Table of Contents

Introduction
Getting Started
Installing
Linux
Mac OS X
Windows
Compiling
Authentication
Accessing the Web Interface
Coming from SQL
Highlights
Scalability
Architecture
Data models
Limitations
Data models & modeling
Concepts
Databases
Working with Databases
Notes about Databases
Collections
Collection M ethods
Database M ethods
Documents
Basics and Terminology
Collection M ethods
Database M ethods
Graphs, Vertices & Edges
Naming Conventions
Database Names
Collection Names
Document Keys
Attribute Names
Indexing
Index Basics
Which index to use when
Index Utilization
Working with Indexes
Hash Indexes
Skiplists

Persistent

1.1

1.2
1.21
1.21.1
1.2.1.2
1.2.1.3
1.2.1.4
1.2.2
1.2.3
1.24
1.3

1.4
141
1.4.2
1.4.3
1.5
151
1.5.2
1.5.2.1
1.5.2.2
1.5.3
1.5.3.1
1.53.2
1.5.4
1.5.4.1
1.5.4.2
1.5.4.3
1.5.5
1.5.6
1.5.6.1
1.5.6.2
1.5.6.3
1.5.6.4
1.6
1.6.1
1.6.2
1.6.3
1.6.4
1.6.4.1
1.6.4.2

1.6.4.3

Fulltext Indexes 1.6.4.4

Geo Indexes 1.6.4.5
Vertex Centric Indexes 1.6.4.6
Graphs 1.7
General Graphs 1.71
Graph M anagement 1.71.1
Graph Functions 1.7.1.2
SmartGraphs 1.7.2
SmartGraph M anagement 1.7.2.1
Traversals 1.7.3
Using Traversal Objects 1.7.3.1
Example Data 1.7.3.2
Working with Edges 1.7.4
Pregel 1.7.5
Foxx Microservices 1.8
At a glance 1.8.1
Getting started 1.8.2
Service manifest 1.8.3
Service context 1.8.4
Configuration 1.8.5
Dependencies 1.8.6
Routers 1.8.7
Endpoints 1.8.7.1
Middleware 1.8.7.2
Request 1.8.7.3
Response 1.8.7.4
Using GraphQL 1.8.8
Sessions middleware 1.8.9
Session storages 1.89.1
Collection storage 1.8.9.1.1

JWT storage 1.8.9.1.2

Session transports 1.8.9.2
Cookie transport 1.8.9.2.1

Header transport 1.8.9.2.2

Serving files 1.8.10
Writing tests 1.8.11
Cross Origin 1.8.12
Scripts and queued jobs 1.8.13
M igrating 2.x services 1.8.14
Migrating from pre-2.8 1.8.14.1
manifest.json 1.8.14.2
applicationContext 1.8.14.3
Repositories and M odels 1.8.14.4
Controllers 1.8.14.5

Request context 1.8.14.5.1

Error handling 1.8.14.5.2
Before/After/Around 1.8.14.5.3

Request object 1.8.14.5.4
Response object 1.8.14.5.5
Dependency Injection 1.8.14.5.6

Sessions 1.8.14.6
Auth and OAuth2 1.8.14.7
Foxx Queries 1.8.14.8
Legacy compatibility mode 1.8.15
User management 1.8.16
Related modules 1.8.17
Authentication 1.8.17.1
OAuth 1.0a 1.8.17.2
OAuth 2.0 1.8.17.3
Transactions 1.9
Transaction invocation 1.9.1
Passing parameters 1.9.2
Locking and isolation 1.9.3
Durability 194
Limitations 1.9.5
Deployment 1.10
Single instance 1.10.1
Cluster 1.10.2
Mesos, DC/OS 1.10.2.1
Generic & Docker 1.10.2.2
Advanced Topics 1.10.2.3
Standalone Agency 1.10.2.3.1

Local test setups 1.10.2.3.2
Processes 1.10.2.3.3

Docker 1.10.2.3.4

Multiple Datacenters 1.10.3
Administration 1.11
Web Interface 1.11.1
Dashboard 1.11.1.1
Cluster 1.11.1.2
Collections 1.11.1.3
Document 1.11.1.4
Queries 1.11.1.5
Graphs 1.11.1.6
Services 1.11.1.7
Users 1.11.1.8
Logs 1.11.1.9
ArangoDB Shell 1.11.2

Shell Output
Configuration

Details

Arangoimp
Arangodump
Arangorestore
Arangoexport

M anaging Users

In Arangosh

Server Configuration

Operating System Configuration

M anaging Endp oints

SSL Configuration

LDAP Options

Logging Options

General Options
Write-Ahead Log Options
Compaction Options
Cluster Options
RocksDB Engine Options
Hash Cache Options

Asynchronous Tasks

Durability
Encryption

Auditing

Configuration

Events

Replication

Asynchronous Replication
Components
Per-Database Setup
Server-Level Setup
Syncing Collections
Replication Limitations

Synchronous Replication
Imp lementation
Configuration

Satellite Collections

Sharding
Upgrading

Upgrading to 3.3
Upgrading to 3.2
Upgrading to 3.1
Upgrading to 3.0

1.11.21
1.11.2.2
1.11.2.3
1.11.3
1.11.4
1.11.5
1.11.6
1.11.7
1.11.7.1
1.11.8
1.11.8.1
1.11.8.2
1.11.8.3
1.11.84
1.11.8.,5
1.11.8.6
1.11.8.7
1.11.8.8
1.11.8.9
1.11.8.10
1.11.8.11
1.11.8.12
1.11.9
1.11.10
1.11.11
1.11.11.1
1.11.11.2
1.11.12
1.11.12.1
1.11.12.1.1
1.11.12.1.2
1.11.12.1.3
1.11.12.1.4
1.11.12.1.5
1.11.12.2
1.11.12.2.1
1.11.12.2.2
1.11.12.3
1.11.13
1.11.14
1.11.14.1
1.11.14.2
1.11.14.3

1.11.144

Upgrading to 2.8 1.11.14.5

Upgrading to 2.6 1.11.14.6
Upgrading to 2.5 1.11.14.7
Upgrading to 2.4 1.11.14.8
Upgrading to 2.3 1.11.14.9
Upgrading to 2.2 1.11.14.10
Troubleshooting 1.12
arangod 1.12.1
Emergency Console 1.12.2
Datafile Debugger 1.12.3
Arangobench 1.12.4
Architecture 1.13
Write-ahead log 1.13.1
Storage Engines 1.13.2
Release notes 1.14
Whats New in 3.3 1.14.1
Incompatible changes in 3.3 1.14.2
Whats New in 3.2 1.14.3
Known Issues in 3.2 1.14.4
Incompatible changes in 3.2 1.14.5
Whats New in 3.1 1.14.6
Incompatible changes in 3.1 1.14.7
Whats New in 3.0 1.14.8
Incompatible changes in 3.0 1.14.9
Whats New in 2.8 1.14.10
Incompatible changes in 2.8 1.14.11
Whats New in 2.7 1.14.12
Incompatible changes in 2.7 1.14.13
Whats New in 2.6 1.14.14
Incompatible changes in 2.6 1.14.15
Whats New in 2.5 1.14.16
Incompatible changes in 2.5 1.14.17
Whats New in 2.4 1.14.18
Incompatible changes in 2.4 1.14.19
Whats New in 2.3 1.14.20
Incompatible changes in 2.3 1.14.21
Whats New in 2.2 1.14.22
Whats New in 2.1 1.14.23
Appendix 1.15
References 1.15.1
db 1.15.1.1
collection 1.15.1.2
JavaScript M odules 1.15.2

@arangodb 1.15.2.1

console

crypto

fs

request

actions

queries

Write-ahead log

Task M anagement

Deprecated

Simple Queries
Sequential Access
Pagination
M odification Queries
Geo Queries
Fulltext Queries

Actions
Delivering HTM L Pages
Json Objects
M odifying

Error codes and meanings

Glossary

1.15.2.2
1.15.2.3
1.15.2.4
1.15.2.5
1.15.2.6
1.15.2.7
1.15.2.8
1.15.2.9
1.15.3
1.15.3.1
1.15.3.1.1
1.15.3.1.2
1.15.3.1.3
1.15.3.14
1.15.3.1.5
1.15.3.2
1.15.3.2.1
1.15.3.2.2
1.15.3.2.3
1.15.4
1.15.5

6

ArangoDB v3.3.5 Documentation

Welcome to the ArangoDB documentation!

New and eager to try out ArangoDB? Start right away with our beginner's guide: Getting S tarted

The documentation is organized in four handbooks:

e This manual describes ArangoDB and its features in detail for you as a user, developer and administrator.

e The AQL handbook explains ArangoDB's query language AQL.

e The HTTP handbook describes the internal API of ArangoDB that is used to communicate with clients. In general, the HTTP
handbook will be of interest to driver developers. If you use any of the existing drivers for the language of your choice, you can skip
this handbook.

e Our cookbook with recipes for specific problems and solutions.

Features are illustrated with interactive usage examples; you can cut'n'paste them into arangosh to try them out. The HTTP REST-API
for driver developers is demonstrated with cut'n'paste recipes intended to be used with the cURL. Drivers may provide their own
examp les based on these .js based examples to improve understandability for their respective users, i.e. for the java driver some of the

samp les are re-imp lemented.

Overview

ArangoDB is a native multi-model, open-source database with flexible data models for documents, graphs, and key-values. Build high
performance applications using a convenient SQL-like query language or JavaScript extensions. Use ACID transactions if you require

them. Scale horizontally and vertically with a few mouse clicks.
Key features include:

e installing ArangoDB on a cluster is as easy as installing an app on your mobile

e Flexible data modeling: model your data as combination of key-value pairs, documents or graphs - perfect for social relations

e Powerful query language (AQL) to retrieve and modify data

e Use ArangoDB as an application server and fuse your application and database together for maximal throughput

e Transactions: run queries on multiple documents or collections with optional transactional consistency and isolation

e Replication and Sharding: set up the database in a master-slave configuration or spread bigger datasets across multiple servers

e Configurable durability: let the application decide if it needs more durability or more performance

e No-nonsense storage: ArangoDB uses all of the power of modern storage hardware, like SSD and large caches

e JavaScript for all: no language zoo, you can use one language from y our browser to your back-end

e ArangoDB can be easily deployed as a fault-tolerant distributed state machine, which can serve as the animal brain of
distributed appliances

e It is open source (Apache License 2.0)

Community

If you have questions regarding ArangoDB, Foxx, drivers, or this documentation don't hesitate to contact us on:

e GitHub for issues and misbehavior or pull requests
e Google Groups for discussions about ArangoDB in general or to announce your new Foxx App
e StackOverflow for questions about AQL, usage scenarios etc.

e Slack, our community chat
When reporting issues, please describe:

e the environment you run ArangoDB in
e the ArangoDB version you use
e whether you're using Foxx

e the client you're using

http://curl.haxx.se
https://github.com/arangodb/arangodb-java-driver#learn-more
https://github.com/arangodb/arangodb/issues
https://www.arangodb.com/community/
https://groups.google.com/forum/?hl=de#!forum/arangodb
http://stackoverflow.com/questions/tagged/arangodb
http://slack.arangodb.com

e which parts of the documentation you're working with (link)
e what you expect to happen
e what is actually happening

We will respond as soon as possible.

Getting started

Overview

This beginner's guide will make you familiar with ArangoDB. We will cover how to

e install and run a local ArangoDB server

e use the web interface to interact with it

e store example data in the database

e query the database to retrieve the data again

e edit and remove existing data

Installation

Head to arangodb.com/download, select your operating system and download ArangoDB. You may also follow the instructions on how

to install with a package manager, if available.
If you installed a binary package under Linux, the server is automatically started.
If you installed ArangoDB using homebrew under MacOS X, start the server by running /usr/local/sbin/arangod .

If you installed ArangoDB under Windows as a service, the server is automatically started. Otherwise, run the arangod.exe located in

the installation folder's bin directory. You may have to run it as administrator to grant it write permissions to C:\Program Files .

For more in-depth information on how to install ArangoDB, as well as available startup parameters, installation in a cluster and so on, see

Installing.

ArangoDB offers two storage engines: MM Files and RocksDB. Choose the one which suits your needs best in the

installation process or on first startup.

Securing the installation

The default installation contains one database _system and a user named root.

Debian based packages and the Windows installer will ask for a password during the installation process. Red-Hat based packages will

set a random password. For all other installation packages you need to execute

shell> arango-secure-installation

This will ask for a root password and sets this password.

Web interface

The server itself (arangod) speaks HTTP / REST, but you can use the graphical web interface to keep it simple. There's also arangosh, a
synchronous shell for interaction with the server. If you're a developer, you might prefer the shell over the GUI. It does not provide

features like syntax highlighting however.

When you start using ArangoDB in your project, you will likely use an official or community-made driver written in the same language as
your project. Drivers implement a programming interface that should feel natural for that programming language, and do all the talking to
the server. Therefore, you can most certainly ignore the HTTP API unless you want to write a driver yourself or explicitly want to use

the raw interface.

To get familiar with the database system you can even put drivers aside and use the web interface (code name Aardvark) for basic
interaction. The web interface will become available shortly after you started arangod . You can access it in y our browser at

http://localhost:8529 - if not, please see Troubleshooting,

https://www.arangodb.com/download/
http://localhost:8529

Getting Started

By default, authentication is enabled. The default user is root . Depending on the installation method used, the installation process
either prompted for the root password or the default root password is empty (see above).

@® © @ /o ArangoDB Web Interface *®
- (&1 ID 127.0.0.1:8529/_db/_system/_admin/aardvark/index.html#login ‘ﬂr| 0]

ArangoDB

sername

password

Next you will be asked which database to use. Every server instance comes with a _system database. Select this database to continue.

® © ® /o ArangoDB Web Intertace x \
“— c 0N ID 127.0.0.1:8529/_db/_system/_admin/aardvark/index.html#login f.‘r| ®

ArangoDB

You should then be presented the dashboard with server statistics like this:

® ® = ArangoDB Web Interface X NN | Ke |
&« C | O 127.0.0.1:8529/_db/_system/_admin/aardvark/index.html#dashboard b d O]
<) ArangoDB DB: £ HEAUTH:
@& DASHBOARD Request Statistics =~ System Resources Replication
COLLECTIONS
sync async
CRERES 1 | I | 1.2 0.0
+300.0% +0.0%
GRAPHS
REQUEST TYPES
05
SERVICES
current 15-min-avg
USERS
o ' 6 0.0
6:40 16:45 16:50 16:55 +100.0% L0.0%
DATABASES
REQUESTS PER SECOND NUMBER OF CLIENT CONNECTIONS
LOGS
10000 |
SUPPORT : |
1k | | { + 5000 - 10000 |
¥ HEIPUS 2000 - 5000
512 | | | 1000 - 2000
250 - 1000 :
0 0-250 |
VERSION 16:40 16:45 16:50 16:55 P e Ta—T T
y % 2 TRANSFER SIZE PER SECOND TRANSFER SIZE PER SECOND (DISTRIBUTION])

For a more detailed description of the interface, see Web Interface.

Databases, collections and documents

Databases are sets of collections. Collections store records, which are referred to as documents. Collections are the equivalent of tables in
RDBMS, and documents can be thought of as rows in a table. The difference is that you don't define what columns (or rather attributes)
there will be in advance. Every document in any collection can have arbitrary attribute keys and values. Documents in a single collection
will likely have a similar structure in practice however, but the database system itself does not impose it and will operate stable and fast

no matter how your data looks like.
Read more in the data-model concepts chapter.

For now, you can stick with the default _system database and use the web interface to create collections and documents. Start by
clicking the COLLECTIONS menu entry, then the Add Collection tile. Give it a name, e.g. users, leave the other settings unchanged (we

want it to be a document collection) and Save it. A new tile labeled users should show up, which you can click to open.

There will be No documents yet. Click the green circle with the white plus on the right-hand side to create a first document in this
collection. A dialog will ask you for a _key . You can leave the field blank and click Create to let the database system assign an
automatically generated (unique) key. Note that the _key property is immutable, which means you can not change it once the document

is created. What you can use as document key is described in the naming conventions.

An automatically generated key could be "9883" (_key is always a string!), and the document _id would be "users/9883" in that
case. Aside from a few system attributes, there is nothing in this document yet. Let's add a custom attribute by clicking the icon to the
left of (empty object), then Append. Two input fields will become available, FIELD (attribute key) and VALUE (attribute value). Type
name as key and your name as value. Append another attribute, name it age and set it to your age. Click Save to persist the changes. If
you click on Collection: users at the top on the right-hand side of the ArangoDB logo, the document browser will show the documents in

the users collection and you will see the document you just created in the list.

Querying the database

Time to retrieve our document using AQL, ArangoDB's query language. We can directly look up the document we created via the _id ,
but there are also other options. Click the QUERIES menu entry to bring up the query editor and type the following (adjust the

document ID to match your document):

RETURN DOCUMENT("users/9883")

Then click Execute to run the query. The result appears below the query editor:

[
{
" _key": "9883",
"_id": "users/9883",
"_rev'": "9883",
"age": 0
"name": "John Smith"
}
]

As you can see, the entire document including the system attributes is returned. DOCUM ENT() is a function to retrieve a single
document or a list of documents of which you know the _key s or _id s. We return the result of the function call as our query result,
which is our document inside of the result array (we could have returned more than one result with a different query, but even for a single

document as result, we still get an array at the top level).

This type of query is called data access query. No data is created, changed or deleted. There is another type of query called data

modification query. Let's insert a second document using a modification query:

INSERT { name: "Katie Foster", age: } INTO users

The query is pretty self-explanatory: the inserT keyword tells ArangoDB that we want to insert something. What to insert, a
document with two attributes in this case, follows next. The curly braces { } signify documents, or objects. When talking about

records in a collection, we call them documents. Encoded as JSON, we call them objects. Objects can also be nested. Here's an example:

{
"name": {
"first": "Katie",
"last": "Foster"
}
}

INTO is a mandatory part of every INSERT operation and is followed by the collection name that we want to store the document in.

Note that there are no quote marks around the collection name.

If you run above query, there will be an empty array as result because we did not specify what to return usinga RETURN keyword. It is
optional in modification queries, but mandatory in data access queries. Even with RETURN , the return value can still be an empty array,
e.g. if the specified document was not found. Despite the empty result, the above query still created a new user document. You can verify

this with the document browser.

Let's add another user, but return the newly created document this time:

INSERT { name: "James Hendrix'", age: } INTO users
RETURN NEW

NEw is a pseudo-variable, which refers to the document created by 1INSerRT . The result of the query will look like this:

[
{
"_key": "10074",
" id": "users/10074",
"_rev": "10074",
"age": 0
"name": "James Hendrix"
}

Now that we have 3 users in our collection, how to retrieve them all with a single query? The following does not work:

RETURN DOCUMENT("users/9883")
RETURN DOCUMENT("users/9915")
RETURN DOCUMENT("users/10074")

There can only be a single RETURN statement here and a syntax error is raised if you try to execute it. The pocuMENT() function offers a

secondary signature to specify multiple document handles, so we could do:

RETURN DOCUMENT(["users/9883", "users/9915", "users/10074"])

An array with the _id s of all 3 documents is passed to the function. Arrays are denoted by square brackets [] and their elements

are separated by commas.

But what if we add more users? We would have to change the query to retrieve the newly added users as well. All we want to say with

our query is: "For every user in the collection users, return the user document". We can formulate this witha For loop:

FOR user IN users
RETURN user

It expresses to iterate over every document in users and to use user as variable name, which we can use to refer to the current user
document. It could also be called doc , u or ahuacatlguacamole , this is up to you. It is advisable to use a short and self-descriptive

name however.

The loop body tells the system to return the value of the variable user , which is a single user document. All user documents are

returned this way:

[
{
"_key": "9915",
"_id": "users/9915",
"_rev": "9915",
"age": 7
"name": "Katie Foster"
}
{
"_key": "9883",
" id": "users/9883",
"_rev": "9883",
"age": 7
"name": "John Smith"
}
{
" _key": "10074",
" id": "users/10074",
"_rev": "10074",
"age": D
"name": "James Hendrix"
}
]

You may have noticed that the order of the returned documents is not necessarily the same as they were inserted. There is no order

guaranteed unless you explicitly sort them. We can add a sorT operation very easily:

FOR user IN users
SORT user._key
RETURN user

This does still not return the desired result: James (10074) is returned before John (9883) and Katie (9915). The reason is that the _key
attribute is a string in ArangoDB, and not a number. The individual characters of the strings are compared. 1 is lower than 9 and the
result is therefore "correct”. If we wanted to use the numerical value of the _key attributes instead, we could convert the string to a
number and use it for sorting. There are some implications however. We are better off sorting something else. How about the age, in

descending order?

FOR user IN users
SORT user.age DESC
RETURN user

The users will be returned in the following order: James (69), John (32), Katie (27). Instead of pesc for descending order, Asc can be

used for ascending order. Asc is the default though and can be omitted.

‘We might want to limit the result set to a subset of users, based on the age attribute for example. Let's return users older than 30 only:

FOR user IN users
FILTER user.age >
SORT user.age
RETURN user

This will return John and James (in this order). Katie's age attribute does not fulfill the criterion (greater than 30), she is only 27 and

therefore not part of the result set. We can make her age to return her user document again, using a modification query:

UPDATE "9915" WITH { age: } IN users
RETURN NEW

upDATE allows to partially edit an existing document. There is also RePLACE , which would remove all attributes (except for _key and
_id , which remain the same) and only add the specified ones. upDATE on the other hand only replaces the specified attributes and

keeps everything else as-is.

The uprpaTE keyword is followed by the document key (or a document / object with a _key attribute) to identify what to modify. The
attributes to update are written as object after the witH keyword. In denotes in which collection to perform this operation in, just
like 1nTO (both keywords are actually interchangable here). The full document with the changes applied is returned if we use the New

pseudo-variable:

[

{
"_key": "9915",
" _id": "users/9915",
"_rev": "12864",
"age": 7
"name": "Katie Foster"

}

If we used REPLACE instead, the name attribute would be gone. With uppATE , the attribute is kept (the same would apply to additional

attributes if we had them).

Let us run our FILTER query again, but only return the user names this time:

FOR user IN users
FILTER user.age >
SORT user.age
RETURN user.name

This will return the names of all 3 users:

"John Smith",
"Katie Foster",
"James Hendrix"

It is called a projection if only a subset of attributes is returned. Another kind of projection is to change the structure of the results:

FOR user IN users
RETURN { userName: user.name, age: user.age }

The query defines the output format for every user document. The user name is returned as userName instead of name , the age keeps

the attribute key in this example:

[
{
"userName": "James Hendrix",
"age":
+
{
"userName": "John Smith",
"age":
H
{
"userName": "Katie Foster",
"age":
}
]

It is also possible to compute new values:

FOR user IN users
RETURN CONCAT(user.name, "'s age is ", user.age)

CONCAT() is a function that can join elements together to a string. We use it here to return a statement for every user. As you can see, the

result set does not always have to be an array of objects:

[
"James Hendrix's age is 69",
"John Smith's age is 32",
"Katie Foster's age is 40"

]

Now let's do something crazy: for every document in the users collection, iterate over all user documents again and return user pairs, e.g.
John and Katie. We can use a loop inside a loop for this to get the cross product (every possible combination of all user records, 3 * 3 =

9). We don't want pairings like John + John however, so let's eliminate them with a filter condition:

FOR userl IN users
FOR user2 IN users
FILTER userl != user2
RETURN [userl.name, user2.name]

We get 6 pairings. Pairs like James + John and John + James are basically redundant, but fair enough:

"James Hendrix", "John Smith"],
"James Hendrix", "Katie Foster"],
"John Smith", "James Hendrix"],
"John Smith", "Katie Foster"],
"Katie Foster", "James Hendrix"],
"Katie Foster", "John Smith"]

N B B W W}

We could calculate the sum of both ages and compute something new this way:

FOR userl IN users
FOR user2 IN users
FILTER userl != user2
RETURN {
pair: [userl.name, user2.name],
sumOfAges: userl.age + user2.age

We introduce a new attribute sumofages and add up both ages for the value:

"pair": ["James Hendrix", "John Smith"],

"sumOfAges":

H

{
"pair": ["James Hendrix", "Katie Foster"],
"sumOfAges":

}

{
"pair": ["John Smith", "James Hendrix"],
"'sumOfAges":

}

{
"pair": ["John Smith", "Katie Foster"],
"'sumOfAges":

}

{
"pair": ["Katie Foster", "James Hendrix"],
"'sumOfAges":

}

{
"pair": ["Katie Foster", "John Smith"],
""'sumOfAges":

}

If we wanted to post-filter on the new attribute to only return pairs with a sum less than 100, we should define a variable to temp orarily

store the sum, so that we can use it ina FILTER statement as well as in the RETURN statement:

FOR userl IN users
FOR user2 IN users

FILTER userl != user2

LET sumOfAges = userl.age + user2.age

FILTER sumOfAges <

RETURN {
pair: [userl.name, user2.name],
sumOfAges: sumOfAges

The LET keyword is followed by the designated variable name (sumofAges), then there's a = symbol and the value or an expression
to define what value the variable is supposed to have. We re-use our expression to calculate the sum here. We then have another FILTER
to skip the unwanted pairings and make use of the variable we declared before. We return a projection with an array of the user names and

the calculated age, for which we use the variable again:

[
{
"pair": ["John Smith", "Katie Foster"],
"'sumOfAges" :
}
{
"pair": ["Katie Foster", "John Smith"],
"sumOfAges":
}
]

Pro tip: when defining objects, if the desired attribute key and the variable to use for the attribute value are the same, you can use a

shorthand notation: { sumofAges } instead of { sumOfAges: sumOfAges }

Finally, let's delete one of the user documents:

REMOVE "9883" IN users

It deletes the user John (_key: "9883"). We could also remove documents in a loop (same goes for INSERT , UPDATE and REPLACE):

FOR user IN users
FILTER user.age >=
REMOVE user IN users

The query deletes all users whose age is greater than or equal to 30.

How to continue

There is a lot more to discover in AQL and much more functionality that ArangoDB offers. Continue reading the other chapters and

experiment with a test database to foster y our knowledge.
If you want to write more AQL queries right now, have a look here:

e Data Queries: data access and modification queries
e High-level operations: detailed descriptions of ForR , FILTER and more operations not shown in this introduction

e Functions: areference of all provided functions

ArangoDB programs

The ArangoDB package comes with the following programs:

e arangod : The ArangoDB database daemon. This server program is intended to run as a daemon process and to serve the various

clients connection to the server via TCP / HTTP.

e arangosh : The ArangoDB shell. A client that implements a read-eval-print loop (REPL) and provides functions to access and

administrate the ArangoDB server.
e arangoimp : A bulk importer for the ArangoDB server. It supports JSON and CSV.
e arangodump : A tool to create backups of an ArangoDB database in JSON format.
e arangorestore : A tool to load data of a backup back into an ArangoDB database.
® arango-dfdb : A datafile debugger for ArangoDB. It is primarily intended to be used during development of ArangoDB.

e arangobench : A benchmark and test tool. It can be used for performance and server function testing.

Installing

First of all, download and install the corresponding RPM or Debian package or use homebrew on MacOS X. You can find packages for
various operation systems at our install section, including installers for Windows.

How to do that in detail is described in the subchapters of this section.

On how to set up a cluster, checkout the Deployment chapter.

https://www.arangodb.com/download

Linux

e Visit the official ArangoDB install page and download the correct package for your Linux distribution. You can find binary packages
for the most common distributions there.

e Follow the instructions to use your favorite package manager for the major distributions. After setting up the ArangoDB repository
you can easily install ArangoDB using yum, aptitude, urpmi or zypper.

e Debian based packages will ask for a password during installation. For an unattended installation for Debian, see below. Red-Hat
based packages will set a random password during installation. For other distributions or to change the password, run arango-
secure-installation to set aroot password.

e Alternatively, see Compiling if you want to build ArangoDB yourself.

e Start up the database server.

Normally, this is done by executing the following command:
unix> /etc/init.d/arangod start
It will start the server, and do that as well at system boot time.

To stop the server you can use the following command:

unix> /etc/init.d/arangod stop

The exact commands depend on your Linux distribution. You may require root privileges to execute these commands.

Linux Mint

Please use the corresponding Ubuntu or Debian packages.

Unattended Installation

Debian based package will ask for a password during installation. For unattended installation, you can set the password using the debconf

helpers.

echo arangodb3 arangodb3/password password NEWPASSWORD | debconf-set-selections
echo arangodb3 arangodb3/password_again password NEWPASSWORD | debconf-set-selections

The commands should be executed prior to the installation.

Red-Hat based packages will set a random password during installation. If you want to force a password, execute

ARANGODB_DEFAULT_ROOT_PASSWORD=NEWPASSWORD arango-secure-installation

The command should be executed after the installation.

Non-Standard Installation

If you compiled ArangoDB from source and did not use any installation package — or using non-default locations and/or multiple
ArangoDB instances on the same host — you may want to start the server process manually. You can do so by invoking the arangod

binary from the command line as shown below:

unix> /usr/local/sbin/arangod /tmp/vocbase

20ZZ-XX-YYT12:37:08Z [8145] INFO using built-in JavaScript startup files
20ZZ-XX-YYT12:37:08Z [8145] INFO ArangoDB (version 1.x.y) is ready for business
20ZZ-XX-YYT12:37:08Z [8145] INFO Have Fun!

https://www.arangodb.com/install
http://www.microhowto.info/howto/perform_an_unattended_installation_of_a_debian_package.html

To stop the database server gracefully, you can either press CTRL-C or by send the SIGINT signal to the server process. On many

systems this can be achieved with the following command:

unix> kill -2 “pidof arangod®

Once you started the server, there should be a running instance of arangod - the ArangoDB database server.

unix> ps auxw | fgrep arangod
arangodb 14536 0.1 0.6 5307264 23464 s002 S 1:21pm 0:00.18 /usr/local/sbin/arangod

If there is no such process, check the log file /var/log/arangodb/arangod.log for errors. If you see a log message like

2012-12-03T11:35:29Z [12882] ERROR Database directory version (1) is lower than server version (1.2).

2012-12-03T11:35:29Z [12882] ERROR It seems like you have upgraded the ArangoDB binary. If this is what you wanted to do, pleas
e restart with the --database.auto-upgrade option to upgrade the data in the database directory.

2012-12-03T11:35:29Z [12882] FATAL Database version check failed. Please start the server with the --database.auto-upgrade opti
on

make sure to start the server once with the --database.auto-upgrade option.

Note that you may have to enable logging first. If you start the server in a shell, you should see errors logged there as well.

Mac OS X

The preferred method for installing ArangoDB under Mac OS X is homebrew. However, in case you are not using homebrew, we provide

a command-line app or graphical app which contains all the executables.

Homebrew

If you are using homebrew, then you can install the latest released stable version of ArangoDB using brew as follows:

brew install arangodb

This will install the current stable version of ArangoDB and all dependencies within your Homebrew tree. Note that the server will be

installed as:

/usr/local/sbin/arangod
You can start the server by running the command /usr/local/sbin/arangod & .
Configuration file is located at

/usr/local/etc/arangodb3/arangod.conf

The ArangoDB shell will be installed as:

/usr/local/bin/arangosh

You can uninstall ArangoDB using;

brew uninstall arangodb

However, in case you started ArangoDB using the launchctl, you need to unload it before uninstalling the server:

launchctl unload ~/Library/LaunchAgents/homebrew.mxcl.arangodb.plist

Then remove the LaunchAgent:

rm ~/Library/LaunchAgents/homebrew.mxcl.arangodb.plist

Note: If the latest ArangoDB Version is not shown in homebrew, you also need to update homebrew:

brew update

Known issues

e Performance - the LLVM delivered as of Mac OS X El Capitan builds slow binaries. Use GCC instead, until this issue has been fixed
by Apple.

e the Commandline argument parsing doesn't accept blanks in filenames; the CLI version below does.

e if you need to change server endpoint while starting homebrew version, you can edit arangod.conf file and uncomment line with

endpoint needed, e.g:

[server]
endpoint = tcp://0.0.0.0:8529

http://brew.sh/

Graphical App

In case you are not using homebrew, we also provide a graphical app. You can download it from here.

Choose Mac OS X. Download and install the application ArangoDB in your application folder.

Command line App

In case you are not using homebrew, we also provide a command-line app. You can download it from here.
Choose Mac OS X. Download and install the application ArangoDB-CLI in your application folder.

Starting the application will start the server and open a terminal window showing you the log-file.

ArangoDB server has been started

The database directory is located at
'/Applications/ArangoDB-CLI.app/Contents/Mac0S/opt/arangodb/var/lib/arangodb’

The log file is located at
'/Applications/ArangoDB-CLI.app/Contents/Mac0S/opt/arangodb/var/log/arangodb/arangod.log’

You can access the server using a browser at 'http://127.0.0.1:8529/'
or start the ArangoDB shell

'/Applications/ArangoDB-CLI.app/Contents/Mac0S/arangosh'

Switching to log-file now, killing this windows will NOT stop the server.
2013-10-27T19:42:04Z [23840] INFO ArangoDB (version 1.4.devel [darwin]) is ready for business. Have fun!

Note that it is possible to install both, the homebrew version and the command-line app. You should, however, edit the configuration files

of one version and change the port used.

https://www.arangodb.com/download
https://www.arangodb.com/download

Windows

The default installation directory is C:\Program Files\ArangoDB-3.x.x. During the installation process you may change this. In the
following description we will assume that ArangoDB has been installed in the location <ROOTDIR>.

You have to be careful when choosing an installation directory. You need either write permission to this directory or you need to modify
the configuration file for the server process. In the latter case the database directory and the Foxx directory have to be writable by the

user.

Single- and Multiuser Installation

There are two main modes for the installer of ArangoDB. The installer lets you select:

e multi user installation (default; admin privileges required) Will install ArangoDB as service.

e single user installation Allow to install Arangodb as normal user. Requires manual starting of the database server.

CheckBoxes

The checkboxes allow you to chose weather you want to:

e chose custom install paths

e do an automatic up grade

e keep an backup of your data
e add executables to path

e create a desktop icon

or not.

Custom Install Paths

This checkbox controls if you will be able to override the default paths for the installation in subsequent steps.
The default installation paths are:
Multi User Default:

e Installation: C:\Program Files\ArangoDB-3.x.x
e DataBase: C:\ProgramData\ArangoDB
o Foxx Service: C:\ProgramData\ArangoDB-apps

Single User Default:

e Installation: C:\Users\\\AppData\Local\ArangoDB-3.x.x
e DataBase: C:\Users\\\AppData\Local\ArangoDB
e Foxx Service: C:\Users\\\AppData\Local\ArangoDB-apps

We are not using the roaming part of the user's profile, because doing so avoids the data being synced to the windows domain controller.

Automatic Upgrade

If this checkbox is selected the installer will attempt to perform an automatic update. For more information please see Up grading from

Previous Version.

Keep Backup

Select this to create a backup of your database directory during automatic up grade. The backup will be created next to your current

database directory suffixed by a time stamp.

Add to Path

Select this to add the binary directory to your system's path (multi user installation) or user's path (single user installation).

Desktop Icon

Select if you want the installer to create Desktop Icons that let you:

e access the web inteface
e start the commandline client (arangosh)

e start the database server (single user installation only)

Upgrading from Previous Version

If you are upgrading ArangoDB from an earlier version you need to copy your old database directory to the new default paths.
Upgrading will keep your old data, password and choice of storage engine as it is. Switching to the RocksDB storage engine requires a

export and reimport of your data.

Starting
If you installed ArangoDB for multiple users (as a service) it is automatically started. Otherwise you need to use the link that was
created on you Desktop if you chose to let the installer create desktop icons or

the executable arangod.exe located in <ROOTDIR>\bin. This will use the configuration file arangod.conf located in
<ROOTDIR>\etc\arangodb, which you can adjust to your needs and use the data directory <ROOTDIR>\var\lib\arangodb. This is the

place where all your data (databases and collections) will be stored by default.

Please check the output of the arangod.exe executable before going on. If the server started successfully, you should see a line Arangops

is ready for business. Have fun! at the end of its output.

We now wish to check that the installation is working correctly and to do this we will be using the administration web interface. Execute

arangod.exe if you have not already done so, then open up your web browser and point it to the page:

http://127.0.0.1:8529/

Advanced Starting

If you want to provide our own start scripts, you can set the environment variable ARANGODB_CONFIG_PATH. This variable should

point to a directory containing the configuration files.

Using the Client

To connect to an already running ArangoDB server instance, there is a shell arangosh.exe located in <ROOTDIR>\bin. This starts a shell

which can be used — amongst other things — to administer and query a local or remote ArangoDB server.

Note that arangosh.exe does NOT start a separate server, it only starts the shell. To use it you must have a server running somewhere,

e.g. by using the arangod.exe executable.

arangosh.exe uses configuration from the file arangosh.conflocated in <ROOTDIR> \etc\arangodb\. Please adjust this to y our needs if

you want to use different connection settings etc.

Uninstalling

To uninstall the Arango server application you can use the windows control panel (as you would normally uninstall an application). Note
however, that any data files created by the Arango server will remain as well as the <ROOTDIR> directory. To complete the

uninstallation process, remove the data files and the <ROOTDIR> directory manually.

Limitations for Cygwin

Please note some important limitations when running ArangoDB under Cy gwin: Starting ArangoDB can be started from out of a Cygwin
terminal, but pressing CTRL-C will forcefully kill the server process without giving it a chance to handle the kill signal. In this case, a
regular server shutdown is not possible, which may leave a file LOCK around in the server's data directory. This file needs to be removed
manually to make ArangoDB start again. Additionally, as ArangoDB does not have a chance to handle the kill signal, the server cannot
forcefully flush any data to disk on shutdown, leading to potential data loss. When starting ArangoDB from a Cy gwin terminal it might
also happen that no errors are printed in the terminal output. Starting ArangoDB from an M S-DOS command prompt does not imp ose

these limitations and is thus the preferred method.

Please note that ArangoDB uses UTF-8 as its internal encoding and that the system console must support a UTF-8 codepage (65001)

and font. It may be necessary to manually switch the console font to a font that supports UTF-8.

Compiling ArangoDB from scratch

The following sections describe how to compile and build the ArangoDB from scratch. ArangoDB will compile on most Linux and Mac
OS X systems. We assume that you use the GNU C/C++ compiler or clang/clang++ to compile the source. ArangoDB has been tested
with these compilers, but should be able to compile with any Posix-compliant, C++11-enabled compiler. Please let us know whether you

successfully compiled it with another C/C++ compiler.

By default, cloning the github repository will checkout devel. This version contains the development version of the ArangoDB. Use this

branch if you want to make changes to the ArangoDB source.
On Windows you first need to allow and enable symlinks for your user.

Please checkout the cookbook on how to compile ArangoDB.

https://github.com/git-for-windows/git/wiki/Symbolic-Links#allowing-non-administrators-to-create-symbolic-links

L3 L3
Authentication
ArangoDB allows to restrict access to databases to certain users. All users of the system database are considered administrators. During
installation a default user root is created, which has access to all databases.
You should create a database for your application together with a user that has access rights to this database. See M anaging Users.

Use the arangosh to create a new database and user.

arangosh> db._createDatabase("example");

arangosh> var users = require("@arangodb/users");
arangosh> users.save('"root@example", "password");
arangosh> users.grantDatabase("root@example", "example");

You can now connect to the new database using the user root@example.

shell> arangosh --server.username "root@example" --server.database example

Accessing the Web Interface

Accessing the Web Interface

ArangoDB comes with a built-in web interface for administration. The web interface can be accessed via the URL:

http://127.0.0.1:8529

If everything works as expected, you should see the login view:

©® © ® /o ArangoDB Web Interface x AT
“— = [D 127.0.0.1:8529/_db/_system/_admin/aardvark/index. htmi#login 1?r| ® :

ArangoDB

sername

4 password

For more information on the ArangoDB web interface, see Web Interface

28

Coming from SQL

If you worked with a relational database management system (RDBM S) such as My SQL, MariaDB or PostgreSQL, you will be familiar
with its query language, a dialect of SQL (Structured Query Language).

ArangoDB's query language is called AQL. There are some similarities between both languages despite the different data models of the
database systems. The most notable difference is probably the concept of loops in AQL, which makes it feel more like a programming

language. It suits the schema-less model more natural and makes the query language very powerful while remaining easy to read and write.

To get started with AQL, have a look at our detailed comparison of SQL and AQL. It will also help you to translate SQL queries to AQL
when migrating to ArangoDB.

How do browse vectors translate into document queries?

In traditional SQL you may either fetch all columns of a table row by row, using SELECT * FROM table , or select a subset of the columns.

The list of table columns to fetch is commonly called column list or browse vector:

SELECT columnA, columnB, columnZ FROM table

Since documents aren't two-dimensional, and neither do you want to be limited to returning two-dimensional lists, the requirements for a
query language are higher. AQL is thus a little bit more complex than plain SQL at first, but offers much more flexibility in the long run. It

lets you handle arbitrarily structured documents in convenient ways, mostly leaned on the syntax used in JavaScript.

Composing the documents to be returned

The AQL RETURN statement returns one item per document it is handed. You can return the whole document, or just parts of it. Given
that oneDocument is a document (retrieved like LET oneDocument = DOCUMENT ("myusers/3456789") for instance), it can be returned as-is
like this:

RETURN oneDocument

"_id": "myusers/3456789",
"_key": "3456789"
"_rev'": "14253647",
"firstName": "John",
"lastName": "Doe",
"address": {
"city": "Gotham",
"street": "Road To Nowhere 1"
iy
"hobbies": [
{ name: "swimming", howFavorite: T
{ name: "biking", howFavorite: T
{ name: "programming", howFavorite: }

Return the hobbies sub-structure only:

RETURN oneDocument.hobbies

{ name: "swimming", howFavorite: 3,
{ name: "biking", howFavorite: i
{ name: "programming", howFavorite: 3

https://arangodb.com/why-arangodb/sql-aql-comparison/

Return the hobbies and the address:

RETURN {
hobbies: oneDocument.hobbies,
address: oneDocument.address

}
[
{
hobbies: [
{ name: "swimming", howFavorite: 10 },
{ name: "biking", howFavorite: 6 },
{ name: "programming", howFavorite: 4 }
1,
address: {
"city": "Gotham",
"street": "Road To Nowhere 1"
}
}
]

Return the first hobby only:

RETURN oneDocument .hobbies[0].name

""'swimming"

Return a list of all hobby strings:

RETURN { hobbies: oneDocument.hobbies[*].name }

{ hobbies: ["swimming", "biking", "porgramming"] }

More complex array and object manipulations can be done using AQL functions and op erators.

Highlights

Version 3.3

Enterprise Edition

e Datacenter to Datacenter Replication: Replicate the entire structure and content of an ArangoDB cluster asynchronously to
another cluster in a different datacenter with ArangoSync. M ulti-datacenter support means you can fallback to a replica of your

cluster in case of a disaster in one datacenter.

e Encrypted Backups: Arangodump can create backups encrypted with a secret key using AES256 block cipher.

All Editions

e Server-level Replication: In addition to per-database replication, there is now an additional globalapplier . Start the global

replication on the slave once and all current and future databases will be replicated from the master to the slave automatically.

e Asynchronous Failover: Make a single server instance resilient with a second server instance, one as master and the other as

asynchronously replicating slave, with automatic failover to the slave if the master goes down.

Also see What's New in 3.3.

Version 3.2
e RocksDB Storage Engine: You can now use as much data in ArangoDB as you can fit on your disk. Plus, you can enjoy
performance boosts on writes by having only document-level locks

e Pregel: We implemented distributed graph processing with Pregel to discover hidden patterns, identify communities and perform in-

depth analytics of large graph data sets.

e Fault-Tolerant Foxx: The Foxx management internals have been rewritten from the ground up to make sure multi-coordinator
cluster setups always keep their services in sync and new coordinators are fully initialized even when all existing coordinators are

unavailable.

e Enterprise: Working with some of our largest customers, we’ve added further security and scalability features to ArangoDB

Enterprise like LDAP integration, Encryption at Rest, and the brand new Satellite Collections.

Also see What's New in 3.2.

Version 3.1

e SmartGraphs: Scale with graphs to a cluster and stay performant. With SmartGraphs you can use the "smartness" of your

application layer to shard your graph efficiently to y our machines and let traversals run locally.
e Encryption Control: Choose your level of SSL encryption
e Auditing: Keep a detailed log of all the important things that happened in ArangoDB.

Also see What's New in 3.1.

Version 3.0

e self-organizing cluster with synchronous replication, master/master setup, shared nothing architecture, cluster management

agency.

e Deeply integrated, native AQL graph traversal

e VelocyPack as new internal binary storage format as well as for intermediate AQL values.
e Persistent indexes via RocksDB suitable for sorting and range queries.

e Foxx 3.0: overhauled JS framework for data-centric microservices

e Significantly improved Web Interface

Also see What's New in 3.0.

https://github.com/arangodb/velocypack

Scalability

ArangoDB is a distributed database supporting multiple data models, and can thus be scaled horizontally, that is, by using many servers,
typically based on commodity hardware. This approach not only delivers performance as well as capacity improvements, but also
achieves resilience by means of replication and automatic fail-over. Furthermore, one can build systems that scale their capacity
dynamically up and down automatically according to demand.

One can also scale ArangoDB vertically, that is, by using ever larger servers. There is no built in limitation in ArangoDB, for example, the
server will automatically use more threads if more CPUs are present.

However, scaling vertically has the disadvantage that the costs grow faster than linear with the size of the server, and none of the
resilience and dy namical capabilities can be achieved in this way.

In this chapter we explain the distributed architecture of ArangoDB and discuss its scalability features and limitations:

e ArangoDB's distributed architecture
e Different data models and scalability

e Limitations

Architecture

The cluster architecture of ArangoDB is a CP master/master model with no single point of failure. With "CP" we mean that in the
presence of a network partition, the database prefers internal consistency over availability. With "master/master" we mean that clients
can send their requests to an arbitrary node, and experience the same view on the database regardless. "No single point of failure" means

that the cluster can continue to serve requests, even if one machine fails completely.

In this way, ArangoDB has been designed as a distributed multi-model database. This section gives a short outline on the cluster

architecture and how the above features and capabilities are achieved.

Structure of an ArangoDB cluster

An ArangoDB cluster consists of a number of ArangoDB instances which talk to each other over the network. They play different roles,
which will be explained in detail below. The current configuration of the cluster is held in the "Agency", which is a highly-available

resilient key/value store based on an odd number of ArangoDB instances running Raft Consensus Protocol.

For the various instances in an ArangoDB cluster there are 4 distinct roles: Agents, Coordinators, Primary and Secondary DBservers. In
the following sections we will shed light on each of them. Note that the tasks for all roles run the same binary from the same Docker

image.

Agents

One or multiple Agents form the Agency in an ArangoDB cluster. The Agency is the central place to store the configuration in a cluster.
It performs leader elections and provides other synchronization services for the whole cluster. Without the Agency none of the other

components can operate.

While generally invisible to the outside it is the heart of the cluster. As such, fault tolerance is of course a must have for the Agency. To
achieve that the Agents are using the Raft Consensus Algorithm. The algorithm formally guarantees conflict free configuration

management within the ArangoDB cluster.

At its core the Agency manages a big configuration tree. It supports transactional read and write operations on this tree, and other servers

can subscribe to HTTP callbacks for all changes to the tree.

Coordinators

Coordinators should be accessible from the outside. These are the ones the clients talk to. They will coordinate cluster tasks like
executing queries and running Foxx services. They know where the data is stored and will optimize where to run user supplied queries or

parts thereof. Coordinators are stateless and can thus easily be shut down and restarted as needed.

Primary DBservers

Primary DBservers are the ones where the data is actually hosted. They host shards of data and using synchronous replication a primary

may either be leader or follower for a shard.

They should not be accessed from the outside but indirectly through the coordinators. They may also execute queries in part or as a

whole when asked by a coordinator.

Secondaries

Secondary DBservers are asynchronous replicas of primaries. If one is using only synchronous replication, one does not need secondaries
at all. For each primary, there can be one or more secondaries. Since the replication works asynchronously (eventual consistency), the
replication does not impede the performance of the primaries. On the other hand, their replica of the data can be slightly out of date. The

secondaries are perfectly suitable for backups as they don't interfere with the normal cluster operation.

Cluster ID

Every non-Agency ArangoDB instance in a cluster is assigned a unique ID during its startup. Using its ID a node is identifiable

throughout the cluster. All cluster operations will communicate via this ID.

https://raft.github.io/
https://raft.github.io/

Sharding

Using the roles outlined above an ArangoDB cluster is able to distribute data in so called shards across multiple primaries. From the
outside this process is fully transparent and as such we achieve the goals of what other systems call "master-master replication". In an
ArangoDB cluster you talk to any coordinator and whenever you read or write data it will automatically figure out where the data is

stored (read) or to be stored (write). The information about the shards is shared across the coordinators using the Agency.

Also see Sharding in the Administration chapter.

Many sensible configurations
This architecture is very flexible and thus allows many configurations, which are suitable for different usage scenarios:

1. The default configuration is to run exactly one coordinator and one primary DBserver on each machine. This achieves the classical
master/master setup, since there is a perfect symmetry between the different nodes, clients can equally well talk to any one of the
coordinators and all expose the same view to the data store.

2. One can deploy more coordinators than DBservers. This is a sensible approach if one needs a lot of CPU power for the Foxx
services, because they run on the coordinators.

3. One can deploy more DBservers than coordinators if more data capacity is needed and the query performance is the lesser
bottleneck

4. One can deploy a coordinator on each machine where an application server (e.g. a node.js server) runs, and the Agents and
DBservers on a separate set of machines elsewhere. This avoids a network hop between the application server and the database and

thus decreases latency. Essentially, this moves some of the database distribution logic to the machine where the client runs.

These shall suffice for now. The important piece of information here is that the coordinator layer can be scaled and deployed

independently from the DBserver layer.

Replication

ArangoDB offers two ways of data replication within a cluster, synchronous and asynchronous. In this section we explain some details

and highlight the advantages and disadvantages respectively.

Synchronous replication with automatic fail-over

Synchronous replication works on a per-shard basis. One configures for each collection, how many copies of each shard are kept in the
cluster. At any given time, one of the copies is declared to be the "leader" and all other replicas are "followers". Write operations for this
shard are always sent to the DBserver which happens to hold the leader copy, which in turn replicates the changes to all followers before
the operation is considered to be done and reported back to the coordinator. Read operations are all served by the server holding the

leader copy, this allows to provide snapshot semantics for complex transactions.

If a DBserver fails that holds a follower copy of a shard, then the leader can no longer synchronize its changes to that follower. After a
short timeout (3 seconds), the leader gives up on the follower, declares it to be out of sync, and continues service without the follower.
When the server with the follower copy comes back, it automatically resynchronizes its data with the leader and synchronous replication

is restored.

If a DBserver fails that holds a leader copy of a shard, then the leader can no longer serve any requests. It will no longer send a heartbeat
to the Agency. Therefore, a supervision process running in the Raft leader of the Agency, can take the necessary action (after 15 seconds
of missing heartbeats), namely to promote one of the servers that hold in-sync replicas of the shard to leader for that shard. This involves
a reconfiguration in the Agency and leads to the fact that coordinators now contact a different DBserver for requests to this shard. Service
resumes. The other surviving replicas automatically resynchronize their data with the new leader. When the DBserver with the original

leader copy comes back, it notices that it now holds a follower replica, resynchronizes its data with the new leader and order is restored.

All shard data synchronizations are done in an incremental way, such that resynchronizations are quick. This technology allows to move
shards (follower and leader ones) between DBservers without service interruptions. Therefore, an ArangoDB cluster can move all the
data on a specific DBserver to other DBservers and then shut down that server in a controlled way. This allows to scale down an
ArangoDB cluster without service interruption, loss of fault tolerance or data loss. Furthermore, one can re-balance the distribution of the

shards, either manually or automatically.

All these operations can be triggered viaa REST/JSON API or via the graphical web UI. All fail-over operations are completely handled
within the ArangoDB cluster.

Obviously, synchronous replication involves a certain increased latency for write operations, simply because there is one more network
hop within the cluster for every request. Therefore the user can set the replication factor to 1, which means that only one copy of each
shard is kept, thereby switching off synchronous replication. This is a suitable setting for less important or easily recoverable data for

which low latency write operations matter.

Asynchronous replication with automatic fail-over

Asynchronous replication works differently, in that it is organized using primary and secondary DBservers. Each secondary server
replicates all the data held on a primary by polling in an asynchronous way. This process has very little impact on the performance of the
primary. The disadvantage is that there is a delay between the confirmation of a write operation that is sent to the client and the actual

replication of the data. If the master server fails during this delay, then committed and confirmed data can be lost.

Nevertheless, we also offer automatic fail-over with this setup. Contrary to the synchronous case, here the fail-over management is done
from outside the ArangoDB cluster. In a future version we might move this management into the supervision process in the Agency, but

as of now, the management is done via the M esos framework scheduler for ArangoDB (see below).

The granularity of the replication is a whole ArangoDB instance with all data that resides on that instance, which means that you need
twice as many instances as without asynchronous replication. Synchronous replication is more flexible in that respect, you can have

smaller and larger instances, and if one fails, the data can be rebalanced across the remaining ones.

Microservices and zero administation

The design and capabilities of ArangoDB are geared towards usage in modern microservice architectures of applications. With the Foxx

services it is very easy to deploy a data centric microservice within an ArangoDB cluster.

In addition, one can deploy multiple instances of ArangoDB within the same project. One part of the project might need a scalable
document store, another might need a graph database, and yet another might need the full power of a multi-model database actually
mixing the various data models. There are enormous efficiency benefits to be reaped by being able to use a single technology for various

roles in a project.

To simplify life of the devops in such a scenario we try as much as possible to use a zero administration approach for ArangoDB. A
running ArangoDB cluster is resilient against failures and essentially repairs itself in case of temporary failures. See the next section for

further capabilities in this direction.

Apache Mesos integration

For the distributed setup, we use the Apache Mesos infrastructure by default. ArangoDB is a fully certified package for DC/OS and can
thus be deployed essentially with a few mouse clicks or a single command, once you have an existing DC/OS cluster. But even on a plain

Apache Mesos cluster one can deploy ArangoDB via M arathon with a single API call and some JSON configuration.

The advantage of this approach is that we can not only implement the initial deployment, but also the later management of automatic
replacement of failed instances and the scaling of the ArangoDB cluster (triggered manually or even automatically). Since all

manipulations are either via the graphical web UI or via JSON/REST calls, one can even imp lement auto-scaling very easily.

A DC/OS cluster is a very natural environment to deploy microservice architectures, since it is so convenient to deploy various services,
including p otentially multiple ArangoDB cluster instances within the same DC/OS cluster. The built-in service discovery makes it
extremely simple to connect the various microservices and M esos automatically takes care of the distribution and deployment of the

various tasks.
See the Deployment chapter and its subsections for instructions.

It is possible to deploy an ArangoDB cluster by simply launching a bunch of Docker containers with the right command line options to
link them up, or even on a single machine starting multiple ArangoDB processes. In that case, synchronous replication will work within
the deployed ArangoDB cluster, and automatic fail-over in the sense that the duties of a failed server will automatically be assigned to
another, surviving one. However, since the ArangoDB cluster cannot within itself launch additional instances, replacement of failed nodes
is not automatic and scaling up and down has to be managed manually. This is why we do not recommend this setup for production

deployment.

Different data models and scalability

In this section we discuss scalability in the context of the different data models supported by ArangoDB.

Key/value pairs

The key/value store data model is the easiest to scale. In ArangoDB, this is implemented in the sense that a document collection always
has a primary key _key attribute and in the absence of further secondary indexes the document collection behaves like a simple

key /value store.

The only operations that are possible in this context are single key lookups and key/value pair insertions and updates. If _key is the
only sharding attribute then the sharding is done with respect to the primary key and all these operations scale linearly. If the sharding is

done using different shard keys, then a lookup of a single key involves asking all shards and thus does not scale linearly.

Document store

For the document store case even in the presence of secondary indexes essentially the same arguments apply, since an index for a sharded
collection is simply the same as a local index for each shard. Therefore, single document operations still scale linearly with the size of the

cluster, unless a special sharding configuration makes lookups or write op erations more exp ensive.

For a deeper analysis of this topic see this blog post in which good linear scalability of ArangoDB for single document operations is

demonstrated.

Complex queries and joins

The AQL query language allows complex queries, using multiple collections, secondary indexes as well as joins. In particular with the
latter, scaling can be a challenge, since if the data to be joined resides on different machines, a lot of communication has to happen. The
AQL query execution engine organizes a data pipeline across the cluster to put together the results in the most efficient way. The query
optimizer is aware of the cluster structure and knows what data is where and how it is indexed. Therefore, it can arrive at an informed

decision about what parts of the query ought to run where in the cluster.

Nevertheless, for certain complicated joins, there are limits as to what can be achieved.

Graph database

Graph databases are particularly good at queries on graphs that involve paths in the graph of an a priori unknown length. For example,
finding the shortest path between two vertices in a graph, or finding all paths that match a certain pattern starting at a given vertex are

such examples.

However, if the vertices and edges along the occurring paths are distributed across the cluster, then a lot of communication is necessary
between nodes, and performance suffers. To achieve good performance at scale, it is therefore necessary to get the distribution of the
graph data across the shards in the cluster right. M ost of the time, the application developers and users of ArangoDB know best, how
their graphs ara structured. Therefore, ArangoDB allows users to specify, according to which attributes the graph data is sharded. A

useful first step is usually to make sure that the edges originating at a vertex reside on the same cluster node as the vertex.

https://mesosphere.com/blog/2015/11/30/arangodb-benchmark-dcos/

Limitations

ArangoDB has no built-in limitations to horizontal scalability. The central resilient Agency will easily sustain hundreds of DBservers and
coordinators, and the usual database operations work completely decentrally and do not require assistance of the Agency.

Likewise, the supervision process in the Agency can easily deal with lots of servers, since all its activities are not performance critical.

Obviously, an ArangoDB cluster is limited by the available resources of CPU, memory, disk and network bandwidth and latency.

Data models & modeling

This chapter introduces ArangoDB's core concepts and covers

e its data model (or data models respectively),
o the terminology used throughout the database system and in this documentation, as well as

e aspects to consider when modeling y our data to strike a balance between natural data structures and great performance

You will also find usage examples on how to interact with the database system using arangosh, e.g. how to create and drop databases /
collections, or how to save, update, replace and remove documents. You can do all this using the web interface as well and may therefore

skip these sections as beginner.

Concepts

Database Interaction

ArangoDB is a database that serves documents to clients. These documents are transported using JSON via a TCP connection, using the
HTTP protocol. A REST API is provided to interact with the database system.

The web interface that comes with ArangoDB, called Aardvark, provides graphical user interface that is easy to use. An interactive shell,
called Arangosh, is also shipped. In addition, there are so called drivers that make it easy to use the database system in various
environments and programming languages. All these tools use the HTTP interface of the server and remove the necessity to roll own low-

level code for basic communication in most cases.

Data model

The documents you can store in ArangoDB closely follow the JSON format, although they are stored in a binary format called
VelocyPack. A document contains zero or more attributes, each of these attributes having a value. A value can either be an atomic type, i.
e. number, string, boolean or null, or a compound type, i.e. an array or embedded document / object. Arrays and sub-objects can contain

all of these types, which means that arbitrarily nested data structures can be represented in a single document.

Documents are grouped into collections. A collection contains zero or more documents. If you are familiar with relational database
management systems (RDBM S) then it is safe to compare collections to tables and documents to rows. The difference is that in a
traditional RDBM S, you have to define columns before you can store records in a table. Such definitions are also known as schemas.
ArangoDB is schema-less, which means that there is no need to define what attributes a document can have. Every single document can
have a completely different structure and still be stored together with other documents in a single collection. In practice, there will be
common denominators among the documents in a collection, but the database system itself doesn't force you to limit yourself to a certain

data structure.

There are two types of collections: document collection (also refered to as vertex collections in the context of graphs) as well as edge
collections. Edge collections store documents as well, but they include two special attributes, _from and _to, which are used to create
relations between documents. Usually, two documents (vertices) stored in document collections are linked by a document (edge) stored
in an edge collection. This is ArangoDB's graph data model. It follows the mathematical concept of a directed, labeled graph, except that

edges don't just have labels, but are full-blown documents.

Collections exist inside of databases. There can be one or many databases. Different databases are usually used for multi tenant setups,
as the data inside them (collections, documents etc.) is isolated from one another. The default database _system is special, because it

cannot be removed. Database users are managed in this database, and their credentials are valid for all databases of a server instance.

Data Retrieval

Queries are used to filter documents based on certain criteria, to compute new data, as well as to manipulate or delete existing
documents. Queries can be as simple as a "query by example" or as complex as "joins" using many collections or traversing graph

structures. They are written in the ArangoDB Query Language (AQL).
Cursors are used to iterate over the result of queries, so that you get easily processable batches instead of one big hunk.

Indexes are used to speed up searches. There are various types of indexes, such as hash indexes and geo indexes.

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Representational_state_transfer
https://arangodb.com/downloads/arangodb-drivers/
https://github.com/arangodb/velocypack#readme

Handling Databases

This is an introduction to managing databases in ArangoDB from within JavaScript.

When you have an established connection to ArangoDB, the current database can be changed explicitly using the db._useDatabase()
method. This will switch to the specified database (provided it exists and the user can connect to it). From this point on, any following

action in the same shell or connection will use the specified database, unless otherwise specified.

Note: If the database is changed, client drivers need to store the current database name on their side, too. This is because connections in

ArangoDB do not contain any state information. All state information is contained in the HTTP request/response data.

To connect to a specific database after arangosh has started use the command described above. It is also possible to specify a database

name when invoking arangosh. For this purpose, use the command-line parameter --server.database, e.g.

> arangosh --server.database test

Please note that commands, actions, scripts or AQL queries should never access multiple databases, even if they exist. The only intended
and supported way in ArangoDB is to use one database at a time for a command, an action, a script or a query. Operations started in one

database must not switch the database later and continue operating in another.

Working with Databases

Database Methods

The following methods are available to manage databases via JavaScript. Please note that several of these methods can be used from the

_system database only.

Name

return the database name db._name()
Returns the name of the current database as a string.

Examples

arangosh> ("@arangodb").db._name();
_system

ID

return the database id db._id()
Returns the id of the current database as a string.

Examples

arangosh> ("@arangodb").db._id();

Path

return the path to database files db._path()

Returns the filesystem path of the current database as a string,

Examples
arangosh> ("@arangodb").db._path();
/tmp/arangosh_kC4NKW/tmp /data/databases/database
isSystem

return the database type db._isSystem()

Returns whether the currently used database is the _system database. The system database has some special privileges and properties, for
example, database management operations such as create or drop can only be executed from within this database. Additionally, the

_system database itself cannot be dropped.

Use Database
change the current database db._useDatabase(name)
Changes the current database to the database specified by name. Note that the database specified by name must already exist.

Changing the database might be disallowed in some contexts, for example server-side actions (including Foxx).

When performing this command from arangosh, the current credentials (username and password) will be re-used. These credentials might
not be valid to connect to the database specified by name. Additionally, the database only be accessed from certain endpoints only. In
this case, switching the database might not work, and the connection / session should be closed and restarted with different username and

password credentials and/or endpoint data.

List Databases

return the list of all existing databases db._databases()

Returns the list of all databases. This method can only be used from within the _system database.

Create Database

create a new database db._createDatabase(name, options, users)
Creates a new database with the name specified by name. There are restrictions for database names (see DatabaseNames).

Note that even if the database is created successfully, there will be no change into the current database to the new database. Changing the

current database must explicitly be requested by using the db._useDatabase method.
The options attribute currently has no meaning and is reserved for future use.

The optional users attribute can be used to create initial users for the new database. If specified, it must be a list of user objects. Each
user object can contain the following attributes:

e username: the user name as a string. This attribute is mandatory.

e passwd: the user password as a string, If not specified, then it defaults to an empty string.

e active: a boolean flag indicating whether the user account should be active or not. The default value is true.

e extra: an optional JSON object with extra user information. The data contained in extra will be stored for the user but not be
interpreted further by ArangoDB.

If no initial users are specified, a default user root will be created with an empty string password. This ensures that the new database will

be accessible via HTTP after it is created.

You can create users in a database if no initial user is specified. Switch into the new database (username and password must be identical

to the current session) and add or modify users with the following commands.

("@arangodb/users').save(username, password,)
("@arangodb/users").update(username, password,)
("@arangodb/users').remove(username);

Alternatively, you can specify user data directly. For example:

db._createDatabase('"newDB", {}, [{ username: "newUser", passwd: "123456", active: 1)
Those methods can only be used from within the _system database.

Drop Database

drop an existing database db._dropbatabase(name)

Drops the database specified by name. The database specified by name must exist.

Note: Dropping databases is only possible from within the _system database. The _system database itself cannot be dropped.

Databases are dropped asynchronously, and will be physically removed if all clients have disconnected and references have been garbage-
collected.

Engine statistics

retrieve statistics related to the storage engine-rocksdb db._enginestats()

Returns some statistics related to storage engine activity, including figures about data size, cache usage, etc.

Note: Currently this only produces useful output for the RocksDB engine.

Notes about Databases

Please keep in mind that each database contains its own system collections, which need to be set up when a database is created. This will

make the creation of a database take a while.

Replication is configured on a per-database level, meaning that any replication logging or applying for a new database must be configured

explicitly after a new database has been created.

Foxx applications are also available only in the context of the database they have been installed in. A new database will only provide
access to the system applications shipped with ArangoDB (that is the web interface at the moment) and no other Foxx applications until

they are explicitly installed for the particular database.

JavaScript Interface to Collections

This is an introduction to ArangoDB's interface for collections and how to handle collections from the JavaScript shell arangosh. For

other languages see the corresponding language API.

The most important call is the call to create a new collection.

Address of a Collection

All collections in ArangoDB have a unique identifier and a unique name. ArangoDB internally uses the collection's unique identifier to
look up collections. This identifier, however, is managed by ArangoDB and the user has no control over it. In order to allow users to use
their own names, each collection also has a unique name which is specified by the user. To access a collection from the user perspective,

the collection name should be used, i.e.:

Collection
db._collection(collection-name)
A collection is created by a "db._create" call.

For example: Assume that the collection identifier is 7254820 and the name is demo, then the collection can be accessed as:

db._collection("demo")

If no collection with such a name exists, then null is returned.

There is a short-cut that can be used for non-system collections:

Collection name
db.collection-name

This call will either return the collection named db.collection-name or create a new one with that name and a set of default properties.

Note: Creating a collection on the fly using db.collection-name is not recommend and does not work in arangosh. To create a new

collection, please use

Create
db._create(collection-name)

This call will create a new collection called collection-name. This method is a database method and is documented in detail at Database
M ethods

Synchronous replication

Starting in ArangoDB 3.0, the distributed version offers synchronous rep lication, which means that there is the option to replicate all
data automatically within the ArangoDB cluster. This is configured for sharded collections on a per collection basis by specifying a
"replication factor" when the collection is created. A replication factor of k means that altogether k copies of each shard are kept in the

cluster on k different servers, and are kept in sync. That is, every write operation is automatically replicated on all copies.

This is organised using a leader/follower model. At all times, one of the servers holding replicas for a shard is "the leader" and all others
are "followers", this configuration is held in the Agency (see Scalability for details of the ArangoDB cluster architecture). Every write
operation is sent to the leader by one of the coordinators, and then replicated to all followers before the operation is reported to have
succeeded. The leader keeps a record of which followers are currently in sync. In case of network problems or a failure of a follower, a
leader can and will drop a follower temporarily after 3 seconds, such that service can resume. In due course, the follower will

automatically resynchronize with the leader to restore resilience.

If a leader fails, the cluster Agency automatically initiates a failover routine after around 15 seconds, promoting one of the followers to
leader. The other followers (and the former leader, when it comes back), automatically resynchronize with the new leader to restore
resilience. Usually, this whole failover procedure can be handled transparently for the coordinator, such that the user code does not even

see an error message.

Obviously, this fault tolerance comes at a cost of increased latency. Each write operation needs an additional network roundtrip for the
synchronous replication of the followers, but all replication operations to all followers happen concurrently. This is, why the default

replication factor is 1, which means no replication.

For details on how to switch on synchronous replication for a collection, see the database method db._create(collection-name) in the

section about Database M ethods.

Collection Methods

Drop

dl‘OpS a collection collection.drop(options)

Drops a collection and all its indexes and data. In order to drop a system collection, an options object with attribute isSystem set to true
must be specified.

Note: dropping a collection in a cluster, which is prototype for sharing in other collections is prohibited. In order to be able to drop such

a collection, all dependent collections must be dropped first.

Examples

arangosh> col = db.example;

[ArangoCollection , ""example" (type , status loaded)]
arangosh> col.drop();

arangosh> col;

[ArangoCollection , ""example" (type , status deleted)]

arangosh> col = db._example;

[ArangoCollection , ""_example" (type , status loaded)]

arangosh> col.drop({ isSystem: 1);

arangosh> col;

[ArangoCollection , ""_example" (type , status deleted)]
Truncate

truncates a collection collection.truncate()
Truncates a collection, removing all documents but keeping all its indexes.
Examples
Truncates a collection:
arangosh> col = db.example;
arangosh> col.save({ "Hello" : "World" });
arangosh> col.count();

arangosh> col.truncate();
arangosh> col.count();

show execution results

Properties
gets or sets the properties of a collection collection.properties()
Returns an object containing all collection properties.
e waitForSync: If true creating a document will only return after the data was synced to disk.
e journalSize : The size of the journal in bytes. This option is meaningful for the MM Files storage engine only.

e isVolatile: If true then the collection data will be kept in memory only and ArangoDB will not write or sync the data to disk. This

option is meaningful for the M M Files storage engine only.

e keyOptions (optional) additional options for key generation. This is a JSON array containing the following attributes (note: some of

the attributes are optional):

o type: the type of the key generator used for the collection.

o allowUserKeys: if set to true, then it is allowed to supply own key values in the _key attribute of a document. If set to false,
then the key generator will solely be responsible for generating keys and supplying own key values in the _key attribute of
documents is considered an error.

o increment: increment value for autoincrement key generator. Not used for other key generator types.

o offset: initial offset value for autoincrement key generator. Not used for other key generator types.

e indexBuckets: number of buckets into which indexes using a hash table are split. The default is 16 and this number has to be a power

of 2 and less than or equal to 1024. This option is meaningful for the MM Files storage engine only.

For very large collections one should increase this to avoid long pauses when the hash table has to be initially built or resized, since
buckets are resized individually and can be initially built in parallel. For example, 64 might be a sensible value for a collection with
100 000 000 documents. Currently, only the edge index respects this value, but other index types might follow in future ArangoDB

versions. Changes (see below) are applied when the collection is loaded the next time.
In a cluster setup, the result will also contain the following attributes:
e numberOfShards: the number of shards of the collection.
e shardKeys: contains the names of document attributes that are used to determine the target shard for documents.

e replicationFactor: determines how many copies of each shard are kept on different DBServers.

collection.properties(properties)
Changes the collection properties. properties must be an object with one or more of the following attribute(s):
e waitForSync: If true creating a document will only return after the data was synced to disk.
e journalSize : The size of the journal in bytes. This option is meaningful for the MM Files storage engine only.

e indexBuckets : See above, changes are only applied when the collection is loaded the next time. This option is meaningful for the

MMFiles storage engine only.

e replicationFactor : Change the number of shard copies kept on different DBServers, valid values are integer numbers in the range of
1-10 (Cluster only)

Note: it is not possible to change the journal size after the journal or datafile has been created. Changing this parameter will only effect
newly created journals. Also note that you cannot lower the journal size to less then size of the largest document already stored in the

collection.
Note: some other collection properties, such as type, isVolatile, or keyOptions cannot be changed once the collection is created.
Examples

Read all properties

arangosh> db.example.properties();

show execution results

Change a property

arangosh> db.example.properties({ waitForSync : 1)

show execution results

Figures

returns the figures of a collection collection.figures()
Returns an object containing statistics about the collection. Note : Retrieving the figures will always load the collection into memory.

e alive.count: The number of currently active documents in all datafiles and journals of the collection. Documents that are contained in

the write-ahead log only are not reported in this figure.

alive.size: The total size in bytes used by all active documents of the collection. Documents that are contained in the write-ahead log
only are not reported in this figure.

dead.count: The number of dead documents. This includes document versions that have been deleted or replaced by a newer version.
Documents deleted or replaced that are contained in the write-ahead log only are not reported in this figure.

dead.size: The total size in bytes used by all dead documents.

dead.deletion: The total number of deletion markers. Deletion markers only contained in the write-ahead log are not reporting in this
figure.

datafiles.count: The number of datafiles.

datafiles.fileSize: The total filesize of datafiles (in bytes).

Jjournals.count: The number of journal files.

Jjournals.fileSize: The total filesize of the journal files (in bytes).

compactors.count: The number of compactor files.

compactors.fileSize: The total filesize of the compactor files (in bytes).

shapefiles.count: The number of shape files. This value is deprecated and kept for compatibility reasons only. The value will always
be 0 since ArangoDB 2.0 and higher.

shapefiles.fileSize: The total filesize of the shape files. This value is deprecated and kept for compatibility reasons only. The value
will always be 0 in ArangoDB 2.0 and higher.

shapes.count: The total number of shapes used in the collection. This includes shapes that are not in use anymore. Shapes that are
contained in the write-ahead log only are not reported in this figure.

shapes.size: The total size of all shapes (in bytes). This includes shapes that are not in use anymore. Shapes that are contained in
the write-ahead log only are not reported in this figure.

attributes.count: The total number of attributes used in the collection. Note: the value includes data of attributes that are not in use
anymore. Attributes that are contained in the write-ahead log only are not reported in this figure.

attributes.size: The total size of the attribute data (in bytes). Note: the value includes data of attributes that are not in use anymore.
Attributes that are contained in the write-ahead log only are not reported in this figure.

indexes.count: The total number of indexes defined for the collection, including the pre-defined indexes (e.g. primary index).
indexes.size: The total memory allocated for indexes in bytes.

lastTick: The tick of the last marker that was stored in a journal of the collection. This might be 0 if the collection does not yet have
a journal.

uncollectedLogfileEntries: The number of markers in the write-ahead log for this collection that have not been transferred to journals
or datafiles.

documentReferences: The number of references to documents in datafiles that JavaScript code currently holds. This information can
be used for debugging compaction and unload issues.

waitingFor: An optional string value that contains information about which object type is at the head of the collection's cleanup
queue. This information can be used for debugging compaction and unload issues.

compactionStatus.time: The point in time the compaction for the collection was last executed. This information can be used for
debugging compaction issues.

compactionStatus.message: The action that was performed when the compaction was last run for the collection. This information

can be used for debugging compaction issues.

Note: collection data that are stored in the write-ahead log only are not reported in the results. When the write-ahead log is collected,

documents might be added to journals and datafiles of the collection, which may modify the figures of the collection. Also note that

waitingFor and compactionstatus may be empty when called on a coordinator in a cluster.

Additionally, the filesizes of collection and index parameter JSON files are not reported. These files should normally have a size of a few

bytes each. Please also note that the fileSize values are reported in bytes and reflect the logical file sizes. Some filesy stems may use

optimisations (e.g. sparse files) so that the actual physical file size is somewhat different. Directories and sub-directories may also

require space in the file system, but this space is not reported in the fileSize results.

That means that the figures reported do not reflect the actual disk usage of the collection with 100% accuracy. The actual disk usage of a

collection is normally slightly higher than the sum of the reported fileSize values. Still the sum of the fileSize values can still be used as a

lower bound ap proximation of the disk usage.

Examples

arangosh> db.demo.figures()

show execution results

Load

loads a collection collection.load()

Loads a collection into memory.

Note: cluster collections are loaded at all times.

Examples
arangosh> col = db.example;
[ArangoCollection , ""example" (type , status loaded)]
arangosh> col.load();

arangosh> col;
[ArangoCollection , ""example" (type , status loaded)]

Revision

returns the revision id of a collection collection.revision()

Returns the revision id of the collection

The revision id is updated when the document data is modified, either by inserting, deleting, updating or replacing documents in it.

The revision id of a collection can be used by clients to check whether data in a collection has changed or if it is still unmodified since a
previous fetch of the revision id.

The revision id returned is a string value. Clients should treat this value as an opaque string, and only use it for equality/non-equality

comparisons.

Path

returns the physical path of the collection collection.path()
The path operation returns a string with the physical storage path for the collection data.

Note: this method will return nothing meaningful in a cluster. In a single-server ArangoDB, this method will only return meaningful data

for the MM Files engine.

Checksum

calculates a checksum for the data in a collection collection.checksum(withRevisions, withData)
The checksum operation calculates an aggregate hash value for all document keys contained in collection collection.
If the optional argument withRevisions is set to true, then the revision ids of the documents are also included in the hash calculation.

If the optional argument withData is set to true, then all user-defined document attributes are also checksummed. Including the document

data in checksumming will make the calculation slower, but is more accurate.
The checksum calculation algorithm changed in ArangoDB 3.0, so checksums from 3.0 and earlier versions for the same data will differ.

Note: this method is not available in a cluster.

Unload

unloads a collection collection.unload()
Starts unloading a collection from memory. Note that unloading is deferred until all query have finished.
Note: cluster collections cannot be unloaded.

Examples

arangosh> col = db.example;

[ArangoCollection , "example" (type , status loaded)]
arangosh> col.unload();

arangosh> col;

[ArangoCollection , "example" (type , status unloaded)]

Rename
renames a collection collection.rename(new-name)

Renames a collection using the new-name. The new-name must not already be used for a different collection. new-name must also be a

valid collection name. For more information on valid collection names please refer to the naming conventions.

If renaming fails for any reason, an error is thrown. If renaming the collection succeeds, then the collection is also renamed in all graph
definitions inside the _graphs collection in the current database.

Note: this method is not available in a cluster.

Examples
arangosh> ¢ = db.example;
[ArangoCollection , ""example" (type , status loaded)]
arangosh> c.rename('"better-example");

arangosh> c;
[ArangoCollection , "better-example" (type , status loaded)]

Rotate

rotates the current journal of a collection collection.rotate()

Rotates the current journal of a collection. This operation makes the current journal of the collection a read-only datafile so it may

become a candidate for garbage collection. If there is currently no journal available for the collection, the operation will fail with an error.
Note: this method is specific for the MM Files storage engine, and there it is not available in a cluster.
Note: please note that you need appropriate user permissions to execute this.

e To do the rename collections in first place you need to have administrative rights on the database
e To have access to the resulting renamed collection you either need to have access to all collections of that database (*) or a main

system administrator has to give you access to the newly named one.

Database Methods

Collection

returns a single collection or null db._collection(collection-name)

Returns the collection with the given name or null if no such collection exists.

db._collection(collection-identifier)

Returns the collection with the given identifier or null if no such collection exists. Accessing collections by identifier is discouraged for

end users. End users should access collections using the collection name.
Examples
Get a collection by name:

arangosh> db._collection("demo");
[ArangoCollection , "demo" (type , status loaded)]

Get a collection by id:

arangosh> db._collection(123456);
[ArangoCollection 123456, "demo" (type document, status loaded)]

Unknown collection:

arangosh> db._collection("unknown");

Create

creates a new document or edge collection db._create(collection-name)

Creates a new document collection named collection-name. If the collection name already exists or if the name format is invalid, an error is

thrown. For more information on valid collection names please refer to the naming conventions.
db._create(collection-name, properties)

properties must be an object with the following attributes:
e waitForSync (optional, default false): If true creating a document will only return after the data was synced to disk.

e journalSize (optional, default is a configuration parameter: The maximal size of a journal or datafile. Note that this also limits the

maximal size of a single object. M ust be at least IM B.

e isSystem (optional, default is false): If true, create a system collection. In this case collection-name should start with an underscore.
End users should normally create non-system collections only. API implementors may be required to create system collections in

very special occasions, but normally a regular collection will do.

e isVolatile (optional, default is false): If true then the collection data is kept in-memory only and not made persistent. Unloading the
collection will cause the collection data to be discarded. Stopping or re-starting the server will also cause full loss of data in the
collection. The collection itself will remain however (only the data is volatile). Setting this option will make the resulting collection
be slightly faster than regular collections because ArangoDB does not enforce any synchronization to disk and does not calculate

any CRC checksums for datafiles (as there are no datafiles). This option is meaningful for the MM Files storage engine only.

e keyOptions (optional): additional options for key generation. If specified, then keyOptions should be a JSON object containing the

following attributes (note: some of them are optional):

o type: specifies the type of the key generator. The currently available generators are traditional and autoincrement. (note:

autoincrement is currently only supported for non-sharded collections)

o allowUserKeys: if set to true, then it is allowed to supply own key values in the _key attribute of a document. If set to false,
then the key generator will solely be responsible for generating keys and supplying own key values in the _key attribute of
documents is considered an error.

o increment: increment value for autoincrement key generator. Not used for other key generator types.

o offset: initial offset value for autoincrement key generator. Not used for other key generator types.

e numberOfShards (optional, default is 1): in a cluster, this value determines the number of shards to create for the collection. In a

single server setup, this option is meaningless.

e shardKeys (optional, default is ["_key" 1): in a cluster, this attribute determines which document attributes are used to determine
the target shard for documents. Documents are sent to shards based on the values they have in their shard key attributes. The values
of all shard key attributes in a document are hashed, and the hash value is used to determine the target shard. Note that values of

shard key attributes cannot be changed once set. This option is meaningless in a single server setup.

When choosing the shard keys, one must be aware of the following rules and limitations: In a sharded collection with more than one
shard it is not possible to set up a unique constraint on an attribute that is not the one and only shard key given in shardKeys. This
is because enforcing a unique constraint would otherwise make a global index necessary or need extensive communication for every

single write operation. Furthermore, if _key is not the one and only shard key, then it is not possible to set the _key attribute when
inserting a document, provided the collection has more than one shard. Again, this is because the database has to enforce the unique
constraint on the _key attribute and this can only be done efficiently if this is the only shard key by delegating to the individual

shards.

e replicationFactor (optional, default is 1): in a cluster, this attribute determines how many copies of each shard are kept on different
DBServers. The value 1 means that only one copy (no synchronous replication) is kept. A value of k means that k-1 replicas are
kept. Any two copies reside on different DBServers. Replication between them is synchronous, that is, every write operation to the

"leader" copy will be replicated to all "follower" replicas, before the write operation is reported successful.

If a server fails, this is detected automatically and one of the servers holding copies take over, usually without an error being

reported.

When using the Enterprise version of ArangoDB the replicationFactor may be set to "satellite" making the collection locally joinable
on every database server. This reduces the number of network hops dramatically when using joins in AQL at the costs of reduced

write performance on these collections.

e distributeShardsLike distribute the shards of this collection cloning the shard distribution of another. If this value is set it will copy

replicationFactor and numberOfShards from the other collection, the attributes in this collection will be ignored and can be ommited.

db._create(collection-name, properties, type)

Specifies the optional type of the collection, it can either be document or edge. On default it is document. Instead of giving a type you can

also use db._createEdgeCollection or db._createDocumentCollection.

db._create(collection-name, properties[, type], options)

As an optional third (if the type string is being omitted) or fourth parameter you can specify an optional options map that controls how

the cluster will create the collection. These options are only relevant at creation time and will not be persisted:

e waitForSyncReplication (default: true) When enabled the server will only report success back to the client if all replicas have created

the collection. Set to false if you want faster server responses and don't care about full replication.

e enforceReplicationFactor (default: true) When enabled which means the server will check if there are enough replicas available at

creation time and bail out otherwise. Set to false to disable this extra check.
Examples

With defaults:

arangosh> ¢ = db._create("users");
arangosh> c.properties();

show execution results

With properties:

arangosh> ¢ = db._create("users", { waitForSync : ,

........ > journalSize
arangosh> c.properties();

show execution results

With a key generator:

arangosh>
{ keyOptions: {
db.users.save({
db.users.save({
db.users.save({

arangosh>
arangosh>
arangosh>

show execution results

With a special key option:

arangosh>
arangosh>
arangosh>
arangosh>

show execution results

creates a new edge collection

db._create("users",

type:
name:
name:
name:

db._create("users", {
db.users.save({ name:
db.users.save({ name:
db.users.save({ name:

1
"autoincrement", offset: ;
"user 1" });
"user 2" });
"user 3" });

keyOptions: { allowUserKeys:

"user 1" });
"user 2", _key: "myuser" });
"user 3" });

db._createEdgeCollection(collection-name)

increment:

1)

1)

Creates a new edge collection named collection-name. If the collection name already exists an error is thrown. The default value for

waitForSync is false.

db._createEdgeCollection(collection-name, properties)

properties must be an object with the following attributes:

e waitForSync (optional, default false): If true creating a document will only return after the data was synced to disk.

e journalSize (optional, default is "configuration parameter"): The maximal size of a journal or datafile. Note that this also limits the

maximal size of a single object and must be at least 1M B.

creates a new document collection db._createDocumentCollection(collection-name)

Creates a new document collection named collection-name. If the document name already exists and error is thrown.

All Collections

returns all collections db._collections()

Returns all collections of the given database.

Examples

arangosh> db._collections();

show execution results

Collection Name

selects a collection from the vocbase db.collection-name

Returns the collection with the given collection-name. If no such collection exists, create a collection named collection-name with the

default properties.

Examples

arangosh> db.example;

[ArangoCollection , "example" (type , status loaded)]

Drop
drops a collection db._drop(collection)

Drops a collection and all its indexes and data.

db._drop(collection-identifier)

Drops a collection identified by collection-identifier with all its indexes and data. No error is thrown if there is no such collection.
db._drop(collection-name)

Drops a collection named collection-name and all its indexes. No error is thrown if there is no such collection.
db._drop(collection-name, options)

In order to drop a system collection, one must specify an options object with attribute isSystem set to true. Otherwise it is not possible
to drop system collections.

Note: cluster collection, which are prototypes for collections with distributeShardsLike parameter, cannot be dropped.
Examples

Drops a collection:

arangosh> col = db.example;

[ArangoCollection , ""example" (type , status loaded)]
arangosh> db._drop(col);

arangosh> col;

[ArangoCollection , ""example" (type , status loaded)]

Drops a collection identified by name:

arangosh> col = db.example;

[ArangoCollection , ""example" (type , status loaded)]
arangosh> db._drop("example");

arangosh> col;

[ArangoCollection , ""example" (type , status deleted)]

Drops a system collection

arangosh> col = db._example;

[ArangoCollection , ""_example" (type , status loaded)]

arangosh> db._drop(" _example", { isSystem: 1);

arangosh> col;

[ArangoCollection , ""_example" (type , status deleted)]
Truncate

truncates a collection db._truncate(collection)

Truncates a collection, removing all documents but keeping all its indexes.

db._truncate(collection-identifier)

Truncates a collection identified by collection-identified. No error is thrown if there is no such collection.

db._truncate(collection-name)
Truncates a collection named collection-name. No error is thrown if there is no such collection.

Examples

Truncates a collection:

arangosh>
arangosh>
arangosh>
arangosh>
arangosh>

col = db.example;

col.save({ "Hello" : "world" });

col.count();
db._truncate(col);
col.count();

show execution results

Truncates a collection identified by name:

arangosh>
arangosh>
arangosh>
arangosh>
arangosh>

col = db.example;

col.save({ "Hello" : "World"
col.count();
db._truncate("example");
col.count();

show execution results

)

Documents

This is an introduction to ArangoDB's interface for working with documents from the JavaScript shell arangosh or in JavaScript code in

the server. For other languages see the corresponding language API.

e Basics and Terminology: section on the basic approach
e Collection Methods: detailed API description for collection objects

e Database Methods: detailed API description for database objects

Basics and Terminology

Documents in ArangoDB are JSON objects. These objects can be nested (to any depth) and may contain lists. Each document has a
unique primary key which identifies it within its collection. Furthermore, each document is uniquely identified by its document handle
across all collections in the same database. Different revisions of the same document (identified by its handle) can be distinguished by

their document revision. Any transaction only ever sees a single revision of a document. For example:

{
"_id" : "myusers/3456789",
" key" : "3456789",
"_rev" : "14253647",
"firstName" : "John",
"lastName" : "Doe",
"address" : {
"street" : "Road To Nowhere 1",
"city" : "Gotham"
H
"hobbies" : [
{name: "swimming", howFavorite: By
{name: "biking", howFavorite: 6},
{name: "programming", howFavorite: 4}
]
}

All documents contain special attributes: the document handle is stored as a stringin _id , the document's primary key in _key and
the document revision in _rev . The value of the _key attribute can be specified by the user when creating a document. _id and

_key values are immutable once the document has been created. The _rev value is maintained by ArangoDB automatically.

Document Handle

A document handle uniquely identifies a document in the database. It is a string and consists of the collection's name and the document

key (_key attribute) separated by / .

Document Key

A document key uniquely identifies a document in the collection it is stored in. It can and should be used by clients when specific
documents are queried. The document key is stored in the _key attribute of each document. The key values are automatically indexed
by ArangoDB in a collection's primary index. Thus looking up a document by its key is a fast operation. The _key value of a document is
immutable once the document has been created. By default, ArangoDB will auto-generate a document key if no _key attribute is
specified, and use the user-specified _key otherwise. The generated _key is guaranteed to be unique in the collection it was generated for.
This also applies to sharded collections in a cluster. It can't be guaranteed that the _key is unique within a database or across a whole

node or instance however.
This behavior can be changed on a per-collection level by creating collections with the keyoptions attribute.

Using keyoptions it is possible to disallow user-specified keys completely, or to force a specific regime for auto-generating the _key

values.

Document Revision

As ArangoDB supports M VCC (Multiple Version Concurrency Control), documents can exist in more than one revision. The document
revision is the M VCC token used to specify a particular revision of a document (identified by its _id). It is a string value that
contained (up to ArangoDB 3.0) an integer number and is unique within the list of document revisions for a single document. In
ArangoDB >= 3.1 the _rev strings are in fact time stamps. They use the local clock of the DBserver that actually writes the document

and have millisecond accuracy. Actually, a "Hybrid Logical Clock" is used (for this concept see this paper).

Within one shard it is guaranteed that two different document revisions have a different _rev string, even if they are written in the same

millisecond, and that these stamps are ascending.

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

Note however that different servers in your cluster might have a clock skew, and therefore between different shards or even between

different collections the time stamps are not guaranteed to be comparable.

The Hybrid Logical Clock feature does one thing to address this issue: Whenever a message is sent from some server A in your cluster to
another one B, it is ensured that any timestamp taken on B after the message has arrived is greater than any timestamp taken on A before
the message was sent. This ensures that if there is some "causality" between events on different servers, time stamps increase from cause
to effect. A direct consequence of this is that sometimes a server has to take timestamps that seem to come from the future of its own
clock. It will however still produce ever increasing timestamps. If the clock skew is small, then your timestamps will relatively accurately

describe the time when the document revision was actually written.

ArangoDB uses 64bit unsigned integer values to maintain document revisions internally. At this stage we intentionally do not document
the exact format of the revision values. When returning document revisions to clients, ArangoDB will put them into a string to ensure the
revision is not clipped by clients that do not support big integers. Clients should treat the revision returned by ArangoDB as an opaque
string when they store or use it locally. This will allow ArangoDB to change the format of revisions later if this should be required (as has
happened with 3.1 with the Hybrid Logical Clock). Clients can use revisions to perform simple equality/non-equality comparisons (e.g.
to check whether a document has changed or not), but they should not use revision ids to perform greater/less than comparisons with

them to check if a document revision is older than one another, even if this might work for some cases.

Document revisions can be used to conditionally query, update, replace or delete documents in the database. In order to find a particular

revision of a document, you need the document handle or key, and the document revision.

Multiple Documents in a single Command

Beginning with ArangoDB 3.0 the basic document API has been extended to handle not only single documents but multiple documents in
a single command. This is crucial for performance, in particular in the cluster situation, in which a single request can involve multiple
network hops within the cluster. Another advantage is that it reduces the overhead of individual network round trips between the client
and the server. The general idea to perform multiple document operations in a single command is to use JSON arrays of objects in the
place of a single document. As a consequence, document keys, handles and revisions for preconditions have to be supplied embedded in
the individual documents given. M ultiple document op erations are restricted to a single document or edge collection. See the API

descriptions for collection objects for details. Note that the API for database objects do not offer these operations.

Collection Methods

All

collection.all()

Fetches all documents from a collection and returns a cursor. You can use toArray, next, or hasNext to access the result. The result can be

limited using the skip and limit operator.
Examples

Use toArray to get all documents at once:

arangosh> db.five.save({ name : "one" });
arangosh> db.five.save({ name : "two" });
arangosh> db.five.save({ name : "three" });
arangosh> db.five.save({ name : "four" });
arangosh> db.five.save({ name : "five" });

arangosh> db.five.all().toArray();

show execution results

Use limit to restrict the documents:

arangosh> db.five.save({ name : "one" });
arangosh> db.five.save({ name : "two" });
arangosh> db.five.save({ name : "three" });
arangosh> db.five.save({ name : "four" });
arangosh> db.five.save({ name : "five" });

arangosh> db.five.all().limit(2).toArray();

show execution results

Query by example
collection.byExample(example)
Fetches all documents from a collection that match the specified example and returns a cursor.
You can use toArray, next, or hasNext to access the result. The result can be limited using the skip and limit operator.

An attribute name of the form a.b is interpreted as attribute path, not as attribute. If you use
{ra" s £ 1133

as example, then you will find all documents, such that the attribute a contains a document of the form {c : 1 }. For example the

document
{rat e e s 1}, bt 1}
will match, but the document
{rat o {1, "b" 213}
will not.
However, if you use

£ "ach 1}

then you will find all documents, which contain a sub-document in a that has an attribute c of value 1. Both the following documents

£t i i1}, b : 1)

and
{"a" : {"c¢" :1, "b" :13}}
will match.
collection.byExample(pathl, valuel, ...)

As alternative you can supply an array of paths and values.
Examples
Use toArray to get all documents at once:
arangosh> db.users.save({ name: "Gerhard" });
arangosh> db.users.save({ name: "Helmut" });

arangosh> db.users.save({ name: "Angela" });
arangosh> db.users.all().toArray();

arangosh> db.users.byExample({ "_id" : "users/20" }).toArray();
arangosh> db.users.byExample({ "name" : "Gerhard" }).toArray();
arangosh> db.users.byExample({ "name" : "Helmut", " id" : "users/15" }).toArray();

show execution results

Use next to loop over all documents:

arangosh> db.users.save({ name: "Gerhard" });

arangosh> db.users.save({ name: "Helmut" });

arangosh> db.users.save({ name: "Angela" });

arangosh> var a = db.users.byExample({"name" : "Angela" });
arangosh> while (a.hasNext()) print(a.next());

show execution results

First Example
collection.firstExample(example)

Returns some document of a collection that matches the specified example. If no such document exists, null will be returned. The example

has to be specified as paths and values. See byExample for details.

collection.firstExample(pathl, valuel, ...)
As alternative you can supply an array of paths and values.

Examples

arangosh> db.users.firstExample("name", "Angela");

show execution results

Range

collection.range(attribute, left, right)

Returns all documents from a collection such that the attribute is greater or equal than left and strictly less than right.
You can use toArray, next, or hasNext to access the result. The result can be limited using the skip and limit operator.
An attribute name of the form a.b is interpreted as attribute path, not as attribute.

Note: the range simple query function is deprecated as of ArangoDB 2.6. The function may be removed in future versions of

ArangoDB. The preferred way for retrieving documents from a collection within a specific range is to use an AQL query as follows:

FOR doc IN @@collection
FILTER doc.value >= @left && doc.value < @right
LIMIT @skip, @limit
RETURN doc

Examples

Use toArray to get all documents at once:

arangosh> db.old.ensureIndex({ type: "skiplist", fields: ["age"] });

arangosh> db.old.save({ age: 1)
arangosh> db.old.save({ age: 1)
arangosh> db.old.save({ age: 1)

arangosh> db.old.range("age", ,).toArray();

show execution results

Closed range

collection.closedRange(attribute, left, right)
Returns all documents of a collection such that the attribute is greater or equal than left and less or equal than right.
You can use toArray, next, or hasNext to access the result. The result can be limited using the skip and limit operator.
An attribute name of the form a.b is interpreted as attribute path, not as attribute.

Note: the closedRange simple query function is deprecated as of ArangoDB 2.6. The function may be removed in future versions of

ArangoDB. The preferred way for retrieving documents from a collection within a specific range is to use an AQL query as follows:

FOR doc IN @@collection
FILTER doc.value >= @left && doc.value <= @right
LIMIT @skip, @limit
RETURN doc

Examples

Use toArray to get all documents at once:

arangosh> db.old.ensureIndex({ type: "skiplist", fields: ["age"] });

arangosh> db.old.save({ age: 1,
arangosh> db.old.save({ age: 1)
arangosh> db.old.save({ age: 1)

arangosh> db.old.closedRange("age", 7).toArray();

show execution results

collection.any()
Returns a random document from the collection or null if none exists.

Note: this method is expensive when using the RocksDB storage engine.

Count
collection.count()
Returns the number of living documents in the collection.

Examples

arangosh> db.users.count();

toArray

collection.toArray()

Converts the collection into an array of documents. Never use this call in a production environment as it will basically create a copy of

your collection in RAM which will use resources depending on the number and size of the documents in your collecion.

Document
collection.document(object)

The document method finds a document given an object object containing the _id or _key attribute. The method returns the document if it
can be found. If both attributes are given, the _id takes precedence, it is an error, if the collection part of the _id does not match the

collection.

An error is thrown if _rev is specified but the document found has a different revision already. An error is also thrown if no document

exists with the given _id or _key value.

Please note that if the method is executed on the arangod server (e.g. from inside a Foxx application), an immutable document object will
be returned for performance reasons. It is not possible to change attributes of this immutable object. To update or patch the returned
document, it needs to be cloned/copied into a regular JavaScript object first. This is not necessary if the document method is called from

out of arangosh or from any other client.

collection.document(document-handle)

As before. Instead of object a document-handle can be passed as first argument. No revision can be specified in this case.

collection.document (document-key)

As before. Instead of object a document-key can be passed as first argument.

collection.document(array)

This variant allows to perform the operation on a whole array of arguments. The behavior is exactly as if document would have been
called on all members of the array separately and all results are returned in an array. If an error occurs with any of the documents, no

exception is risen! Instead of a document an error object is returned in the result array.
Examples

Returns the document for a document-handle:

arangosh> db.example.document("example/2873916");

show execution results

Returns the document for a document-key:

arangosh> db.example.document('2873916");

show execution results

Returns the document for an object:

arangosh> db.example.document({_id: "example/2873916"});

show execution results

Returns the document for an array of two keys:

arangosh> db.example.document (["2873916","2873917"]);

show execution results

An error is raised if the document is unknown:

arangosh> db.example.document ("example/4472917");
[ArangoError 3 not found]

An error is raised if the handle is invalid:

arangosh> db.example.document("");
[ArangoError : illegal handle]

Changes in 3.0 from 2.8:

document can now query multiple documents with one call.

Exists

checks whether a document exists collection.exists(object)

The exists method determines whether a document exists given an object object containingthe _id or _key attribute. If both attributes

are given, the _id takes precedence, it is an error, if the collection part of the _id does not match the collection.
An error is thrown if _rev is specified but the document found has a different revision already.

Instead of returning the found document or an error, this method will only return an object with the attributes _id, _key and _rev, or false

if no document with the given _id or _key exists. It can thus be used for easy existence checks.

This method will throw an error if used improperly, e.g. when called with a non-document handle, a non-document, or when a cross-

collection request is performed.

collection.exists(document-handle)

As before. Instead of object a document-handle can be passed as first argument.

collection.exists(document-key)

As before. Instead of object a document-key can be passed as first argument.

collection.exists(array)

This variant allows to perform the operation on a whole array of arguments. The behavior is exactly as if exists would have been called on
all members of the array separately and all results are returned in an array. If an error occurs with any of the documents, the op eration

stops immediately returning only an error object.

Changes in 3.0 from 2.8:

In the case of a revision mismatch exists now throws an error instead of simply returning false. This is to make it possible to tell the

difference between a revision mismatch and a non-existing document.

exists can now query multiple documents with one call.

Lookup By Keys

collection.documents(keys)

Looks up the documents in the specified collection using the array of keys provided. All documents for which a matching key was
specified in the keys array and that exist in the collection will be returned. Keys for which no document can be found in the underlying

collection are ignored, and no exception will be thrown for them.
This method is deprecated in favour of the array variant of document.

Examples

arangosh> keys = [1;

arangosh> for (var i = 0; i < ; 1) {

........ > db.example.insert({ _key: "test" + i, value: i });
........ > keys.push("test" + 1);

arangosh> db.example.documents(keys);

show execution results

Insert
collection.insert(data)

Creates a new document in the collection from the given data. The data must be an object. The attributes _id and _rev are ignored and are
automatically generated. A unique value for the attribute _key will be automatically generated if not specified. If specified, there must not

be a document with the given _key in the collection.

The method returns a document with the attributes _id, _key and _rev. The attribute _id contains the document handle of the newly

created document, the attribute _key the document key and the attribute _rev contains the document revision.

collection.insert(data, options)

Creates a new document in the collection from the given data as above. The optional options parameter must be an object and can be used

to specify the following options:

e waitForSync: One can force synchronization of the document creation op eration to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e silent: If this flag is set to true, the method does not return any output.

e returnNew: If this flagis set to true, the complete new document is returned in the output under the attribute new.

Note: since ArangoDB 2.2, insert is an alias for save.
collection.insert(array)

collection.insert(array, options)

These two variants allow to perform the operation on a whole array of arguments. The behavior is exactly as if insert would have been
called on all members of the array separately and all results are returned in an array. If an error occurs with any of the documents, no

exception is risen! Instead of a document an error object is returned in the result array. The options behave exactly as before.

Changes in 3.0 from 2.8:

The options silent and returnNew are new. The method can now insert multiple documents with one call.

Examples

arangosh> db.example.insert({ Hello : "world" });
arangosh> db.example.insert({ Hello : "world" }, {waitForSync: 1),

show execution results

arangosh> db.example.insert([{ Hello : "World" }, {Hello: "there"}])

arangosh> db.example.insert([{ Hello : "world" }, {}], {waitForSync: });

show execution results

Replace
collection.replace(selector, data)

Replaces an existing document described by the selector, which must be an object containing the _id or _key attribute. There must be a
document with that _id or _key in the current collection. This document is then replaced with the data given as second argument. Any

attribute _id, _key or _rev in data is ignored.

The method returns a document with the attributes _id, _key, _rev and _oldRev. The attribute _id contains the document handle of the
updated document, the attribute _rev contains the document revision of the updated document, the attribute _oldRev contains the

revision of the old (now replaced) document.
If the selector contains a _rev attribute, the method first checks that the specified revision is the current revision of that document. If not,

there is a conflict, and an error is thrown.

collection.replace(selector, data, options)
As before, but options must be an object that can contain the following boolean attributes:

e waitForSync: One can force synchronization of the document creation operation to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e overwrite: If this flag is set to true, a _rev attribute in the selector is ignored.

e returnNew: If this flagis set to true, the complete new document is returned in the output under the attribute new.

e returnOld: If this flag is set to true, the complete previous revision of the document is returned in the output under the attribute old.

e silent: If this flagis set to true, no output is returned.
collection.replace(document-handle, data)
collection.replace(document-handle, data, options)

As before. Instead of selector a document-handle can be passed as first argument. No revision precondition is tested.
collection.replace(document-key, data)
collection.replace(document-key, data, options)

As before. Instead of selector a document-key can be passed as first argument. No revision precondition is tested.
collection.replace(selectorarray, dataarray)

collection.replace(selectorarray, dataarray, options)

These two variants allow to perform the operation on a whole array of selector/data pairs. The two arrays given as selectorarray and
dataarray must have the same length. The behavior is exactly as if replace would have been called on all respective members of the two
arrays and all results are returned in an array. If an error occurs with any of the documents, no exception is risen! Instead of a document

an error object is returned in the result array. The options behave exactly as before.
Examples

Create and update a document:

arangosh> al = db.example.insert({ a : });
arangosh> a2 = db.example.replace(al, { a 1)
arangosh> a3 = db.example.replace(al, { a 1)

show execution results

Use a document handle:

arangosh> al = db.example.insert({ a : });

arangosh> a2 = db.example.replace("example/3903044", { a : 1);

show execution results

Changes in 3.0 from 2.8:

The options silent, returnNew and returnOld are new. The method can now replace multiple documents with one call.

Update

collection.update(selector, data)

Updates an existing document described by the selector, which must be an object containing the _id or _key attribute. There must be a
document with that _id or _key in the current collection. This document is then patched with the data given as second argument. Any

attribute _id, _key or _rev in data is ignored.

The method returns a document with the attributes _id, _key, _rev and _oldRev. The attribute _id contains the document handle of the
updated document, the attribute _rev contains the document revision of the updated document, the attribute _oldRev contains the

revision of the old (now updated) document.

If the selector contains a _rev attribute, the method first checks that the specified revision is the current revision of that document. If not,

there is a conflict, and an error is thrown.

collection.update(selector, data, options)
As before, but options must be an object that can contain the following boolean attributes:

e waitForSync: One can force synchronization of the document creation operation to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e overwrite: If this flag is set to true, a _rev attribute in the selector is ignored.

e returnNew: If this flagis set to true, the complete new document is returned in the output under the attribute new.

e returnOld: If this flag is set to true, the complete previous revision of the document is returned in the output under the attribute old.

e silent: If this flag is set to true, no output is returned.

e keepNull: The optional keepNull parameter can be used to modify the behavior when handling null values. Normally, null values are
stored in the database. By setting the keepNull parameter to false, this behavior can be changed so that all attributes in data with null
values will be removed from the target document.

e mergeObjects: Controls whether objects (not arrays) will be merged if present in both the existing and the patch document. If set to
false, the value in the patch document will overwrite the existing document's value. If set to true, objects will be merged. The default

is true.
collection.update(document-handle, data)
collection.update(document-handle, data, options)
As before. Instead of selector a document-handle can be passed as first argument. No revision precondition is tested.
collection.update(document-key, data)
collection.update(document-key, data, options)
As before. Instead of selector a document-key can be passed as first argument. No revision precondition is tested.
collection.update(selectorarray, dataarray)
collection.update(selectorarray, dataarray, options)

These two variants allow to perform the operation on a whole array of selector/data pairs. The two arrays given as selectorarray and
dataarray must have the same length. The behavior is exactly as if update would have been called on all resp ective members of the two
arrays and all results are returned in an array. If an error occurs with any of the documents, no exception is risen! Instead of a document

an error object is returned in the result array. The options behave exactly as before.
Examples

Create and update a document:

arangosh> al = db.example.insert({"a" : 1});

arangosh> a2 = db.example.update(al, {"b" : 2, "c" : 3});
arangosh> a3 = db.example.update(al, {"d" : 4});
arangosh> a4 = db.example.update(a2, {"e" : 5, "f" : });

arangosh> db.example.document(a4);
arangosh> a5 = db.example.update(a4, {"a" : 1, ¢ : 9, e : });
arangosh> db.example.document(a5);

show execution results

Use a document handle:

arangosh> al = db.example.insert({"a" : 1});
arangosh> a2 = db.example.update('"example/18612115", { "x" : 1, "y" : 1;

show execution results

Use the keepNull parameter to remove attributes with null values:

arangosh> db.example.insert({"a" : 1});

arangosh> db.example.update("example/19988371",

........ > { "b" : , "e" o , tdt o });

arangosh> db.example.document ("example/19988371");

arangosh> db.example.update("example/19988371", { "a" : }, ,);
arangosh> db.example.document ("example/19988371");

arangosh> db.example.update("example/19988371",

........ > { "b" : ; Terg , td" o 3, ,);

arangosh> db.example.document ("example/19988371");

show execution results

Patching array values:

arangosh> db.example.insert({"a" : { "one" : 1, "two" : 2, "three" : 3,
-------- > "b" o { 3});
arangosh> db.example.update("example/20774803", {"a" : { "four" : 3,

........ > l|bl| : { I|b1l| : }});
arangosh> db.example.document ("example/20774803");

arangosh> db.example.update("example/20774803", { "a" : { "one" : 1},
llllllll > nbn ' },
........ > ;)i

arangosh> db.example.document("example/20774803");

show execution results

Changes in 3.0 from 2.8:

The options silent, returnNew and returnOld are new. The method can now update multiple documents with one call.

Remove
collection.remove(selector)

Removes a document described by the selector, which must be an object containing the _id or _key attribute. There must be a document

with that _id or _key in the current collection. This document is then removed.

The method returns a document with the attributes _id, _key and _rev. The attribute _id contains the document handle of the removed

document, the attribute _rev contains the document revision of the removed document.

If the selector contains a _rev attribute, the method first checks that the specified revision is the current revision of that document. If not,

there is a conflict, and an error is thrown.

collection.remove(selector, options)

As before, but options must be an object that can contain the following boolean attributes:

e waitForSync: One can force synchronization of the document creation operation to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e overwrite: If this flag is set to true, a _rev attribute in the selector is ignored.

e returnOld: If this flag is set to true, the complete previous revision of the document is returned in the output under the attribute old.

o silent: If this flag is set to true, no output is returned.
collection.remove(document-handle)
collection.remove(document-handle, options)
As before. Instead of selector a document-handle can be passed as first argument. No revision check is performed.
collection.remove(document-key)
collection.remove(document-handle, options)
As before. Instead of selector a document-handle can be passed as first argument. No revision check is performed.
collection.remove(selectorarray)
collection.remove(selectorarray,options)

These two variants allow to perform the operation on a whole array of selectors. The behavior is exactly as if remove would have been
called on all members of the array separately and all results are returned in an array. If an error occurs with any of the documents, no

exception is risen! Instead of a document an error object is returned in the result array. The options behave exactly as before.
Examples
Remove a document:

arangosh> al = db.example.insert({ a : 1,

arangosh> db.example.document(al);

arangosh> db.example.remove(al);
arangosh> db.example.document(al);

show execution results

Remove a document with a conflict:

arangosh> al = db.example.insert({ a : 1,
arangosh> a2 = db.example.replace(ail, { a : 1,
arangosh> db.example.remove(al);

arangosh> db.example.remove(al,);

arangosh> db.example.document(al);

show execution results

Changes in 3.0 from 2.8:

The method now returns not only true but information about the removed document(s). The options silent and returnOld are new. The

method can now remove multiple documents with one call.

Remove By Keys

collection.removeByKeys(keys)

Looks up the documents in the specified collection using the array of keys provided, and removes all documents from the collection
whose keys are contained in the keys array. Keys for which no document can be found in the underlying collection are ignored, and no

exception will be thrown for them.

The method will return an object containing the number of removed documents in the removed sub-attribute, and the number of not-

removed/ignored documents in the ignored sub-attribute.
This method is deprecated in favour of the array variant of remove.

Examples

arangosh> keys = [1;

arangosh> for (var i = 0; i < ; 1) {

........ > db.example.insert({ _key: "test" + i, value: i });
........ > keys.push("test" + 1);

arangosh> db.example.removeByKeys(keys);

show execution results

Remove By Example
collection.removeByExample(example)

Removes all documents matching an example.

collection.removeByExample(document, waitForSync)

The optional waitForSync parameter can be used to force synchronization of the document deletion operation to disk even in case that
the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync parameter can be used to force synchronization of
just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false,
then the collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for

collections that have a default waitForSync value of true.

collection.removeByExample(document, waitForSync, limit)

The optional limit parameter can be used to restrict the number of removals to the specified value. If limit is specified but less than the

number of documents in the collection, it is undefined which documents are removed.

Examples

arangosh> db.example.removeByExample({Hello : "world"});

Replace By Example
collection.replaceByExample(example, newValue)

Replaces all documents matching an example with a new document body. The entire document body of each document matching the

example will be replaced with newValue. The document meta-attributes _id, _key and _rev will not be replaced.

collection.replaceByExample(document, newValue, waitForSync)

The optional waitForSync parameter can be used to force synchronization of the document replacement operation to disk even in case
that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not
specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to

disable synchronization for collections that have a default waitForSync value of true.

collection.replaceByExample(document, newValue, waitForSync, limit)

The optional limit parameter can be used to restrict the number of replacements to the specified value. If limit is specified but less than

the number of documents in the collection, it is undefined which documents are replaced.

Examples

arangosh> db.example.save({ Hello : "world" });
arangosh> db.example.replaceByExample({ Hello: "world" }, {Hello: "mars"}, ; B)E

show execution results

Update By Example
collection.updateByExample(example, newValue)

Partially updates all documents matching an example with a new document body. Specific attributes in the document body of each
document matching the example will be updated with the values from newValue. The document meta-attributes _id, _key and _rev cannot
be updated.

Partial update could also be used to append new fields, if there were no old field with same name.

collection.updateByExample(document, newValue, keepNull, waitForSync)

The optional keepNull parameter can be used to modify the behavior when handling null values. Normally, null values are stored in the
database. By setting the keepNull parameter to false, this behavior can be changed so that all attributes in data with null values will be

removed from the target document.

The optional waitForSync parameter can be used to force synchronization of the document replacement operation to disk even in case
that the waitForSync flag had been disabled for the entire collection. Thus, the waitForSync parameter can be used to force
synchronization of just specific operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not
specified or set to false, then the collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to

disable synchronization for collections that have a default waitForSync value of true.

collection.updateByExample(document, newValue, keepNull, waitForSync, limit)
The optional limit parameter can be used to restrict the number of updates to the specified value. If limit is specified but less than the
number of documents in the collection, it is undefined which documents are updated.

collection.updateByExample(document, newValue, options)
Using this variant, the options for the operation can be passed using an object with the following sub-attributes:

e keepNull
e waitForSync
e limit

e mergeObjects

Examples
arangosh> db.example.save({ Hello : "world", foo : "bar" });
arangosh> db.example.updateByExample({ Hello: "world" }, { Hello: "foo", World: "bar" },
)i

arangosh> db.example.byExample({ Hello: "foo" }).toArray()

show execution results

Collection type
collection. type()
Returns the type of a collection. Possible values are:

e 2:document collection

e 3: edge collection

Get the Version of ArangoDB

db._version()

Returns the server version string. Note that this is not the version of the database.

Examples

arangosh> ("@arangodb").db._version();

Edges

Edges are normal documents that always containa _from and a _to attribute. Therefore, you can use the document methods to
operate on edges. The following methods, however, are specific to edges.

edge-collection.edges(vertex)

The edges operator finds all edges starting from (outbound) or ending in (inbound) vertex.

edge-collection.edges(vertices)

The edges operator finds all edges starting from (outbound) or ending in (inbound) a document from vertices, which must be a list of

documents or document handles.

arangosh> db._create("vertex");

arangosh> db._createEdgeCollection("relation");

arangosh> var myGraph = {};

arangosh> myGraph.vl = db.vertex.insert({ name : "vertex 1" });
arangosh> myGraph.v2 = db.vertex.insert({ name : "vertex 2" });
arangosh> myGraph.el = db.relation.insert(myGraph.v1, myGraph.v2,
........ > { label : "knows"});

arangosh> db._document (myGraph.el);

arangosh> db.relation.edges(myGraph.el._id);

show execution results
edge-collection.inEdges(vertex)

The edges operator finds all edges ending in (inbound) vertex.

edge-collection.inEdges(vertices)
The edges operator finds all edges ending in (inbound) a document from vertices, which must a list of documents or document handles.

Examples

arangosh> db._create("vertex");

arangosh> db._createEdgeCollection("relation");

arangosh> myGraph.vl = db.vertex.insert({ name : "vertex 1" });
arangosh> myGraph.v2 = db.vertex.insert({ name : "vertex 2" });
arangosh> myGraph.el = db.relation.insert(myGraph.vl, myGraph.v2,
........ > { label : "knows"});

arangosh> db._document(myGraph.el);

arangosh> db.relation.inEdges(myGraph.vil._id);

arangosh> db.relation.inEdges(myGraph.v2._id);

show execution results
edge-collection.outEdges(vertex)

The edges operator finds all edges starting from (outbound) vertices.

edge-collection.outEdges(vertices)

The edges operator finds all edges starting from (outbound) a document from vertices, which must a list of documents or document
handles.

Examples

arangosh> db._create("vertex");
arangosh> db._createEdgeCollection("relation");

arangosh> myGraph.vl = db.vertex.insert({ name : "vertex 1" });

arangosh> myGraph.v2 = db.vertex.insert({ name : "vertex 2" });

arangosh> myGraph.el = db.relation.insert(myGraph.v1, myGraph.v2,
........ > { label : "knows"});

arangosh> db._document (myGraph.el);

arangosh> db.relation.outEdges(myGraph.v1l._id);

arangosh> db.relation.outEdges(myGraph.v2._id);

show execution results

Misc
collection.iterate(iterator, options)

Iterates over some elements of the collection and apply the function iterator to the elements. The function will be called with the

document as first argument and the current number (starting with 0) as second argument.
options must be an object with the following attributes:
e [imit (optional, default none): use at most limit documents.

e probability (optional, default all): a number between 0 and 1. Documents are chosen with this probability.

Examples
arangosh> for (i = ;0 1<=090; 1+=10) {
........ > for (j = ;] <= ;o] +=10) {
........ > db.example.save({ name : "Name/" + i + "/" + j,
,,,,,,,, > home : [i, j 1,
,,,,,,,, > work : [-i, -3 1 3});
........ > 3}
........ > 1}
........ >

arangosh> db.example.ensureIndex({ type: "geo", fields: ["home"] });
arangosh> items = db.example.getIndexes().map(function(x) { return x.id; });
........ > db.example.index(items[1]);

show execution results

Database Methods

Document
db._document (object)

The _document method finds a document given an object object containing the _id attribute. The method returns the document if it can be

found.

An error is thrown if _rev is specified but the document found has a different revision already. An error is also thrown if no document

exists with the given _id.

Please note that if the method is executed on the arangod server (e.g. from inside a Foxx application), an immutable document object will
be returned for performance reasons. It is not possible to change attributes of this immutable object. To update or patch the returned
document, it needs to be cloned/copied into a regular JavaScript object first. This is not necessary if the _document method is called from

out of arangosh or from any other client.

db._document (document-handle)
As before. Instead of object a document-handle can be passed as first argument. No revision can be specified in this case.
Examples

Returns the document:

arangosh> db._document ("example/12345");

show execution results

Exists

db._exists(object)
The _exists method determines whether a document exists given an object object containing the _id attribute.
An error is thrown if _rev is specified but the document found has a different revision already.

Instead of returning the found document or an error, this method will only return an object with the attributes _id, _key and _rev, or false

if no document with the given _id or _key exists. It can thus be used for easy existence checks.

This method will throw an error if used improperly, e.g. when called with a non-document handle, a non-document, or when a cross-

collection request is performed.

db._exists(document-handle)

As before. Instead of object a document-handle can be passed as first argument.

Changes in 3.0 from 2.8:

In the case of a revision mismatch _exists now throws an error instead of simply returning false. This is to make it possible to tell the

difference between a revision mismatch and a non-existing document.

Replace
db._replace(selector, data)

Replaces an existing document described by the selector, which must be an object containing the _id attribute. There must be a document
with that _id in the current database. This document is then replaced with the data given as second argument. Any attribute _id, _key or

_rev in data is ignored.

The method returns a document with the attributes _id, _key, _rev and _oldRev. The attribute _id contains the document handle of the
updated document, the attribute _rev contains the document revision of the updated document, the attribute _oldRev contains the

revision of the old (now replaced) document.

If the selector contains a _rev attribute, the method first checks that the specified revision is the current revision of that document. If not,

there is a conflict, and an error is thrown.

collection.replace(selector, data, options)

As before, but options must be an object that can contain the following boolean attributes:

e waitForSync: One can force synchronization of the document creation operation to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e overwrite: If this flag is set to true, a _rev attribute in the selector is ignored.

e returnNew: If this flagis set to true, the complete new document is returned in the output under the attribute new.

e returnOld: If this flag is set to true, the complete previous revision of the document is returned in the output under the attribute old.

o silent: If this flag is set to true, no output is returned.
db._replace(document-handle, data)

db._replace(document-handle, data, options)
As before. Instead of selector a document-handle can be passed as first argument. No revision precondition is tested.
Examples

Create and replace a document:

arangosh> al = db.example.insert({ a : });
arangosh> a2 = db._replace(al, { a : });
arangosh> a3 = db._replace(al, { a : 1)

show execution results

Changes in 3.0 from 2.8:

The options silent, returnNew and returnOld are new.

Update

db._update(selector, data)

Updates an existing document described by the selector, which must be an object containing the _id attribute. There must be a document
with that _id in the current database. This document is then patched with the data given as second argument. Any attribute _id, _key or

_rev in data is ignored.

The method returns a document with the attributes _id, _key, _rev and _oldRev. The attribute _id contains the document handle of the
updated document, the attribute _rev contains the document revision of the updated document, the attribute _oldRev contains the

revision of the old (now updated) document.

If the selector contains a _rev attribute, the method first checks that the specified revision is the current revision of that document. If not,

there is a conflict, and an error is thrown.

db._update(selector, data, options)
As before, but options must be an object that can contain the following boolean attributes:

e waitForSync: One can force synchronization of the document creation operation to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e overwrite: If this flag is set to true, a _rev attribute in the selector is ignored.

e returnNew: If this flag is set to true, the complete new document is returned in the output under the attribute new.

e returnOld: If this flag is set to true, the complete previous revision of the document is returned in the output under the attribute old.

o silent: If this flag is set to true, no output is returned.

o keepNull: The optional keepNull parameter can be used to modify the behavior when handling null values. Normally, null values are
stored in the database. By setting the keepNull parameter to false, this behavior can be changed so that all attributes in data with null
values will be removed from the target document.

e mergeObjects: Controls whether objects (not arrays) will be merged if present in both the existing and the patch document. If set to
false, the value in the patch document will overwrite the existing document's value. If set to true, objects will be merged. The default
is true.

db._update(document-handle, data)

db._update(document-handle, data, options)
As before. Instead of selector a document-handle can be passed as first argument. No revision precondition is tested.
Examples

Create and update a document:

arangosh> al = db.example.insert({ a : });
arangosh> a2 = db._update(ail, { b : });
arangosh> a3 = db._update(ail, { c : 1)

show execution results

Changes in 3.0 from 2.8:

The options silent, returnNew and returnOld are new.

Remove
db._remove(selector)

Removes a document described by the selector, which must be an object containing the _id attribute. There must be a document with that

_id in the current database. This document is then removed.

The method returns a document with the attributes _id, _key and _rev. The attribute _id contains the document handle of the removed

document, the attribute _rev contains the document revision of the removed eocument.
If the selector contains a _rev attribute, the method first checks that the specified revision is the current revision of that document. If not,
there is a conflict, and an error is thrown.

db._remove(selector, options)

As before, but options must be an object that can contain the following boolean attributes:

e waitForSync: One can force synchronization of the document creation operation to disk even in case that the waitForSync flag is
been disabled for the entire collection. Thus, the waitForSync option can be used to force synchronization of just specific
operations. To use this, set the waitForSync parameter to true. If the waitForSync parameter is not specified or set to false, then the
collection's default waitForSync behavior is applied. The waitForSync parameter cannot be used to disable synchronization for
collections that have a default waitForSync value of true.

e overwrite: If this flag is set to true, a _rev attribute in the selector is ignored.

e returnOld: If this flag is set to true, the complete previous revision of the document is returned in the output under the attribute old.

o silent: If this flag is set to true, no output is returned.
db._remove(document-handle)

db._remove(document-handle, options)
As before. Instead of selector a document-handle can be passed as first argument. No revision check is performed.
Examples

Remove a document:

arangosh> al = db.example.insert({ a : });

arangosh> db._remove(al);
arangosh> db._remove(al);
arangosh> db._remove(al, {overwrite: });

show execution results

Remove the document in the revision a1 with a conflict:

arangosh> al = db.example.insert({ a : B2
arangosh> a2 = db._replace(al, { a : });
arangosh> db._remove(al);

arangosh> db._remove(al, {overwrite: }),
arangosh> db._document(al);

show execution results

Remove a document using new signature:
arangosh> db.example.insert({ _key: "11265325374", a: }),

arangosh> db.example.remove('"example/11265325374",
........ > { overwrite: , waitForSync: 1)

show execution results

Changes in 3.0 from 2.8:

The method now returns not only true but information about the removed document(s). The options silent and returnOld are new.

Graphs, Vertices & Edges

Graphs, vertices & edges are defined in the Graphs chapter in details.
Related blog posts:

e Graphs in data modeling - is the emperor naked?

e Index Free Adjacency or Hybrid Indexes for Graph Databases

https://medium.com/@neunhoef/graphs-in-data-modeling-is-the-emperor-naked-2e65e2744413#.x0a5z66ji
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/

Naming Conventions in ArangoDB

The following naming conventions should be followed by users when creating databases, collections and documents in ArangoDB.

Database Names

ArangoDB will always start up with a default database, named _system. Users can create additional databases in ArangoDB, provided the

database names conform to the following constraints:

e Database names must only consist of the letters a to z (both lower and upper case allowed), the numbers 0 to 9, and the underscore
(1) or dash (-) symbols This also means that any non-ASCII database names are not allowed

e Database names must always start with a letter. Database names starting with an underscore are considered to be system databases,
and users should not create or delete those

e The maximum allowed length of a database name is 64 bytes

e Database names are case-sensitive

Collection Names

Users can pick names for their collections as desired, provided the following naming constraints are not violated:

e Collection names must only consist of the letters a to z (both in lower and upper case), the numbers 0 to 9, and the underscore (_)
or dash (-) symbols. This also means that any non-ASCII collection names are not allowed

e User-defined collection names must always start with a letter. System collection names must start with an underscore. All collection
names starting with an underscore are considered to be system collections that are for ArangoDB's internal use only. System
collection names should not be used by end users for their own collections

e The maximum allowed length of a collection name is 64 bytes

e Collection names are case-sensitive

Document Keys

Users can define their own keys for documents they save. The document key will be saved along with a document in the _key attribute.

Users can pick key values as required, provided that the values conform to the following restrictions:

e The key must be a string value. Numeric keys are not allowed, but any numeric value can be put into a string and can then be used as
document key.

e The key must be at least 1 byte and at most 254 bytes long. Empty keys are disallowed when specified (though it may be valid to
completely omit the _key attribute from a document)

e It must consist of the letters a-z (lower or upper case), the digits 0-9 or any of the following punctuation characters: _ -

I BPDEBE BBEDEEE

e Any other characters, especially multi-byte UTF-8 sequences, whitespace or punctuation characters cannot be used inside key

values

e The key must be unique within the collection it is used
Keys are case-sensitive, i.e. myKey and MyKEY are considered to be different keys.

Specifying a document key is optional when creating new documents. If no document key is specified by the user, ArangoDB will create

the document key itself as each document is required to have a key.

There are no guarantees about the format and pattern of auto-generated document keys other than the above restrictions. Clients should

therefore treat auto-generated document keys as opaque values and not rely on their format.

The current format for generated keys is a string containing numeric digits. The numeric values reflect chronological time in the sense that
_key values generated later will contain higher numbers than _key values generated earlier. But the exact value that will be generated by
the server is not predictable. Note that if you sort on the _key attribute, string comparison will be used, which means "1ee" is less than

"99" etc.

Attribute Names

Users can pick attribute names for document attributes as desired, provided the following attribute naming constraints are not violated:

e Attribute names starting with an underscore are considered to be system attributes for ArangoDB's internal use. Such attribute

names are already used by ArangoDB for special purposes:

o _idis used to contain a document's handle

[e]

_key is used to contain a document's user-defined key

o _rev is used to contain the document's revision number

o In edge collections, the
m _from
m _(o

attributes are used to reference other documents.

More system attributes may be added in the future without further notice so end users should try to avoid using their own attribute

names starting with underscores.

e Theoretically, attribute names can include punctuation and special characters as desired, provided the name is a valid UTF-8 string.
For maximum portability, special characters should be avoided though. For example, attribute names may contain the dot symbol,
but the dot has a special meaning in JavaScript and also in AQL, so when using such attribute names in one of these languages, the
attribute name needs to be quoted by the end user. Overall it might be better to use attribute names which don't require any
quoting/escaping in all languages used. This includes languages used by the client (e.g. Ruby, PHP) if the attributes are mapped to

object members there.

e Attribute names starting with an at-mark (@) will need to be enclosed in backticks when used in an AQL query to tell them apart
from bind variables. Therefore we do not encourage the use of attributes starting with at-marks, though they will work when used
properly.

e ArangoDB does not enforce a length limit for attribute names. However, long attribute names may use more memory in result sets
etc. Therefore the use of long attribute names is discouraged.

e Attribute names are case-sensitive.

e Attributes with empty names (an empty string) are disallowed.

Handling Indexes

This is an introduction to ArangoDB's interface for indexes in general.

There are special sections for

e Index Basics: Introduction to all index types
e Which index to use when: Index type and options adviser
e Index Utilization: How ArangoDB uses indexes
e Working with Indexes: How to handle indexes programmatically using the db object
o Hash Indexes
o Skiplists
o Persistent Indexes
o Fulltext Indexes
o Geo-spatial Indexes

o Vertex-centric Indexes

Index basics

Indexes allow fast access to documents, provided the indexed attribute(s) are used in a query. While ArangoDB automatically indexes

some system attributes, users are free to create extra indexes on non-system attributes of documents.

User-defined indexes can be created on collection level. M ost user-defined indexes can be created by specifying the names of the index
attributes. Some index types allow indexing just one attribute (e.g. fulltext index) whereas other index types allow indexing multiple

attributes at the same time.

The system attributes _id , _key , _from and _to are automatically indexed by ArangoDB, without the user being required to create

extra indexes for them. _id and _key are covered by a collection's primary key, and _from and _to are covered by an edge

collection's edge index automatically.
Using the system attribute _id in user-defined indexes is not possible, but indexing _key , _rev, _from,and _to is.

ArangoDB provides the following index types:

Primary Index

For each collection there will always be a primary index which is a hash index for the document keys (_key attribute) of all documents
in the collection. The primary index allows quick selection of documents in the collection using either the _key or _id attributes. It

will be used from within AQL queries automatically when p erforming equality lookups on _key or _id .

There are also dedicated functions to find a document given its _key or _id that will always make use of the primary index:

db.collection.document("<document-key>");
db._document ("<document-id>");

As the primary index is an unsorted hash index, it cannot be used for non-equality range queries or for sorting.

The primary index of a collection cannot be dropped or changed, and there is no mechanism to create user-defined primary indexes.

Edge Index

Every edge collection also has an automatically created edge index. The edge index provides quick access to documents by either their
_from or _to attributes. It can therefore be used to quickly find connections between vertex documents and is invoked when the

connecting edges of a vertex are queried.

Edge indexes are used from within AQL when performing equality lookups on _from or _to values in an edge collections. There are

also dedicated functions to find edges given their _from or _to values that will always make use of the edge index:

db.collection.edges("<from-value>");
db.collection.edges("<to-value>");
db.collection.outEdges("<from-value>");
db.collection.outEdges("<to-value>");
db.collection.inEdges("<from-value>");
db.collection.inEdges("<to-value>");

Internally, the edge index is implemented as a hash index, which stores the union of all _from and _to attributes. It can be used for
equality lookups, but not for range queries or for sorting. Edge indexes are automatically created for edge collections. It is not possible to

create user-defined edge indexes. However, it is possible to freely use the _from and _to attributes in user-defined indexes.

An edge index cannot be dropped or changed.

Hash Index

A hash index can be used to quickly find documents with specific attribute values. The hash index is unsorted, so it supports equality

lookups but no range queries or sorting.

A hash index can be created on one or multiple document attributes. A hash index will only be used by a query if all index attributes are
present in the search condition, and if all attributes are compared using the equality (==) operator. Hash indexes are used from within

AQL and several query functions, e.g. byExample , firstExample etc.

Hash indexes can optionally be declared unique, then disallowing saving the same value(s) in the indexed attribute(s). Hash indexes can

optionally be sparse.
The different types of hash indexes have the following characteristics:

e unique hash index: all documents in the collection must have different values for the attributes covered by the unique index.

Trying to insert a document with the same key value as an already existing document will lead to a unique constraint violation.

This type of index is not sparse. Documents that do not contain the index attributes or that have a value of null in the index
attribute(s) will still be indexed. A key value of null may only occur once in the index, so this type of index cannot be used for

optional attributes.

The unique option can also be used to ensure that no duplicate edges are created, by adding a combined index for the fields _from

and _to to an edge collection.

e unique, sparse hash index: all documents in the collection must have different values for the attributes covered by the unique
index. Documents in which at least one of the index attributes is not set or has a value of null are not included in the index. This
type of index can be used to ensure that there are no duplicate keys in the collection for documents which have the indexed
attributes set. As the index will exclude documents for which the indexed attributes are null or not set, it can be used for optional
attributes.

e non-unique hash index: all documents in the collection will be indexed. This type of index is not sparse. Documents that do not
contain the index attributes or that have a value of null in the index attribute(s) will still be indexed. Duplicate key values can

occur and do not lead to unique constraint violations.

e non-unique, sparse hash index: only those documents will be indexed that have all the indexed attributes set to a value other than

null . It can be used for optional attributes.
The amortized complexity of lookup, insert, update, and removal operations in unique hash indexes is O(1).

Non-unique hash indexes have an amortized complexity of O(1) for insert, update, and removal operations. That means non-unique hash
indexes can be used on attributes with low cardinality.

If a hash index is created on an attribute that is missing in all or many of the documents, the behavior is as follows:

e if the index is sparse, the documents missing the attribute will not be indexed and not use index memory. These documents will not

influence the update or removal performance for the index.
e if the index is non-sparse, the documents missing the attribute will be contained in the index with a key value of nu1l .

Hash indexes support indexing array values if the index attribute name is extended with a [*].

Skiplist Index

A skiplist is a sorted index structure. It can be used to quickly find documents with specific attribute values, for range queries and for
returning documents from the index in sorted order. Skiplists will be used from within AQL and several query functions, e.g. byExample ,

firstExample etc.

Skiplist indexes will be used for lookups, range queries and sorting only if either all index attributes are provided in a query, or if a

leftmost prefix of the index attributes is specified.

For example, if a skiplist index is created on attributes value1 and value2 , the following filter conditions can use the index (note: the

<= and >= operators are intentionally omitted here for the sake of brevity):

FILTER doc.valuel == ...
FILTER doc.valuel < ...
FILTER doc.valuel > ...

FILTER doc.valuel > ... && doc.valuel < ...
FILTER doc.valuel == ... && doc.value2 == ...
FILTER doc.valuel == ... && doc.value2 > ...

FILTER doc.valuel == ... && doc.value2 > ... && doc.value2 < ...

In order to use a skiplist index for sorting, the index attributes must be specified in the sorT clause of the query in the same order as
they appear in the index definition. Skiplist indexes are always created in ascending order, but they can be used to access the indexed
elements in both ascending or descending order. However, for a combined index (an index on multiple attributes) this requires that the sort
orders in a single query as specified in the sorT clause must be either all ascending (optionally ommitted as ascending is the default) or

all descending.

For example, if the skiplist index is created on attributes valuei and value2 (in this order), then the following sorts clauses can use

the index for sorting:

® SORT valuel ASC, value2 ASC (and its equivalent SORT valuel, value2)
® SORT valuel DESC, value2 DESC
® SORT valuel AsC (and its equivalent SORT valuel)

® SORT valuel DESC
The following sort clauses cannot make use of the index order, and require an extra sort step:

® SORT valuel ASC, value2 DESC
® SORT valuel DESC, value2 ASC
® SORT value2 (and its equivalent SORT value2 ASC)

e SORT value2 DESC (because first indexed attribute valuei is not used in sort clause)
Note: the latter two sort clauses cannot use the index because the sort clause does not refer to a leftmost prefix of the index attributes.
Skiplists can optionally be declared unique, disallowing saving the same value in the indexed attribute. They can be sparse or non-sparse.
The different types of skiplist indexes have the following characteristics:

e unique skiplist index: all documents in the collection must have different values for the attributes covered by the unique index.

Trying to insert a document with the same key value as an already existing document will lead to a unique constraint violation.

This type of index is not sparse. Documents that do not contain the index attributes or that have a value of null in the index
attribute(s) will still be indexed. A key value of null may only occur once in the index, so this type of index cannot be used for

optional attributes.

e unique, sparse skiplist index: all documents in the collection must have different values for the attributes covered by the unique
index. Documents in which at least one of the index attributes is not set or has a value of null are not included in the index. This
type of index can be used to ensure that there are no duplicate keys in the collection for documents which have the indexed
attributes set. As the index will exclude documents for which the indexed attributes are null or not set, it can be used for optional

attributes.

e non-unique skiplist index: all documents in the collection will be indexed. This type of index is not sparse. Documents that do not
contain the index attributes or that have a value of null in the index attribute(s) will still be indexed. Duplicate key values can

occur and do not lead to unique constraint violations.

e non-unique, sparse skiplist index: only those documents will be indexed that have all the indexed attributes set to a value other

than null . It can be used for optional attributes.
The operational amortized complexity for skiplist indexes is logarithmically correlated with the number of documents in the index.

Skiplist indexes support indexing array values if the index attribute name is extended with a [*]".

Persistent Index

The persistent index is a sorted index with persistence. The index entries are written to disk when documents are stored or updated. That
means the index entries do not need to be rebuilt from the collection data when the server is restarted or the indexed collection is initially

loaded. Thus using persistent indexes may reduce collection loading times.

The persistent index type can be used for secondary indexes at the moment. That means the persistent index currently cannot be made
the only index for a collection, because there will always be the in-memory primary index for the collection in addition, and potentially

more indexes (such as the edges index for an edge collection).

The index imp lementation is using the RocksDB engine, and it provides logarithmic complexity for insert, update, and remove operations.
As the persistent index is not an in-memory index, it does not store pointers into the primary index as all the in-memory indexes do, but

instead it stores a document's primary key. To retrieve a document via a persistent index via an index value lookup, there will therefore be

an additional O(1) lookup into the primary index to fetch the actual document.

As the persistent index is sorted, it can be used for point lookups, range queries and sorting op erations, but only if either all index

attributes are provided in a query, or if a leftmost prefix of the index attributes is specified.

Geo Index

Users can create additional geo indexes on one or multiple attributes in collections. A geo index is used to find places on the surface of the
earth fast.

The geo index stores two-dimensional coordinates. It can be created on either two separate document attributes (latitude and longitude) or

a single array attribute that contains both latitude and longitude. Latitude and longitude must be numeric values.

The geo index provides operations to find documents with coordinates nearest to a given comparison coordinate, and to find documents

with coordinates that are within a specifiable radius around a comparison coordinate.

The geo index is used via dedicated functions in AQL, the simple queries functions and it is implicitly applied when in AQL a SORT or

FILTER is used with the distance function. Otherwise it will not be used for other types of queries or conditions.

Fulltext Index

A fulltext index can be used to find words, or prefixes of words inside documents. A fulltext index can be created on a single attribute
only, and will index all words contained in documents that have a textual value in that attribute. Only words with a (specifiable) minimum
length are indexed. Word tokenization is done using the word boundary analysis provided by libicu, which is taking into account the
selected language provided at server start. Words are indexed in their lower-cased form. The index supports complete match queries (full

words) and prefix queries, plus basic logical operations such as and , or and not for combining partial results.

The fulltext index is sparse, meaning it will only index documents for which the index attribute is set and contains a string value.

Additionally, only words with a configurable minimum length will be included in the index.

The fulltext index is used via dedicated functions in AQL or the simple queries, but will not be enabled for other types of queries or

conditions.

Indexing attributes and sub-attributes

Top-level as well as nested attributes can be indexed. For attributes at the top level, the attribute names alone are required. To index a
single field, pass an array with a single element (string of the attribute key) to the fields parameter of the ensurelndex() method. To create

a combined index over multiple fields, simply add more members to the fields array:

// { name: "Smith", age: 35 }
db.posts.ensureIndex({ type: "hash", fields: ["name"] })
db.posts.ensureIndex({ type: "hash", fields: ["name", "age"] })

To index sub-attributes, specify the attribute path using the dot notation:

// { name: {last: "Smith", first: "John" } }
db.posts.ensureIndex({ type: "hash", fields: ["name.last"] })
db.posts.ensureIndex({ type: "hash", fields: ["name.last", "name.first"] })

Indexing array values

If an index attribute contains an array, ArangoDB will store the entire array as the index value by default. Accessing individual members

of the array via the index is not possible this way.

To make an index insert the individual array members into the index instead of the entire array value, a special array index needs to be
created for the attribute. Array indexes can be set up like regular hash or skiplist indexes using the collection.ensureIndex() function.
To make a hash or skiplist index an array index, the index attribute name needs to be extended with [*] when creating the index and when

filtering in an AQL query using the IN operator.

The following example creates an array hash index on the tags attribute in a collection named posts :

db.posts.ensureIndex({ type: "hash", fields: ["tags[*]" 1 });
db.posts.insert({ tags: ["foobar", "baz", "quux"] });

This array index can then be used for looking up individual tags values from AQL queries via the 1IN operator:

FOR doc IN posts
FILTER 'foobar' IN doc.tags
RETURN doc

It is possible to add the array expansion operator [*], but it is not mandatory. You may use it to indicate that an array index is used, it is

purely cosmetic however:

FOR doc IN posts
FILTER 'foobar' IN doc.tags[*]
RETURN doc

The following FILTER conditions will not use the array index:

FILTER doc.tags ANY == 'foobar'
FILTER doc.tags ANY IN 'foobar'
FILTER doc.tags IN 'foobar'
FILTER doc.tags == 'foobar'
FILTER 'foobar' == doc.tags

It is also possible to create an index on subattributes of array values. This makes sense if the index attribute is an array of objects, e.g.

db.posts.ensureIndex({ type: "hash", fields: ["tags[*].name"] });
db.posts.insert({ tags: [{ name: "foobar" }, { name: "baz" }, { name: "quux" }] });

The following query will then use the array index (this does require the array expansion operator):

FOR doc IN posts
FILTER 'foobar' IN doc.tags[*].name
RETURN doc

If you store a document having the array which does contain elements not having the subattributes this document will also be indexed

with the value null , which in ArangoDB is equal to attribute not existing,

ArangoDB supports creating array indexes with a single [*] operator per index attribute. For example, creating an index as follows is not

supported:

db.posts.ensureIndex({ type: "hash", fields: ["tags[*].name[*].value"] });

Array values will automatically be de-duplicated before being inserted into an array index. For example, if the following document is

inserted into the collection, the duplicate array value bar will be inserted only once:

db.posts.insert({ tags: ["foobar", "bar", "bar"] });

This is done to avoid redudant storage of the same index value for the same document, which would not provide any benefit.

If an array index is declared unique, the de-duplication of array values will happen before inserting the values into the index, so the above

insert operation with two identical values bar will not necessarily fail

It will always fail if the index already contains an instance of the bar value. However, if the value bar is not already present in the

index, then the de-duplication of the array values will effectively lead to bar being inserted only once.

To turn off the deduplication of array values, it is possible to set the deduplicate attribute on the array indexto false . The default

value for deduplicate is true however, so de-duplication will take place if not explicitly turned off.

db.posts.ensureIndex({ type: "hash", fields: ["tags[*]"], deduplicate: 1)

// will fail now
db.posts.insert({ tags: ["foobar", "bar", "bar"] });

If an array index is declared and you store documents that do not have an array at the specified attribute this document will not be

inserted in the index. Hence the following objects will not be indexed:

db.posts.ensureIndex({ type: "hash", fields: ["tags[*]" 1 });
db.posts.insert({ something: "else" });

db.posts.insert({ tags: 1)

db.posts.insert({ tags: "this is no array" });
db.posts.insert({ tags: { content: [1, 2, 3] } });

An array index is able to index explicit null values. When queried for null values, it will only return those documents having

explicitly null stored in the array, it will not return any documents that do not have the array at all.

db.posts.ensureIndex({ type: "hash", fields: ["tags[*]" 1 });
db.posts.insert({tags: }) // Will not be indexed

db.posts.insert({tags: []1}) // will not be indexed

db.posts.insert({tags: [1}); // Will be indexed for null
db.posts.insert({tags: [, 1, 21}); // will be indexed for null, 1 and 2

Declaring an array index as sparse does not have an effect on the array part of the index, this in particular means that explicit null
values are also indexed in the sparse version. If an index is combined from an array and a normal attribute the sparsity will apply for the
attribute e.g.:

db.posts.ensureIndex({ type: "hash", fields: ["tags[*]", "name"], sparse: IH
db.posts.insert({tags: , hame: "alice"}) // Will not be indexed
db.posts.insert({tags: [], name: "alice"}) // Will not be indexed
db.posts.insert({tags: [1, 2, 3]}) // Will not be indexed

db.posts.insert({tags: [1, 2, 3], name: }) // will not be indexed
db.posts.insert({tags: [1, 2, 3], name: "alice"})

// Will be indexed for [1, "alice"], [2, "alice"], [3, "alice"]
db.posts.insert({tags: [1, name: "bob"})

// Will be indexed for [null, "bob"]

Please note that filtering using array indexes only works from within AQL queries and only if the query filters on the indexed attribute
using the 1IN operator. The other comparison operators (==, !=, >, >=, <, <=, ANY, ALL, NONE) currently cannot use

array indexes.

Vertex centric indexes

As mentioned above, the most important indexes for graphs are the edge indexes, indexing the _from and _to attributes of edge
collections. They provide very quick access to all edges originating in or arriving at a given vertex, which allows to quickly find all

neighbours of a vertex in a graph.

In many cases one would like to run more specific queries, for example finding amongst the edges originating in a given vertex only those
with the 20 latest time stamps. Exactly this is achieved with "vertex centric indexes". In a sense these are localized indexes for an edge

collection, which sit at every single vertex.

Technically, they are implemented in ArangoDB as indexes, which sort the complete edge collection first by _from and then by other
attributes. If we for example have a skiplist index on the attributes _from and timestamp of an edge collection, we can answer the

above question very quickly with a single range lookup in the index.

Since ArangoDB 3.0 one can create sorted indexes (type "skiplist" and "persistent") that index the special edge attributes _from or
_to and additionally other attributes. Since ArangoDB 3.1, these are used in graph traversals, when appropriate FILTER statements

are found by the optimizer.

For example, to create a vertex centric index of the above type, you would simply do

db.edges.ensureIndex({"type":"skiplist", "fields": ["_from", "timestamp"]});

Then, queries like

FOR v, e, p IN OUTBOUND "V/1'" edges
FILTER e.timestamp ALL >= "2016-11-09"
RETURN p

will be considerably faster in case there are many edges originating in vertex "v/1" but only few with a recent time stamp.

Which Index to use when

ArangoDB automatically indexes the _key attribute in each collection. There is no need to index this attribute separately. Please note

that a document's _id attribute is derived from the _key attribute, and is thus implicitly indexed, too.

ArangoDB will also automatically create an indexon _from and _to inany edge collection, meaning incoming and outgoing
connections can be determined efficiently.

Index types

Users can define additional indexes on one or multiple document attributes. Several different index types are provided by ArangoDB.

These indexes have different usage scenarios:

e hash index: provides quick access to individual documents if (and only if) all indexed attributes are provided in the search query. The

index will only be used for equality comparisons. It does not support range queries and cannot be used for sorting,

The hash index is a good candidate if all or most queries on the indexed attribute(s) are equality comparisons. The unique hash index
provides an amortized complexity of O(1) for insert, update, remove and lookup operations. The non-unique hash index provides
O(1) inserts, updates and removes, and will allow looking up documents by index value with amortized O(n) comp lexity, with n
being the number of documents with that index value.

A non-unique hash index on an optional document attribute should be declared sparse so that it will not index documents for which
the index attribute is not set.

e skiplist index: skiplists keep the indexed values in an order, so they can be used for equality lookups, range queries and for sorting.
For high selectivity attributes, skiplist indexes will have a higher overhead than hash indexes. For low selectivity attributes, skiplist

indexes will be more efficient than non-unique hash indexes.

Additionally, skiplist indexes allow more use cases (e.g. range queries, sorting) than hash indexes. Furthermore, they can be used for
lookups based on a leftmost prefix of the index attributes.

e persistent index: a persistent index behaves much like the sorted skiplist index, except that all index values are persisted on disk and
do not need to be rebuilt in memory when the server is restarted or the indexed collection is reloaded. The operations in a persistent
index have logarithmic complexity, but operations have may have a higher constant factor than the operations in a skiplist index,

because the persistent index may need to make extra roundtrips to the primary index to fetch the actual documents.

A persistent index can be used for equality lookups, range queries and for sorting, For high selectivity attributes, persistent indexes

will have a higher overhead than skiplist or hash indexes.

Persistent indexes allow more use cases (e.g. range queries, sorting) than hash indexes. Furthermore, they can be used for lookups
based on a leftmost prefix of the index attributes. In contrast to the in-memory skiplist indexes, persistent indexes do not need to be

rebuilt in-memory so they don't influence the loading time of collections as other in-memory indexes do.

e geo index: the geo index provided by ArangoDB allows searching for documents within a radius around a two-dimensional earth
coordinate (point), or to find documents with are closest to a point. Document coordinates can either be specified in two different

document attributes or in a single attribute, e.g.

{ "latitude": 50.9406645, "longitude": 6.9599115 }

or

{ "coords": [50.9406645, 6.9599115] }

Geo indexes will be invoked via special functions or AQL optimization. The optimization can be triggered when a collection with

geo index is enumerated and a SORT or FILTER statement is used in conjunction with the distance function.

o fulltext index: a fulltext index can be used to index all words contained in a specific attribute of all documents in a collection. Only
words with a (specifiable) minimum length are indexed. Word tokenization is done using the word boundary analysis provided by

libicu, which is taking into account the selected language provided at server start.

The index supports complete match queries (full words) and prefix queries. Fulltext indexes will only be invoked via special

functions.

Sparse vs. non-sparse indexes

Hash indexes and skiplist indexes can optionally be created sparse. A sparse index does not contain documents for which at least one of
the index attribute is not set or contains a value of null .

As such documents are excluded from sparse indexes, they may contain fewer documents than their non-sparse counterparts. This
enables faster indexing and can lead to reduced memory usage in case the indexed attribute does occur only in some, but not all documents
of the collection. Sparse indexes will also reduce the number of collisions in non-unique hash indexes in case non-existing or optional
attributes are indexed.

In order to create a sparse index, an object with the attribute sparse can be added to the index creation commands:

db.collection.ensureIndex({ type: "hash", fields: ["attributeName"], sparse: 1

db.collection.ensureIndex({ type: "hash", fields: ["attributeNamel", "attributeName2"], sparse: 1
db.collection.ensureIndex({ type: "hash", fields: ["attributeName"], unique: , sparse: 1)
db.collection.ensureIndex({ type: "hash", fields: ["attributeNamel", "attributeName2"], unique: , sparse: 1)
db.collection.ensureIndex({ type: "skiplist", fields: ["attributeName"], sparse: 1)

db.collection.ensureIndex({ type: "skiplist", fields: ["attributeNamel", "attributeName2"], sparse: IH
db.collection.ensureIndex({ type: "skiplist", fields: ["attributeName"], unique: , sparse: 1)
db.collection.ensureIndex({ type: "skiplist", fields: ["attributeNamel", "attributeName2"], unique: , sparse: 1)

When not explicitly set, the sparse attribute defaults to false for new indexes. Other indexes than hash and skiplist do not support

sparsity.

As sparse indexes may exclude some documents from the collection, they cannot be used for all types of queries. Sparse hash indexes
cannot be used to find documents for which at least one of the indexed attributes has a value of null . For example, the following AQL

query cannot use a sparse index, even if one was created on attribute attr :

FOR doc In collection
FILTER doc.attr == null
RETURN doc

If the lookup value is non-constant, a sparse index may or may not be used, depending on the other types of conditions in the query. If
the optimizer can safely determine that the lookup value cannot be null , a sparse index may be used. When uncertain, the optimizer

will not make use of a sparse index in a query in order to produce correct results.

For example, the following queries cannot use a sparse indexon attr because the optimizer will not know beforehand whether the

values which are compared to doc.attr will include null :

FOR doc In collection
FILTER doc.attr == SOME_FUNCTION(...)
RETURN doc

FOR other IN otherCollection
FOR doc In collection
FILTER doc.attr == other.attr
RETURN doc

Sparse skiplist indexes can be used for sorting if the optimizer can safely detect that the index range does not include null for any of
the index attributes.

Note that if you intend to use joins it may be clever to use non-sparsity and maybe even uniqueness for that attribute, else all items

containing the null value will match against each other and thus produce large results.

Index Utilization

In most cases ArangoDB will use a single index per collection in a given query. AQL queries can use more than one index per collection
when multiple FILTER conditions are combined with a logical or and these can be covered by indexes. AQL queries will use a single

index per collection when FILTER conditions are combined with logical anp .

Creating multiple indexes on different attributes of the same collection may give the query optimizer more choices when picking an index.
Creating multiple indexes on different attributes can also help in speeding up different queries, with FILTER conditions on different

attributes.

It is often beneficial to create an index on more than just one attribute. By adding more attributes to an index, an index can become more

selective and thus reduce the number of documents that queries need to process.

ArangoDB's primary indexes, edges indexes and hash indexes will automatically provide selectivity estimates. Index selectivity estimates

are provided in the web interface, the getindexes() return value and in the explain() output for a given query.

The more selective an index is, the more documents it will filter on average. The index selectivity estimates are therefore used by the
optimizer when creating query execution plans when there are multiple indexes the optimizer can choose from. The optimizer will then
select a combination of indexes with the lowest estimated total cost. In general, the optimizer will pick the indexes with the highest

estimated selectivity.

Sparse indexes may or may not be picked by the optimizer in a query. As sparse indexes do not contain null values, they will not be
used for queries if the optimizer cannot safely determine whether a FILTER condition includes null values for the index attributes. The
optimizer policy is to produce correct results, regardless of whether or which index is used to satisfy FILTER conditions. If it is unsure

about whether using an index will violate the policy, it will not make use of the index.

Troubleshooting

When in doubt about whether and which indexes will be used for executing a given AQL query, click the Explain button in the web

interface in the Queries view or use the explain() method for the statement as follows (from the ArangoShell):

var query = "FOR doc IN collection FILTER doc.value > 42 RETURN doc";
var stmt = db._createStatement(query);
stmt.explain();

The explain() command will return a detailed JSON representation of the query's execution plan. The JSON explain output is intended

to be used by code. To get a human-readable and much more compact exp lanation of the query, there is an explainer tool:

var query = "FOR doc IN collection FILTER doc.value > 42 RETURN doc";
("@arangodb/agl/explainer").explain(query);

If any of the explain methods shows that a query is not using indexes, the following steps may help:

e check if the attribute names in the query are correctly spelled. In a schema-free database, documents in the same collection can have
varying structures. There is no such thing as a non-existing attribute error. A query that refers to attribute names not present in any

of the documents will not return an error, and obviously will not benefit from indexes.

o check the return value of the getIndexes() method for the collections used in the query and validate that indexes are actually

present on the attributes used in the query's filter conditions.

e if indexes are present but not used by the query, the indexes may have the wrong type. For example, a hash index will only be used
for equality comparisons (i.e. ==) but not for other comparison types suchas <, <=, >, >=.Additionally hash indexes will
only be used if all of the index attributes are used in the query's FILTER conditions. A skiplist index will only be used if at least its
first attribute is used in a FILTER condition. If additionally of the skiplist index attributes are specified in the query (from left-to-

right), they may also be used and allow to filter more documents.

e using indexed attributes as function parameters or in arbitrary expressions will likely lead to the index on the attribute not being

used. For example, the following queries will not use an indexon value :

FOR doc IN collection FILTER TO_NUMBER(doc.value) == 42 RETURN doc
FOR doc IN collection FILTER doc.value - 1 == 42 RETURN doc

In these cases the queries should be rewritten so that only the index attribute is present on one side of the operator, or additional

filters and indexes should be used to restrict the amount of documents otherwise.

e certain AQL functions such as wiTHIN() or FULLTEXT() do utilize indexes internally, but their use is not mentioned in the query
explanation for functions in general. These functions will raise query errors (at runtime) if no suitable index is present for the

collection in question.

e the query optimizer will in general pick one index per collection in a query. It can pick more than one index per collection if the

FILTER condition contains multiple branches combined with logical or . For example, the following queries can use indexes:

FOR doc IN collection FILTER doc.valuel == 42 || doc.valuel == 23 RETURN doc
FOR doc IN collection FILTER doc.valuel == 42 || doc.value2 == 23 RETURN doc
FOR doc IN collection FILTER doc.valuel < 42 || doc.value2 > 23 RETURN doc

The two oR s in the first query will be converted to an 1N list, and if there is a suitable index on value1 , it will be used. The
second query requires two separate indexes on valuel and value2 and will use them if present. The third query can use the

indexes on valuel and value2 when they are sorted.

Working with Indexes

Index Identifiers and Handles

An index handle uniquely identifies an index in the database. It is a string and consists of the collection name and an index identifier

separated by a / . The index identifier part is a numeric value that is auto-generated by ArangoDB.

A specific index of a collection can be accessed using its index handle or index identifier as follows:

db.collection.index("<index-handle>");
db.collection.index("<index-identifier>");
db._index("<index-handle>");

For example: Assume that the index handle, which is stored in the _id attribute of the index, is demo/362549736 and the index was

created in a collection named demo . Then this index can be accessed as:

db.demo.index("demo/362549736");

Because the index handle is unique within the database, you can leave out the collection and use the shortcut:

db._index("demo/362549736");

Collection Methods

Listing all indexes of a collection

returns information about the indexes getIndexes()
Returns an array of all indexes defined for the collection.
Note that _key implicitly has an index assigned to it.
arangosh> db.test.ensureHashIndex("hashListAttribute",

........ > "hashListSecondAttribute.subAttribute");
arangosh> db.test.getIndexes();

show execution results

Creating an index

Indexes should be created using the general method ensurelndex. This method obsoletes the specialized index-sp ecific methods

ensureHashIndex, ensureSkiplist, ensureUniqueConstraint etc.

ensures that an index exists collection.ensureIndex(index-description)

Ensures that an index according to the index-description exists. A new index will be created if none exists with the given description.
The index-description must contain at least a type attribute. Other attributes may be necessary, depending on the index type.

type can be one of the following values:

e hash: hash index

e skiplist: skiplist index

o fulltext: fulltext index

® geol: geo index, with one attribute

e geo2: geo index, with two attributes

sparse can be true or false.
For hash, and skiplist the sparsity can be controlled, fulltext and geo are sparse by definition.
unique can be true or false and is supported by hash or skiplist

Calling this method returns an index object. Whether or not the index object existed before the call is indicated in the return attribute

isNewlyCreated.

deduplicate can be true or false and is supported by array indexes of type hash or skiplist. It controls whether inserting duplicate index
values from the same document into a unique array index will lead to a unique constraint error or not. The default value is true, so only a
single instance of each non-unique index value will be inserted into the index per document. Trying to insert a value into the index that

already exists in the index will always fail, regardless of the value of this attribute.

Examples
arangosh> db.test.ensureIndex({ type: "hash", fields: ["a"], sparse: });
arangosh> db.test.ensureIndex({ type: "hash", fields: ["a", "b"], unique: });

show execution results

Dropping an index

drops an index collection.dropIndex(index)

Drops the index. If the index does not exist, then false is returned. If the index existed and was dropped, then true is returned. Note that

you cannot drop some special indexes (e.g. the primary index of a collection or the edge index of an edge collection).
collection.dropIndex(index-handle)

Same as above. Instead of an index an index handle can be given.

arangosh> db.example.ensureSkiplist("a", "b");
arangosh> var indexInfo = db.example.getIndexes();
arangosh> indexInfo;

arangosh> db.example.dropIndex(indexInfo[0])
arangosh> db.example.dropIndex(indexInfo[1].1id)
arangosh> indexInfo = db.example.getIndexes();

show execution results

Load Indexes into Memory

Loads all indexes of this collection into Memory. collection.loadIndexesIntoMemory()

This function tries to cache all index entries of this collection into the main memory. Therefore it iterates over all indexes of the collection
and stores the indexed values, not the entire document data, in memory. All lookups that could be found in the cache are much faster than
lookups not stored in the cache so you get a nice performance boost. It is also guaranteed that the cache is consistent with the stored

data.
For the time being this function is only useful on RocksDB storage engine, as in M M Files engine all indexes are in memory anyways.

On RocksDB this function honors all memory limits, if the indexes you want to load are smaller than your memory limit this function
guarantees that most index values are cached. If the index is larger than your memory limit this function will fill up values up to this limit

and for the time being there is no way to control which indexes of the collection should have priority over others.

arangosh> db.example.loadIndexesIntoMemory();

{

"result"

Database Methods

Fetching an index by handle

finds an index db._index(index-handle)

Returns the index with index-handle or null if no such index exists.
arangosh> db.example.ensureIndex({ type: "skiplist", fields: ["a", "b" 1 });
arangosh> var indexInfo = db.example.getIndexes().map(function(x) { return x.id; });
arangosh> indexInfo;

arangosh> db._index(indexInfo[0])
arangosh> db._index(indexInfo[1])

show execution results

Dropping an index
drops an index db._dropIndex(index)

Drops the index. If the index does not exist, then false is returned. If the index existed and was dropped, then true is returned.
db._dropIndex(index-handle)
Drops the index with index-handle.
arangosh> db.example.ensureIndex({ type: '"skiplist", fields: ["a", "b" 1 });
arangosh> var indexInfo = db.example.getIndexes();
arangosh> indexInfo;
arangosh> db._dropIndex(indexInfo[0])

arangosh> db._dropIndex(indexInfo[1].id)
arangosh> indexInfo = db.example.getIndexes();

show execution results

Revalidating whether an index is used

finds an index
So you've created an index, and since its maintainance isn't for free, you definitely want to know whether your query can utilize it.

You can use explain to verify whether skiplists or hash indexes are used (if you omit colors: false you will get nice colors in
ArangoShell):

arangosh> var explain = ("@arangodb/agl/explainer").explain;
arangosh> db.example.ensureIndex({ type: "skiplist", fields: ["a", "b" 1 });
arangosh> explain("FOR doc IN example FILTER doc.a < 23 RETURN doc", {colors: 1),

show execution results

Hash Indexes

Introduction to Hash Indexes
It is possible to define a hash index on one or more attributes (or paths) of a document. This hash index is then used in queries to locate
documents in O(1) operations. If the hash index is unique, then no two documents are allowed to have the same set of attribute values.

Creating a new document or updating a document will fail if the uniqueness is violated. If the index is declared sparse, a document will be

excluded from the index and no uniqueness checks will be performed if any index attribute value is not set or has a value of null .

Accessing Hash Indexes from the Shell

Unique Hash Indexes

Ensures that a unique constraint exists: collection.ensureIndex({ type: "hash", fields: ["field1", ..., "fieldn"], unique: true })

Creates a unique hash index on all documents using fieldl, ... fieldn as attribute paths. At least one attribute path has to be given. The

index will be non-sparse by default.

All documents in the collection must differ in terms of the indexed attributes. Creating a new document or updating an existing document

will will fail if the attribute uniqueness is violated.

To create a sparse unique index, set the sparse attribute to true :

collection.ensureIndex({ type: "hash", fields: ["field1", ..., "fieldn"], unique: true, sparse: true })
In case that the index was successfully created, the index identifier is returned.

Non-existing attributes will default to null . In a sparse index all documents will be excluded from the index for which all specified index

attributes are null . Such documents will not be taken into account for uniqueness checks.

In a non-sparse index, all documents regardless of null - attributes will be indexed and will be taken into account for uniqueness

checks.

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.test.ensureIndex({ type: "hash", fields: ["a", "b.c"], unique: 1);
arangosh> db.test.save({ a : 1, b : { ¢ } 1)

arangosh> db.test.save({ a : 1, b : { ¢ : } 1)

arangosh> db.test.save({ a : 1, b : { ¢ } 1)

arangosh> db.test.save({ a : 1,

show execution results

Non-unique Hash Indexes

Ensures that a non-unique hash index exists: collection.ensureIndex({ type: "hash", fields: ["field1", ..., "fieldn"] })

Creates a non-unique hash index on all documents using field1, ... fieldn as attribute paths. At least one attribute path has to be given. The

index will be non-sparse by default.

To create a sparse unique index, set the sparse attribute to true :

collection.ensureIndex({ type: "hash", fields: ["field1", ..., "fieldn"], sparse: true })

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.test.ensureIndex({ type: "hash'", fields: ["a"] });
arangosh> db.test.save({ a : });

arangosh> db.test.save({ a : 1),
arangosh> db.test.save({ a : B8

show execution results

Hash Array Indexes

Ensures that a hash array index exists (non-unique): collection.ensureIndex({ type: "hash", fields: ["field1i[*]", ..., "fieldn[*]"]
b
Creates a non-unique hash array index for the individual elements of the array attributes field1[*], ... fieldn[*] found in the documents. At

least one attribute path has to be given. The index always treats the indexed arrays as sparse.

It is possible to combine array indexing with standard indexing: collection.ensureIndex({ type: "hash", fields: ["field1[*]",
"field2"] })

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.test.ensureIndex({ type: "hash", fields: ["a[*]" 1 });
arangosh> db.test.save({ a : [1, 13,

arangosh> db.test.save({ a : [1, 13,

arangosh> db.test.save({ a : 1)

show execution results

Ensure uniqueness of relations in edge collections

It is possible to create secondary indexes using the edge attributes _from and _to , starting with ArangoDB 3.0. A combined index over

both fields together with the unique option enabled can be used to prevent duplicate relations from being created.

For example, a document collection verts might contain vertices with the document handles verts/a, verts/B and verts/c . Relations
between these documents can be stored in an edge collection edges for instance. Now, you may want to make sure that the vertex
verts/A is never linked to verts/B by an edge more than once. This can be achieved by adding a unique, non-sparse hash index for the

fields _from and _to :

db.edges.ensureIndex({ type: "hash", fields: ["_from", "_to"], unique: true });

Creating an edge { _from: "verts/A", _to: "verts/B" } in edges will be accepted, but only once. Another attempt to store an edge with

the relation A — B will be rejected by the server with a unique constraint violated error. This includes updates to the _from and _to
fields.

Note that adding a relation B — A is still possible, so is A = Aand B — B, because they are all different relations in a directed graph.

Each one can only occur once however.

Skiplists

Introduction to Skiplist Indexes

This is an introduction to ArangoDB's skiplists.

It is possible to define a skiplist index on one or more attributes (or paths) of documents. This skiplist is then used in queries to locate
documents within a given range. If the skiplist is declared unique, then no two documents are allowed to have the same set of attribute

values.

Creating a new document or updating a document will fail if the uniqueness is violated. If the skiplist index is declared sparse, a document

will be excluded from the index and no uniqueness checks will be performed if any index attribute value is not set or has a value of null .

Accessing Skiplist Indexes from the Shell

Unique Skiplist Index

Ensures that a unique skiplist index exists: collection.ensureIndex({ type: "skiplist", fields: ["field1", ..., "fieldn"], unique:
true })

Creates a unique skiplist index on all documents using field1, ... fieldn as attribute paths. At least one attribute path has to be given. The

index will be non-sparse by default.

All documents in the collection must differ in terms of the indexed attributes. Creating a new document or updating an existing document

will fail if the attribute uniqueness is violated.
To create a sparse unique index, set the sparse attribute to true :
collection.ensureIndex({ type: "skiplist", fields: ["field1", ..., "fieldn"], unique: true, sparse: true })

In a sparse index all documents will be excluded from the index that do not contain at least one of the specified index attributes or that
have a value of null in any of the specified index attributes. Such documents will not be indexed, and not be taken into account for

uniqueness checks.

In a non-sparse index, these documents will be indexed (for non-present indexed attributes, a value of nu1l will be used) and will be

taken into account for uniqueness checks.

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.ids.ensureIndex({ type: "skiplist", fields: ["myId"], unique: 1);
arangosh> db.ids.save({ "myId": 1)
arangosh> db.ids.save({ "myId": 1);
arangosh> db.ids.save({ "myId": 1);
arangosh> db.ids.save({ "myId": 1);

show execution results

arangosh> db.ids.ensureIndex({ type: '"skiplist", fields: ["name.first", "name.last"],

unique: 1),

arangosh> db.ids.save({ "name" { "first" : "hans", "last": "hansen" }});
arangosh> db.ids.save({ '"name" { "first" : "jens", "last": "jensen" }});
arangosh> db.ids.save({ "name" { "first" : "hans", "last": "jensen" }});
arangosh> db.ids.save({ "name" { "first" : "hans", "last": "hansen" }});

show execution results

Non-unique Skiplist Index

Ensures that a non-unique skiplist index exists: collection.ensureIndex({ type: "skiplist", fields: ["field1", ..., "fieldn"] })

Creates a non-unique skiplist index on all documents using field1, ... fieldn as attribute paths. At least one attribute path has to be given.

The index will be non-sparse by default.

To create a sparse non-unique index, set the sparse attribute to true .

collection.ensureIndex({ type: "skiplist", fields: ["field1", ..., "fieldn"], sparse: true })

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.names.ensureIndex({ type: "skiplist", fields: ["first"] });

arangosh> db.names.save({ "first" : "Tim" });
arangosh> db.names.save({ "first" : "Tom" });
arangosh> db.names.save({ "first" : "John" });
arangosh> db.names.save({ "first" : "Tim" });
arangosh> db.names.save({ "first" : "Tom" });

show execution results

Skiplist Array Index

Ensures that a skiplist array index exists (non-unique): collection.ensureIndex({ type: "skiplist", fields: ["field1[*]", ...,
"fieldn[*]"] })

Creates a non-unique skiplist array index for the individual elements of the array attributes field1[*], ... fieldn[*] found in the documents.

At least one attribute path has to be given. The index always treats the indexed arrays as sparse.

It is possible to combine array indexing with standard indexing: collection.ensureIndex({ type: "skiplist", fields: ["field1[*]",
"field2"] })

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.test.ensureIndex({ type: "skiplist", fields: ["a[*]" 1 });
arangosh> db.test.save({ a : [1, 13);

arangosh> db.test.save({ a : [1, 13);

arangosh> db.test.save({ a : 1),

show execution results

Query by example using a skiplist index

Constructs a query-by-example using a skiplist index: collection.byExample(example)

Selects all documents from the collection that match the specified example and returns a cursor. A skiplist index will be used if present.
You can use toArray, next, or hasNext to access the result. The result can be limited using the skip and limit operator.

An attribute name of the form a.b is interpreted as attribute path, not as attribute. If you use

{ra" i {"e" 111}

as example, then you will find all documents, such that the attribute a contains a document of the form {c : 1 }. For example the

document
Cra" s £ i1}, b : 1}
will match, but the document

£t e 1, "h" 1Y)

will not.

However, if you use
{ac' i 13,

then you will find all documents, which contain a sub-document in a that has an attribute c of value 1. Both the following documents

£t e i1}, "B :1)

and

£ e 1, "b" i1})

will match.

Persistent indexes

Introduction to Persistent Indexes

This is an introduction to ArangoDB's persistent indexes.

It is possible to define a persistent index on one or more attributes (or paths) of documents. The index is then used in queries to locate
documents within a given range. If the index is declared unique, then no two documents are allowed to have the same set of attribute

values.

Creating a new document or updating a document will fail if the uniqueness is violated. If the index is declared sparse, a document will be

excluded from the index and no uniqueness checks will be performed if any index attribute value is not set or has a value of null .

Accessing Persistent Indexes from the Shell
ensures that a unique persistent index exists collection.ensureIndex({ type: "persistent", fields: ["field1", ..., "fieldn"],
unique: true })

Creates a unique persistent index on all documents using fieldl, ... fieldn as attribute paths. At least one attribute path has to be given.

The index will be non-sparse by default.

All documents in the collection must differ in terms of the indexed attributes. Creating a new document or updating an existing document

will will fail if the attribute uniqueness is violated.
To create a sparse unique index, set the sparse attribute to true :
collection.ensureIndex({ type: "persistent", fields: ["field1", ..., "fieldn"], unique: true, sparse: true })

In a sparse index all documents will be excluded from the index that do not contain at least one of the specified index attributes or that
have a value of null in any of the specified index attributes. Such documents will not be indexed, and not be taken into account for

uniqueness checks.

In a non-sparse index, these documents will be indexed (for non-present indexed attributes, a value of null will be used) and will be

taken into account for uniqueness checks.

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.ids.ensureIndex({ type: "persistent", fields: ["myId"], unique: 1);
arangosh> db.ids.save({ "myId": 1);
arangosh> db.ids.save({ "myId": 1)
arangosh> db.ids.save({ "myId": 1)
arangosh> db.ids.save({ "myId": 1);

show execution results

arangosh> db.ids.ensureIndex({ type: "persistent", fields: ["name.first", "name.last"],

unique: 1),
arangosh> db.ids.save({ "name" { "first" : "hans", "last": "hansen" }});
arangosh> db.ids.save({ "name" { "first" : "jens", "last": "jensen" }});
arangosh> db.ids.save({ "name" { "first" : "hans", "last": "jensen" }});
arangosh> db.ids.save({ "name" { "first" : "hans", "last": "hansen" }});
show execution results
ensures that a non-unique persistent index exists collection.ensureIndex({ type: "persistent", fields: ["field1", ..., "fieldn"] })

Creates a non-unique persistent index on all documents using field1, ... fieldn as attribute paths. At least one attribute path has to be

given. The index will be non-sparse by default.

To create a sparse unique index, set the sparse attribute to true .

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

arangosh> db.names.ensureIndex({ type: "persistent", fields: ["first"] });

arangosh> db.names.save({ "first" : "Tim" });
arangosh> db.names.save({ "first" : "Tom" });
arangosh> db.names.save({ "first" : "John" });
arangosh> db.names.save({ "first" : "Tim" });
arangosh> db.names.save({ "first" : "Tom" });

show execution results

Query by example using a persistent index

constructs a query-by-example using a persistent index collection.byExample(example)
Selects all documents from the collection that match the specified example and returns a cursor. A persistent index will be used if present.
You can use toArray, next, or hasNext to access the result. The result can be limited using the skip and limit operator.

An attribute name of the form a.b is interpreted as attribute path, not as attribute. If you use
{ma" s {"" 113}

as example, then you will find all documents, such that the attribute a contains a document of the form {c : 1 }. For example the

document
{rat o e s 1}, 1}
will match, but the document
{rat e e 1, bt s 1}
will not.
However, if you use
{"ac" 11},
then you will find all documents, which contain a sub-document in a that has an attribute c of value 1. Both the following documents
{rat e e e 1y, 1}
and
{rat o {"e" i1, bt 13}

will match.

Persistent Indexes and Server Language

The order of index entries in persistent indexes adheres to the configured server language. If, however, the server is restarted with a
different language setting as when the persistent index was created, not all documents may be returned any more and the sort order of

those which are returned can be wrong (whenever the persistent index is consulted).

To fix persistent indexes after a language change, delete and re-create them. Skiplist indexes are not affected, because they are not

persisted and automatically rebuilt on every server start.

Persistent

107

Fulltext indexes

This is an introduction to ArangoDB's fulltext indexes.

Introduction to Fulltext Indexes

A fulltext index can be used to find words, or prefixes of words inside documents.

A fulltext index can be defined on one attribute only, and will include all words contained in documents that have a textual value in the
index attribute. Since ArangoDB 2.6 the index will also include words from the index attribute if the index attribute is an array of strings,

or an object with string value members.

For example, given a fulltext index on the translations attribute and the following documents, then searching for nuca using the
fulltext index would return only the first document. Searching for the index for the exact string Fox would return the first two

documents, and searching for prefix:Fox would return all three documents:

{ translations: { en: "fox", de: "Fuchs", fr: "renard", ru: "5mca" } }
{ translations: "Fox is the English translation of the German word Fuchs" }
{ translations: ["ArangoDB", "document", "database", "Foxx"] }

Note that deeper nested objects are ignored. For example, a fulltext index on translations would index Fuchs, but not fox, given the

following document structure:

{ translations: { en: { US: "fox" }, de: "Fuchs" }

If you need to search across multiple fields and/or nested objects, you may write all the strings into a special attribute, which you then

create the index on (it might be necessary to clean the strings first, e.g. remove line breaks and strip certain words).

If the index attribute is neither a string, an object or an array, its contents will not be indexed. When indexing the contents of an array
attribute, an array member will only be included in the index if it is a string. When indexing the contents of an object attribute, an object

member value will only be included in the index if it is a string. Other data types are ignored and not indexed.

Currently, fulltext indexes are not yet supported with the RocksDB storage engine. Thus the function FuLLTEXT() will be unavailable

when using this storage engine. To use fulltext indexes, please use the MM Files storage engine for the time being,

Accessing Fulltext Indexes from the Shell

Ensures that a fulltext index exists:
collection.ensureIndex({ type: "fulltext", fields: ["field"], minLength: minLength })

Creates a fulltext index on all documents on attribute field.

Fulltext indexes are implicitly sparse: all documents which do not have the specified field attribute or that have a non-qualifying value in

their field attribute will be ignored for indexing.
Only a single attribute can be indexed. Specifying multiple attributes is unsupported.

The minimum length of words that are indexed can be specified via the minLength parameter. Words shorter than minLength characters
will not be indexed. minLength has a default value of 2, but this value might be changed in future versions of ArangoDB. It is thus

recommended to explicitly specify this value.

In case that the index was successfully created, an object with the index details is returned.

arangosh> db.example.ensureIndex({ type: "fulltext", fields: ["text"], minLength: 1),

arangosh> db.example.save({ text : "the quick brown", b : { c : 1)
arangosh> db.example.save({ text : "quick brown fox", b : { c : 1)
arangosh> db.example.save({ text : "brown fox jums", b : { c : 1 1)
arangosh> db.example.save({ text : "fox jumps over", b : { c 1)

arangosh> db.example.save({ text : "jumps over the", b : { c : T 1),

arangosh> db.example.save({ text : "over the lazy", b : { c : }B);

arangosh> db.example.save({ text : "the lazy dog", b : { c : })

arangosh> db._query("FOR document IN FULLTEXT(example, 'text',6 'the') RETURN document");

show execution results

Looks up a fulltext index:

collection.lookupFulltextIndex(attribute, minLength)

Checks whether a fulltext index on the given attribute attribute exists.

Fulltext AQL Functions

Fulltext AQL functions are detailed in Fulltext functions.

Geo Indexes

Introduction to Geo Indexes

This is an introduction to ArangoDB's geo indexes.
AQL's geographic features are described in Geo functions.
ArangoDB uses Hilbert curves to implement geo-spatial indexes. See this blog for details.

A geo-spatial index assumes that the latitude is between -90 and 90 degree and the longitude is between -180 and 180 degree. A geo index

will ignore all documents which do not fulfill these requirements.

Accessing Geo Indexes from the Shell

ensures thatageo index exists collection.ensureIndex({ type: "geo", fields: ["location"] })

Creates a geo-spatial index on all documents using location as path to the coordinates. The value of the attribute has to be an array with at

least two numeric values. The array must contain the latitude (first value) and the longitude (second value).

All documents, which do not have the attribute path or have a non-conforming value in it are excluded from the index.

A geo index is implicitly sparse, and there is no way to control its sparsity.

In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.

To create a geo index on an array attribute that contains longitude first, set the geoJson attribute to true . This corresponds to the
format described in RFC 7946 Position

collection.ensureIndex({ type: "geo", fields: ["location"], geoJson: true })

To create a geo-spatial index on all documents using latitude and longitude as separate attribute paths, two paths need to be specified in

the fields array:

collection.ensureIndex({ type: '"geo", fields: ["latitude", "longitude"] })
In case that the index was successfully created, an object with the index details, including the index-identifier, is returned.
Examples

Create a geo index for an array attribute:

arangosh> db.geo.ensureIndex({ type: "geo", fields: ["loc"] });

arangosh> for (i = ; 1<=090; 1i+=10) {

-------- > for (j = ; § <= 180; j += 10) {

........ > db.geo.save({ name : "Name/" + i + "/" + j, loc: [i, j 1 3});
........ > }

........ > 1}

arangosh> db.geo.count();
arangosh> db.geo.near (0, 0).1limit(3).toArray();
arangosh> db.geo.near (0, 0).count();

show execution results

Create a geo index for a hash array attribute:

arangosh> db.geo2.ensureIndex({ type: "geo", fields: ["location.latitude",
"location.longitude"] });

arangosh> for (i = ; 1<= ;1 +=) {
-------- > for (j = -180; j <= 180; j += 10) {
........ > db.geo2.save({ name : "Name/" + i + "/" + j, location: { latitude : i,

longitude : j } });

https://www.arangodb.com/2012/03/31/using-hilbert-curves-and-polyhedrons-for-geo-indexing
https://tools.ietf.org/html/rfc7946#section-3.1.1

arangosh> db.geo2.near (0, 0).1imit(3).toArray();

show execution results
Use Geolndex with AQL SORT statement:

arangosh> db.geoSort.ensureIndex({ type: "geo", fields: ["latitude", "longitude"] });

arangosh> for (i = ; 1<= ;1 +=) {

........ > for (j = ;j <= ; J +=10) {

........ > db.geoSort.save({ name : "Name/" + i + "/" + j, latitude : i, longitude
i

........ > }

........ >}

arangosh> var query = "FOR doc in geoSort SORT DISTANCE(doc.latitude, doc.longitude, 0, 0)
LIMIT 5 RETURN doc"

arangosh> db._explain(query, {3}, {colors: });

arangosh> db._query(query);

show execution results
Use Geolndex with AQL FILTER statement:

arangosh> db.geoFilter.ensureIndex({ type: "geo", fields: ["latitude", "longitude"] });

arangosh> for (i = ;1 <= ;1 +=) {

........ > for (j = ;] <= s § +=10) {

........ > db.geoFilter.save({ name : "Name/" + i + "/" + j, latitude : i,
longitude : j });

........ > }

........ > 1}

arangosh> var query = "FOR doc in geoFilter FILTER DISTANCE(doc.latitude, doc.longitude,
0, 0) < 2000 RETURN doc"

arangosh> db._explain(query, {3}, {colors: 1,

arangosh> db._query(query);

show execution results

constructs a geo index selection collection.geo(location-attribute)
Looks up a geo index defined on attribute location_attribute.

Returns a geo index object if an index was found. The near or within operators can then be used to execute a geo-spatial query on this

particular index.
This is useful for collections with multiple defined geo indexes.
collection.geo(location_attribute, true)

Looks up a geo index on a compound attribute location_attribute.

Returns a geo index object if an index was found. The near or within operators can then be used to execute a geo-spatial query on this

particular index.

collection.geo(latitude_attribute, longitude_ attribute)
Looks up a geo index defined on the two attributes latitude_attribute and longitude-attribute.

Returns a geo index object if an index was found. The near or within operators can then be used to execute a geo-spatial query on this

particular index.

Note: this method is not yet supported by the RocksDB storage engine.

Note: the geo simple query helper function is deprecated as of ArangoDB 2.6. The function may be removed in future versions of

ArangoDB. The preferred way for running geo queries is to use their AQL equivalents.
Examples

Assume you have a location stored as list in the attribute home and a destination stored in the attribute work. Then you can use the geo

operator to select which geo-spatial attributes (and thus which index) to use in a near query.

arangosh> for (i = ;1 <= ;1 +=) {

........ > for (j = ;o J <= ;o J +=10) {

........ > db.complex.save({ name : "Name/" + i + "/" + j,

........ > home : [1, j 1,

........ > work : [-i, -7 1 1});

........ > }

........ >}

........ >

arangosh> db.complex.near (0,).1imit(5);

arangosh> db.complex.ensureIndex({ type: "geo", fields: ["home"] });
arangosh> db.complex.near (0,).1imit(5).toArray();

arangosh> db.complex.geo("work").near (0,). limit(5);

arangosh> db.complex.ensureIndex({ type: "geo", fields: ["work"] });
arangosh> db.complex.geo("work").near (0,).1imit(5).toArray();

show execution results

constructs a near query for a collection collection.near(latitude, longitude)

The returned list is sorted according to the distance, with the nearest document to the coordinate (latitude, longitude) coming first. If there
are near documents of equal distance, documents are chosen randomly from this set until the limit is reached. It is possible to change the

limit using the limit operator.

In order to use the near operator, a geo index must be defined for the collection. This index also defines which attribute holds the

coordinates for the document. If you have more then one geo-spatial index, you can use the geo operator to select a particular index.
Note: near does not support negative skips. / However, you can still use 1imit followed to skip.
collection.near(latitude, longitude).limit(limit)
Limits the result to limit documents instead of the default 100.
Note: Unlike with multiple explicit limits, 1imit will raise the implicit default limit imposed by within .
collection.near(latitude, longitude).distance()

This will add an attribute distance to all documents returned, which contains the distance between the given point and the document in

meters.

collection.near(latitude, longitude).distance(name)

This will add an attribute name to all documents returned, which contains the distance between the given point and the document in

meters.
Note: this method is not yet supported by the RocksDB storage engine.

Note: the near simple query function is deprecated as of ArangoDB 2.6. The function may be removed in future versions of ArangoDB.
The preferred way for retrieving documents from a collection using the near operator is to use the AQL NEAR function in an AQL query

as follows:

FOR doc IN NEAR(@@collection, @latitude, @longitude, @limit)
RETURN doc

Examples

To get the nearest two locations:

arangosh> db.geo.ensureIndex({ type: "geo", fields: ["loc"] });

arangosh> for (var i = ; 1<=090; 1i+=10) {
........ > for (var j = ;J <= 7 J +=10) {
........ > db.geo.save({

........ > name : "Name/" + i + "/" + j,
........ > loc: [i, J 1 13);

........ >1 1}

arangosh> db.geo.near (0, 0).1limit(2).toArray();

show execution results

If you need the distance as well, then you can use the distance operator:

arangosh> db.geo.ensureIndex({ type: "geo", fields: ["loc"] });

arangosh> for (var i = ; 1<=090; i+=10) {
........ > for (var j = ;] <= 7 J +=10) {
........ > db.geo.save({

........ > name : "Name/" + i + "/" + j,
........ > loc: [i, 7 113);

........ >1 1}

arangosh> db.geo.near (0, 0).distance().limit(2).toArray();

show execution results

constructs a within query for a collection collection.within(latitude, longitude, radius)

This will find all documents within a given radius around the coordinate (latitude, longitude). The returned array is sorted by distance,

beginning with the nearest document.

In order to use the within operator, a geo index must be defined for the collection. This index also defines which attribute holds the

coordinates for the document. If you have more then one geo-spatial index, you can use the geo operator to select a particular index.

collection.within(latitude, longitude, radius).distance()

This will add an attribute _distance to all documents returned, which contains the distance between the given point and the document

in meters.

collection.within(latitude, longitude, radius).distance(name)

This will add an attribute name to all documents returned, which contains the distance between the given point and the document in

meters.
Note: this method is not yet supported by the RocksDB storage engine.

Note: the within simple query function is deprecated as of ArangoDB 2.6. The function may be removed in future versions of
ArangoDB. The preferred way for retrieving documents from a collection using the within operator is to use the AQL WITHIN function

in an AQL query as follows:

FOR doc IN WITHIN(@@collection, @latitude, @longitude, @radius, @distanceAttributeName)
RETURN doc

Examples

To find all documents within a radius of 2000 km use:

arangosh> for (var i = ; 1<= ;i 4=) {

........ > for (var j = ;J <= ; J +=) {

........ > db.geo.save({ name : "Name/" + i + "/" + j, loc: [i, 7 131); }}
arangosh> db.geo.within(0, 0, *) .distance().toArray();

show execution results

ensures thatageo index exists collection.ensureIndex({ type: "geo", fields: ["location"] })

Since ArangoDB 2.5, this method is an alias for ensureGeolndex since geo indexes are always sparse, meaning that documents that do not
contain the index attributes or have non-numeric values in the index attributes will not be indexed. ensureGeoConstraint is deprecated and

ensureGeolndex should be used instead.

The index does not provide a unique option because of its limited usability. It would prevent identical coordinates from being inserted
only, but even a slightly different location (like 1 inch or 1 cm off) would be unique again and not considered a duplicate, although it
probably should. The desired threshold for detecting duplicates may vary for every project (including how to calculate the distance even)
and needs to be implemented on the application layer as needed. You can write a Foxx service for this purpose and make use of the AQL

geo functions to find nearby coordinates supported by a geo index.

Vertex Centric Indexes

Introduction to Vertex Centric Indexes

In ArangoDB there are special indices designed to speed up graph operations, especially if the graph contains supernodes (vertices that
have an exceptionally high amount of connected edges). These indices are called vertex centric indexes and can be used in addition to the

existing edge index.

Motivation

The idea of this index is to index a combination of a vertex, the direction and any arbitrary set of other attributes on the edges. To take an
example, if we have an attribute called type on the edges, we can use an outbound vertex-centric index on this attribute to find all edges

attached to a vertex with a given type . The following query example could benefit from such an index:

FOR v, e, p IN 3..5 OUTBOUND @start GRAPH @graphName
FILTER p.edges[*].type ALL == "friend"
RETURN v

Using the built-in edge-index ArangoDB can find the list of all edges attached to the vertex fast, but still it has to walk through this list
and check if all of them have the attribute type == "friend" . Using a vertex-centric index would allow ArangoDB to find all edges for

the vertex having the attribute type == "friend" in the same time and can save the iteration to verify the condition.

Index creation

A vertex-centric can be either of the following types:

e Hash Index
e Skiplist Index

o Persistent Index

And is created using their creation operations. However in the list of fields used to create the index we have to include either _from or
_to . Let us again explain this by an example. Assume we want to create an hash-based outbound vertex-centric index on the attribute

type . This can be created with the following way:

arangosh> db.collection.ensureIndex({ type: "hash", fields: [" from", "type" 1 })

show execution results

All options that are supported by the respective indexes are supported by the vertex-centric index as well.

Index usage

The AQL optimizer can decide to use a vertex-centric whenever suitable, however it is not guaranteed that this index is used, the
optimizer may estimate that an other index is assumed to be better. The optimizer will consider this type of indexes on explicit filtering

of _from respectively _to :

FOR edge IN collection
FILTER edge._from == "vertices/123456" AND edge.type == "friend"
RETURN edge

and during pattern matching queries:

FOR v, e, p IN 3..5 OUTBOUND @start GRAPH @graphName
FILTER p.edges[*].type ALL == "friend"
RETURN v

Vertex Centric Indexes

116

ArangoDB Graphs

First Steps with Graphs

A Graph consists of vertices and edges. Edges are stored as documents in edge collections. A vertex can be a document of a document
collection or of an edge collection (so edges can be used as vertices). Which collections are used within a named graph is defined via edge
definitions. A named graph can contain more than one edge definition, at least one is needed. Graphs allow you to structure your models

in line with your domain and group them logically in collections and giving you the power to query them in the same graph queries.

New to graphs? Take our free graph course for freshers and get from zero knowledge to advanced query techniques.

Coming from a relational background - what's a graph?

In SQL you commonly have the construct of a relation table to store n:m relations between two data tables. An edge collection is
somewhat similar to these relation tables; vertex collections resemble the data tables with the objects to connect. While simple graph
queries with fixed number of hops via the relation table may be doable in SQL with several nested joins, graph databases can handle an
arbitrary number of these hops over edge collections - this is called traversal. Also edges in one edge collection may point to several
vertex collections. Its common to have attributes attached to edges, i.e. a label naming this interconnection. Edges have a direction, with
their relations _from and _to pointing from one document to another document stored in vertex collections. In queries you can define

in which directions the edge relations may be followed (OUTBOUND : _from — _to, INBOUND : _from <« _to, ANY : _from <«

_to).

Named Graphs

Named graphs are completely managed by ArangoDB, and thus also visible in the web interface. They use the full spectrum of

ArangoDB's graph features. You may access them via several interfaces.

e AQL Graph Operations with several flavors:
o AQL Traversals on both named and anonymous graphs
o AQL Shortest Path on both named and anony mous graph
e JavaScript General Graph implementation, as you may use it in Foxx Services
o Graph Management; creating & manipualating graph definitions; inserting, updating and deleting vertices and edges into graphs
o Graph Functions for working with edges and vertices, to analyze them and their relations
e JavaScript Smart Graph implementation, for scalable graphs
o Smart Graph Management; creating & manipualating SmartGraph definitions; Differences to General Graph

e RESTful General Graph interface used to implement graph management in client drivers

Manipulating collections of named graphs with regular document functions

The underlying collections of the named graphs are still accessible using the standard methods for collections. However the graph module

adds an additional layer on top of these collections giving you the following guarantees:

e All modifications are executed transactional
e If you delete a vertex all edges will be deleted, you will never have loose ends

e If you insert an edge it is checked if the edge matches the edge definitions, y our edge collections will only contain valid edges

These guarantees are lost if you access the collections in any other way than the graph module or AQL, so if you delete documents from

your vertex collections directly, the edges pointing to them will be remain in place.

Anonymous graphs

Sometimes you may not need all the powers of named graphs, but some of its bits may be valuable to you. You may use anonymous
graphs in the traversals and in the Working with Edges chapter. Anonymous graphs don't have edge definitions describing which vertex
collection is connected by which edge collection. The graph model has to be maintained in the client side code. This gives you more

freedom than the strict named graphs.

https://www.arangodb.com/arangodb-graph-course/

e AQL Graph Operations are available for both, named and anonymous graphs:
o AQL Traversals
o AQL Shortest Path

When to choose anonymous or named graphs?

As noted above, named graphs ensure graph integrity, both when inserting or removing edges or vertices. So you won't encounter dangling
edges, even if you use the same vertex collection in several named graphs. This involves more operations inside the database which come
at a cost. Therefore anonymous graphs may be faster in many operations. So this question may be narrowed down to: 'Can I afford the

additional effort or do I need the warranty for integrity?".

Multiple edge collections vs. FILTER s onedge document attributes

If you want to only traverse edges of a specific type, there are two ways to achieve this. The first would be an attribute in the edge
document - i.e. type , where you specify a differentiator for the edge - i.e. "friends" , "family" , "married" oOr "workmates" , SO you

can later FILTER e.type = "friends" if you only want to follow the friend edges.

Another way, which may be more efficient in some cases, is to use different edge collections for different types of edges, so you have
friend_edges , family edges , married edges and workmate_edges as collection names. You can then configure several named graphs
including a subset of the available edge and vertex collections - or you use anonymous graph queries, where you specify a list of edge

collections to take into account in that query. To only follow friend edges, you would specify friend_edges as sole edge collection.

Both approaches have advantages and disadvantages. FILTER operations on ede attributes will do comparisons on each traversed edge,
which may become CPU-intense. When not finding the edges in the first place because of the collection containing them is not traversed

at all, there will never be a reason to actualy check for their type attribute with FILTER .

The multiple edge collections approach is limited by the number of collections that can be used simultaneously in one query. Every
collection used in a query requires some resources inside of ArangoDB and the number is therefore limited to cap the resource
requirements. You may also have constraints on other edge attributes, such as a hash index with a unique constraint, which requires the
documents to be in a single collection for the uniqueness guarantee, and it may thus not be possible to store the different types of edges

in multiple edeg collections.

So, if your edges have about a dozen different types, it's okay to choose the collection approach, otherwise the FILTER approach is
preferred. You can still use FILTER operations on edges of course. You can get rid of a FILTER onthe type with the former approach,

everything else can stay the same.

Which part of my data is an Edge and which a Vertex?

The main objects in your data model, such as users, groups or articles, are usually considered to be vertices. For each type of object, a
document collection (also called vertex collection) should store the individual entities. Entities can be connected by edges to express and

classify relations between vertices. It often makes sense to have an edge collection per relation type.

ArangoDB does not require you to store your data in graph structures with edges and vertices, you can also decide to embed attributes
such as which groups a user is part of, or _id s of documents in another document instead of connecting the documents with edges. It
can be a meaningful performance optimization for 1:n relationships, if your data is not focused on relations and you don't need graph
traversal with varying depth. It usually means to introduce some redundancy and possibly inconsistencies if you embed data, but it can

be an acceptable tradeoff.

Vertices

Let's say we have two vertex collections, users and Groups . Documents in the Groups collection contain the attributes of the Group,
i.e. when it was founded, its subject, an icon URL and so on. users documents contain the data specific to a user - like all names,
birthdays, Avatar URLs, hobbies...

Edges

We can use an edge collection to store relations between users and groups. Since multiple users may be in an arbitrary number of groups,
this is an m:n relation. The edge collection can be called usersinGroups with i.e. one edge with _from pointingto users/John and

_to pointingto Groups/BowlingGroupHappyPin . This makes the user John a member of the group Bowling Group Ha Pin.
p g group g p Happy

Attributes of this relation may contain qualifiers to this relation, like the permissions of John in this group, the date when he joined the

group etc.

Users UsersIinGroups Groups

John p | BowlingGroupHappyPin

So roughly put, if you use documents and their attributes in a sentence, nouns would typically be vertices, verbs become the edges. You

can see this in the knows graph below:

Alice knows Bob, who in term knows Charlie.

Advantages of this approach

Graphs give you the advantage of not just being able to have a fixed number of m:n relations in a row, but an arbitrary number. Edges can
be traversed in both directions, so it's easy to determine all groups a user is in, but also to find out which members a certain group has.

Users could also be interconnected to create a social network.
Using the graph data model, dealing with data that has lots of relations stays manageable and can be queried in very flexible ways,

whereas it would cause headache to handle it in a relational database system.

Backup and restore

For sure you want to have backups of your graph data, you can use Arangodump to create the backup, and Arangorestore to restore a

backup into a new ArangoDB. You should however note that:

e you need the system collection _graphs if you backup named graphs.

e you need to backup the complete set of all edge and vertex collections your graph consists of. Partial dump/restore may not work.
Managing graphs
By default you should use the interface your driver provides to manage graphs.

This is i.e. documented in Graphs-Section of the ArangoDB Java driver.

Example Graphs

ArangoDB comes with a set of easily graspable graphs that are used to demonstrate the APIs. You can use the add samples tab in the
create graph window in the webinterface, or load the module @arangodb/graph-examples/example-graph in arangosh and use it to create
instances of these graphs in your ArangoDB. Once you've created them, you can inspect them in the webinterface - which was used to

create the pictures below.

You can easily look into the innards of this script for reference about howto manage graphs programatically.

The Knows_Graph

https://github.com/arangodb/arangodb-java-driver#graphs
https://github.com/arangodb/arangodb/blob/devel/js/common/modules/%40arangodb/graph-examples/example-graph.js

Graphs

A set of persons knowing each other:

eve

dave

-

charlie

The knows graph consists of one vertex collection persons connected via one edge collection knows . It will contain five persons Alice,

Bob, Charlie, Dave and Eve. We will have the following directed relations:

e Alice knows Bob

e Bob knows Charlie

e Bob knows Dave

e Eve knows Alice

e Eve knows Bob

This is how we create it, inspect its vertices and edges, and drop it again:

arangosh>
arangosh>
arangosh>
arangosh>
arangosh>

var examples = require("@arangodb/graph-examples/example-graph.js");
var g = examples.loadGraph("knows graph");

db.persons.toArray()

db.knows.toArray();

examples.dropGraph("knows graph");

show execution results

The Social Graph

A set of persons and their relations:

120

Graphs

digra

This example has female and male persons as vertices in two vertex collections - female and male . The edges are their connections in

the relation edge collection. This is how we create it, inspect its vertices and edges, and drop it again:

arangosh>
arangosh>
arangosh>
arangosh>
arangosh>
arangosh>

var examples = require("@arangodb/graph-examples/example-graph.js");
var graph = examples.loadGraph("social");

db.female.toArray()

db.male.toArray()

db.relation.toArray()

examples.dropGraph("social");

show execution results

The City Graph

A set of european cities, and their fictional traveling distances as connections:

121

Graphs

Cologne

Lyon

The example has the cities as vertices in several vertex collections - germancity and frenchcity . The edges are their interconnections in

several edge collections french / german / international Highway . This is how we create it, inspect its edges and vertices, and drop it

again:

arangosh>
arangosh>
arangosh>
arangosh>
arangosh>
arangosh>
arangosh>
arangosh>

var examples = require("@arangodb/graph-examples/example-graph.js");

var g = examples.loadGraph("routeplanner");
db.frenchCity.toArray();
db.germanCity.toArray();
db.germanHighway.toArray();
db.frenchHighway.toArray();
db.internationalHighway.toArray();
examples.dropGraph("routeplanner");

show execution results

The Traversal Graph

This graph was designed to