for managing AQL user functions. AQL user functions are a means to extend the functionality of ArangoDB's query language (AQL) with user-defined JavaScript code.
For an overview of how AQL user functions and their implications, please refer to the Extending AQL chapter.
The HTTP interface provides an API for adding, deleting, and listing previously registered AQL user functions.
All user functions managed through this interface will be stored in the system collection _aqlfunctions. Documents in this collection should not be accessed directly, but only via the dedicated interfaces.
Create AQL user function
create a new AQL user function
POST /_api/aqlfunction
A JSON object with these properties is required:
In case of success, HTTP 200 is returned. If the function isn't valid etc. HTTP 400 including a detailed error message will be returned.
HTTP 200 A json document with these Properties is returned:
If the function already existed and was replaced by the call, the server will respond with HTTP 200.
HTTP 201 A json document with these Properties is returned:
If the function can be registered by the server, the server will respond with HTTP 201.
HTTP 400 A json document with these Properties is returned:
If the JSON representation is malformed or mandatory data is missing from the request, the server will respond with HTTP 400.
Return Codes
Response Body
error: boolean flag to indicate whether an error occurred (false in this case)
201: If the function can be registered by the server, the server will respond with HTTP 201.
Response Body
error: boolean flag to indicate whether an error occurred (false in this case)
400: If the JSON representation is malformed or mandatory data is missing from the request, the server will respond with HTTP 400.
Response Body
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/aqlfunction <<EOF
{
"name" : "myfunctions::temperature::celsiustofahrenheit",
"code" : "function (celsius) { return celsius * 1.8 + 32; }",
"isDeterministic" : true
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Remove existing AQL user function
remove an existing AQL user function
DELETE /_api/aqlfunction/{name}
Path Parameters
Query Parameters
Removes an existing AQL user function or function group, identified by name.
HTTP 200 A json document with these Properties is returned:
If the function can be removed by the server, the server will respond with HTTP 200.
HTTP 400 A json document with these Properties is returned:
If the user function name is malformed, the server will respond with HTTP 400.
HTTP 404 A json document with these Properties is returned:
If the specified user user function does not exist, the server will respond with HTTP 404.
Return Codes
Response Body
error: boolean flag to indicate whether an error occurred (false in this case)
400: If the user function name is malformed, the server will respond with HTTP 400.
Response Body
error: boolean flag to indicate whether an error occurred (true in this case)
404: If the specified user user function does not exist, the server will respond with HTTP 404.
Response Body
Examples
deletes a function:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/aqlfunction/square::x::y
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
function not found:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/aqlfunction/myfunction::x::y
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Return registered AQL user functions
gets all reqistered AQL user functions
GET /_api/aqlfunction
Query Parameters
Returns all registered AQL user functions.
The call will return a JSON array with status codes and all user functions found under result.
HTTP 200 A json document with these Properties is returned:
on success HTTP 200 is returned.
HTTP 400 A json document with these Properties is returned:
If the user function name is malformed, the server will respond with HTTP 400.
Return Codes
Response Body
error: boolean flag to indicate whether an error occurred (false in this case)
400: If the user function name is malformed, the server will respond with HTTP 400.
Response Body
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/aqlfunction/test
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Simple Queries
Simple Queries
This is an introduction to ArangoDB's HTTP interface for simple queries.
Simple queries can be used if the query condition is straight forward simple, i.e., a document reference, all documents, a query-by-example, or a simple geo query. In a simple query you can specify exactly one collection and one condition. The result can then be sorted and can be split into pages.
Working with Simples Queries using HTTP
To limit the amount of results to be transferred in one batch, simple queries support a batchSize parameter that can optionally be used to tell the server to limit the number of results to be transferred in one batch to a certain value. If the query has more results than were transferred in one go, more results are waiting on the server so they can be fetched subsequently. If no value for the batchSize parameter is specified, the server will use a reasonable default value.
If the server has more documents than should be returned in a single batch, the server will set the hasMore attribute in the result. It will also return the id of the server-side cursor in the id attribute in the result. This id can be used with the cursor API to fetch any outstanding results from the server and dispose the server-side cursor afterwards.
Return all documents
returns all documents of a collection
PUT /_api/simple/all
Request Body (required)
Contains the query.
Returns all documents of a collections. Equivalent to the AQL query FOR doc IN collection RETURN doc . The call expects a JSON object as body with the following attributes:
collection: The name of the collection to query.
skip: The number of documents to skip in the query (optional).
limit: The maximal amount of documents to return. The skip is applied before the limit restriction (optional).
batchSize: The number of documents to return in one go. (optional)
ttl: The time-to-live for the cursor (in seconds, optional).
stream: Create this cursor as a stream query (optional).
Returns a cursor containing the result, see Http Cursor for details.
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Limit the amount of documents using limit
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/all <<EOF
{ "collection": "products", "skip": 2, "limit" : 2 }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a batchSize value
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/all <<EOF
{ "collection": "products", "batchSize" : 3 }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Simple query by-example
returns all documents of a collection matching a given example
PUT /_api/simple/by-example
A JSON object with these properties is required:
This will find all documents matching a given example.
Returns a cursor containing the result, see Http Cursor for details.
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Matching an attribute
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{
"collection" : "products",
"example" : {
"i" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Matching an attribute which is a sub-document
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{
"collection" : "products",
"example" : {
"a.j" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Matching an attribute within a sub-document
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Find documents matching an example
returns one document of a collection matching a given example
PUT /_api/simple/first-example
A JSON object with these properties is required:
This will return the first document matching a given example.
Returns a result containing the document or HTTP 404 if no document matched the example.
If more than one document in the collection matches the specified example, only one of these documents will be returned, and it is undefined which of the matching documents is returned.
Return Codes
200: is returned when the query was successfully executed.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
If a matching document was found
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{
"collection" : "products",
"example" : {
"i" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
If no document was found
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{
"collection" : "products",
"example" : {
"l" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Find documents by their keys
fetches multiple documents by their keys
PUT /_api/simple/lookup-by-keys
A JSON object with these properties is required:
Looks up the documents in the specified collection using the array of keys provided. All documents for which a matching key was specified in the keys array and that exist in the collection will be returned. Keys for which no document can be found in the underlying collection are ignored, and no exception will be thrown for them.
The body of the response contains a JSON object with a documents attribute. The documents attribute is an array containing the matching documents. The order in which matching documents are present in the result array is unspecified.
Return Codes
200: is returned if the operation was carried out successfully.
404: is returned if the collection was not found. The response body contains an error document in this case.
405: is returned if the operation was called with a different HTTP METHOD than PUT.
Examples
Looking up existing documents
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/lookup-by-keys <<EOF
{
"keys" : [
"test0",
"test1",
"test2",
"test3",
"test4",
"test5",
"test6",
"test7",
"test8",
"test9"
],
"collection" : "test"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Looking up non-existing documents
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/lookup-by-keys <<EOF
{
"keys" : [
"foo",
"bar",
"baz"
],
"collection" : "test"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Return a random document
returns a random document from a collection
PUT /_api/simple/any
Returns a random document from a collection. The call expects a JSON object as body with the following attributes:
A JSON object with these properties is required:
Return Codes
200: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/any <<EOF
{
"collection" : "products"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Remove documents by their keys
removes multiple documents by their keys
PUT /_api/simple/remove-by-keys
A JSON object with these properties is required:
Looks up the documents in the specified collection using the array of keys provided, and removes all documents from the collection whose keys are contained in the keys array. Keys for which no document can be found in the underlying collection are ignored, and no exception will be thrown for them.
The body of the response contains a JSON object with information how many documents were removed (and how many were not). The removed attribute will contain the number of actually removed documents. The ignored attribute will contain the number of keys in the request for which no matching document could be found.
Return Codes
200: is returned if the operation was carried out successfully. The number of removed documents may still be 0 in this case if none of the specified document keys were found in the collection.
404: is returned if the collection was not found. The response body contains an error document in this case.
405: is returned if the operation was called with a different HTTP METHOD than PUT.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-keys <<EOF
{
"keys" : [
"test0",
"test1",
"test2",
"test3",
"test4",
"test5",
"test6",
"test7",
"test8",
"test9"
],
"collection" : "test"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-keys <<EOF
{
"keys" : [
"foo",
"bar",
"baz"
],
"collection" : "test"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Remove documents by example
removes all documents of a collection that match an example
PUT /_api/simple/remove-by-example
A JSON object with these properties is required:
This will find all documents in the collection that match the specified example object.
Note: the limit attribute is not supported on sharded collections. Using it will result in an error.
Returns the number of documents that were deleted.
Return Codes
200: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using Parameter: waitForSync and limit
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
},
"waitForSync" : true,
"limit" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using Parameter: waitForSync and limit with new signature
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
},
"options" : {
"waitForSync" : true,
"limit" : 2
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Replace documents by example
replaces the body of all documents of a collection that match an example
PUT /_api/simple/replace-by-example
A JSON object with these properties is required:
This will find all documents in the collection that match the specified example object, and replace the entire document body with the new value specified. Note that document meta-attributes such as _id, _key, _from, _to etc. cannot be replaced.
Note: the limit attribute is not supported on sharded collections. Using it will result in an error.
Returns the number of documents that were replaced.
Return Codes
200: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/replace-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
},
"newValue" : {
"foo" : "bar"
},
"limit" : 3
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using new Signature for attributes WaitForSync and limit
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/replace-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
},
"newValue" : {
"foo" : "bar"
},
"options" : {
"limit" : 3,
"waitForSync" : true
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Update documents by example
partially updates the body of all documents of a collection that match an example
PUT /_api/simple/update-by-example
A JSON object with these properties is required:
This will find all documents in the collection that match the specified example object, and partially update the document body with the new value specified. Note that document meta-attributes such as _id, _key, _from, _to etc. cannot be replaced.
Note: the limit attribute is not supported on sharded collections. Using it will result in an error.
Returns the number of documents that were updated.
Return Codes
200: is returned if the collection was updated successfully and waitForSync was true.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
using old syntax for options
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/update-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
},
"newValue" : {
"a" : {
"j" : 22
}
},
"limit" : 3
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
using new signature for options
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/update-by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
},
"newValue" : {
"a" : {
"j" : 22
}
},
"options" : {
"limit" : 3,
"waitForSync" : true
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Simple range query
returns all documents of a collection within a range
PUT /_api/simple/range
A JSON object with these properties is required:
This will find all documents within a given range. In order to execute a range query, a skip-list index on the queried attribute must be present.
Returns a cursor containing the result, see Http Cursor for details.
Note: the range simple query is deprecated as of ArangoDB 2.6. The function may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection within a specific range is to use an AQL query as follows:
FOR doc IN @@collection
FILTER doc.value >= @left && doc.value < @right
LIMIT @skip, @limit
RETURN doc`
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown or no suitable index for the range query is present. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/range <<EOF
{
"collection" : "products",
"attribute" : "i",
"left" : 2,
"right" : 4
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Returns documents near a coordinate
returns all documents of a collection near a given location
PUT /_api/simple/near
A JSON object with these properties is required:
The default will find at most 100 documents near the given coordinate. The returned array is sorted according to the distance, with the nearest document being first in the return array. If there are near documents of equal distance, documents are chosen randomly from this set until the limit is reached.
In order to use the near operator, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more than one geo-spatial index, you can use the geo field to select a particular index.
Returns a cursor containing the result, see Http Cursor for details.
Note: the near simple query is deprecated as of ArangoDB 2.6. This API may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection using the near operator is to issue an AQL query using the NEAR function as follows:
FOR doc IN NEAR(@@collection, @latitude, @longitude, @limit)
RETURN doc`
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Without distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
With distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 3,
"distance" : "distance"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Find documents within a radius around a coordinate
returns all documents of a collection within a given radius
PUT /_api/simple/within
A JSON object with these properties is required:
This will find all documents within a given radius around the coordinate (latitude, longitude). The returned list is sorted by distance.
In order to use the within operator, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more than one geo-spatial index, you can use the geo field to select a particular index.
Returns a cursor containing the result, see Http Cursor for details.
Note: the within simple query is deprecated as of ArangoDB 2.6. This API may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection using the near operator is to issue an AQL query using the WITHIN function as follows:
FOR doc IN WITHIN(@@collection, @latitude, @longitude, @radius, @distanceAttributeName)
RETURN doc
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Without distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 2,
"radius" : 500
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
With distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 3,
"distance" : "distance",
"radius" : 300
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Within rectangle query
returns all documents of a collection within a rectangle
PUT /_api/simple/within-rectangle
A JSON object with these properties is required:
This will find all documents within the specified rectangle (determined by the given coordinates (latitude1, longitude1, latitude2, longitude2).
In order to use the within-rectangle query, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more than one geo-spatial index, you can use the geo field to select a particular index.
Returns a cursor containing the result, see Http Cursor for details.
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/within-rectangle <<EOF
{
"collection" : "products",
"latitude1" : 0,
"longitude1" : 0,
"latitude2" : 0.2,
"longitude2" : 0.2,
"skip" : 1,
"limit" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Fulltext index query
returns documents of a collection as a result of a fulltext query
PUT /_api/simple/fulltext
A JSON object with these properties is required:
This will find all documents from the collection that match the fulltext query specified in query.
In order to use the fulltext operator, a fulltext index must be defined for the collection and the specified attribute.
Returns a cursor containing the result, see Http Cursor for details.
Note: the fulltext simple query is deprecated as of ArangoDB 2.6. This API may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection using the near operator is to issue an AQL query using the FULLTEXT AQL function as follows:
FOR doc IN FULLTEXT(@@collection, @attributeName, @queryString, @limit)
RETURN doc
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/fulltext <<EOF
{
"collection" : "products",
"attribute" : "text",
"query" : "word"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Async Results Management
Request Execution
ArangoDB provides various methods of executing client requests. Clients can choose the appropriate method on a per-request level based on their throughput, control flow, and durability requirements.
Blocking execution
ArangoDB is a multi-threaded server, allowing the processing of multiple client requests at the same time. Communication handling and the actual work can be performed by multiple worker threads in parallel.
Though multiple clients can connect and send their requests in parallel to ArangoDB, clients may need to wait for their requests to be processed.
By default, the server will fully process an incoming request and then return the result to the client. The client must wait for the server's response before it can send additional requests over the connection. For clients that are single-threaded or not event-driven, waiting for the full server response may be non-optimal.
Furthermore, please note that even if the client closes the HTTP connection, the request running on the server will still continue until it is complete and only then notice that the client no longer listens. Thus closing the connection does not help to abort a long running query! See below under Async Execution and later Result Retrieval and HttpJobPutCancel for details.
Fire and Forget
To mitigate client blocking issues, ArangoDB since version 1.4. offers a generic mechanism for non-blocking requests: if clients add the HTTP header x-arango-async: true to their requests, ArangoDB will put the request into an in-memory task queue and return an HTTP 202 (accepted) response to the client instantly. The server will execute the tasks from the queue asynchronously, decoupling the client requests and the actual work.
This allows for much higher throughput than if clients would wait for the server's response. The downside is that the response that is sent to the client is always the same (a generic HTTP 202) and clients cannot make a decision based on the actual operation's result at this point. In fact, the operation might have not even been executed at the time the generic response has reached the client. Clients can thus not rely on their requests having been processed successfully.
The asynchronous task queue on the server is not persisted, meaning not-yet processed tasks from the queue will be lost in case of a crash. However, the client will not know whether they were processed or not.
Clients should thus not send the extra header when they have strict durability requirements or if they rely on result of the sent operation for further actions.
The maximum number of queued tasks is determined by the startup option --server.maximal-queue-size. If more than this number of tasks are already queued, the server will reject the request with an HTTP 500 error.
Finally, please note that it is not possible to cancel such a fire and forget job, since you won't get any handle to identify it later on. If you need to cancel requests, use Async Execution and later Result Retrieval and HttpJobPutCancel below.
Async Execution and later Result Retrieval
By adding the HTTP header x-arango-async: store to a request, clients can instruct the ArangoDB server to execute the operation asynchronously as above, but also store the operation result in memory for a later retrieval. The server will return a job id in the HTTP response header x-arango-async-id. The client can use this id in conjunction with the HTTP API at /_api/job, which is described in detail in this manual.
Clients can ask the ArangoDB server via the async jobs API which results are ready for retrieval, and which are not. Clients can also use the async jobs API to retrieve the original results of an already executed async job by passing it the originally returned job id. The server will then return the job result as if the job was executed normally. Furthermore, clients can cancel running async jobs by their job id, see HttpJobPutCancel.
ArangoDB will keep all results of jobs initiated with the x-arango-async: store header. Results are removed from the server only if a client explicitly asks the server for a specific result.
The async jobs API also provides methods for garbage collection that clients can use to get rid of "old" not fetched results. Clients should call this method periodically because ArangoDB does not artificially limit the number of not-yet-fetched results.
It is thus a client responsibility to store only as many results as needed and to fetch available results as soon as possible, or at least to clean up not fetched results from time to time.
The job queue and the results are kept in memory only on the server, so they will be lost in case of a crash.
Canceling asynchronous jobs
As mentioned above it is possible to cancel an asynchronously running job using its job ID. This is done with a PUT request as described in HttpJobPutCancel.
However, a few words of explanation about what happens behind the scenes are in order. Firstly, a running async query can internally be executed by C++ code or by JavaScript code. For example CRUD operations are executed directly in C++, whereas AQL queries and transactions are executed by JavaScript code. The job cancelation only works for JavaScript code, since the mechanism used is simply to trigger an uncatchable exception in the JavaScript thread, which will be caught on the C++ level, which in turn leads to the cancelation of the job. No result can be retrieved later, since all data about the request is discarded.
If you cancel a job running on a coordinator of a cluster (Sharding), then only the code running on the coordinator is stopped, there may remain tasks within the cluster which have already been distributed to the DBservers and it is currently not possible to cancel them as well.
Async Execution and Authentication
If a request requires authentication, the authentication procedure is run before queueing. The request will only be queued if it valid credentials and the authentication succeeds. If the request does not contain valid credentials, it will not be queued but rejected instantly in the same way as a "regular", non-queued request.
Managing Async Results via HTTP
Return result of an async job
fetches a job result and removes it from the queue
PUT /_api/job/{job-id}
Path Parameters
Returns the result of an async job identified by job-id. If the async job result is present on the server, the result will be removed from the list of result. That means this method can be called for each job-id once. The method will return the original job result's headers and body, plus the additional HTTP header x-arango-async-job-id. If this header is present, then the job was found and the response contains the original job's result. If the header is not present, the job was not found and the response contains status information from the job manager.
Return Codes
204: is returned if the job requested via job-id is still in the queue of pending (or not yet finished) jobs. In this case, no x-arango-async-id HTTP header will be returned.
400: is returned if no job-id was specified in the request. In this case, no x-arango-async-id HTTP header will be returned.
404: is returned if the job was not found or already deleted or fetched from the job result list. In this case, no x-arango-async-id HTTP header will be returned.
Examples
Not providing a job-id:
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/job
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Providing a job-id for a non-existing job:
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/job/notthere
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Fetching the result of an HTTP GET job:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131110
x-content-type-options: nosniff
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131110
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-arango-async-id: 131110
x-content-type-options: nosniff
Show response body
Fetching the result of an HTTP POST job that failed:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{
"name" : " this name is invalid "
}
EOF
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131111
x-content-type-options: nosniff
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131111
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-arango-async-id: 131111
x-content-type-options: nosniff
Show response body
Cancel async job
cancels an async job
PUT /_api/job/{job-id}/cancel
Path Parameters
Cancels the currently running job identified by job-id. Note that it still might take some time to actually cancel the running async job.
Return Codes
200: cancel has been initiated.
400: is returned if no job-id was specified in the request. In this case, no x-arango-async-id HTTP header will be returned.
404: is returned if the job was not found or already deleted or fetched from the job result list. In this case, no x-arango-async-id HTTP header will be returned.
Examples
shell> curl -X POST --header 'x-arango-async: store' --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{
"query" : "FOR i IN 1..10 FOR j IN 1..10 LET x = sleep(1.0) FILTER i == 5 && j == 5 RETURN 42"
}
EOF
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131105
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/pending
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
"131105"
]
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131105/cancel
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"result" : true
}
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/pending
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
"131105"
]
Deletes async job
deletes an async job result
DELETE /_api/job/{type}
Path Parameters
Query Parameters
Deletes either all job results, expired job results, or the result of a specific job. Clients can use this method to perform an eventual garbage collection of job results.
Return Codes
200: is returned if the deletion operation was carried out successfully. This code will also be returned if no results were deleted.
400: is returned if type is not specified or has an invalid value.
404: is returned if type is a job-id but no async job with the specified id was found.
Examples
Deleting all jobs:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131107
x-content-type-options: nosniff
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/job/all
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"result" : true
}
Deleting expired jobs:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131108
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_admin/time
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/job/expired?stamp=1534963573.8234456
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/pending
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[]
Show response body
Deleting the result of a specific job:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131109
x-content-type-options: nosniff
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131109
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"result" : true
}
Deleting the result of a non-existing job:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/job/AreYouThere
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Returns async job
Returns the status of a specific job
GET /_api/job/{job-id}
Path Parameters
Returns the processing status of the specified job. The processing status can be determined by peeking into the HTTP response code of the response.
Return Codes
200: is returned if the job requested via job-id has been executed and its result is ready to fetch.
204: is returned if the job requested via job-id is still in the queue of pending (or not yet finished) jobs.
404: is returned if the job was not found or already deleted or fetched from the job result list.
Examples
Querying the status of a done job:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131116
x-content-type-options: nosniff
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131116
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-arango-async-id: 131116
x-content-type-options: nosniff
Show response body
Querying the status of a pending job: (therefore we create a long runnging job...)
shell> curl -X POST --header 'x-arango-async: store' --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"read" : [
"_frontend"
]
},
"action" : "function () {require('internal').sleep(15.0);}"
}
EOF
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131117
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131117
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-content-type-options: nosniff
Returns list of async jobs
Returns the ids of job results with a specific status
GET /_api/job/{type}
Path Parameters
Query Parameters
The maximum number of ids to return per call. If not specified, a server-defined maximum value will be used.
Returns the list of ids of async jobs with a specific status (either done or pending). The list can be used by the client to get an overview of the job system status and to retrieve completed job results later.
Return Codes
200: is returned if the list can be compiled successfully. Note: the list might be empty.
400: is returned if type is not specified or has an invalid value.
Examples
Fetching the list of done jobs:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131112
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/done
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
"131112"
]
Fetching the list of pending jobs:
shell> curl -X PUT --header 'x-arango-async: store' --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131113
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/pending
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[]
Querying the status of a pending job: (we create a sleep job therefore...)
shell> curl -X POST --header 'x-arango-async: store' --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"read" : [
"_frontend"
]
},
"action" : "function () {require('internal').sleep(15.0);}"
}
EOF
HTTP/1.1 undefined
content-type: text/plain; charset=utf-8
x-arango-async-id: 131114
x-content-type-options: nosniff
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/job/pending
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
"131114"
]
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/job/131114
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"result" : true
}
HTTP Interface for Bulk Imports
ArangoDB provides an HTTP interface to import multiple documents at once into a collection. This is known as a bulk import.
The data uploaded must be provided in JSON format. There are two mechanisms to import the data:
The endpoint address is /_api/import for both input mechanisms. Data must be sent to this URL using an HTTP POST request. The data to import must be contained in the body of the POST request.
The collection query parameter must be used to specify the target collection for the import. Importing data into a non-existing collection will produce an error.
The waitForSync query parameter can be set to true to make the import only return if all documents have been synced to disk.
The complete query parameter can be set to true to make the entire import fail if any of the uploaded documents is invalid and cannot be imported. In this case, no documents will be imported by the import run, even if a failure happens at the end of the import.
If complete has a value other than true, valid documents will be imported while invalid documents will be rejected, meaning only some of the uploaded documents might have been imported.
The details query parameter can be set to true to make the import API return details about documents that could not be imported. If details is true, then the result will also contain a details attribute which is an array of detailed error messages. If the details is set to false or omitted, no details will be returned.
imports document values
imports documents from JSON-encoded lists
POST /_api/import#document
Request Body (required)
The body must consist of JSON-encoded arrays of attribute values, with one line per document. The first row of the request must be a JSON-encoded array of attribute names. These attribute names are used for the data in the subsequent lines.
Query Parameters
collection (required): The collection name.
fromPrefix (optional): An optional prefix for the values in _from attributes. If specified, the value is automatically prepended to each _from input value. This allows specifying just the keys for _from .
toPrefix (optional): An optional prefix for the values in _to attributes. If specified, the value is automatically prepended to each _to input value. This allows specifying just the keys for _to .
overwrite (optional): If this parameter has a value of true or yes , then all data in the collection will be removed prior to the import. Note that any existing index definitions will be preseved.
waitForSync (optional): Wait until documents have been synced to disk before returning.
onDuplicate (optional): Controls what action is carried out in case of a unique key constraint violation. Possible values are:
Note that update, replace and ignore will only work when the import document in the request contains the _key attribute. update and replace may also fail because of secondary unique key constraint violations.
complete (optional): If set to true or yes , it will make the whole import fail if any error occurs. Otherwise the import will continue even if some documents cannot be imported.
details (optional): If set to true or yes , the result will include an attribute details with details about documents that could not be imported.
NOTE Swagger examples won't work due to the anchor.
Creates documents in the collection identified by collection-name . The first line of the request body must contain a JSON-encoded array of attribute names. All following lines in the request body must contain JSON-encoded arrays of attribute values. Each line is interpreted as a separate document, and the values specified will be mapped to the array of attribute names specified in the first header line.
The response is a JSON object with the following attributes:
created : number of documents imported.
errors : number of documents that were not imported due to an error.
empty : number of empty lines found in the input (will only contain a value greater zero for types documents or auto).
updated : number of updated/replaced documents (in case onDuplicate was set to either update or replace).
ignored : number of failed but ignored insert operations (in case onDuplicate was set to ignore).
details : if query parameter details is set to true, the result will contain a details attribute which is an array with more detailed information about which documents could not be inserted.
Return Codes
201: is returned if all documents could be imported successfully.
400: is returned if type contains an invalid value, no collection is specified, the documents are incorrectly encoded, or the request is malformed.
404: is returned if collection or the _from or _to attributes of an imported edge refer to an unknown collection.
409: is returned if the import would trigger a unique key violation and complete is set to true .
500: is returned if the server cannot auto-generate a document key (out of keys error) for a document with no user-defined key.
Examples
Importing two documents, with attributes _key , value1 and value2 each. One line in the import data is empty
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
["_key", "value1", "value2"]
["abc", 25, "test"]
["foo", "bar", "baz"]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Importing into an edge collection, with attributes _from , _to and name
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=links <<EOF
["_from", "_to", "name"]
["products/123","products/234", "some name"]
["products/332", "products/abc", "other name"]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Importing into an edge collection, omitting _from or _to
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&details=true <<EOF
["name"]
["some name"]
["other name"]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Violating a unique constraint, but allow partial imports
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&details=true <<EOF
["_key", "value1", "value2"]
["abc", 25, "test"]
["abc", "bar", "baz"]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Violating a unique constraint, not allowing partial imports
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&complete=true <<EOF
["_key", "value1", "value2"]
["abc", 25, "test"]
["abc", "bar", "baz"]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a non-existing collection
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
["_key", "value1", "value2"]
["abc", 25, "test"]
["foo", "bar", "baz"]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a malformed body
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
{ "_key": "foo", "value1": "bar" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
imports documents from JSON
imports documents from JSON
POST /_api/import#json
Request Body (required)
The body must either be a JSON-encoded array of objects or a string with multiple JSON objects separated by newlines.
Query Parameters
auto : if set, this will automatically determine the body type (either documents or list).
collection (required): The collection name.
fromPrefix (optional): An optional prefix for the values in _from attributes. If specified, the value is automatically prepended to each _from input value. This allows specifying just the keys for _from .
toPrefix (optional): An optional prefix for the values in _to attributes. If specified, the value is automatically prepended to each _to input value. This allows specifying just the keys for _to .
overwrite (optional): If this parameter has a value of true or yes , then all data in the collection will be removed prior to the import. Note that any existing index definitions will be preseved.
waitForSync (optional): Wait until documents have been synced to disk before returning.
onDuplicate (optional): Controls what action is carried out in case of a unique key constraint violation. Possible values are:
Note that that update, replace and ignore will only work when the import document in the request contains the _key attribute. update and replace may also fail because of secondary unique key constraint violations.
complete (optional): If set to true or yes , it will make the whole import fail if any error occurs. Otherwise the import will continue even if some documents cannot be imported.
details (optional): If set to true or yes , the result will include an attribute details with details about documents that could not be imported.
NOTE Swagger examples won't work due to the anchor.
Creates documents in the collection identified by collection-name . The JSON representations of the documents must be passed as the body of the POST request. The request body can either consist of multiple lines, with each line being a single stand-alone JSON object, or a singe JSON array with sub-objects.
The response is a JSON object with the following attributes:
created : number of documents imported.
errors : number of documents that were not imported due to an error.
empty : number of empty lines found in the input (will only contain a value greater zero for types documents or auto).
updated : number of updated/replaced documents (in case onDuplicate was set to either update or replace).
ignored : number of failed but ignored insert operations (in case onDuplicate was set to ignore).
details : if query parameter details is set to true, the result will contain a details attribute which is an array with more detailed information about which documents could not be inserted.
Return Codes
201: is returned if all documents could be imported successfully.
400: is returned if type contains an invalid value, no collection is specified, the documents are incorrectly encoded, or the request is malformed.
404: is returned if collection or the _from or _to attributes of an imported edge refer to an unknown collection.
409: is returned if the import would trigger a unique key violation and complete is set to true .
500: is returned if the server cannot auto-generate a document key (out of keys error) for a document with no user-defined key.
Examples
Importing documents with heterogenous attributes from a JSON array
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=list <<EOF
[
{
"_key" : "abc",
"value1" : 25,
"value2" : "test",
"allowed" : true
},
{
"_key" : "foo",
"name" : "baz"
},
{
"name" : {
"detailed" : "detailed name",
"short" : "short name"
}
}
]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Importing documents from individual JSON lines
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents <<EOF
{ "_key": "abc", "value1": 25, "value2": "test","allowed": true }
{ "_key": "foo", "name": "baz" }
{ "name": { "detailed": "detailed name", "short": "short name" } }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using the auto type detection
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=auto <<EOF
[
{
"_key" : "abc",
"value1" : 25,
"value2" : "test",
"allowed" : true
},
{
"_key" : "foo",
"name" : "baz"
},
{
"name" : {
"detailed" : "detailed name",
"short" : "short name"
}
}
]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Importing into an edge collection, with attributes _from , _to and name
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&type=documents <<EOF
{ "_from": "products/123", "_to": "products/234" }
{"_from": "products/332", "_to": "products/abc", "name": "other name" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Importing into an edge collection, omitting _from or _to
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&type=list&details=true <<EOF
[
{
"name" : "some name"
}
]
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Violating a unique constraint, but allow partial imports
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents&details=true <<EOF
{ "_key": "abc", "value1": 25, "value2": "test" }
{ "_key": "abc", "value1": "bar", "value2": "baz" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Violating a unique constraint, not allowing partial imports
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents&complete=true <<EOF
{ "_key": "abc", "value1": 25, "value2": "test" }
{ "_key": "abc", "value1": "bar", "value2": "baz" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a non-existing collection
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents <<EOF
{ "name": "test" }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a malformed body
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=list <<EOF
{ }
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Importing Self-Contained JSON Documents
This import method allows uploading self-contained JSON documents. The documents must be uploaded in the body of the HTTP POST request. Each line of the body will be interpreted as one stand-alone document. Empty lines in the body are allowed but will be skipped. Using this format, the documents are imported line-wise.
Example input data: { "_key": "key1", ... } { "_key": "key2", ... } ...
To use this method, the type query parameter should be set to documents.
It is also possible to upload self-contained JSON documents that are embedded into a JSON array. Each element from the array will be treated as a document and be imported.
Example input data for this case:
[
{ "_key": "key1", ... },
{ "_key": "key2", ... },
...
]
This format does not require each document to be on a separate line, and any whitespace in the JSON data is allowed. It can be used to import a JSON-formatted result array (e.g. from arangosh) back into ArangoDB. Using this format requires ArangoDB to parse the complete array and keep it in memory for the duration of the import. This might be more resource-intensive than the line-wise processing.
To use this method, the type query parameter should be set to array.
Setting the type query parameter to auto will make the server auto-detect whether the data are line-wise JSON documents (type = documents) or a JSON array (type = array).
Examples
curl --data-binary @- -X POST --dump - "http://localhost:8529/_api/import?type=documents&collection=test"
{ "name" : "test", "gender" : "male", "age" : 39 }
{ "type" : "bird", "name" : "robin" }
HTTP/1.1 201 Created
Server: ArangoDB
Connection: Keep-Alive
Content-type: application/json; charset=utf-8
{"error":false,"created":2,"empty":0,"errors":0}
The server will respond with an HTTP 201 if everything went well. The number of documents imported will be returned in the created attribute of the response. If any documents were skipped or incorrectly formatted, this will be returned in the errors attribute. There will also be an attribute empty in the response, which will contain a value of 0.
If the details parameter was set to true in the request, the response will also contain an attribute details which is an array of details about errors that occurred on the server side during the import. This array might be empty if no errors occurred.
Importing Headers and Values
When using this type of import, the attribute names of the documents to be imported are specified separate from the actual document value data. The first line of the HTTP POST request body must be a JSON array containing the attribute names for the documents that follow. The following lines are interpreted as the document data. Each document must be a JSON array of values. No attribute names are needed or allowed in this data section.
Examples
curl --data-binary @- -X POST --dump - "http://localhost:8529/_api/import?collection=test"
["firstName", "lastName", "age", "gender"]
["Joe", "Public", 42, "male"]
["Jane", "Doe", 31, "female"]
HTTP/1.1 201 Created
Server: ArangoDB
Connection: Keep-Alive
Content-type: application/json; charset=utf-8
{"error":false,"created":2,"empty":0,"errors":0}
The server will again respond with an HTTP 201 if everything went well. The number of documents imported will be returned in the created attribute of the response. If any documents were skipped or incorrectly formatted, this will be returned in the errors attribute. The number of empty lines in the input file will be returned in the empty attribute.
If the details parameter was set to true in the request, the response will also contain an attribute details which is an array of details about errors that occurred on the server side during the import. This array might be empty if no errors occurred.
Importing into Edge Collections
Please note that when importing documents into an edge collection, it is mandatory that all imported documents contain the _from and _to attributes, and that these contain references to existing collections.
HTTP Interface for Batch Requests
Clients normally send individual operations to ArangoDB in individual HTTP requests. This is straightforward and simple, but has the disadvantage that the network overhead can be significant if many small requests are issued in a row.
To mitigate this problem, ArangoDB offers a batch request API that clients can use to send multiple operations in one batch to ArangoDB. This method is especially useful when the client has to send many HTTP requests with a small body/payload and the individual request results do not depend on each other.
Clients can use ArangoDB's batch API by issuing a multipart HTTP POST request to the URL /_api/batch handler. The handler will accept the request if the Content-type is multipart/form-data and a boundary string is specified. ArangoDB will then decompose the batch request into its individual parts using this boundary. This also means that the boundary string itself must not be contained in any of the parts. When ArangoDB has split the multipart request into its individual parts, it will process all parts sequentially as if it were a standalone request. When all parts are processed, ArangoDB will generate a multipart HTTP response that contains one part for each part operation result. For example, if you send a multipart request with 5 parts, ArangoDB will send back a multipart response with 5 parts as well.
The server expects each part message to start with exactly the following "header":
Content-type: application/x-arango-batchpart
You can optionally specify a Content-Id "header" to uniquely identify each part message. The server will return the Content-Id in its response if it is specified. Otherwise, the server will not send a Content-Id "header" back. The server will not validate the uniqueness of the Content-Id. After the mandatory Content-type and the optional Content-Id header, two Windows line breaks (i.e. \r\n\r\n) must follow. Any deviation of this structure might lead to the part being rejected or incorrectly interpreted. The part request payload, formatted as a regular HTTP request, must follow the two Windows line breaks literal directly.
Note that the literal Content-type: application/x-arango-batchpart technically is the header of the MIME part, and the HTTP request (including its headers) is the body part of the MIME part.
An actual part request should start with the HTTP method, the called URL, and the HTTP protocol version as usual, followed by arbitrary HTTP headers. Its body should follow after the usual \r\n\r\n literal. Part requests are therefore regular HTTP requests, only embedded inside a multipart message.
The following example will send a batch with 3 individual document creation operations. The boundary used in this example is XXXsubpartXXX.
Examples
> curl -X POST --data-binary @- --header "Content-type: multipart/form-data; boundary=XXXsubpartXXX" http://localhost:8529/_api/batch
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 1
POST /_api/document?collection=xyz HTTP/1.1
{"a":1,"b":2,"c":3}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 2
POST /_api/document?collection=xyz HTTP/1.1
{"a":1,"b":2,"c":3,"d":4}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 3
POST /_api/document?collection=xyz HTTP/1.1
{"a":1,"b":2,"c":3,"d":4,"e":5}
--XXXsubpartXXX--
The server will then respond with one multipart message, containing the overall status and the individual results for the part operations. The overall status should be 200 except there was an error while inspecting and processing the multipart message. The overall status therefore does not indicate the success of each part operation, but only indicates whether the multipart message could be handled successfully.
Each part operation will return its own status value. As the part operation results are regular HTTP responses (just included in one multipart response), the part operation status is returned as a HTTP status code. The status codes of the part operations are exactly the same as if you called the individual operations standalone. Each part operation might also return arbitrary HTTP headers and a body/payload:
Examples
HTTP/1.1 200 OK
Connection: Keep-Alive
Content-type: multipart/form-data; boundary=XXXsubpartXXX
Content-length: 1055
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 1
HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9514299"
Content-length: 53
{"error":false,"_id":"xyz/9514299","_key":"9514299","_rev":"9514299"}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 2
HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9579835"
Content-length: 53
{"error":false,"_id":"xyz/9579835","_key":"9579835","_rev":"9579835"}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 3
HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9645371"
Content-length: 53
{"error":false,"_id":"xyz/9645371","_key":"9645371","_rev":"9645371"}
--XXXsubpartXXX--
In the above example, the server returned an overall status code of 200, and each part response contains its own status value (202 in the example):
When constructing the multipart HTTP response, the server will use the same boundary that the client supplied. If any of the part responses has a status code of 400 or greater, the server will also return an HTTP header x-arango-errors containing the overall number of part requests that produced errors:
Examples
> curl -X POST --data-binary @- --header "Content-type: multipart/form-data; boundary=XXXsubpartXXX" http://localhost:8529/_api/batch
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
POST /_api/document?collection=nonexisting
{"a":1,"b":2,"c":3}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
POST /_api/document?collection=xyz
{"a":1,"b":2,"c":3,"d":4}
--XXXsubpartXXX--
In this example, the overall response code is 200, but as some of the part request failed (with status code 404), the x-arango-errors header of the overall response is 1:
Examples
HTTP/1.1 200 OK
x-arango-errors: 1
Content-type: multipart/form-data; boundary=XXXsubpartXXX
Content-length: 711
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
HTTP/1.1 404 Not Found
Content-type: application/json; charset=utf-8
Content-length: 111
{"error":true,"code":404,"errorNum":1203,"errorMessage":"collection \/_api\/collection\/nonexisting not found"}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9841979"
Content-length: 53
{"error":false,"_id":"xyz/9841979","_key":"9841979","_rev":"9841979"}
--XXXsubpartXXX--
Please note that the database used for all part operations of a batch request is determined by scanning the original URL (the URL that contains /_api/batch). It is not possible to override the database name in part operations of a batch. When doing so, any other database name used in a batch part will be ignored.
executes a batch request
executes a batch request
POST /_api/batch
Request Body (required)
The multipart batch request, consisting of the envelope and the individual batch parts.
Executes a batch request. A batch request can contain any number of other requests that can be sent to ArangoDB in isolation. The benefit of using batch requests is that batching requests requires less client/server roundtrips than when sending isolated requests.
All parts of a batch request are executed serially on the server. The server will return the results of all parts in a single response when all parts are finished.
Technically, a batch request is a multipart HTTP request, with content-type multipart/form-data . A batch request consists of an envelope and the individual batch part actions. Batch part actions are "regular" HTTP requests, including full header and an optional body. Multiple batch parts are separated by a boundary identifier. The boundary identifier is declared in the batch envelope. The MIME content-type for each individual batch part must be application/x-arango-batchpart .
Please note that when constructing the individual batch parts, you must use CRLF (\ \) as the line terminator as in regular HTTP messages.
The response sent by the server will be an HTTP 200 response, with an optional error summary header x-arango-errors . This header contains the number of batch part operations that failed with an HTTP error code of at least 400. This header is only present in the response if the number of errors is greater than zero.
The response sent by the server is a multipart response, too. It contains the individual HTTP responses for all batch parts, including the full HTTP result header (with status code and other potential headers) and an optional result body. The individual batch parts in the result are seperated using the same boundary value as specified in the request.
The order of batch parts in the response will be the same as in the original client request. Client can additionally use the Content-Id MIME header in a batch part to define an individual id for each batch part. The server will return this id is the batch part responses, too.
Return Codes
200: is returned if the batch was received successfully. HTTP 200 is returned even if one or multiple batch part actions failed.
400: is returned if the batch envelope is malformed or incorrectly formatted. This code will also be returned if the content-type of the overall batch request or the individual MIME parts is not as expected.
405: is returned when an invalid HTTP method is used.
Examples
Sending a batch request with five batch parts:
The boundary (SomeBoundaryValue) is passed to the server in the HTTP Content-Type HTTP header. Please note the reply is not displayed all accurate.
shell> curl -X POST --header 'Content-Type: multipart/form-data; boundary=SomeBoundaryValue' --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/batch <<EOF
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: myId1
GET /_api/version HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: myId2
DELETE /_api/collection/products HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: someId
POST /_api/collection/products HTTP/1.1
{"name": "products" }
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: nextId
GET /_api/collection/products/figures HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: otherId
DELETE /_api/collection/products HTTP/1.1
--SomeBoundaryValue--
EOF
HTTP/1.1 undefined
content-type: application/json
x-arango-errors: 1
x-content-type-options: nosniff
"--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: myId1\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 64\r\n\r\n{\"server\":\"arango\",\"version\":\"3.4.devel\",\"license\":\"enterprise\"}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: myId2\r\n\r\nHTTP/1.1 404 Not Found\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 87\r\n\r\n{\"error\":true,\"errorMessage\":\"collection or view not found\",\"code\":404,\"errorNum\":1203}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: someId\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 328\r\n\r\n{\"error\":false,\"code\":200,\"status\":3,\"statusString\":\"loaded\",\"name\":\"products\",\"keyOptions\":{\"allowUserKeys\":true,\"type\":\"traditional\",\"lastValue\":0},\"type\":2,\"indexBuckets\":8,\"globallyUniqueId\":\"h6F41A1166091/102330\",\"doCompact\":true,\"waitForSync\":false,\"id\":\"102330\",\"isSystem\":false,\"journalSize\":33554432,\"isVolatile\":false}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: nextId\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nLocation: /_api/collection/products/figures\r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 835\r\n\r\n{\"error\":false,\"code\":200,\"statusString\":\"loaded\",\"name\":\"products\",\"keyOptions\":{\"allowUserKeys\":true,\"type\":\"traditional\",\"lastValue\":0},\"journalSize\":33554432,\"isVolatile\":false,\"isSystem\":false,\"status\":3,\"count\":0,\"figures\":{\"indexes\":{\"count\":1,\"size\":32128},\"documentReferences\":0,\"waitingFor\":\"-\",\"alive\":{\"count\":0,\"size\":0},\"dead\":{\"count\":0,\"size\":0,\"deletion\":0},\"compactionStatus\":{\"message\":\"compaction not yet started\",\"time\":\"2018-08-22T18:45:43Z\",\"count\":0,\"filesCombined\":0,\"bytesRead\":0,\"bytesWritten\":0},\"datafiles\":{\"count\":0,\"fileSize\":0},\"journals\":{\"count\":0,\"fileSize\":0},\"compactors\":{\"count\":0,\"fileSize\":0},\"revisions\":{\"count\":0,\"size\":48192},\"lastTick\":0,\"uncollectedLogfileEntries\":0},\"doCompact\":true,\"globallyUniqueId\":\"h6F41A1166091/102330\",\"type\":2,\"indexBuckets\":8,\"waitForSync\":false,\"id\":\"102330\"}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: otherId\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 40\r\n\r\n{\"error\":false,\"code\":200,\"id\":\"102330\"}\r\n--SomeBoundaryValue--"
Sending a batch request, setting the boundary implicitly (the server will in this case try to find the boundary at the beginning of the request body).
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/batch <<EOF
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
DELETE /_api/collection/notexisting1 HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
DELETE _api/collection/notexisting2 HTTP/1.1
--SomeBoundaryValue--
EOF
HTTP/1.1 undefined
content-type: application/json
x-arango-errors: 2
x-content-type-options: nosniff
"--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\n\r\nHTTP/1.1 404 Not Found\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 87\r\n\r\n{\"error\":true,\"errorMessage\":\"collection or view not found\",\"code\":404,\"errorNum\":1203}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\n\r\nHTTP/1.1 404 Not Found\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 101\r\n\r\n{\"error\":true,\"code\":404,\"errorNum\":404,\"errorMessage\":\"unknown path '_api/collection/notexisting2'\"}\r\n--SomeBoundaryValue--"
HTTP Interface for Exporting Documents
Create export cursor
export all documents from a collection, using a cursor
POST /_api/export
A JSON object with these properties is required:
A call to this method creates a cursor containing all documents in the specified collection. In contrast to other data-producing APIs, the internal data structures produced by the export API are more lightweight, so it is the preferred way to retrieve all documents from a collection.
Documents are returned in a similar manner as in the /_api/cursor REST API. If all documents of the collection fit into the first batch, then no cursor will be created, and the result object's hasMore attribute will be set to false. If not all documents fit into the first batch, then the result object's hasMore attribute will be set to true, and the id attribute of the result will contain a cursor id.
The order in which the documents are returned is not specified.
By default, only those documents from the collection will be returned that are stored in the collection's datafiles. Documents that are present in the write-ahead log (WAL) at the time the export is run will not be exported.
To export these documents as well, the caller can issue a WAL flush request before calling the export API or set the flush attribute. Setting the flush option will trigger a WAL flush before the export so documents get copied from the WAL to the collection datafiles.
If the result set can be created by the server, the server will respond with HTTP 201. The body of the response will contain a JSON object with the result set.
The returned JSON object has the following properties:
error: boolean flag to indicate that an error occurred (false in this case)
code: the HTTP status code
result: an array of result documents (might be empty if the collection was empty)
hasMore: a boolean indicator whether there are more results available for the cursor on the server
count: the total number of result documents available (only available if the query was executed with the count attribute set)
id: id of temporary cursor created on the server (optional, see above)
If the JSON representation is malformed or the query specification is missing from the request, the server will respond with HTTP 400.
The body of the response will contain a JSON object with additional error details. The object has the following attributes:
error: boolean flag to indicate that an error occurred (true in this case)
code: the HTTP status code
errorNum: the server error number
errorMessage: a descriptive error message
Clients should always delete an export cursor result as early as possible because a lingering export cursor will prevent the underlying collection from being compacted or unloaded. By default, unused cursors will be deleted automatically after a server-defined idle time, and clients can adjust this idle time by setting the ttl value.
Note: this API is currently not supported on cluster coordinators.
Query Parameters
Return Codes
201: is returned if the result set can be created by the server.
400: is returned if the JSON representation is malformed or the query specification is missing from the request.
404: The server will respond with HTTP 404 in case a non-existing collection is accessed in the query.
405: The server will respond with HTTP 405 if an unsupported HTTP method is used.
501: The server will respond with HTTP 501 if this API is called on a cluster coordinator.
HTTP Interface for Indexes
Indexes
This is an introduction to ArangoDB's HTTP interface for indexes in general. There are special sections for various index types.
Index
Indexes are used to allow fast access to documents. For each collection there is always the primary index which is a hash index for the document key (_key attribute). This index cannot be dropped or changed. edge collections will also have an automatically created edges index, which cannot be modified. This index provides quick access to documents via the _from and _to attributes.
Most user-land indexes can be created by defining the names of the attributes which should be indexed. Some index types allow indexing just one attribute (e.g. fulltext index) whereas other index types allow indexing multiple attributes.
Using the system attribute _id in user-defined indexes is not supported by any index type.
Index Handle
An index handle uniquely identifies an index in the database. It is a string and consists of a collection name and an index identifier separated by /. Geo Index: A geo index is used to find places on the surface of the earth fast. Hash Index: A hash index is used to find documents based on examples. A hash index can be created for one or multiple document attributes. A hash index will only be used by queries if all indexed attributes are present in the example or search query, and if all attributes are compared using the equality (== operator). That means the hash index does not support range queries.
If the index is declared unique, then access to the indexed attributes should be fast. The performance degrades if the indexed attribute(s) contain(s) only very few distinct values.
Edges Index
An edges index is automatically created for edge collections. It contains connections between vertex documents and is invoked when the connecting edges of a vertex are queried. There is no way to explicitly create or delete edge indexes.
Skiplist Index
A skiplist is a sorted index that can be used to find individual documents or ranges of documents.
Persistent Index
A persistent index is a sorted index that can be used for finding individual documents or ranges of documents. In constrast to the other indexes, the contents of a persistent index are stored on disk and thus do not need to be rebuilt in memory from the documents when the collection is loaded.
Fulltext Index:
A fulltext index can be used to find words, or prefixes of words inside documents. A fulltext index can be set on one attribute only, and will index all words contained in documents that have a textual value in this attribute. Only words with a (specifiable) minimum length are indexed. Word tokenization is done using the word boundary analysis provided by libicu, which is taking into account the selected language provided at server start. Words are indexed in their lower-cased form. The index supports complete match queries (full words) and prefix queries.
The basic operations (create, read, update, delete) for documents are mapped to the standard HTTP methods (POST, GET, PUT, DELETE).
Address of an Index
All indexes in ArangoDB have an unique handle. This index handle identifies an index and is managed by ArangoDB. All indexes are found under the URI
http://server:port/_api/index/index-handle
For example: Assume that the index handle is demo/63563528 then the URL of that index is:
http://localhost:8529/_api/index/demo/63563528
Working with Indexes using HTTP
Read index
returns an index
GET /_api/index/{index-handle}
Path Parameters
The result is an object describing the index. It has at least the following attributes:
id: the identifier of the index
type: the index type
All other attributes are type-dependent. For example, some indexes provide unique or sparse flags, whereas others don't. Some indexes also provide a selectivity estimate in the selectivityEstimate attribute of the result.
Return Codes
200: If the index exists, then a HTTP 200 is returned.
404: If the index does not exist, then a HTTP 404 is returned.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/index/products/0
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Create index
creates an index
POST /_api/index#general
Query Parameters
Request Body (required)
NOTE Swagger examples won't work due to the anchor.
Creates a new index in the collection collection. Expects an object containing the index details.
The type of the index to be created must specified in the type attribute of the index details. Depending on the index type, additional other attributes may need to specified in the request in order to create the index.
Indexes require the to be indexed attribute(s) in the fields attribute of the index details. Depending on the index type, a single attribute or multiple attributes can be indexed. In the latter case, an array of strings is expected.
Indexing the system attribute _id is not supported for user-defined indexes. Manually creating an index using _id as an index attribute will fail with an error.
Some indexes can be created as unique or non-unique variants. Uniqueness can be controlled for most indexes by specifying the unique flag in the index details. Setting it to true will create a unique index. Setting it to false or omitting the unique attribute will create a non-unique index.
Note: The following index types do not support uniqueness, and using the unique attribute with these types may lead to an error:
Note: Unique indexes on non-shard keys are not supported in a cluster.
Hash, skiplist and persistent indexes can optionally be created in a sparse variant. A sparse index will be created if the sparse attribute in the index details is set to true. Sparse indexes do not index documents for which any of the index attributes is either not set or is null.
The optional attribute deduplicate is supported by array indexes of type hash or skiplist. It controls whether inserting duplicate index values from the same document into a unique array index will lead to a unique constraint error or not. The default value is true, so only a single instance of each non-unique index value will be inserted into the index per document. Trying to insert a value into the index that already exists in the index will always fail, regardless of the value of this attribute.
Return Codes
200: If the index already exists, then an HTTP 200 is returned.
201: If the index does not already exist and could be created, then an HTTP 201 is returned.
400: If an invalid index description is posted or attributes are used that the target index will not support, then an HTTP 400 is returned.
404: If collection is unknown, then an HTTP 404 is returned.
Delete index
deletes an index
DELETE /_api/index/{index-handle}
Path Parameters
Deletes an index with index-handle.
Return Codes
200: If the index could be deleted, then an HTTP 200 is returned.
404: If the index-handle is unknown, then an HTTP 404 is returned.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/index/products/104343
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Read all indexes of a collection
returns all indexes of a collection
GET /_api/index
Query Parameters
Returns an object with an attribute indexes containing an array of all index descriptions for the given collection. The same information is also available in the identifiers as an object with the index handles as keys.
Return Codes
Examples
Return information about all indexes
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/index?collection=products
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Working with Hash Indexes
If a suitable hash index exists, then /_api/simple/by-example will use this index to execute a query-by-example.
Create hash index
creates a hash index
POST /_api/index#hash
Query Parameters
A JSON object with these properties is required:
NOTE Swagger examples won't work due to the anchor.
Creates a hash index for the collection collection-name if it does not already exist. The call expects an object containing the index details.
In a sparse index all documents will be excluded from the index that do not contain at least one of the specified index attributes (i.e. fields) or that have a value of null in any of the specified index attributes. Such documents will not be indexed, and not be taken into account for uniqueness checks if the unique flag is set.
In a non-sparse index, these documents will be indexed (for non-present indexed attributes, a value of null will be used) and will be taken into account for uniqueness checks if the unique flag is set.
Note: unique indexes on non-shard keys are not supported in a cluster.
Return Codes
200: If the index already exists, then a HTTP 200 is returned.
201: If the index does not already exist and could be created, then a HTTP 201 is returned.
400: If the collection already contains documents and you try to create a unique hash index in such a way that there are documents violating the uniqueness, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Creating an unique constraint
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "hash",
"unique" : true,
"fields" : [
"a",
"b"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Creating a non-unique hash index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "hash",
"unique" : false,
"fields" : [
"a",
"b"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Creating a sparse index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "hash",
"unique" : false,
"sparse" : true,
"fields" : [
"a"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Simple query by-example
returns all documents of a collection matching a given example
PUT /_api/simple/by-example
A JSON object with these properties is required:
This will find all documents matching a given example.
Returns a cursor containing the result, see Http Cursor for details.
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Matching an attribute
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{
"collection" : "products",
"example" : {
"i" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Matching an attribute which is a sub-document
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{
"collection" : "products",
"example" : {
"a.j" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Matching an attribute within a sub-document
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{
"collection" : "products",
"example" : {
"a" : {
"j" : 1
}
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Find documents matching an example
returns one document of a collection matching a given example
PUT /_api/simple/first-example
A JSON object with these properties is required:
This will return the first document matching a given example.
Returns a result containing the document or HTTP 404 if no document matched the example.
If more than one document in the collection matches the specified example, only one of these documents will be returned, and it is undefined which of the matching documents is returned.
Return Codes
200: is returned when the query was successfully executed.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
If a matching document was found
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{
"collection" : "products",
"example" : {
"i" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
If no document was found
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{
"collection" : "products",
"example" : {
"l" : 1
}
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Working with Skiplist Indexes
If a suitable skip-list index exists, then /_api/simple/range and other operations will use this index to execute queries.
Create skip list
creates a skip-list
POST /_api/index#skiplist
Query Parameters
A JSON object with these properties is required:
Creates a skip-list index for the collection collection-name, if it does not already exist. The call expects an object containing the index details.
In a sparse index all documents will be excluded from the index that do not contain at least one of the specified index attributes (i.e. fields) or that have a value of null in any of the specified index attributes. Such documents will not be indexed, and not be taken into account for uniqueness checks if the unique flag is set.
In a non-sparse index, these documents will be indexed (for non-present indexed attributes, a value of null will be used) and will be taken into account for uniqueness checks if the unique flag is set.
Note: unique indexes on non-shard keys are not supported in a cluster.
Return Codes
200: If the index already exists, then a HTTP 200 is returned.
201: If the index does not already exist and could be created, then a HTTP 201 is returned.
400: If the collection already contains documents and you try to create a unique skip-list index in such a way that there are documents violating the uniqueness, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Creating a skiplist index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "skiplist",
"unique" : false,
"fields" : [
"a",
"b"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Creating a sparse skiplist index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "skiplist",
"unique" : false,
"sparse" : true,
"fields" : [
"a"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Working with Persistent Indexes
If a suitable persistent index exists, then /_api/simple/range and other operations will use this index to execute queries.
Create a persistent index
creates a persistent index
POST /_api/index#persistent
Query Parameters
A JSON object with these properties is required:
Creates a persistent index for the collection collection-name, if it does not already exist. The call expects an object containing the index details.
In a sparse index all documents will be excluded from the index that do not contain at least one of the specified index attributes (i.e. fields) or that have a value of null in any of the specified index attributes. Such documents will not be indexed, and not be taken into account for uniqueness checks if the unique flag is set.
In a non-sparse index, these documents will be indexed (for non-present indexed attributes, a value of null will be used) and will be taken into account for uniqueness checks if the unique flag is set.
Note: unique indexes on non-shard keys are not supported in a cluster.
Return Codes
200: If the index already exists, then a HTTP 200 is returned.
201: If the index does not already exist and could be created, then a HTTP 201 is returned.
400: If the collection already contains documents and you try to create a unique persistent index in such a way that there are documents violating the uniqueness, then a HTTP 400 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Creating a persistent index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "persistent",
"unique" : false,
"fields" : [
"a",
"b"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Creating a sparse persistent index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "persistent",
"unique" : false,
"sparse" : true,
"fields" : [
"a"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Working with Geo Indexes
Create geo-spatial index
creates a geo index
POST /_api/index#geo
Query Parameters
A JSON object with these properties is required:
NOTE Swagger examples won't work due to the anchor.
Creates a geo-spatial index in the collection collection-name, if it does not already exist. Expects an object containing the index details.
Geo indexes are always sparse, meaning that documents that do not contain the index attributes or have non-numeric values in the index attributes will not be indexed.
Return Codes
200: If the index already exists, then a HTTP 200 is returned.
201: If the index does not already exist and could be created, then a HTTP 201 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Creating a geo index with a location attribute
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "geo",
"fields" : [
"b"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Creating a geo index with latitude and longitude attributes
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "geo",
"fields" : [
"e",
"f"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Returns documents near a coordinate
returns all documents of a collection near a given location
PUT /_api/simple/near
A JSON object with these properties is required:
The default will find at most 100 documents near the given coordinate. The returned array is sorted according to the distance, with the nearest document being first in the return array. If there are near documents of equal distance, documents are chosen randomly from this set until the limit is reached.
In order to use the near operator, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more than one geo-spatial index, you can use the geo field to select a particular index.
Returns a cursor containing the result, see Http Cursor for details.
Note: the near simple query is deprecated as of ArangoDB 2.6. This API may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection using the near operator is to issue an AQL query using the NEAR function as follows:
FOR doc IN NEAR(@@collection, @latitude, @longitude, @limit)
RETURN doc`
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Without distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
With distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 3,
"distance" : "distance"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Find documents within a radius around a coordinate
returns all documents of a collection within a given radius
PUT /_api/simple/within
A JSON object with these properties is required:
This will find all documents within a given radius around the coordinate (latitude, longitude). The returned list is sorted by distance.
In order to use the within operator, a geo index must be defined for the collection. This index also defines which attribute holds the coordinates for the document. If you have more than one geo-spatial index, you can use the geo field to select a particular index.
Returns a cursor containing the result, see Http Cursor for details.
Note: the within simple query is deprecated as of ArangoDB 2.6. This API may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection using the near operator is to issue an AQL query using the WITHIN function as follows:
FOR doc IN WITHIN(@@collection, @latitude, @longitude, @radius, @distanceAttributeName)
RETURN doc
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
Without distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 2,
"radius" : 500
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
With distance
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{
"collection" : "products",
"latitude" : 0,
"longitude" : 0,
"skip" : 1,
"limit" : 3,
"distance" : "distance",
"radius" : 300
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Fulltext
If a fulltext index exists, then /_api/simple/fulltext will use this index to execute the specified fulltext query.
Create fulltext index
creates a fulltext index
POST /_api/index#fulltext
Query Parameters
A JSON object with these properties is required:
NOTE Swagger examples won't work due to the anchor.
Creates a fulltext index for the collection collection-name, if it does not already exist. The call expects an object containing the index details.
Return Codes
200: If the index already exists, then a HTTP 200 is returned.
201: If the index does not already exist and could be created, then a HTTP 201 is returned.
404: If the collection-name is unknown, then a HTTP 404 is returned.
Examples
Creating a fulltext index
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{
"type" : "fulltext",
"fields" : [
"text"
]
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Fulltext index query
returns documents of a collection as a result of a fulltext query
PUT /_api/simple/fulltext
A JSON object with these properties is required:
This will find all documents from the collection that match the fulltext query specified in query.
In order to use the fulltext operator, a fulltext index must be defined for the collection and the specified attribute.
Returns a cursor containing the result, see Http Cursor for details.
Note: the fulltext simple query is deprecated as of ArangoDB 2.6. This API may be removed in future versions of ArangoDB. The preferred way for retrieving documents from a collection using the near operator is to issue an AQL query using the FULLTEXT AQL function as follows:
FOR doc IN FULLTEXT(@@collection, @attributeName, @queryString, @limit)
RETURN doc
Return Codes
201: is returned if the query was executed successfully.
400: is returned if the body does not contain a valid JSON representation of a query. The response body contains an error document in this case.
404: is returned if the collection specified by collection is unknown. The response body contains an error document in this case.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/simple/fulltext <<EOF
{
"collection" : "products",
"attribute" : "text",
"query" : "word"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Views
Views
This is an introduction to ArangoDB's HTTP interface for views.
View
A view consists of documents. It is uniquely identified by its identifier. It also has a unique name that clients should use to identify and access it. View can be renamed. This will change the view name, but not the view identifier. Views have a type that is specified by the user when the view is created.
The only available view type currently is: ArangoSearch.
View Identifier
A view identifier lets you refer to a view in a database. It is a string value and is unique within the database. ArangoDB currently uses 64bit unsigned integer values to maintain view ids internally. When returning view ids to clients, ArangoDB will put them into a string to ensure the view id is not clipped by clients that do not support big integers. Clients should treat the view ids returned by ArangoDB as opaque strings when they store or use them locally.
View Name
A view name identifies a view in a database. It is a string and is unique within the database. Unlike the view identifier it is supplied by the creator of the view . The view name must consist of letters, digits, and the _ (underscore) and - (dash) characters only. Please refer to Naming Conventions in ArangoDB for more information on valid view names.
Address of a View
All views in ArangoDB have a unique identifier and a unique name. ArangoDB internally uses the view's unique identifier to look up the view. This identifier however is managed by ArangoDB and the user has no control over it. In order to allow users to use their own names, each view also has a unique name, which is specified by the user. To access a view from the user perspective, the view name should be used, i.e.:
http://server:port/_api/view/view-name
For example: Assume that the view identifier is 7254820 and the view name is demo, then the URL of that view is:
http://localhost:8529/_api/view/demo
View Operations
A view instance may be:
Creating Views
The JSON definition for creating of a view is implementation dependant and varies for each supported view type. Please refer to the proper section of the required view type for details.
However, in general the format is the following:
Create an ArangoDB view
creates an ArangoDB view
POST /_api/view#arangosearch
A JSON object with these properties is required:
Creates a new view with a given name and properties if it does not already exist.
Note: view can't be created with the links. Please use PUT/PATCH for links management.
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view <<EOF
{
"name" : "testViewBasics",
"type" : "arangosearch"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Deleting Views
Views, just as collections, can be removed from a database. View removal is achieved via an API common to all view types, as follows:
Drops a view
drops a view
DELETE /_api/view/{view-name}
Path Parameters
Drops the view identified by view-name.
If the view was successfully dropped, an object is returned with the following attributes:
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
Using an identifier:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/view/106627
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a name:
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/view/testView
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Modifying a View
Renaming a View
Views, just as collections, can be renamed. View rename is achieved via an API common to all view types, as follows:
Rename a view
renames a view
PUT /_api/view/{view-name}/rename
Path Parameters
Renames a view. Expects an object with the attribute(s)
It returns an object with the attributes
Note: this method is not available in a cluster.
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view/products1/rename <<EOF
{
"name" : "viewNewName"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Modifying View Properties
Some view types allow run-time modification of internal properties. Which, if any properties are modifiable is implementation dependant and varies for each supported view type. Please refer to the proper section of the required view type for details.
However, in general the format is the following:
Update of All Possible Properties
All modifiable properties of a view may be set to the specified definition, (i.e. "make the view exactly like this"), via:
Change properties of an ArangoDB view
changes properties of an ArangoDB view
PUT /_api/view/{view-name}/properties#arangosearch
Path Parameters
Changes the properties of a view.
On success an object with the following attributes is returned:
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view/products/properties <<EOF
{
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Update of Specific Properties (delta)
Specific modifiable properties of a view may be set to the specified values, (i.e. "change only these properties to the specified values"), via:
Partially changes properties of an ArangoDB view
partially changes properties of an ArangoDB view
PATCH /_api/view/{view-name}/properties#arangosearch
Path Parameters
Changes the properties of a view.
On success an object with the following attributes is returned:
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view/products/properties <<EOF
{
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Getting Information about a View
View Listing
A listing of all views in a database, regardless of their type, may be obtained via:
List all views
returns all views
GET /_api/view
Returns an object containing an array of all view descriptions.
Return Codes
Examples
Return information about all views:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/view
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Basic View Information
Basic view information, common to all view types, for a specific view may be obtained via:
Return information about a view
returns a view
GET /_api/view/{view-name}
Path Parameters
The result is an object describing the view with the following attributes:
Return Codes
Examples
Using an identifier:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/view/106637
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a name:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/view/testView
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Full View Information
A full description, populated with additional properties depending on view type, for a specific view may be obtained via:
Read properties of a view
reads the properties of the specified view
GET /_api/view/{view-name}/properties
Path Parameters
Returns an object containing the definition of the view identified by view-name.
The result is an object describing the view with the following attributes:
any additional view implementation specific properties
view-name (required): The name of the view.
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
Using an identifier:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/view/106647/properties
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Using a name:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/view/products/properties
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
ArangoSearch View
A natively integrated AQL extension that allows one to:
Creating an ArangoSearch View
The ArangoSearch specific JSON definition for creating of a view is as follows:
Create an ArangoSearch view
creates an ArangoSearch view
POST /_api/view#ArangoSearch
A JSON object with these properties is required:
Creates a new view with a given name and properties if it does not already exist.
Note: view can't be created with the links. Please use PUT/PATCH for links management.
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view <<EOF
{
"name" : "testViewBasics",
"type" : "arangosearch"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Modifying an ArangoSearch View
The ArangoSearch specific JSON definition for modification of a view is as follows:
Update of All Possible Properties
All modifiable properties of a view may be set to the specified definition, (i.e. "make the view exactly like this"), via:
Change properties of an ArangoSearch view
changes properties of an ArangoSearch view
PUT /_api/view/{view-name}/properties#ArangoSearch
Path Parameters
A JSON object with these properties is required:
Changes the properties of a view.
On success an object with the following attributes is returned:
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view/products/properties <<EOF
{
"locale" : "en"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Update of Specific Properties (delta)
Specific modifiable properties of a view may be set to the specified values, (i.e. "change only these properties to the specified values"), via:
Partially changes properties of an ArangoSearch view
partially changes properties of an ArangoSearch view
PATCH /_api/view/{view-name}/properties#ArangoSearch
Path Parameters
A JSON object with these properties is required:
Changes the properties of a view.
On success an object with the following attributes is returned:
Return Codes
400: If the view-name is missing, then a HTTP 400 is returned.
404: If the view-name is unknown, then a HTTP 404 is returned.
Examples
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/view/products/properties <<EOF
{
"locale" : "en"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Transactions
Transactions
ArangoDB's transactions are executed on the server. Transactions can be initiated by clients by sending the transaction description for execution to the server.
Transactions in ArangoDB do not offer separate BEGIN, COMMIT and ROLLBACK operations as they are available in many other database products. Instead, ArangoDB transactions are described by a JavaScript function, and the code inside the JavaScript function will then be executed transactionally. At the end of the function, the transaction is automatically committed, and all changes done by the transaction will be persisted. If an exception is thrown during transaction execution, all operations performed in the transaction are rolled back.
For a more detailed description of how transactions work in ArangoDB please refer to Transactions.
Execute transaction
execute a server-side transaction
POST /_api/transaction
A JSON object with these properties is required:
The transaction description must be passed in the body of the POST request.
If the transaction is fully executed and committed on the server, HTTP 200 will be returned. Additionally, the return value of the code defined in action will be returned in the result attribute.
For successfully committed transactions, the returned JSON object has the following properties:
error: boolean flag to indicate if an error occurred (false in this case)
code: the HTTP status code
result: the return value of the transaction
If the transaction specification is either missing or malformed, the server will respond with HTTP 400.
The body of the response will then contain a JSON object with additional error details. The object has the following attributes:
error: boolean flag to indicate that an error occurred (true in this case)
code: the HTTP status code
errorNum: the server error number
errorMessage: a descriptive error message
If a transaction fails to commit, either by an exception thrown in the action code, or by an internal error, the server will respond with an error. Any other errors will be returned with any of the return codes HTTP 400, HTTP 409, or HTTP 500.
Return Codes
200: If the transaction is fully executed and committed on the server, HTTP 200 will be returned.
400: If the transaction specification is either missing or malformed, the server will respond with HTTP 400.
404: If the transaction specification contains an unknown collection, the server will respond with HTTP 404.
500: Exceptions thrown by users will make the server respond with a return code of HTTP 500
Examples
Executing a transaction on a single collection
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"write" : "products"
},
"action" : "function () { var db = require('@arangodb').db; db.products.save({}); return db.products.count(); }"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Executing a transaction using multiple collections
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"write" : [
"products",
"materials"
]
},
"action" : "function () {var db = require('@arangodb').db;db.products.save({});db.materials.save({});return 'worked!';}"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Aborting a transaction due to an internal error
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"write" : "products"
},
"action" : "function () {var db = require('@arangodb').db;db.products.save({ _key: 'abc'});db.products.save({ _key: 'abc'});}"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Aborting a transaction by explicitly throwing an exception
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"read" : "products"
},
"action" : "function () { throw 'doh!'; }"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Referring to a non-existing collection
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{
"collections" : {
"read" : "products"
},
"action" : "function () { return true; }"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Replication
Replication
This is an introduction to ArangoDB's HTTP replication interface. The replication architecture and components are described in more details in Replication.
The HTTP replication interface serves four main purposes:
Please note that all replication operations work on a per-database level. If an ArangoDB server contains more than one database, the replication system must be configured individually per database, and replicating the data of multiple databases will require multiple operations.
Replication Dump Commands
The inventory method can be used to query an ArangoDB database's current set of collections plus their indexes. Clients can use this method to get an overview of which collections are present in the database. They can use this information to either start a full or a partial synchronization of data, e.g. to initiate a backup or the incremental data synchronization.
Return inventory of collections and indexes
Returns an overview of collections and their indexes
GET /_api/replication/inventory
Query Parameters
includeSystem (optional): Include system collections in the result. The default value is true.
global (optional): Include alll databases in the response. Only works on _system The default value is false.
batchId (required): The RocksDB engine requires a valid batchId for this API call
Returns the array of collections and indexes available on the server. This array can be used by replication clients to initiate an initial sync with the server.
The response will contain a JSON object with the collection and state and tick attributes.
collections is an array of collections with the following sub-attributes:
parameters: the collection properties
indexes: an array of the indexes of a the collection. Primary indexes and edge indexes are not included in this array.
The state attribute contains the current state of the replication logger. It contains the following sub-attributes:
running: whether or not the replication logger is currently active. Note: since ArangoDB 2.2, the value will always be true
lastLogTick: the value of the last tick the replication logger has written
time: the current time on the server
Replication clients should note the lastLogTick value returned. They can then fetch collections' data using the dump method up to the value of lastLogTick, and query the continuous replication log for log events after this tick value.
To create a full copy of the collections on the server, a replication client can execute these steps:
call the /inventory API method. This returns the lastLogTick value and the array of collections and indexes from the server.
for each collection returned by /inventory, create the collection locally and call /dump to stream the collection data to the client, up to the value of lastLogTick. After that, the client can create the indexes on the collections as they were reported by /inventory.
If the clients wants to continuously stream replication log events from the logger server, the following additional steps need to be carried out:
the client should call /logger-follow initially to fetch the first batch of replication events that were logged after the client's call to /inventory.
The call to /logger-follow should use a from parameter with the value of the lastLogTick as reported by /inventory. The call to /logger-follow will return the x-arango-replication-lastincluded which will contain the last tick value included in the response.
the client can then continuously call /logger-follow to incrementally fetch new replication events that occurred after the last transfer.
Calls should use a from parameter with the value of the x-arango-replication-lastincluded header of the previous response. If there are no more replication events, the response will be empty and clients can go to sleep for a while and try again later.
Note: on a coordinator, this request must have the query parameter DBserver which must be an ID of a DBserver. The very same request is forwarded synchronously to that DBserver. It is an error if this attribute is not bound in the coordinator case.
Note:: Using the global parameter the top-level object contains a key databases under which each key represents a datbase name, and the value conforms to the above describtion.
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/inventory
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
With some additional indexes:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/inventory
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
The batch method will create a snapshot of the current state that then can be dumped. A batchId is required when using the dump api with rocksdb.
Create new dump batch
handle a dump batch command
POST /_api/replication/batch
Note: These calls are uninteresting to users.
A JSON object with these properties is required:
Creates a new dump batch and returns the batch's id.
The response is a JSON object with the following attributes:
Note: on a coordinator, this request must have the query parameter DBserver which must be an ID of a DBserver. The very same request is forwarded synchronously to that DBserver. It is an error if this attribute is not bound in the coordinator case.
Return Codes
200: is returned if the batch was created successfully.
400: is returned if the ttl value is invalid or if DBserver attribute is not specified or illegal on a coordinator.
405: is returned when an invalid HTTP method is used.
Deletes an existing dump batch
handle a dump batch command
DELETE /_api/replication/batch/{id}
Note: These calls are uninteresting to users.
Path Parameters
Deletes the existing dump batch, allowing compaction and cleanup to resume.
Note: on a coordinator, this request must have the query parameter DBserver which must be an ID of a DBserver. The very same request is forwarded synchronously to that DBserver. It is an error if this attribute is not bound in the coordinator case.
Return Codes
204: is returned if the batch was deleted successfully.
400: is returned if the batch was not found.
405: is returned when an invalid HTTP method is used.
Prolong existing dump batch
handle a dump batch command
PUT /_api/replication/batch/{id}
Note: These calls are uninteresting to users.
A JSON object with these properties is required:
Extends the ttl of an existing dump batch, using the batch's id and the provided ttl value.
If the batch's ttl can be extended successfully, the response is empty.
Note: on a coordinator, this request must have the query parameter DBserver which must be an ID of a DBserver. The very same request is forwarded synchronously to that DBserver. It is an error if this attribute is not bound in the coordinator case.
Path Parameters
Return Codes
204: is returned if the batch's ttl was extended successfully.
400: is returned if the ttl value is invalid or the batch was not found.
405: is returned when an invalid HTTP method is used. The dump method can be used to fetch data from a specific collection. As the results of the dump command can be huge, dump may not return all data from a collection at once. Instead, the dump command may be called repeatedly by replication clients until there is no more data to fetch. The dump command will not only return the current documents in the collection, but also document updates and deletions.
Please note that the dump method will only return documents, updates and deletions from a collection's journals and datafiles. Operations that are stored in the write-ahead log only will not be returned. In order to ensure that these operations are included in a dump, the write-ahead log must be flushed first.
To get to an identical state of data, replication clients should apply the individual parts of the dump results in the same order as they are provided.
Return data of a collection
returns the whole content of one collection
GET /_api/replication/dump
Query Parameters
collection (required): The name or id of the collection to dump.
chunkSize (optional): Approximate maximum size of the returned result.
batchId (required): rocksdb only - The id of the snapshot to use
from (optional): mmfiles only - Lower bound tick value for results.
to (optional): mmfiles only - Upper bound tick value for results.
includeSystem (optional): mmfiles only - Include system collections in the result. The default value is true.
ticks (optional): mmfiles only - Whether or not to include tick values in the dump. The default value is true.
flush (optional): mmfiles only - Whether or not to flush the WAL before dumping. The default value is true.
Returns the data from the collection for the requested range.
When the from query parameter is not used, collection events are returned from the beginning. When the from parameter is used, the result will only contain collection entries which have higher tick values than the specified from value (note: the log entry with a tick value equal to from will be excluded).
The to query parameter can be used to optionally restrict the upper bound of the result to a certain tick value. If used, the result will only contain collection entries with tick values up to (including) to.
The chunkSize query parameter can be used to control the size of the result. It must be specified in bytes. The chunkSize value will only be honored approximately. Otherwise a too low chunkSize value could cause the server to not be able to put just one entry into the result and return it. Therefore, the chunkSize value will only be consulted after an entry has been written into the result. If the result size is then bigger than chunkSize, the server will respond with as many entries as there are in the response already. If the result size is still smaller than chunkSize, the server will try to return more data if there's more data left to return.
If chunkSize is not specified, some server-side default value will be used.
The Content-Type of the result is application/x-arango-dump. This is an easy-to-process format, with all entries going onto separate lines in the response body.
Each line itself is a JSON object, with at least the following attributes:
tick: the operation's tick attribute
key: the key of the document/edge or the key used in the deletion operation
rev: the revision id of the document/edge or the deletion operation
data: the actual document/edge data for types 2300 and 2301. The full document/edge data will be returned even for updates.
type: the type of entry. Possible values for type are:
2300: document insertion/update
2301: edge insertion/update
2302: document/edge deletion
Note: there will be no distinction between inserts and updates when calling this method.
Return Codes
200: is returned if the request was executed successfully and data was returned. The header x-arango-replication-lastincluded is set to the tick of the last document returned.
204: is returned if the request was executed successfully, but there was no content available. The header x-arango-replication-lastincluded is 0 in this case.
400: is returned if either the from or to values are invalid.
404: is returned when the collection could not be found.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
Empty collection:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/dump?collection=testCollection
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: false
x-arango-replication-lastincluded: 0
x-content-type-options: nosniff
Non-empty collection (One JSON document per line):
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/dump?collection=testCollection
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: false
x-arango-replication-lastincluded: 104387
x-content-type-options: nosniff
Show response body
Synchronize data from a remote endpoint
start a replication
PUT /_api/replication/sync
A JSON object with these properties is required:
Starts a full data synchronization from a remote endpoint into the local ArangoDB database.
The sync method can be used by replication clients to connect an ArangoDB database to a remote endpoint, fetch the remote list of collections and indexes, and collection data. It will thus create a local backup of the state of data at the remote ArangoDB database. sync works on a per-database level.
sync will first fetch the list of collections and indexes from the remote endpoint. It does so by calling the inventory API of the remote database. It will then purge data in the local ArangoDB database, and after start will transfer collection data from the remote database to the local ArangoDB database. It will extract data from the remote database by calling the remote database's dump API until all data are fetched.
In case of success, the body of the response is a JSON object with the following attributes:
collections: an array of collections that were transferred from the endpoint
lastLogTick: the last log tick on the endpoint at the time the transfer was started. Use this value as the from value when starting the continuous synchronization later.
WARNING: calling this method will sychronize data from the collections found on the remote endpoint to the local ArangoDB database. All data in the local collections will be purged and replaced with data from the endpoint.
Use with caution!
Note: this method is not supported on a coordinator in a cluster.
Return Codes
200: is returned if the request was executed successfully.
400: is returned if the configuration is incomplete or malformed.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred during sychronization.
501: is returned when this operation is called on a coordinator in a cluster.
Return cluster inventory of collections and indexes
returs an overview of collections and indexes in a cluster
GET /_api/replication/clusterInventory
Query Parameters
Returns the array of collections and indexes available on the cluster.
The response will be an array of JSON objects, one for each collection. Each collection containscontains exactly two keys "parameters" and "indexes". This information comes from Plan/Collections/{DB-Name}/ in the agency, just that the indexes* attribute there is relocated to adjust it to the data format of arangodump.
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Replication Logger Commands
Previous versions of ArangoDB allowed starting, stopping and configuring the replication logger. These commands are superfluous in ArangoDB 2.2 as all data-modification operations are written to the server's write-ahead log and are not handled by a separate logger anymore.
The only useful operations remaining since ArangoDB 2.2 are to query the current state of the logger and to fetch the latest changes written by the logger. The operations will return the state and data from the write-ahead log.
Return replication logger state
returns the state of the replication logger
GET /_api/replication/logger-state
Returns the current state of the server's replication logger. The state will include information about whether the logger is running and about the last logged tick value. This tick value is important for incremental fetching of data.
The body of the response contains a JSON object with the following attributes:
state: the current logger state as a JSON object with the following sub-attributes:
running: whether or not the logger is running
lastLogTick: the tick value of the latest tick the logger has logged. This value can be used for incremental fetching of log data.
totalEvents: total number of events logged since the server was started. The value is not reset between multiple stops and re-starts of the logger.
time: the current date and time on the logger server
server: a JSON object with the following sub-attributes:
version: the logger server's version
serverId: the logger server's id
clients: returns the last fetch status by replication clients connected to the logger. Each client is returned as a JSON object with the following attributes:
serverId: server id of client
lastServedTick: last tick value served to this client via the logger-follow API
time: date and time when this client last called the logger-follow API
Return Codes
200: is returned if the logger state could be determined successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if the logger state could not be determined.
Examples
Returns the state of the replication logger.
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/logger-state
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
To query the latest changes logged by the replication logger, the HTTP interface also provides the logger-follow method.
This method should be used by replication clients to incrementally fetch updates from an ArangoDB database.
Returns log entries
Fetch log lines from the server
GET /_api/replication/logger-follow
Query Parameters
from (optional): Lower bound tick value for results.
to (optional): Upper bound tick value for results.
chunkSize (optional): Approximate maximum size of the returned result.
includeSystem (optional): Include system collections in the result. The default value is true.
Returns data from the server's replication log. This method can be called by replication clients after an initial synchronization of data. The method will return all "recent" log entries from the logger server, and the clients can replay and apply these entries locally so they get to the same data state as the logger server.
Clients can call this method repeatedly to incrementally fetch all changes from the logger server. In this case, they should provide the from value so they will only get returned the log events since their last fetch.
When the from query parameter is not used, the logger server will return log entries starting at the beginning of its replication log. When the from parameter is used, the logger server will only return log entries which have higher tick values than the specified from value (note: the log entry with a tick value equal to from will be excluded). Use the from value when incrementally fetching log data.
The to query parameter can be used to optionally restrict the upper bound of the result to a certain tick value. If used, the result will contain only log events with tick values up to (including) to. In incremental fetching, there is no need to use the to parameter. It only makes sense in special situations, when only parts of the change log are required.
The chunkSize query parameter can be used to control the size of the result. It must be specified in bytes. The chunkSize value will only be honored approximately. Otherwise a too low chunkSize value could cause the server to not be able to put just one log entry into the result and return it. Therefore, the chunkSize value will only be consulted after a log entry has been written into the result. If the result size is then bigger than chunkSize, the server will respond with as many log entries as there are in the response already. If the result size is still smaller than chunkSize, the server will try to return more data if there's more data left to return.
If chunkSize is not specified, some server-side default value will be used.
The Content-Type of the result is application/x-arango-dump. This is an easy-to-process format, with all log events going onto separate lines in the response body. Each log event itself is a JSON object, with at least the following attributes:
tick: the log event tick value
type: the log event type
Individual log events will also have additional attributes, depending on the event type. A few common attributes which are used for multiple events types are:
cid: id of the collection the event was for
tid: id of the transaction the event was contained in
key: document key
rev: document revision id
data: the original document data
A more detailed description of the individual replication event types and their data structures can be found in Operation Types.
The response will also contain the following HTTP headers:
x-arango-replication-active: whether or not the logger is active. Clients can use this flag as an indication for their polling frequency. If the logger is not active and there are no more replication events available, it might be sensible for a client to abort, or to go to sleep for a long time and try again later to check whether the logger has been activated.
x-arango-replication-lastincluded: the tick value of the last included value in the result. In incremental log fetching, this value can be used as the from value for the following request. Note that if the result is empty, the value will be 0. This value should not be used as from value by clients in the next request (otherwise the server would return the log events from the start of the log again).
x-arango-replication-lasttick: the last tick value the logger server has logged (not necessarily included in the result). By comparing the the last tick and last included tick values, clients have an approximate indication of how many events there are still left to fetch.
x-arango-replication-checkmore: whether or not there already exists more log data which the client could fetch immediately. If there is more log data available, the client could call logger-follow again with an adjusted from value to fetch remaining log entries until there are no more.
If there isn't any more log data to fetch, the client might decide to go to sleep for a while before calling the logger again.
Note: this method is not supported on a coordinator in a cluster.
Return Codes
200: is returned if the request was executed successfully, and there are log events available for the requested range. The response body will not be empty in this case.
204: is returned if the request was executed successfully, but there are no log events available for the requested range. The response body will be empty in this case.
400: is returned if either the from or to values are invalid.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
501: is returned when this operation is called on a coordinator in a cluster.
Examples
No log events available
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/logger-follow?from=104463
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-active: true
x-arango-replication-checkmore: false
x-arango-replication-frompresent: true
x-arango-replication-lastincluded: 0
x-arango-replication-lastscanned: 104463
x-arango-replication-lasttick: 104463
x-content-type-options: nosniff
A few log events (One JSON document per line)
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/logger-follow?from=104463
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-active: true
x-arango-replication-checkmore: false
x-arango-replication-frompresent: true
x-arango-replication-lastincluded: 104482
x-arango-replication-lastscanned: 104482
x-arango-replication-lasttick: 104482
x-content-type-options: nosniff
Show response body
More events than would fit into the response
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/logger-follow?from=104444&chunkSize=400
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-active: true
x-arango-replication-checkmore: true
x-arango-replication-frompresent: true
x-arango-replication-lastincluded: 104446
x-arango-replication-lastscanned: 104446
x-arango-replication-lasttick: 104463
x-content-type-options: nosniff
Show response body
To check what range of changes is available (identified by tick values), the HTTP interface provides the methods logger-first-tick and logger-tick-ranges . Replication clients can use the methods to determine if certain data (identified by a tick date) is still available on the master.
Returns the first available tick value
Return the first available tick value from the server
GET /_api/replication/logger-first-tick
Returns the first available tick value that can be served from the server's replication log. This method can be called by replication clients after to determine if certain data (identified by a tick value) is still available for replication.
The result is a JSON object containing the attribute firstTick. This attribute contains the minimum tick value available in the server's replication log.
Note: this method is not supported on a coordinator in a cluster.
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
501: is returned when this operation is called on a coordinator in a cluster.
Examples
Returning the first available tick
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/logger-first-tick
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"firstTick" : "5"
}
Return the tick ranges available in the WAL logfiles
returns the tick value ranges available in the logfiles
GET /_api/replication/logger-tick-ranges
Returns the currently available ranges of tick values for all currently available WAL logfiles. The tick values can be used to determine if certain data (identified by tick value) are still available for replication.
The body of the response contains a JSON array. Each array member is an object that describes a single logfile. Each object has the following attributes:
datafile: name of the logfile
status: status of the datafile, in textual form (e.g. "sealed", "open")
tickMin: minimum tick value contained in logfile
tickMax: maximum tick value contained in logfile
Return Codes
200: is returned if the tick ranges could be determined successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if the logger state could not be determined.
501: is returned when this operation is called on a coordinator in a cluster.
Examples
Returns the available tick ranges.
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/logger-tick-ranges
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
{
"datafile" : "/tmp/arangosh_MnXPQH/tmp-22583-1778273085/data/journals/logfile-2.db",
"status" : "collected",
"tickMin" : "5",
"tickMax" : "102746"
},
{
"datafile" : "/tmp/arangosh_MnXPQH/tmp-22583-1778273085/data/journals/logfile-47.db",
"status" : "collected",
"tickMin" : "102762",
"tickMax" : "102874"
},
{
"datafile" : "/tmp/arangosh_MnXPQH/tmp-22583-1778273085/data/journals/logfile-99.db",
"status" : "collected",
"tickMin" : "102881",
"tickMax" : "104387"
},
{
"datafile" : "/tmp/arangosh_MnXPQH/tmp-22583-1778273085/data/journals/logfile-102749.db",
"status" : "collected",
"tickMin" : "104395",
"tickMax" : "104403"
},
{
"datafile" : "/tmp/arangosh_MnXPQH/tmp-22583-1778273085/data/journals/logfile-102877.db",
"status" : "open",
"tickMin" : "104409",
"tickMax" : "104482"
}
]
Replication Applier Commands
The applier commands allow to remotely start, stop, and query the state and configuration of an ArangoDB database's replication applier.
Return configuration of replication applier
fetch the current replication configuration
GET /_api/replication/applier-config
Returns the configuration of the replication applier.
The body of the response is a JSON object with the configuration. The following attributes may be present in the configuration:
endpoint: the logger server to connect to (e.g. "tcp://192.168.173.13:8529").
database: the name of the database to connect to (e.g. "_system").
username: an optional ArangoDB username to use when connecting to the endpoint.
password: the password to use when connecting to the endpoint.
maxConnectRetries: the maximum number of connection attempts the applier will make in a row. If the applier cannot establish a connection to the endpoint in this number of attempts, it will stop itself.
connectTimeout: the timeout (in seconds) when attempting to connect to the endpoint. This value is used for each connection attempt.
requestTimeout: the timeout (in seconds) for individual requests to the endpoint.
chunkSize: the requested maximum size for log transfer packets that is used when the endpoint is contacted.
autoStart: whether or not to auto-start the replication applier on (next and following) server starts
adaptivePolling: whether or not the replication applier will use adaptive polling.
includeSystem: whether or not system collection operations will be applied
autoResync: whether or not the slave should perform a full automatic resynchronization with the master in case the master cannot serve log data requested by the slave, or when the replication is started and no tick value can be found.
autoResyncRetries: number of resynchronization retries that will be performed in a row when automatic resynchronization is enabled and kicks in. Setting this to 0 will effectively disable autoResync. Setting it to some other value will limit the number of retries that are performed. This helps preventing endless retries in case resynchronizations always fail.
initialSyncMaxWaitTime: the maximum wait time (in seconds) that the initial synchronization will wait for a response from the master when fetching initial collection data. This wait time can be used to control after what time the initial synchronization will give up waiting for a response and fail. This value is relevant even for continuous replication when autoResync is set to true because this may re-start the initial synchronization when the master cannot provide log data the slave requires. This value will be ignored if set to 0.
connectionRetryWaitTime: the time (in seconds) that the applier will intentionally idle before it retries connecting to the master in case of connection problems. This value will be ignored if set to 0.
idleMinWaitTime: the minimum wait time (in seconds) that the applier will intentionally idle before fetching more log data from the master in case the master has already sent all its log data. This wait time can be used to control the frequency with which the replication applier sends HTTP log fetch requests to the master in case there is no write activity on the master. This value will be ignored if set to 0.
idleMaxWaitTime: the maximum wait time (in seconds) that the applier will intentionally idle before fetching more log data from the master in case the master has already sent all its log data and there have been previous log fetch attempts that resulted in no more log data. This wait time can be used to control the maximum frequency with which the replication applier sends HTTP log fetch requests to the master in case there is no write activity on the master for longer periods. This configuration value will only be used if the option adaptivePolling is set to true. This value will be ignored if set to 0.
requireFromPresent: if set to true, then the replication applier will check at start whether the start tick from which it starts or resumes replication is still present on the master. If not, then there would be data loss. If requireFromPresent is true, the replication applier will abort with an appropriate error message. If set to false, then the replication applier will still start, and ignore the data loss.
verbose: if set to true, then a log line will be emitted for all operations performed by the replication applier. This should be used for debugging replication problems only.
restrictType: the configuration for restrictCollections
restrictCollections: the optional array of collections to include or exclude, based on the setting of restrictType
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/applier-config
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Adjust configuration of replication applier
set configuration values of an applier
PUT /_api/replication/applier-config
A JSON object with these properties is required:
Sets the configuration of the replication applier. The configuration can only be changed while the applier is not running. The updated configuration will be saved immediately but only become active with the next start of the applier.
In case of success, the body of the response is a JSON object with the updated configuration.
Return Codes
200: is returned if the request was executed successfully.
400: is returned if the configuration is incomplete or malformed, or if the replication applier is currently running.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/replication/applier-config <<EOF
{
"endpoint" : "tcp://127.0.0.1:8529",
"username" : "replicationApplier",
"password" : "applier1234@foxx",
"chunkSize" : 4194304,
"autoStart" : false,
"adaptivePolling" : true
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Start replication applier
start the replication applier
PUT /_api/replication/applier-start
Query Parameters
Starts the replication applier. This will return immediately if the replication applier is already running.
If the replication applier is not already running, the applier configuration will be checked, and if it is complete, the applier will be started in a background thread. This means that even if the applier will encounter any errors while running, they will not be reported in the response to this method.
To detect replication applier errors after the applier was started, use the /_api/replication/applier-state API instead.
Return Codes
200: is returned if the request was executed successfully.
400: is returned if the replication applier is not fully configured or the configuration is invalid.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/applier-start
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Stop replication applier
stop the replication
PUT /_api/replication/applier-stop
Stops the replication applier. This will return immediately if the replication applier is not running.
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
shell> curl -X PUT --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/applier-stop
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
State of the replication applier
output the current status of the replication
GET /_api/replication/applier-state
Returns the state of the replication applier, regardless of whether the applier is currently running or not.
The response is a JSON object with the following attributes:
state: a JSON object with the following sub-attributes:
running: whether or not the applier is active and running
lastAppliedContinuousTick: the last tick value from the continuous replication log the applier has applied.
lastProcessedContinuousTick: the last tick value from the continuous replication log the applier has processed.
Regularly, the last applied and last processed tick values should be identical. For transactional operations, the replication applier will first process incoming log events before applying them, so the processed tick value might be higher than the applied tick value. This will be the case until the applier encounters the transaction commit log event for the transaction.
lastAvailableContinuousTick: the last tick value the logger server can provide.
time: the time on the applier server.
totalRequests: the total number of requests the applier has made to the endpoint.
totalFailedConnects: the total number of failed connection attempts the applier has made.
totalEvents: the total number of log events the applier has processed.
totalOperationsExcluded: the total number of log events excluded because of restrictCollections.
progress: a JSON object with details about the replication applier progress. It contains the following sub-attributes if there is progress to report:
message: a textual description of the progress
time: the date and time the progress was logged
failedConnects: the current number of failed connection attempts
lastError: a JSON object with details about the last error that happened on the applier. It contains the following sub-attributes if there was an error:
errorNum: a numerical error code
errorMessage: a textual error description
time: the date and time the error occurred
In case no error has occurred, lastError will be empty.
server: a JSON object with the following sub-attributes:
version: the applier server's version
serverId: the applier server's id
endpoint: the endpoint the applier is connected to (if applier is active) or will connect to (if applier is currently inactive)
database: the name of the database the applier is connected to (if applier is active) or will connect to (if applier is currently inactive)
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
Fetching the state of an inactive applier:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/applier-state
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Fetching the state of an active applier:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/applier-state
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Turn the server into a slave of another
Changes role to slave
PUT /_api/replication/make-slave
A JSON object with these properties is required:
Starts a full data synchronization from a remote endpoint into the local ArangoDB database and afterwards starts the continuous replication. The operation works on a per-database level.
All local database data will be removed prior to the synchronization.
In case of success, the body of the response is a JSON object with the following attributes:
state: a JSON object with the following sub-attributes:
running: whether or not the applier is active and running
lastAppliedContinuousTick: the last tick value from the continuous replication log the applier has applied.
lastProcessedContinuousTick: the last tick value from the continuous replication log the applier has processed.
Regularly, the last applied and last processed tick values should be identical. For transactional operations, the replication applier will first process incoming log events before applying them, so the processed tick value might be higher than the applied tick value. This will be the case until the applier encounters the transaction commit log event for the transaction.
lastAvailableContinuousTick: the last tick value the logger server can provide.
time: the time on the applier server.
totalRequests: the total number of requests the applier has made to the endpoint.
totalFailedConnects: the total number of failed connection attempts the applier has made.
totalEvents: the total number of log events the applier has processed.
totalOperationsExcluded: the total number of log events excluded because of restrictCollections.
progress: a JSON object with details about the replication applier progress. It contains the following sub-attributes if there is progress to report:
message: a textual description of the progress
time: the date and time the progress was logged
failedConnects: the current number of failed connection attempts
lastError: a JSON object with details about the last error that happened on the applier. It contains the following sub-attributes if there was an error:
errorNum: a numerical error code
errorMessage: a textual error description
time: the date and time the error occurred
In case no error has occurred, lastError will be empty.
server: a JSON object with the following sub-attributes:
version: the applier server's version
serverId: the applier server's id
endpoint: the endpoint the applier is connected to (if applier is active) or will connect to (if applier is currently inactive)
database: the name of the database the applier is connected to (if applier is active) or will connect to (if applier is currently inactive)
WARNING: calling this method will sychronize data from the collections found on the remote master to the local ArangoDB database. All data in the local collections will be purged and replaced with data from the master.
Use with caution!
Please also keep in mind that this command may take a long time to complete and return. This is because it will first do a full data synchronization with the master, which will take time roughly proportional to the amount of data.
Note: this method is not supported on a coordinator in a cluster.
Return Codes
200: is returned if the request was executed successfully.
400: is returned if the configuration is incomplete or malformed.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred during sychronization or when starting the continuous replication.
501: is returned when this operation is called on a coordinator in a cluster.
Other Replication Commands
Return server id
fetch this server's unique identifier
GET /_api/replication/server-id
Returns the servers id. The id is also returned by other replication API methods, and this method is an easy means of determining a server's id.
The body of the response is a JSON object with the attribute serverId. The server id is returned as a string.
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/replication/server-id
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"serverId" : "122327666155665"
}
WAL Access API
The WAL Access API is used from 3.3 onwards to facilitate faster and more reliable asynchronous replication. The API offers access to the write-ahead log or operations log of the ArangoDB server. As a public API it is only supported to access these REST endpoints on a single-server instance. While these APIs are also available on DBServer instances, accessing them as a user is not supported. This API replaces some of the APIs in /_api/replication .
Return tick ranges available in the operations of WAL
returns the tick ranges available in the write-ahead-log
GET /_api/wal/range
Returns the currently available ranges of tick values for all WAL files. The tick values can be used to determine if certain data (identified by tick value) are still available for replication.
The body of the response contains a JSON object.
Return Codes
200: is returned if the tick ranges could be determined successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if the server operations state could not be determined.
501: is returned when this operation is called on a coordinator in a cluster.
Examples
Returns the available tick ranges.
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/wal/range
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Return last available tick value
Return last available tick value
GET /_api/wal/lastTick
Returns the last available tick value that can be served from the server's replication log. This corresponds to the tick of the latest successfull operation.
The result is a JSON object containing the attributes tick, time and server.
Note: this method is not supported on a coordinator in a cluster.
Return Codes
200: is returned if the request was executed successfully.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
501: is returned when this operation is called on a coordinator in a cluster.
Examples
Returning the first available tick
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/wal/lastTick
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Tail recent server operations
Fetch recent operations
GET /_api/wal/tail
Query Parameters
from (optional): Lower bound tick value for results.
to (optional): Upper bound tick value for results.
global (optional): Whether operations for all databases should be included. When set to false only the operations for the current database are included. The value true is only valid on the _system database. The default is false.
chunkSize (optional): Approximate maximum size of the returned result.
serverId (optional): Id of the client used to tail results. The server will use this to keep operations until the client has fetched them. Note this is required to have a chance at fetching reading all operations with the rocksdb storage engine
barrierId (optional): Id of barrier used to keep WAL entries around. Note this is only required for the MMFiles storage engine
Returns data from the server's write-ahead log (also named replication log). This method can be called by replication clients after an initial synchronization of data. The method will return all "recent" logged operations from the server. Clients can replay and apply these operations locally so they get to the same data state as the server.
Clients can call this method repeatedly to incrementally fetch all changes from the server. In this case, they should provide the from value so they will only get returned the log events since their last fetch.
When the from query parameter is not used, the server will return log entries starting at the beginning of its replication log. When the from parameter is used, the server will only return log entries which have higher tick values than the specified from value (note: the log entry with a tick value equal to from will be excluded). Use the from value when incrementally fetching log data.
The to query parameter can be used to optionally restrict the upper bound of the result to a certain tick value. If used, the result will contain only log events with tick values up to (including) to. In incremental fetching, there is no need to use the to parameter. It only makes sense in special situations, when only parts of the change log are required.
The chunkSize query parameter can be used to control the size of the result. It must be specified in bytes. The chunkSize value will only be honored approximately. Otherwise a too low chunkSize value could cause the server to not be able to put just one log entry into the result and return it. Therefore, the chunkSize value will only be consulted after a log entry has been written into the result. If the result size is then bigger than chunkSize, the server will respond with as many log entries as there are in the response already. If the result size is still smaller than chunkSize, the server will try to return more data if there's more data left to return.
If chunkSize is not specified, some server-side default value will be used.
The Content-Type of the result is application/x-arango-dump. This is an easy-to-process format, with all log events going onto separate lines in the response body. Each log event itself is a JSON object, with at least the following attributes:
tick: the log event tick value
type: the log event type
Individual log events will also have additional attributes, depending on the event type. A few common attributes which are used for multiple events types are:
cuid: globally unique id of the view or collection the event was for
db: the database name the event was for
tid: id of the transaction the event was contained in
data: the original document data
A more detailed description of the individual replication event types and their data structures can be found in Operation Types.
The response will also contain the following HTTP headers:
x-arango-replication-active: whether or not the logger is active. Clients can use this flag as an indication for their polling frequency. If the logger is not active and there are no more replication events available, it might be sensible for a client to abort, or to go to sleep for a long time and try again later to check whether the logger has been activated.
x-arango-replication-lastincluded: the tick value of the last included value in the result. In incremental log fetching, this value can be used as the from value for the following request. Note that if the result is empty, the value will be 0. This value should not be used as from value by clients in the next request (otherwise the server would return the log events from the start of the log again).
x-arango-replication-lastscanned: the last tick the server scanned while computing the operation log. This might include operations the server did not returned to you due to various reasons (i.e. the value was filtered or skipped).
x-arango-replication-lasttick: the last tick value the server has logged in its write ahead log (not necessarily included in the result). By comparing the the last tick and last included tick values, clients have an approximate indication of how many events there are still left to fetch.
x-arango-replication-frompresent: is set to true if server returned all tick values starting from the specified tick in the from parameter. Should this be set to false the server did not have these operations anymore and the client might have missed operations.
x-arango-replication-checkmore: whether or not there already exists more log data which the client could fetch immediately. If there is more log data available, the client could call logger-follow again with an adjusted from value to fetch remaining log entries until there are no more.
If there isn't any more log data to fetch, the client might decide to go to sleep for a while before calling the logger again.
Note: this method is not supported on a coordinator in a cluster.
Return Codes
200: is returned if the request was executed successfully, and there are log events available for the requested range. The response body will not be empty in this case.
204: is returned if the request was executed successfully, but there are no log events available for the requested range. The response body will be empty in this case.
400: is returned if either the from or to values are invalid.
405: is returned when an invalid HTTP method is used.
500: is returned if an error occurred while assembling the response.
501: is returned when this operation is called on a coordinator in a cluster.
Examples
No log events available
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/wal/tail?from=106777
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-active: true
x-arango-replication-checkmore: false
x-arango-replication-frompresent: true
x-arango-replication-lastincluded: 0
x-arango-replication-lastscanned: 106777
x-arango-replication-lasttick: 106777
x-content-type-options: nosniff
A few log events (One JSON document per line)
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/wal/tail?from=106777
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-active: true
x-arango-replication-checkmore: true
x-arango-replication-frompresent: true
x-arango-replication-lastincluded: 106793
x-arango-replication-lastscanned: 106796
x-arango-replication-lasttick: 106796
x-content-type-options: nosniff
Show response body
More events than would fit into the response
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/wal/tail?from=106758&chunkSize=400
HTTP/1.1 undefined
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-active: true
x-arango-replication-checkmore: true
x-arango-replication-frompresent: true
x-arango-replication-lastincluded: 106774
x-arango-replication-lastscanned: 106777
x-arango-replication-lasttick: 106777
x-content-type-options: nosniff
Show response body
Operation Types
There are several different operation types thar an ArangoDB server might print. All operations include a tick value which identified their place in the operations log. The numeric fields tick and tid always contain stringified numbers to avoid problems with drivers where numbers in JSON might be mishandled.
The following operation types are used in ArangoDB:
Create Database (1100)
Create a database. Contains the field db with the database name and the field data, contains the database definition.
{
"tick": "2103",
"type": 1100,
"db": "test",
"data": {
"database": 337,
"id": "337",
"name": "test"
}
}
Drop Database (1100)
Drop a database. Contains the field db with the database name.
{
"tick": "3453",
"type": 1101,
"db": "test"
}
Create Collection (2000)
Create a collection. Contains the field db with the database name, and cuid with the globally unique id to identify this collection. The data attribute contains the collection definition.
{
"tick": "3702",
"db": "_system",
"cuid": "hC0CF79DA83B4/555",
"type": 2000,
"data": {
"allowUserKeys": true,
"cacheEnabled": false,
"cid": "555",
"deleted": false,
"globallyUniqueId": "hC0CF79DA83B4/555",
"id": "555",
"indexes": [],
"isSystem": false,
"keyOptions": {
"allowUserKeys": true,
"lastValue": 0,
"type": "traditional"
},
"name": "test"
}
}
Drop Collection (2001)
Drop a collection. Contains the field db with the database name, and cuid with the globally unique id to identify this collection.
{
"tick": "154",
"type": 2001,
"db": "_system",
"cuid": "hD15F8FE99859/555"
}
Rename Collection (2002)
Rename a collection. Contains the field db with the database name, and cuid with the globally unique id to identify this collection. The data field contains the name field with the new name
{
"tick": "385",
"db": "_system",
"cuid": "hD15F8FE99859/135",
"type": 2002,
"data": {
"name": "other"
}
}
Change Collection (2003)
Change collection properties. Contains the field db with the database name, and cuid with the globally unique id to identify this collection. The data attribute contains the updated collection definition.
{
"tick": "154",
"type": 2003,
"db": "_system",
"cuid": "hD15F8FE99859/555",
"data": {
"waitForSync": true
}
}
Truncate Collection (2004)
Truncate a collection. Contains the field db with the database name, and cuid with the globally unique id to identify this collection.
{
"tick": "154",
"type": 2004,
"db": "_system",
"cuid": "hD15F8FE99859/555"
}
Create Index (2100)
Create an index. Contains the field db with the database name, and cuid with the globally unique id to identify this collection. The field data contains the index definition.
{
"tick": "1327",
"type": 2100,
"db": "_system",
"cuid": "hD15F8FE99859/555",
"data": {
"deduplicate": true,
"fields": [
"value"
],
"id": "260",
"selectivityEstimate": 1,
"sparse": false,
"type": "skiplist",
"unique": false
}
}
Drop Index (2101)
Drop an index. Contains the field db with the database name, and cuid with the globally unique id to identify this collection. The field data contains the field id with the index id.
{
"tick": "1522",
"type": 2101,
"db": "_system",
"cuid": "hD15F8FE99859/555",
"data": {
"id": "260"
}
}
Create View (2110)
Create a view. Contains the field db with the database name, and cuid with the globally unique id to identify this view. The field data contains the view definition
{
"tick": "1833",
"type": 2110,
"db": "_system",
"cuid": "hD15F8FE99859/322",
"data": {
"cleanupIntervalStep": 10,
"collections": [],
"commitIntervalMsec": 60000,
"consolidate": {
"segmentThreshold": 300,
"threshold": 0.8500000238418579,
"type": "bytes_accum"
},
"deleted": false,
"globallyUniqueId": "hD15F8FE99859/322",
"id": "322",
"isSystem": false,
"locale": "C",
"name": "myview",
"type": "arangosearch"
}
}
Drop View (2111)
Drop a view. Contains the field db with the database name, and cuid with the globally unique id to identify this view.
{
"tick": "3113",
"type": 2111,
"db": "_system",
"cuid": "hD15F8FE99859/322"
}
Change View (2112)
Change view properties (including the name). Contains the field db with the database name and cuid with the globally unique id to identify this view. The data attribute contain the updated properties.
{
"tick": "3014",
"type": 2112,
"db": "_system",
"cuid": "hD15F8FE99859/457",
"data": {
"cleanupIntervalStep": 10,
"collections": [
135
],
"commitIntervalMsec": 60000,
"consolidate": {
"segmentThreshold": 300,
"threshold": 0.8500000238418579,
"type": "bytes_accum"
},
"deleted": false,
"globallyUniqueId": "hD15F8FE99859/457",
"id": "457",
"isSystem": false,
"locale": "C",
"name": "renamedview",
"type": "arangosearch"
}
}
Start Transaction (2200)
Mark the beginning of a transaction. Contains the field db with the database name and the field tid for the transaction id. This log entry might be followed by zero or more document operations and then either one commit or an abort operation (i.e. types 2300, 2302 and 2201 / 2202) with the same tid value.
{
"tick": "3651",
"type": 2200,
"db": "_system",
"tid": "556"
}
Commit Transaction (2201)
Mark the successful end of a transaction. Contains the field db with the database name and the field tid for the transaction id.
{
"tick": "3652",
"type": 2201,
"db": "_system",
"tid": "556"
}
Abort Transaction (2202)
Mark the abortion of a transaction. Contains the field db with the database name and the field tid for the transaction id.
{
"tick": "3654",
"type": 2202,
"db": "_system",
"tid": "556"
}
Insert / Replace Document (2300)
Insert or replace a document. Contains the field db with the database name, cuid with the globally unique id to identify the collection and the field tid for the transaction id. The field tid might contain the value "0" to identify a single operation that is not part of a multi-document transaction. The field data contains the document. If the field _rev exists the client can choose to perform a revision check against a locally available version of the document to ensure consistency.
{
"tick": "196",
"type": 2300,
"db": "_system",
"tid": "0",
"cuid": "hE0E3D7BE511D/119",
"data": {
"_id": "users/194",
"_key": "194",
"_rev": "_XUJFD3C---",
"value": "test"
}
}
Remove Document (2302)
Remove a document. Contains the field db with the database name, cuid with the globally unique id to identify the collection and the field tid for the transaction id. The field tid might contain the value "0" to identify a single operation that is not part of a multi-document transaction. The field data contains the _key and _rev of the removed document. The client can choose to perform a revision check against a locally available version of the document to ensure consistency.
{
"cuid": "hE0E3D7BE511D/119",
"data": {
"_key": "194",
"_rev": "_XUJIbS---_"
},
"db": "_system",
"tick": "397",
"tid": "0",
"type": 2302
}
HTTP Interface for Administration and Monitoring
This is an introduction to ArangoDB's HTTP interface for administration and monitoring of the server.
Logs
Read global logs from the server
returns the server logs
GET /_admin/log
Query Parameters
debug or 4 The default value is info.
level (optional): Returns all log entries of log level level. Note that the query parameters upto and level are mutually exclusive.
start (optional): Returns all log entries such that their log entry identifier (lid value) is greater or equal to start.
size (optional): Restricts the result to at most size log entries.
offset (optional): Starts to return log entries skipping the first offset log entries. offset and size can be used for pagination.
search (optional): Only return the log entries containing the text specified in search.
sort (optional): Sort the log entries either ascending (if sort is asc) or descending (if sort is desc) according to their lid values. Note that the lid imposes a chronological order. The default value is asc.
Returns fatal, error, warning or info log messages from the server's global log. The result is a JSON object with the following attributes:
HTTP 200 A json document with these Properties is returned:
Return Codes
Response Body
totalAmount: the total amount of log entries before pagination.
400: is returned if invalid values are specified for upto or level.
500: is returned if the server cannot generate the result due to an out-of-memory error.
Return the current server log level
returns the current log level settings
GET /_admin/log/level
Returns the server's current log level settings. The result is a JSON object with the log topics being the object keys, and the log levels being the object values.
Return Codes
200: is returned if the request is valid
500: is returned if the server cannot generate the result due to an out-of-memory error.
Modify and return the current server log level
modifies the current log level settings
PUT /_admin/log/level
Modifies and returns the server's current log level settings. The request body must be a JSON object with the log topics being the object keys and the log levels being the object values.
The result is a JSON object with the adjusted log topics being the object keys, and the adjusted log levels being the object values.
It can set the log level of all facilities by only specifying the log level as string without json.
Possible log levels are:
A JSON object with these properties is required:
Return Codes
200: is returned if the request is valid
400: is returned when the request body contains invalid JSON.
405: is returned when an invalid HTTP method is used.
500: is returned if the server cannot generate the result due to an out-of-memory error. Statistics
Read the statistics
return the statistics information
GET /_admin/statistics
Returns the statistics information. The returned object contains the statistics figures grouped together according to the description returned by _admin/statistics-description. For instance, to access a figure userTime from the group system, you first select the sub-object describing the group stored in system and in that sub-object the value for userTime is stored in the attribute of the same name.
In case of a distribution, the returned object contains the total count in count and the distribution list in counts. The sum (or total) of the individual values is returned in sum.
HTTP 200 A json document with these Properties is returned:
Statistics were returned successfully.
Return Codes
Response Body
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_admin/statistics
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Statistics description
fetch descriptive info of statistics
GET /_admin/statistics-description
Returns a description of the statistics returned by /_admin/statistics. The returned objects contains an array of statistics groups in the attribute groups and an array of statistics figures in the attribute figures.
A statistics group is described by
A statistics figure is described by
HTTP 200 A json document with these Properties is returned:
Description was returned successfully.
Return Codes
Response Body
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_admin/statistics-description
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Cluster
Return whether or not a server is in read-only mode
Return the mode of this server (read-only or default)
GET /_admin/server/mode
Return mode information about a server. The json response will contain a field mode with the value readonly or default . In a read-only server all write operations will fail with an error code of 1004 (ERROR_READ_ONLY). Creating or dropping of databases and collections will also fail with error code 11 (ERROR_FORBIDDEN).
This is a public API so it does not require authentication.
Return Codes
Update whether or not a server is in read-only mode
Update the mode of this server (read-only or default)
PUT /_admin/server/mode
A JSON object with these properties is required:
Update mode information about a server. The json response will contain a field mode with the value readonly or default . In a read-only server all write operations will fail with an error code of 1004 (ERROR_READ_ONLY). Creating or dropping of databases and collections will also fail with error code 11 (ERROR_FORBIDDEN).
This API so it does require authentication and administrative server rights.
Return Codes
200: This API will return HTTP 200 if everything is ok
401: if the request was not authenticated as a user with sufficient rights
Return id of a server in a cluster
Get to know the internal id of the server
GET /_admin/server/id
Returns the id of a server in a cluster. The request will fail if the server is not running in cluster mode.
Return Codes
200: Is returned when the server is running in cluster mode.
500: Is returned when the server is not running in cluster mode.
Return the role of a server in a cluster
Return the role of a server in a cluster
GET /_admin/server/role
Returns the role of a server in a cluster. The role is returned in the role attribute of the result. Possible return values for role are:
HTTP 200 A json document with these Properties is returned:
Is returned in all cases.
Return Codes
Response Body
Return whether or not a server is available
Return whether or not a server is available
GET /_admin/server/availability
Return availability information about a server.
This is a public API so it does not require authentication. It is meant to be used only in the context of server monitoring only.
Return Codes
200: This API will return HTTP 200 in case the server is up and running and usable for arbitrary operations, is not set to read-only mode and is currently not a follower in case of an active failover setup.
503: HTTP 503 will be returned in case the server is during startup or during shutdown, is set to read-only mode or is currently a follower in an active failover setup.
Queries statistics of DBserver
allows to query the statistics of a DBserver in the cluster
GET /_admin/clusterStatistics
Query Parameters
Queries the statistics of the given DBserver
Return Codes
200: is returned when everything went well.
400: the parameter DBserver was not given or is not the ID of a DBserver
403: server is not a coordinator.
Queries the health of cluster for monitoring
Returns the health of the cluster as assessed by the supervision (agency)
GET /_admin/cluster/health
Queries the health of the cluster for monitoring purposes. The response is a JSON object, containing the standard code , error , errorNum , and errorMessage fields as appropriate. The endpoint-specific fields are as follows:
Health : An object containing a descriptive sub-object for each node in the cluster. Each entry in Health will be keyed by the node ID and contain the the following attributes:
Additionally, if the node is a Coordinator or DBServer, it will also have the following attributes:
Return Codes
Other
Reloads the routing information
Reload the routing table.
POST /_admin/routing/reload
Reloads the routing information from the collection routing.
Return Codes
HTTP Interface for Endpoints
The API /_api/endpoint is deprecated. For cluster mode there is /_api/cluster/endpoints to find all current coordinator endpoints (see below).
The ArangoDB server can listen for incoming requests on multiple endpoints.
The endpoints are normally specified either in ArangoDB's configuration file or on the command-line, using the "--server.endpoint" option. The default endpoint for ArangoDB is tcp://127.0.0.1:8529 or tcp://localhost:8529.
Please note that all endpoint management operations can only be accessed via the default database (_system) and none of the other databases.
Asking about Endpoints via HTTP
Get information about all coordinator endpoints
This API call returns information about all coordinator endpoints (cluster only).
GET /_api/cluster/endpoints
Returns an object with an attribute endpoints , which contains an array of objects, which each have the attribute endpoint , whose value is a string with the endpoint description. There is an entry for each coordinator in the cluster. This method only works on coordinators in cluster mode. In case of an error the error attribute is set to true .
HTTP 200 A json document with these Properties is returned:
Return Codes
Response Body
error: boolean flag to indicate whether an error occurred (true in this case)
403: server is not a coordinator or method was not GET.
Return list of all endpoints
This API call returns the list of all endpoints (single server).
GET /_api/endpoint
THIS API IS DEPRECATED
Returns an array of all configured endpoints the server is listening on.
The result is a JSON array of JSON objects, each with `"entrypoint"' as the only attribute, and with the value being a string describing the endpoint.
Note: retrieving the array of all endpoints is allowed in the system database only. Calling this action in any other database will make the server return an error.
Return Codes
200: is returned when the array of endpoints can be determined successfully.
400: is returned if the action is not carried out in the system database.
405: The server will respond with HTTP 405 if an unsupported HTTP method is used.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/endpoint
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
{
"endpoint" : "http://127.0.0.1:47292"
}
]
Foxx HTTP API
These routes allow manipulating the Foxx services installed in a database.
For more information on Foxx and its JavaScript APIs see the Foxx chapter of the main documentation.
Foxx Service Management
This is an introduction to ArangoDB's HTTP interface for managing Foxx services.
List installed services
list installed services
GET /_api/foxx
Fetches a list of services installed in the current database.
Returns a list of objects with the following attributes:
Additionally the object may contain the following attributes if they have been set on the manifest:
Query Parameters
Return Codes
Service description
service metadata
GET /_api/foxx/service
Fetches detailed information for the service at the given mount path.
Returns an object with the following attributes:
Additionally the object may contain the following attributes if they have been set on the manifest:
Query Parameters
Return Codes
200: Returned if the request was successful.
400: Returned if the mount path is unknown.
Install new service
install new service
POST /_api/foxx
Installs the given new service at the given mount path.
The request body can be any of the following formats:
A service definition is an object or form with the following properties or fields:
When using multipart data, the source field can also alternatively be a file field containing either a zip bundle or a standalone JavaScript file.
When using a standalone JavaScript file the given file will be executed to define our service's HTTP endpoints. It is the same which would be defined in the field main of the service manifest.
If source is a URL, the URL must be reachable from the server. If source is a file system path, the path will be resolved on the server. In either case the path or URL is expected to resolve to a zip bundle, JavaScript file or (in case of a file system path) directory.
Note that when using file system paths in a cluster with multiple coordinators the file system path must resolve to equivalent files on every coordinator.
Query Parameters
mount (required): Mount path the service should be installed at.
development (optional): Set to true to enable development mode.
setup (optional): Set to false to not run the service's setup script.
legacy (optional): Set to true to install the service in 2.8 legacy compatibility mode.
Return Codes
Uninstall service
uninstall service
DELETE /_api/foxx/service
Removes the service at the given mount path from the database and file system.
Returns an empty response on success.
Query Parameters
mount (required): Mount path of the installed service.
teardown (optional): Set to false to not run the service's teardown script.
Return Codes
Replace service
replace a service
PUT /_api/foxx/service
Removes the service at the given mount path from the database and file system. Then installs the given new service at the same mount path.
This is a slightly safer equivalent to performing an uninstall of the old service followed by installing the new service. The new service's main and script files (if any) will be checked for basic syntax errors before the old service is removed.
The request body can be any of the following formats:
A service definition is an object or form with the following properties or fields:
When using multipart data, the source field can also alternatively be a file field containing either a zip bundle or a standalone JavaScript file.
When using a standalone JavaScript file the given file will be executed to define our service's HTTP endpoints. It is the same which would be defined in the field main of the service manifest.
If source is a URL, the URL must be reachable from the server. If source is a file system path, the path will be resolved on the server. In either case the path or URL is expected to resolve to a zip bundle, JavaScript file or (in case of a file system path) directory.
Note that when using file system paths in a cluster with multiple coordinators the file system path must resolve to equivalent files on every coordinator.
Query Parameters
mount (required): Mount path of the installed service.
teardown (optional): Set to false to not run the old service's teardown script.
setup (optional): Set to false to not run the new service's setup script.
legacy (optional): Set to true to install the new service in 2.8 legacy compatibility mode.
force (optional): Set to true to force service install even if no service is installed under given mount.
Return Codes
Upgrade service
upgrade a service
PATCH /_api/foxx/service
Installs the given new service on top of the service currently installed at the given mount path. This is only recommended for switching between different versions of the same service.
Unlike replacing a service, upgrading a service retains the old service's configuration and dependencies (if any) and should therefore only be used to migrate an existing service to a newer or equivalent service.
The request body can be any of the following formats:
A service definition is an object or form with the following properties or fields:
When using multipart data, the source field can also alternatively be a file field containing either a zip bundle or a standalone JavaScript file.
When using a standalone JavaScript file the given file will be executed to define our service's HTTP endpoints. It is the same which would be defined in the field main of the service manifest.
If source is a URL, the URL must be reachable from the server. If source is a file system path, the path will be resolved on the server. In either case the path or URL is expected to resolve to a zip bundle, JavaScript file or (in case of a file system path) directory.
Note that when using file system paths in a cluster with multiple coordinators the file system path must resolve to equivalent files on every coordinator.
Query Parameters
mount (required): Mount path of the installed service.
teardown (optional): Set to true to run the old service's teardown script.
setup (optional): Set to false to not run the new service's setup script.
legacy (optional): Set to true to install the new service in 2.8 legacy compatibility mode.
Return Codes
Foxx Service configuration / dependencies
This is an introduction to ArangoDB's HTTP interface for managing Foxx services configuration and dependencies.
Get configuration options
get configuration options
GET /_api/foxx/configuration
Fetches the current configuration for the service at the given mount path.
Returns an object mapping the configuration option names to their definitions including a human-friendly title and the current value (if any).
Query Parameters
Return Codes
Update configuration options
update configuration options
PATCH /_api/foxx/configuration
Replaces the given service's configuration.
Returns an object mapping all configuration option names to their new values.
Request Body (required)
A JSON object mapping configuration option names to their new values. Any omitted options will be ignored.
Query Parameters
mount (required): Mount path of the installed service.
200: Returned if the request was sucessful.
Replace configuration options
replace configuration options
PUT /_api/foxx/configuration
Replaces the given service's configuration completely.
Returns an object mapping all configuration option names to their new values.
Request Body (required)
A JSON object mapping configuration option names to their new values. Any omitted options will be reset to their default values or marked as unconfigured.
Query Parameters
mount (required): Mount path of the installed service.
200: Returned if the request was sucessful.
Get dependency options
get dependency options
GET /_api/foxx/dependencies
Fetches the current dependencies for service at the given mount path.
Returns an object mapping the dependency names to their definitions including a human-friendly title and the current mount path (if any).
Query Parameters
Return Codes
Update dependencies options
update dependencies options
PATCH /_api/foxx/dependencies
Replaces the given service's dependencies.
Returns an object mapping all dependency names to their new mount paths.
Request Body (required)
A JSON object mapping dependency names to their new mount paths. Any omitted dependencies will be ignored.
Query Parameters
mount (required): Mount path of the installed service.
200: Returned if the request was sucessful.
Replace dependencies options
replace dependencies options
PUT /_api/foxx/dependencies
Replaces the given service's dependencies completely.
Returns an object mapping all dependency names to their new mount paths.
Request Body (required)
A JSON object mapping dependency names to their new mount paths. Any omitted dependencies will be disabled.
Query Parameters
mount (required): Mount path of the installed service.
200: Returned if the request was sucessful.
Foxx Service Miscellaneous
List service scripts
list service scripts
GET /_api/foxx/scripts
Fetches a list of the scripts defined by the service.
Returns an object mapping the raw script names to human-friendly names.
Query Parameters
Return Codes
Run service script
run service script
POST /_api/foxx/scripts/{name}
Request Body (optional)
An arbitrary JSON value that will be parsed and passed to the script as its first argument.
Path Parameters
Query Parameters
Runs the given script for the service at the given mount path.
Returns the exports of the script, if any.
Return Codes
Run service tests
run service tests
POST /_api/foxx/tests
Runs the tests for the service at the given mount path and returns the results.
Supported test reporters are:
The Accept request header can be used to further control the response format:
When using the stream reporter application/x-ldjson will result in the response body being formatted as a newline-delimited JSON stream.
When using the tap reporter text/plain or text/* will result in the response body being formatted as a plain text TAP report.
When using the xunit reporter application/xml or text/xml will result in the response body being formatted as XML instead of JSONML.
Otherwise the response body will be formatted as non-prettyprinted JSON.
Query Parameters
mount (required): Mount path of the installed service.
reporter (optional): Test reporter to use.
idiomatic (optional): Use the matching format for the reporter, regardless of the Accept header.
Return Codes
Enable development mode
enable development mode
POST /_api/foxx/development
Puts the service into development mode.
While the service is running in development mode the service will be reloaded from the filesystem and its setup script (if any) will be re-executed every time the service handles a request.
When running ArangoDB in a cluster with multiple coordinators note that changes to the filesystem on one coordinator will not be reflected across the other coordinators. This means you should treat your coordinators as inconsistent as long as any service is running in development mode.
Query Parameters
Return Codes
Disable development mode
disable development mode
DELETE /_api/foxx/development
Puts the service at the given mount path into production mode.
When running ArangoDB in a cluster with multiple coordinators this will replace the service on all other coordinators with the version on this coordinator.
Query Parameters
Return Codes
Service README
service README
GET /_api/foxx/readme
Fetches the service's README or README.md file's contents if any.
Query Parameters
Return Codes
200: Returned if the request was sucessful.
204: Returned if no README file was found.
Swagger description
swagger description
GET /_api/foxx/swagger
Fetches the Swagger API description for the service at the given mount path.
The response body will be an OpenAPI 2.0 compatible JSON description of the service API.
Query Parameters
Return Codes
Download service bundle
download service bundle
POST /_api/foxx/download
Downloads a zip bundle of the service directory.
When development mode is enabled, this always creates a new bundle.
Otherwise the bundle will represent the version of a service that is installed on that ArangoDB instance.
Query Parameters
Return Codes
200: Returned if the request was sucessful.
400: Returned if the mount path is unknown.
Commit local service state
commit local service state
POST /_api/foxx/commit
Commits the local service state of the coordinator to the database.
This can be used to resolve service conflicts between coordinators that can not be fixed automatically due to missing data.
Query Parameters
replace (optional): Overwrite existing service files in database even if they already exist.
204: Returned if the request was sucessful.
HTTP Interface for User Management
This is an introduction to ArangoDB's HTTP interface for managing users.
The interface provides a simple means to add, update, and remove users. All users managed through this interface will be stored in the system collection _users. You should never manipulate the _users collection directly.
This specialized interface intentionally does not provide all functionality that is available in the regular document REST API.
Please note that user operations are not included in ArangoDB's replication.
Create User
Create a new user.
POST /_api/user
A JSON object with these properties is required:
Create a new user. You need server access level Administrate in order to execute this REST call.
Return Codes
201: Returned if the user can be added by the server
400: If the JSON representation is malformed or mandatory data is missing from the request.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
409: Returned if a user with the same name already exists.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/user <<EOF
{
"user" : "admin@example",
"passwd" : "secure"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Set the database access level
Set the database access level.
PUT /_api/user/{user}/database/{dbname}
A JSON object with these properties is required:
Sets the database access levels for the database dbname of user user. You need the Administrate server access level in order to execute this REST call.
Path Parameters
user (required): The name of the user.
dbname (required): The name of the database.
Return Codes
200: Returned if the access level was changed successfully.
400: If the JSON representation is malformed or mandatory data is missing from the request.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp/database/_system <<EOF
{
"grant" : "rw"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Set the collection access level
Set the collection access level.
PUT /_api/user/{user}/database/{dbname}/{collection}
A JSON object with these properties is required:
Sets the collection access level for the collection in the database dbname for user user. You need the Administrate server access level in order to execute this REST call.
Path Parameters
user (required): The name of the user.
dbname (required): The name of the database.
collection (required): The name of the collection.
Return Codes
200: Returned if the access permissions were changed successfully.
400: If the JSON representation is malformed or mandatory data is missing from the request.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp/database/_system/reports <<EOF
{
"grant" : "rw"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Clear the database access level
Clear the database access level, revert back to the default access level
DELETE /_api/user/{user}/database/{dbname}
Path Parameters
user (required): The name of the user.
dbname (required): The name of the database.
Clears the database access level for the database dbname of user user. As consequence the default database access level is used. If there is no defined default database access level, it defaults to No access. You need permission to the _system database in order to execute this REST call.
Return Codes
202: Returned if the access permissions were changed successfully.
400: If the JSON representation is malformed or mandatory data is missing from the request.
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/user/admin@myapp/database/_system
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"error" : false,
"code" : 202
}
Clear the collection access level
Clear the collection access level, revert back to the default access level
DELETE /_api/user/{user}/database/{dbname}/{collection}
Path Parameters
user (required): The name of the user.
dbname (required): The name of the database.
collection (required): The name of the collection.
Clears the collection access level for the collection collection in the database dbname of user user. As consequence the default collection access level is used. If there is no defined default collection access level, it defaults to No access. You need permissions to the _system database in order to execute this REST call.
Return Codes
202: Returned if the access permissions were changed successfully.
400: If there was an error
Examples
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/user/admin@myapp/database/_system/reports
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"error" : false,
"code" : 202
}
List the accessible databases for a user
List the accessible databases for a user
GET /_api/user/{user}/database/
Path Parameters
Query Parameters
Fetch the list of databases available to the specified user. You need Administrate for the server access level in order to execute this REST call.
The call will return a JSON object with the per-database access privileges for the specified user. The result object will contain the databases names as object keys, and the associated privileges for the database as values.
In case you specified full, the result will contain the permissions for the databases as well as the permissions for the collections.
Return Codes
200: Returned if the list of available databases can be returned.
400: If the access privileges are not right etc.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
With the full response format:
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database?full=true
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Get the database access level
Get specific database access level
GET /_api/user/{user}/database/{database}
Path Parameters
user (required): The name of the user for which you want to query the databases.
database (required): The name of the database to query
Fetch the database access level for a specific database
Return Codes
200: Returned if the acccess level can be returned
400: If the access privileges are not right etc.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Get the specific collection access level
Get the collection access level
GET /_api/user/{user}/database/{database}/{collection}
Path Parameters
user (required): The name of the user for which you want to query the databases.
database (required): The name of the database to query
collection (required): The name of the collection
Returns the collection access level for a specific collection
Return Codes
200: Returned if the acccess level can be returned
400: If the access privileges are not right etc.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system/_users
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Replace User
Replace an existing user.
PUT /_api/user/{user}
Path Parameters
A JSON object with these properties is required:
Replaces the data of an existing user. The name of an existing user must be specified in user. You need server access level Administrate in order to execute this REST call. Additionally, a user can change his/her own data.
Return Codes
200: Is returned if the user data can be replaced by the server.
400: The JSON representation is malformed or mandatory data is missing from the request
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
404: The specified user does not exist
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp <<EOF
{
"passwd" : "secure"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Modify User
Modify attributes of an existing user
PATCH /_api/user/{user}
Path Parameters
A JSON object with these properties is required:
Partially updates the data of an existing user. The name of an existing user must be specified in user. You need server access level Administrate in order to execute this REST call. Additionally, a user can change his/her own data.
Return Codes
200: Is returned if the user data can be replaced by the server.
400: The JSON representation is malformed or mandatory data is missing from the request.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
404: The specified user does not exist
Examples
shell> curl -X PATCH --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp <<EOF
{
"passwd" : "secure"
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Remove User
delete a user permanently.
DELETE /_api/user/{user}
Path Parameters
Removes an existing user, identified by user. You need Administrate for the server access level in order to execute this REST call.
Return Codes
202: Is returned if the user was removed by the server
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
404: The specified user does not exist
Examples
shell> curl -X DELETE --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/user/userToDelete@myapp <<EOF
{
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
{
"error" : false,
"code" : 202
}
Fetch User
fetch the properties of a user.
GET /_api/user/{user}
Path Parameters
Fetches data about the specified user. You can fetch information about yourself or you need the Administrate server access level in order to execute this REST call.
Return Codes
200: The user was found.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
404: The user with the specified name does not exist.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/user/admin@myapp
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
List available Users
fetch the properties of a user.
GET /_api/user/
Fetches data about all users. You need the Administrate server access level in order to execute this REST call. Otherwise, you will only get information about yourself.
The call will return a JSON object with at least the following attributes on success:
Return Codes
200: The users that were found.
401: Returned if you have No access database access level to the _system database.
403: Returned if you have No access server access level.
Examples
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/user
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP tasks Interface
Following you have ArangoDB's HTTP Interface for Tasks.
There are also some examples provided for every API action.
Fetch all tasks or one task
Retrieves all currently active server tasks
GET /_api/tasks/
fetches all existing tasks on the server
HTTP 200 A json document with these Properties is returned:
The list of tasks
[
Response Body [
Examples
Fetching all tasks
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/tasks
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
[
{
"id" : "69",
"name" : "user-defined task",
"created" : 1534963527.1421885,
"type" : "periodic",
"period" : 1,
"offset" : 0.000001,
"command" : "(function (params) { (function () {\n require('@arangodb/foxx/queues/manager').manage();\n })(params) })(params);",
"database" : "_system"
}
]
Fetch one task with id
Retrieves one currently active server task
GET /_api/tasks/{id}
fetches one existing task on the server specified by id
HTTP 200 A json document with these Properties is returned:
The requested task
id: A string identifying the task
200: The requested task
Response Body
Examples
Fetching a single task by its id
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/tasks <<EOF
{"id":"testTask","command":"console.log('Hello from task!');","offset":10000}
EOF
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/tasks/testTask
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Trying to fetch a non-existing task
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/tasks/non-existing-task
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
creates a task
creates a new task
POST /_api/tasks
A JSON object with these properties is required:
creates a new task with a generated id
HTTP 200 A json document with these Properties is returned:
The task was registered
Return Codes
Response Body
id: A string identifying the task
400: If the post body is not accurate, a HTTP 400 is returned.
Examples
shell> curl -X POST --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/tasks/ <<EOF
{
"name" : "SampleTask",
"command" : "(function(params) { require('@arangodb').print(params); })(params)",
"params" : {
"foo" : "bar",
"bar" : "foo"
},
"period" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/tasks/105342
Show response body
creates a task with id
registers a new task with a pre-defined id; not compatible with load balancers
PUT /_api/tasks/{id}
A JSON object with these properties is required:
registers a new task with the specified id
Return Codes
Examples
shell> curl -X PUT --header 'accept: application/json' --data-binary @- --dump - http://localhost:8529/_api/tasks/sampleTask <<EOF
{
"id" : "SampleTask",
"name" : "SampleTask",
"command" : "(function(params) { require('@arangodb').print(params); })(params)",
"params" : {
"foo" : "bar",
"bar" : "foo"
},
"period" : 2
}
EOF
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
deletes the task with id
deletes one currently active server task
DELETE /_api/tasks/{id}
Deletes the task identified by id on the server.
HTTP 200 A json document with these Properties is returned:
If the task was deleted, HTTP 200 is returned.
HTTP 404 A json document with these Properties is returned:
If the task id is unknown, then an HTTP 404 is returned.
Return Codes
Response Body
error: false in this case
404: If the task id is unknown, then an HTTP 404 is returned.
Response Body
Examples
trying to delete non existing task
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/tasks/NoTaskWithThatName
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Remove existing Task
shell> curl -X DELETE --header 'accept: application/json' --dump - http://localhost:8529/_api/tasks/SampleTask
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
HTTP Interface for Cluster
This Chapter describes the REST API of the ArangoDB Cluster.
How to repair a cluster with broken distributeShardsLike collections is described in the Repairs chapter.
Return id of a server in a cluster
Get to know the internal id of the server
GET /_admin/server/id
Returns the id of a server in a cluster. The request will fail if the server is not running in cluster mode.
Return Codes
200: Is returned when the server is running in cluster mode.
500: Is returned when the server is not running in cluster mode.
Return the role of a server in a cluster
Return the role of a server in a cluster
GET /_admin/server/role
Returns the role of a server in a cluster. The role is returned in the role attribute of the result. Possible return values for role are:
HTTP 200 A json document with these Properties is returned:
Is returned in all cases.
Return Codes
Response Body
Queries statistics of DBserver
allows to query the statistics of a DBserver in the cluster
GET /_admin/clusterStatistics
Query Parameters
Queries the statistics of the given DBserver
Return Codes
200: is returned when everything went well.
400: the parameter DBserver was not given or is not the ID of a DBserver
403: server is not a coordinator.
Queries the health of cluster for monitoring
Returns the health of the cluster as assessed by the supervision (agency)
GET /_admin/cluster/health
Queries the health of the cluster for monitoring purposes. The response is a JSON object, containing the standard code , error , errorNum , and errorMessage fields as appropriate. The endpoint-specific fields are as follows:
Health : An object containing a descriptive sub-object for each node in the cluster. Each entry in Health will be keyed by the node ID and contain the the following attributes:
Additionally, if the node is a Coordinator or DBServer, it will also have the following attributes:
Return Codes
HTTP Interface for Agency feature
Configuration
At all times, i.e. regardless of the state of the agents and the current health of the RAFT consensus, one can invoke the configuration API:
curl http://$SERVER:$PORT/_api/agency/config
Here, and in all subsequent calls, we assume that $SERVER is replaced by the server name and $PORT is replaced by the port number. We use curl throughout for the examples, but any client library performing HTTP requests should do. The output might look somewhat like this
{
"term": 1,
"leaderId": "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",
"lastCommitted": 1,
"lastAcked": {
"ac129027-b440-4c4f-84e9-75c042942171": 0.21,
"c54dbb8a-723d-4c82-98de-8c841a14a112": 0.21,
"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98": 0
},
"configuration": {
"pool": {
"ac129027-b440-4c4f-84e9-75c042942171": "tcp://localhost:8531",
"c54dbb8a-723d-4c82-98de-8c841a14a112": "tcp://localhost:8530",
"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98": "tcp://localhost:8529"
},
"active": [
"ac129027-b440-4c4f-84e9-75c042942171",
"c54dbb8a-723d-4c82-98de-8c841a14a112",
"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98"
],
"id": "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",
"agency size": 3,
"pool size": 3,
"endpoint": "tcp://localhost:8529",
"min ping": 0.5,
"max ping": 2.5,
"supervision": false,
"supervision frequency": 5,
"compaction step size": 1000,
"supervision grace period": 120
}
}
This is the actual output of a healthy agency. The configuration of the agency is found in the configuration section as you might have guessed. It is populated by static information on the startup parameters like agency size , the once generated unique id etc. It holds information on the invariants of the RAFT algorithm and data compaction.
The remaining data reflect the variant entities in RAFT, as term and leaderId , also some debug information on how long the last leadership vote was received from any particular agency member. Low term numbers on a healthy network are an indication of good operation environemnt, while often increasing term numbers indicate, that the network environemnt and stability suggest to raise the RAFT parameters min ping and 'max ping' accordingly.
Key-Value store APIs
Generally, all document IO to and from the key-value store consists of JSON arrays. The outer Array is an envelope for multiple read or write transactions. The results are arrays are an envelope around the results corresponding to the order of the incoming transactions.
Consider the following write operation into a prestine agency:
curl -L http://$SERVER:$PORT/_api/agency/write -d '[[{"a":{"op":"set","new":{"b":{"c":[1,2,3]},"e":12}},"d":{"op":"set","new":false}}]]'
[{results:[1]}]
And the subsequent read operation
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/"]]'
[
{
"a": {
"b": {
"c": [1,2,3]
},
"e": 12
},
"d": false
}
]
In the first step we commited a single transaction that commits the JSON document inside the inner transaction array to the agency. The result is [1] , which is the replicated log index. Repeated invocation will yield growing log numbers 2, 3, 4, etc.
The read access is a complete access to the key-value store indicated by access to it's root element and returns the result as an array corresponding to the outermost array in the read transaction.
Let's dig in some deeper.
Read API
Let's start with the above initialized key-value store in the following. Let us visit the following read operations:
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b"]]'
[
{
"a": {
"b": {
"c": [1,2,3]
}
}
}
]
And
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/c"]]'
[
{
"a": {
"b": {
"c": [1,2,3]
}
}
}
]
Note that the above results are identical, meaning that results obtained from the agencyare always return with full path.
The second outer array brackets in read operations correspond to transactions, meaning that the result is guaranteed to have been acquired without a write transaction in between:
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/e"],["/d","/a/b"]]'
[
{
"a": {
"e": 12
}
},
{
"a": {
"b": {
"c": [1,2,3
]
}
},
"d": false
}
]
While the first transaction consists of a single read access to the key-value-store thus strechting the meaning of the word transaction, the second bracket actually hold two disjunct read accesses, which have been joined within zero-time, i.e. without a write access in between. That is to say that "/d" cannot have changed before "/a/b" had been acquired.
Let's try to fetch a value from the key-value-store, which does not exist:
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/d"]]'
[
{
"a": {
"b": {}
}
}
]
The result returns the cross section of the requested path and the key-value-store contents. "/a/b" exists, but there is no key "/a/b/d" . Thus the following transaction will yield:
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/d","/d"]]'
[
{
"a": {
"b": {}
},
"d": false
}
]
And this last read operation should return:
curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/c"],["/a/b/d"],["/a/x/y"],["/y"],["/a/b","/a/x"]]'
[
{"a":{"b":{"c":[1,2,3]}}},
{"a":{"b":{}}},
{"a":{}},
{},
{"a":{"b":{"c":[1,2,3]}}}
]
Write API
The write API must obviously be more versatile and needs a more detailed appreciation. Write operations are arrays of transactions with preconditions, i.e. [[U,P]] , where the system tries to apply all updates in the outer array in turn, rejecting those whose precondition is not fulfilled by the current state. It is guaranteed that the transactions in the write request are sequenced adjacent to each other (with no intervention from other write requests). Only the ones with failed preconditions are left out.
For P , the value of a key is an object with attributes "old" , "oldNot" , "oldEmpty" or "isArray" . With "old" one can specify a JSON value that has to be present for the condition to be fulfilled. With "oldNot" one may check for a value to not be equal to the test. While with "oldEmpty" , which can take a boolean value, one can specify that the key value needs to be not set true or set to an arbitrary value false . With "isArray" one can specify that the value must be an array. As a shortcut, "old" values of scalar or array type may be stored directly in the attribute. Examples:
{ "/a/b/c": { "old": [1,2,3] }}
is a precondition specifying that the previous value of the key "/a/b/c" key must be [1,2,3] . If and only if the value of the precondition is not an object we provide a notation, where the keywork old may be omitted. Thus, the above check may be shortcut as
{ "/a/b/c": [1, 2, 3] }
Consider the agency in initialized as above let's review the responses from the agency as follows:
curl -L http://$SERVER:$PORT/_api/agency/write -d '[[{"/a/b/c":{"op":"set","new":[1,2,3,4]},"/a/b/pi":{"op":"set","new":"some text"}},{"/a/b/c":{"old":[1,2,3]}}]]'
{
"results": [19]
}
The condition is fulfilled in the first run and would be wrong in a second returning
{
"results": [0]
}
0 as a result means that the precondition failed and no "real" log number was returned.
{ "/a/e": { "oldEmpty": false } }
means that the value of the key "a/e" must be set (to something, which can be null !). The condition
{ "/a/e": { "oldEmpty": true } }
means that the value of the key "a/e" must be unset. The condition
{ "/a/b/c": { "isArray": true } }
means that the value of the key "a/b/c" must be an array.
The update value U is an object, the attribute names are again key strings and the values are objects with optional attributes "new" , "op" and "ttl" . They have the following meaning:
"op" determines the operation, possible values are "set" (the default, if left out), "delete" , "increment" , "decrement" , "push" , "pop" , "shift" or "prepend"
"new" is the new value, can be omitted for the "delete" operation and for "increment" and "decrement" , where 1 is implied
"ttl" , if present, the new value that is being set gets a time to live in seconds, given by a numeric value in this attribute. It is only guaranteed that the actual removal of the value is done according to the system clock, so up to clock skew between servers. The removal is done by an additional write transaction that is automatically generated between the regular writes.
Additional rule: If none of "new" and "op" is set or the value is not even an object, then this is to be interpreted as if it were
{ "op": "set", "new": <VALUE> }
which amounts to setting the value with no precondition.
Examples:
{ "/a": { "op": "set", "new": 12 } }
sets the value of the key "/a" to 12 . The same could have been achieved by
{ "/a": 12 }
or by
{ "/a": { "new": 12} }
The operation
{ "/a/b": { "new": { "c": [1,2,3,4] } } }
sets the key "/a/b" to {"c": [1,2,3,4]} . Note that in the above example this is the same as setting the value of "/a/b/c" to [1,2,3,4] . The difference is, that if a/b had other sub attributes, then this transaction would delete all these other attributes and make "/a/b" equal to {"c": [1,2,3,4]} , whereas setting "/a/b/c" to [1,2,3,4] would retain all attributes other than "c" in "/a/b" .
Here are some more examples for full transactions (update/precondition pairs). The transaction
[{ "/a/b": { "new": { "c": [1,2,3,4] } } },
{ "/a/b": { "old": { "c": [1,2,3] } } }]
sets the key "/a/b" to {"c":[1,2,3,4]} if and only if it was {"c":[1,2,3]} before. Note that this fails if "/a/b" had other attributes than "c" . The transaction
[{ "/x": { "op": "delete" } },
{ "/x": { "old": false } }]
clears the value of the key "/x" if this old value was false.
[{ "/y": { "new": 13 },
{ "/y": { "oldEmpty": true } } }
sets the value of "/y" to 13 , but only, if it was unset before.
[{ "/z": { "op": "push", "new": "Max" } }]
appends the string "Max" to the end of the list stored in the "z" attribute, or creates an array ["Max"] in "z" if it was unset or not an array.
[{ "/u": { "op": "pop" } }]
removes the last entry of the array stored under "u" , if the value of "u" is not set or not an array.
HTTP-headers for write operations
X-ArangoDB-Agency-Mode with possible values "waitForCommitted" , "waitForSequenced" and "noWait" .
In the first case the write operation only returns when the commit to the replicated log has actually happened. In the second case the write operation returns when the write transactions that fulfilled their preconditions have been sequenced and thus it is known, which of the write transactions in the given array had fulfilled preconditions. In both cases the body is a JSON array containing the indexes of the transactions in the list that had fulfilled preconditions.
In the last case, "noWait" , the operation returns immediately, an empty body is returned. To get any information about the result of the operation one has to specify a tag (see below) and ask about the status later on.
X-ArangoDB-Agency-Tag with an arbitrary UTF-8 string value.
Observers
External services to the agency may announce themselves or others to be observers of arbitrary existing or future keys in the key-value-store. The agency must then inform the observing service of any changes to the subtree below the observed key. The notification is done by virtue of POST requests to a required valid URL.
In order to observe any future modification below say "/a/b/c" , a observer is announced through posting the below document to the agency’s write REST handler:
[{ "/a/b/c":
{ "op": "observe",
"url": "http://<host>:<port>/<path>"
}
}]
The observer is notified of any changes to that target until such time that it removes itself as an observer of that key through
[{ "/a/b/c":
{ "op": "unobserve",
"url": “http://<host>:<port>/<path>" } }]
Note that the last document removes all observations from entities below "/a/b/c" . In particular, issuing
[{ "/": "unobserve", "url": "http://<host>:<port>/<path>"}]
will result in the removal of all observations for URL "http://<host>:<port>/<path>" . The notifying POST requests are submitted immediately with any complete array of changes to the read db of the leader of create, modify and delete events accordingly; The body
{ "term": "5",
"index": 167,
"/": {
"/a/b/c" : { "op": "modify", "old": 1, "new": 2 } },
"/constants/euler" : {"op": "create", "new": 2.718281828459046 },
"/constants/pi": { "op": "delete" } } }
HTTP Interface for Miscellaneous functions
This is an overview of ArangoDB's HTTP interface for miscellaneous functions.
Return server version
returns the server version number
GET /_api/version
Query Parameters
Returns the server name and version number. The response is a JSON object with the following attributes:
HTTP 200 A json document with these Properties is returned:
is returned in all cases.
Return Codes
Response Body
Examples
Return the version information
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/version
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Return the version information with details
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/version?details=true
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Return server database engine type
returns the engine the type the server is running with
GET /_api/engine
Returns the storage engine the server is configured to use. The response is a JSON object with the following attributes:
HTTP 200 A json document with these Properties is returned:
is returned in all cases.
Return Codes
Response Body
Examples
Return the active storage engine
shell> curl --header 'accept: application/json' --dump - http://localhost:8529/_api/engine
HTTP/1.1 undefined
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
Show response body
Flushes the write-ahead log
Sync the WAL to disk.
PUT /_admin/wal/flush
Query Parameters
waitForSync (optional): Whether or not the operation should block until the not-yet synchronized data in the write-ahead log was synchronized to disk.
waitForCollector (optional): Whether or not the operation should block until the data in the flushed log has been collected by the write-ahead log garbage collector. Note that setting this option to true might block for a long time if there are long-running transactions and the write-ahead log garbage collector cannot finish garbage collection.
Flushes the write-ahead log. By flushing the currently active write-ahead logfile, the data in it can be transferred to collection journals and datafiles. This is useful to ensure that all data for a collection is present in the collection journals and datafiles, for example, when dumping the data of a collection.
Return Codes
200: Is returned if the operation succeeds.
405: is returned when an invalid HTTP method is used.
Retrieves the configuration of the write-ahead log
fetch the current configuration.
GET /_admin/wal/properties
Retrieves the configuration of the write-ahead log. The result is a JSON object with the following attributes:
Return Codes
200: Is returned if the operation succeeds.
405: is returned when an invalid HTTP method is used.
Configures the write-ahead log
configure parameters of the wal
PUT /_admin/wal/properties
Configures the behavior of the write-ahead log. The body of the request must be a JSON object with the following attributes:
Specifying any of the above attributes is optional. Not specified attributes will be ignored and the configuration for them will not be modified.
Return Codes
200: Is returned if the operation succeeds.
405: is returned when an invalid HTTP method is used.
Returns information about the currently running transactions
returns information about the currently running transactions
GET /_admin/wal/transactions
Returns information about the currently running transactions. The result is a JSON object with the following attributes:
Return Codes
200: Is returned if the operation succeeds.
405: is returned when an invalid HTTP method is used.
Return system time
Get the current time of the system
GET /_admin/time
The call returns an object with the attribute time. This contains the current system time as a Unix timestamp with microsecond precision.
HTTP 200 A json document with these Properties is returned:
Time was returned successfully.
Return Codes
Response Body
Return current request
Send back what was sent in, headers, post body etc.
POST /_admin/echo
Request Body (required)
The body can be any type and is simply forwarded.
The call returns an object with the servers request information
HTTP 200 A json document with these Properties is returned:
Echo was returned successfully.
Return Codes
Response Body
Return the required version of the database
returns the version of the database.
GET /_admin/database/target-version
Returns the database version that this server requires. The version is returned in the version attribute of the result.
Return Codes
Initiate shutdown sequence
initiates the shutdown sequence
DELETE /_admin/shutdown
This call initiates a clean shutdown sequence. Requires administrive privileges
Return Codes
Execute program
Execute a script on the server.
POST /_admin/execute
Request Body (required)
The body to be executed.
Executes the javascript code in the body on the server as the body of a function with no arguments. If you have a return statement then the return value you produce will be returned as content type application/json. If the parameter returnAsJSON is set to true, the result will be a JSON object describing the return value directly, otherwise a string produced by JSON.stringify will be returned.
Note that this API endpoint will only be present if the server was started with the option --javascript.allow-admin-execute true .
The default value of this option is false , which disables the execution of user-defined code and disables this API endpoint entirely. This is also the recommended setting for production.
200: is returned when everything went well, or if a timeout occurred. In the latter case a body of type application/json indicating the timeout is returned. depending on returnAsJSON this is a json object or a plain string.
403: is returned if ArangoDB is not running in cluster mode.
404: is returned if ArangoDB was not compiled for cluster operation.
Return status information
returns status information of the server.
GET /_admin/status
Returns status information about the server.
This is intended for manual use by the support and should never be used for monitoring or automatic tests. The results are subject to change without notice.
The call returns an object with the following attributes:
server: always arango.
license: either community or enterprise.
version: the server version as string.
mode : either server or console.
host: the hostname, see ServerState.
serverInfo.role: either SINGLE, COORDINATOR, PRIMARY, AGENT.
serverInfo.writeOpsEnabled: boolean, true if writes are enabled.
serverInfo.maintenance: boolean, true if maintenace mode is enabled.
agency.endpoints: a list of possible agency endpoints.
An agent, coordinator or primary will also have
A coordinator or primary will also have
serverInfo.state: SERVING
serverInfo.address: the address of the server, e. g. tcp://[::1]:8530.
serverInfo.serverId: the server ide, e. g. "CRDN-e427b441-5087-4a9a-9983-2fb1682f3e2a".
A coordinator will also have
coordinator.foxxmaster: the server id of the foxx master.
coordinator.isFoxxmaster: boolean, true if the server is the foxx master.
An agent will also have
agent.id: server id of this agent.
agent.leaderId: server id of the leader.
agent.leading: boolean, true if leading.
agent.endpoint: the endpoint of this agent.
agent.term: current term number.
Return Codes
Repair Jobs
distributeShardsLike
Before versions 3.2.12 and 3.3.4 there was a bug in the collection creation which could lead to a violation of the property that its shards were distributed on the DBServers exactly as the prototype collection from the distributeShardsLike setting.
Please read everything carefully before using this API!
There is a job that can restore this property safely. However, while the job is running,
Shutting down the coordinator which executes the job will abort it, but it can safely be restarted on another coordinator. However, there may still be a shard move ongoing even after the job stopped. If the job is started again before the move is finished, repairing the affected collection will fail, but the repair can be restarted safely.
If there is any affected collection which replicationFactor is equal to the total number of DBServers, the repairs might abort. In this case, it is necessary to reduce the replicationFactor by one (or add a DBServer). The job will not do that automatically.
Generally, the job will abort if any of its assumptions fail, at the start or during the repairs. It can be started again and will resume from the current state.
Testing with GET /_admin/repairs/distributeShardsLike
Using GET will not trigger any repairs, but only calculate and return the operations necessary to repair the cluster. This way, you can also check if there is something to repair.
$ wget -qSO - http://localhost:8529/_admin/repair/distributeShardsLike | jq .
HTTP/1.1 200 OK
X-Content-Type-Options: nosniff
Server: ArangoDB
Connection: Keep-Alive
Content-Type: application/json; charset=utf-8
Content-Length: 53
{
"error": false,
"code": 200,
"message": "Nothing to do."
}
In the example above, all collections with distributeShardsLike have their shards distributed correctly. The response if something is broken looks like this:
{
"error": false,
"code": 200,
"collections": {
"_system/someCollection": {
"PlannedOperations": [
{
"BeginRepairsOperation": {
"database": "_system",
"collection": "someCollection",
"distributeShardsLike": "aPrototypeCollection",
"renameDistributeShardsLike": true,
"replicationFactor": 4
}
},
{
"MoveShardOperation": {
"database": "_system",
"collection": "someCollection",
"shard": "s2000109",
"from": "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
"to": "PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
"isLeader": false
}
},
{
"MoveShardOperation": {
"database": "_system",
"collection": "someCollection",
"shard": "s2000109",
"from": "PRMR-ee3d7af6-1fbf-4ab7-bfd1-56d0a1c1c9b9",
"to": "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
"isLeader": true
}
},
{
"FixServerOrderOperation": {
"database": "_system",
"collection": "someCollection",
"distributeShardsLike": "aPrototypeCollection",
"shard": "s2000109",
"distributeShardsLikeShard": "s2000092",
"leader": "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
"followers": [
"PRMR-99c2ac17-f417-4710-82aa-8350417dd089",
"PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e",
"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a"
],
"distributeShardsLikeFollowers": [
"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
"PRMR-99c2ac17-f417-4710-82aa-8350417dd089",
"PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e"
]
}
},
{
"FinishRepairsOperation": {
"database": "_system",
"collection": "someCollection",
"distributeShardsLike": "aPrototypeCollection",
"shards": [
{
"shard": "s2000109",
"protoShard": "s2000092",
"dbServers": [
"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
"PRMR-99c2ac17-f417-4710-82aa-8350417dd089",
"PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e"
]
},
{
"shard": "s2000110",
"protoShard": "s2000093",
"dbServers": [
"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
"PRMR-ee3d7af6-1fbf-4ab7-bfd1-56d0a1c1c9b9",
"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
"PRMR-99c2ac17-f417-4710-82aa-8350417dd089"
]
},
[...]
]
}
}
],
"error": false
}
}
}
If something is to be repaired, the response will have the property collections with an entry <db>/<collection> for each collection which has to be repaired. Each collection also as a separate error property which will be true iff an error occurred for this collection (and false otherwise). If error is true , the properties errorNum and errorMessage will also be set, and in some cases also errorDetails with additional information on how to handle a specific error.
Repairing with POST /_admin/repairs/distributeShardsLike
As this job possibly has to move a lot of data around, it can take a while depending on the size of the affected collections. So this should not be called synchronously, but only via Async Results: i.e., set the header x-arango-async: store to put the job into background and get its results later. Otherwise the request will most probably result in a timeout and the response will be lost! The job will still continue unless the coordinator is stopped, but there is no way to find out if it is still running, or get success or error information afterwards.
Starting the job in background can be done like so:
$ wget --method=POST --header='x-arango-async: store' -qSO - http://localhost:8529/_admin/repair/distributeShardsLike
HTTP/1.1 202 Accepted
X-Content-Type-Options: nosniff
X-Arango-Async-Id: 152223973119118
Server: ArangoDB
Connection: Keep-Alive
Content-Type: text/plain; charset=utf-8
Content-Length: 0
This line is of notable importance:
X-Arango-Async-Id: 152223973119118
as it contains the job id which can be used to fetch the state and results of the job later. GET ting /_api/job/pending and /_api/job/done will list job ids of jobs that are pending or done, respectively.
This can also be done with the GET method for testing.
The job api must be used to fetch the state and results. It will return a 204 while the job is running. The actual response will be returned only once, after that the job is deleted and the api will return a 404 . It is therefore recommended to write the response directly to a file for later inspection. Fetching the result is done by calling /_api/job via PUT :
$ wget --method=PUT -qSO - http://localhost:8529/_api/job/152223973119118 | jq .
HTTP/1.1 200 OK
X-Content-Type-Options: nosniff
X-Arango-Async-Id: 152223973119118
Server: ArangoDB
Connection: Keep-Alive
Content-Type: application/json; charset=utf-8
Content-Length: 53
{
"error": false,
"code": 200,
"message": "Nothing to do."
}
The final response will look like the response of the GET call. If an error occurred the response should contain details on how to proceed. If in doubt, ask as on Slack: https://arangodb.com/community/
Table of Contents
To-Endpoint
Management
Notes on Databases
Creating
Getting Information
Modifying
Basics and Terminology
Working with Documents
Address and Etag
Working with Edges
Management
Vertices
Edges
Query Results
Accessing Cursors
JSON Documents
Headers & Values
Batch Requests
Exporting data
Working with Indexes
Hash
Skiplist
Persistent
Geo-Spatial
Fulltext
Creating
Deleting
Modifying
Retrieving
ArangoSearch Views
Replication Dump
Replication Logger
Replication Applier
Other Replication Commands
Write-Ahead Log
Management
Configuration
Miscellaneous
Server ID
Server Role
Cluster Statistics
Cluster Health
Agency