
1.1

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

1.2.2

1.2.3

1.2.4

1.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.2.1

1.5.2.2

1.5.3

1.5.3.1

1.5.3.2

1.5.4

1.5.4.1

1.5.4.2

1.5.4.3

1.5.5

1.5.6

1.5.6.1

1.5.6.2

1.5.6.3

1.5.6.4

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.4.1

1.6.4.2

1.6.4.3

Table	of	Contents
Introduction

Getting	Started

Installing

Linux

Mac	OS	X

Windows

Compiling

Authentication

Accessing	the	Web	Interface

Coming	from	SQL

Highlights

Scalability

Architecture

Data	models

Limitations

Data	models	&	modeling

Concepts

Databases

Working	with	Databases

Notes	about	Databases

Collections

Collection	Methods

Database	Methods

Documents

Basics	and	Terminology

Collection	Methods

Database	Methods

Graphs,	Vertices	&	Edges

Naming	Conventions

Database	Names

Collection	Names

Document	Keys

Attribute	Names

Indexing

Index	Basics

Which	index	to	use	when

Index	Utilization

Working	with	Indexes

Hash	Indexes

Skiplists

Persistent

1

1.6.4.4

1.6.4.5

1.6.4.6

1.7

1.7.1

1.7.1.1

1.7.1.2

1.7.2

1.7.2.1

1.7.3

1.7.3.1

1.7.3.2

1.7.4

1.7.5

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.8.6

1.8.7

1.8.7.1

1.8.7.2

1.8.7.3

1.8.7.4

1.8.8

1.8.9

1.8.9.1

1.8.9.1.1

1.8.9.1.2

1.8.9.2

1.8.9.2.1

1.8.9.2.2

1.8.10

1.8.11

1.8.12

1.8.13

1.8.14

1.8.14.1

1.8.14.2

1.8.14.3

1.8.14.4

1.8.14.5

Fulltext	Indexes

Geo	Indexes

Vertex	Centric	Indexes

Graphs

General	Graphs

Graph	Management

Graph	Functions

SmartGraphs

SmartGraph	Management

Traversals

Using	Traversal	Objects

Example	Data

Working	with	Edges

Pregel

Foxx	Microservices

At	a	glance

Getting	started

Service	manifest

Service	context

Configuration

Dependencies

Routers

Endpoints

Middleware

Request

Response

Using	GraphQL

Sessions	middleware

Session	storages

Collection	storage

JWT	storage

Session	transports

Cookie	transport

Header	transport

Serving	files

Writing	tests

Cross	Origin

Scripts	and	queued	jobs

Migrating	2.x	services

Migrating	from	pre-2.8

manifest.json

applicationContext

Repositories	and	Models

Controllers

2

1.8.14.5.1

1.8.14.5.2

1.8.14.5.3

1.8.14.5.4

1.8.14.5.5

1.8.14.5.6

1.8.14.6

1.8.14.7

1.8.14.8

1.8.15

1.8.16

1.8.17

1.8.17.1

1.8.17.2

1.8.17.3

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.10

1.10.1

1.10.2

1.10.2.1

1.10.2.2

1.10.2.3

1.10.2.3.1

1.10.2.3.2

1.10.2.3.3

1.10.2.3.4

1.10.3

1.11

1.11.1

1.11.1.1

1.11.1.2

1.11.1.3

1.11.1.4

1.11.1.5

1.11.1.6

1.11.1.7

1.11.1.8

1.11.1.9

1.11.2

Request	context

Error	handling

Before/After/Around

Request	object

Response	object

Dependency	Injection

Sessions

Auth	and	OAuth2

Foxx	Queries

Legacy	compatibility	mode

User	management

Related	modules

Authentication

OAuth	1.0a

OAuth	2.0

Transactions

Transaction	invocation

Passing	parameters

Locking	and	isolation

Durability

Limitations

Deployment

Single	instance

Cluster

Mesos,	DC/OS

Generic	&	Docker

Advanced	Topics

Standalone	Agency

Local	test	setups

Processes

Docker

Multiple	Datacenters

Administration

Web	Interface

Dashboard

Cluster

Collections

Document

Queries

Graphs

Services

Users

Logs

ArangoDB	Shell

3

1.11.2.1

1.11.2.2

1.11.2.3

1.11.3

1.11.4

1.11.5

1.11.6

1.11.7

1.11.7.1

1.11.8

1.11.8.1

1.11.8.2

1.11.8.3

1.11.8.4

1.11.8.5

1.11.8.6

1.11.8.7

1.11.8.8

1.11.8.9

1.11.8.10

1.11.8.11

1.11.8.12

1.11.9

1.11.10

1.11.11

1.11.11.1

1.11.11.2

1.11.12

1.11.12.1

1.11.12.1.1

1.11.12.1.2

1.11.12.1.3

1.11.12.1.4

1.11.12.1.5

1.11.12.2

1.11.12.2.1

1.11.12.2.2

1.11.12.3

1.11.13

1.11.14

1.11.14.1

1.11.14.2

1.11.14.3

1.11.14.4

Shell	Output

Configuration

Details

Arangoimp

Arangodump

Arangorestore

Arangoexport

Managing	Users

In	Arangosh

Server	Configuration

Operating	System	Configuration

Managing	Endpoints

SSL	Configuration

LDAP	Options

Logging	Options

General	Options

Write-Ahead	Log	Options

Compaction	Options

Cluster	Options

RocksDB	Engine	Options

Hash	Cache	Options

Asynchronous	Tasks

Durability

Encryption

Auditing

Configuration

Events

Replication

Asynchronous	Replication

Components

Per-Database	Setup

Server-Level	Setup

Syncing	Collections

Replication	Limitations

Synchronous	Replication

Implementation

Configuration

Satellite	Collections

Sharding

Upgrading

Upgrading	to	3.3

Upgrading	to	3.2

Upgrading	to	3.1

Upgrading	to	3.0

4

1.11.14.5

1.11.14.6

1.11.14.7

1.11.14.8

1.11.14.9

1.11.14.10

1.12

1.12.1

1.12.2

1.12.3

1.12.4

1.13

1.13.1

1.13.2

1.14

1.14.1

1.14.2

1.14.3

1.14.4

1.14.5

1.14.6

1.14.7

1.14.8

1.14.9

1.14.10

1.14.11

1.14.12

1.14.13

1.14.14

1.14.15

1.14.16

1.14.17

1.14.18

1.14.19

1.14.20

1.14.21

1.14.22

1.14.23

1.15

1.15.1

1.15.1.1

1.15.1.2

1.15.2

1.15.2.1

Upgrading	to	2.8

Upgrading	to	2.6

Upgrading	to	2.5

Upgrading	to	2.4

Upgrading	to	2.3

Upgrading	to	2.2

Troubleshooting

arangod

Emergency	Console

Datafile	Debugger

Arangobench

Architecture

Write-ahead	log

Storage	Engines

Release	notes

Whats	New	in	3.3

Incompatible	changes	in	3.3

Whats	New	in	3.2

Known	Issues	in	3.2

Incompatible	changes	in	3.2

Whats	New	in	3.1

Incompatible	changes	in	3.1

Whats	New	in	3.0

Incompatible	changes	in	3.0

Whats	New	in	2.8

Incompatible	changes	in	2.8

Whats	New	in	2.7

Incompatible	changes	in	2.7

Whats	New	in	2.6

Incompatible	changes	in	2.6

Whats	New	in	2.5

Incompatible	changes	in	2.5

Whats	New	in	2.4

Incompatible	changes	in	2.4

Whats	New	in	2.3

Incompatible	changes	in	2.3

Whats	New	in	2.2

Whats	New	in	2.1

Appendix

References

db

collection

JavaScript	Modules

@arangodb

5

1.15.2.2

1.15.2.3

1.15.2.4

1.15.2.5

1.15.2.6

1.15.2.7

1.15.2.8

1.15.2.9

1.15.3

1.15.3.1

1.15.3.1.1

1.15.3.1.2

1.15.3.1.3

1.15.3.1.4

1.15.3.1.5

1.15.3.2

1.15.3.2.1

1.15.3.2.2

1.15.3.2.3

1.15.4

1.15.5

console

crypto

fs

request

actions

queries

Write-ahead	log

Task	Management

Deprecated

Simple	Queries

Sequential	Access

Pagination

Modification	Queries

Geo	Queries

Fulltext	Queries

Actions

Delivering	HTML	Pages

Json	Objects

Modifying

Error	codes	and	meanings

Glossary

6

ArangoDB	v3.3.5	Documentation
Welcome	to	the	ArangoDB	documentation!

New	and	eager	to	try	out	ArangoDB?	Start	right	away	with	our	beginner's	guide:	Getting	Started

The	documentation	is	organized	in	four	handbooks:

This	manual	describes	ArangoDB	and	its	features	in	detail	for	you	as	a	user,	developer	and	administrator.
The	AQL	handbook	explains	ArangoDB's	query	language	AQL.
The	HTTP	handbook	describes	the	internal	API	of	ArangoDB	that	is	used	to	communicate	with	clients.	In	general,	the	HTTP
handbook	will	be	of	interest	to	driver	developers.	If	you	use	any	of	the	existing	drivers	for	the	language	of	your	choice,	you	can	skip
this	handbook.
Our	cookbook	with	recipes	for	specific	problems	and	solutions.

Features	are	illustrated	with	interactive	usage	examples;	you	can	cut'n'paste	them	into	arangosh	to	try	them	out.	The	HTTP	REST-API
for	driver	developers	is	demonstrated	with	cut'n'paste	recipes	intended	to	be	used	with	the	cURL.	Drivers	may	provide	their	own
examples	based	on	these	.js	based	examples	to	improve	understandability	for	their	respective	users,	i.e.	for	the	java	driver	some	of	the
samples	are	re-implemented.

Overview

ArangoDB	is	a	native	multi-model,	open-source	database	with	flexible	data	models	for	documents,	graphs,	and	key-values.	Build	high
performance	applications	using	a	convenient	SQL-like	query	language	or	JavaScript	extensions.	Use	ACID	transactions	if	you	require
them.	Scale	horizontally	and	vertically	with	a	few	mouse	clicks.

Key	features	include:

installing	ArangoDB	on	a	cluster	is	as	easy	as	installing	an	app	on	your	mobile
Flexible	data	modeling:	model	your	data	as	combination	of	key-value	pairs,	documents	or	graphs	-	perfect	for	social	relations
Powerful	query	language	(AQL)	to	retrieve	and	modify	data
Use	ArangoDB	as	an	application	server	and	fuse	your	application	and	database	together	for	maximal	throughput
Transactions:	run	queries	on	multiple	documents	or	collections	with	optional	transactional	consistency	and	isolation
Replication	and	Sharding:	set	up	the	database	in	a	master-slave	configuration	or	spread	bigger	datasets	across	multiple	servers
Configurable	durability:	let	the	application	decide	if	it	needs	more	durability	or	more	performance
No-nonsense	storage:	ArangoDB	uses	all	of	the	power	of	modern	storage	hardware,	like	SSD	and	large	caches
JavaScript	for	all:	no	language	zoo,	you	can	use	one	language	from	your	browser	to	your	back-end
ArangoDB	can	be	easily	deployed	as	a	fault-tolerant	distributed	state	machine,	which	can	serve	as	the	animal	brain	of
distributed	appliances
It	is	open	source	(Apache	License	2.0)

Community

If	you	have	questions	regarding	ArangoDB,	Foxx,	drivers,	or	this	documentation	don't	hesitate	to	contact	us	on:

GitHub	for	issues	and	misbehavior	or	pull	requests
Google	Groups	for	discussions	about	ArangoDB	in	general	or	to	announce	your	new	Foxx	App
StackOverflow	for	questions	about	AQL,	usage	scenarios	etc.
Slack,	our	community	chat

When	reporting	issues,	please	describe:

the	environment	you	run	ArangoDB	in
the	ArangoDB	version	you	use
whether	you're	using	Foxx
the	client	you're	using

Introduction

7

http://curl.haxx.se
https://github.com/arangodb/arangodb-java-driver#learn-more
https://github.com/arangodb/arangodb/issues
https://www.arangodb.com/community/
https://groups.google.com/forum/?hl=de#!forum/arangodb
http://stackoverflow.com/questions/tagged/arangodb
http://slack.arangodb.com

which	parts	of	the	documentation	you're	working	with	(link)
what	you	expect	to	happen
what	is	actually	happening

We	will	respond	as	soon	as	possible.

Introduction

8

Getting	started

Overview

This	beginner's	guide	will	make	you	familiar	with	ArangoDB.	We	will	cover	how	to

install	and	run	a	local	ArangoDB	server
use	the	web	interface	to	interact	with	it
store	example	data	in	the	database
query	the	database	to	retrieve	the	data	again
edit	and	remove	existing	data

Installation

Head	to	arangodb.com/download,	select	your	operating	system	and	download	ArangoDB.	You	may	also	follow	the	instructions	on	how
to	install	with	a	package	manager,	if	available.

If	you	installed	a	binary	package	under	Linux,	the	server	is	automatically	started.

If	you	installed	ArangoDB	using	homebrew	under	MacOS	X,	start	the	server	by	running		/usr/local/sbin/arangod	.

If	you	installed	ArangoDB	under	Windows	as	a	service,	the	server	is	automatically	started.	Otherwise,	run	the		arangod.exe		located	in
the	installation	folder's		bin		directory.	You	may	have	to	run	it	as	administrator	to	grant	it	write	permissions	to		C:\Program	Files	.

For	more	in-depth	information	on	how	to	install	ArangoDB,	as	well	as	available	startup	parameters,	installation	in	a	cluster	and	so	on,	see
Installing.

ArangoDB	offers	two	storage	engines:	MMFiles	and	RocksDB.	Choose	the	one	which	suits	your	needs	best	in	the
installation	process	or	on	first	startup.

Securing	the	installation

The	default	installation	contains	one	database	_system	and	a	user	named	root.

Debian	based	packages	and	the	Windows	installer	will	ask	for	a	password	during	the	installation	process.	Red-Hat	based	packages	will
set	a	random	password.	For	all	other	installation	packages	you	need	to	execute

shell>	arango-secure-installation

This	will	ask	for	a	root	password	and	sets	this	password.

Web	interface

The	server	itself	(arangod)	speaks	HTTP	/	REST,	but	you	can	use	the	graphical	web	interface	to	keep	it	simple.	There's	also	arangosh,	a
synchronous	shell	for	interaction	with	the	server.	If	you're	a	developer,	you	might	prefer	the	shell	over	the	GUI.	It	does	not	provide
features	like	syntax	highlighting	however.

When	you	start	using	ArangoDB	in	your	project,	you	will	likely	use	an	official	or	community-made	driver	written	in	the	same	language	as
your	project.	Drivers	implement	a	programming	interface	that	should	feel	natural	for	that	programming	language,	and	do	all	the	talking	to
the	server.	Therefore,	you	can	most	certainly	ignore	the	HTTP	API	unless	you	want	to	write	a	driver	yourself	or	explicitly	want	to	use
the	raw	interface.

To	get	familiar	with	the	database	system	you	can	even	put	drivers	aside	and	use	the	web	interface	(code	name	Aardvark)	for	basic
interaction.	The	web	interface	will	become	available	shortly	after	you	started		arangod	.	You	can	access	it	in	your	browser	at
http://localhost:8529	-	if	not,	please	see	Troubleshooting.

Getting	Started

9

https://www.arangodb.com/download/
http://localhost:8529

By	default,	authentication	is	enabled.	The	default	user	is		root	.	Depending	on	the	installation	method	used,	the	installation	process
either	prompted	for	the	root	password	or	the	default	root	password	is	empty	(see	above).

Next	you	will	be	asked	which	database	to	use.	Every	server	instance	comes	with	a		_system		database.	Select	this	database	to	continue.

Getting	Started

10

You	should	then	be	presented	the	dashboard	with	server	statistics	like	this:

For	a	more	detailed	description	of	the	interface,	see	Web	Interface.

Databases,	collections	and	documents

Databases	are	sets	of	collections.	Collections	store	records,	which	are	referred	to	as	documents.	Collections	are	the	equivalent	of	tables	in
RDBMS,	and	documents	can	be	thought	of	as	rows	in	a	table.	The	difference	is	that	you	don't	define	what	columns	(or	rather	attributes)
there	will	be	in	advance.	Every	document	in	any	collection	can	have	arbitrary	attribute	keys	and	values.	Documents	in	a	single	collection
will	likely	have	a	similar	structure	in	practice	however,	but	the	database	system	itself	does	not	impose	it	and	will	operate	stable	and	fast
no	matter	how	your	data	looks	like.

Read	more	in	the	data-model	concepts	chapter.

For	now,	you	can	stick	with	the	default		_system		database	and	use	the	web	interface	to	create	collections	and	documents.	Start	by
clicking	the	COLLECTIONS	menu	entry,	then	the	Add	Collection	tile.	Give	it	a	name,	e.g.	users,	leave	the	other	settings	unchanged	(we
want	it	to	be	a	document	collection)	and	Save	it.	A	new	tile	labeled	users	should	show	up,	which	you	can	click	to	open.

There	will	be	No	documents	yet.	Click	the	green	circle	with	the	white	plus	on	the	right-hand	side	to	create	a	first	document	in	this
collection.	A	dialog	will	ask	you	for	a		_key	.	You	can	leave	the	field	blank	and	click	Create	to	let	the	database	system	assign	an
automatically	generated	(unique)	key.	Note	that	the		_key		property	is	immutable,	which	means	you	can	not	change	it	once	the	document
is	created.	What	you	can	use	as	document	key	is	described	in	the	naming	conventions.

An	automatically	generated	key	could	be		"9883"		(_key		is	always	a	string!),	and	the	document		_id		would	be		"users/9883"		in	that
case.	Aside	from	a	few	system	attributes,	there	is	nothing	in	this	document	yet.	Let's	add	a	custom	attribute	by	clicking	the	icon	to	the
left	of	(empty	object),	then	Append.	Two	input	fields	will	become	available,	FIELD	(attribute	key)	and	VALUE	(attribute	value).	Type
	name		as	key	and	your	name	as	value.	Append	another	attribute,	name	it		age		and	set	it	to	your	age.	Click	Save	to	persist	the	changes.	If
you	click	on	Collection:	users	at	the	top	on	the	right-hand	side	of	the	ArangoDB	logo,	the	document	browser	will	show	the	documents	in
the	users	collection	and	you	will	see	the	document	you	just	created	in	the	list.

Querying	the	database

Getting	Started

11

Time	to	retrieve	our	document	using	AQL,	ArangoDB's	query	language.	We	can	directly	look	up	the	document	we	created	via	the		_id	,
but	there	are	also	other	options.	Click	the	QUERIES	menu	entry	to	bring	up	the	query	editor	and	type	the	following	(adjust	the
document	ID	to	match	your	document):

RETURN	DOCUMENT("users/9883")

Then	click	Execute	to	run	the	query.	The	result	appears	below	the	query	editor:

[

		{

				"_key":	"9883",

				"_id":	"users/9883",

				"_rev":	"9883",

				"age":	32,

				"name":	"John	Smith"

		}

]

As	you	can	see,	the	entire	document	including	the	system	attributes	is	returned.	DOCUMENT()	is	a	function	to	retrieve	a	single
document	or	a	list	of	documents	of	which	you	know	the		_key	s	or		_id	s.	We	return	the	result	of	the	function	call	as	our	query	result,
which	is	our	document	inside	of	the	result	array	(we	could	have	returned	more	than	one	result	with	a	different	query,	but	even	for	a	single
document	as	result,	we	still	get	an	array	at	the	top	level).

This	type	of	query	is	called	data	access	query.	No	data	is	created,	changed	or	deleted.	There	is	another	type	of	query	called	data
modification	query.	Let's	insert	a	second	document	using	a	modification	query:

INSERT	{	name:	"Katie	Foster",	age:	27	}	INTO	users

The	query	is	pretty	self-explanatory:	the		INSERT		keyword	tells	ArangoDB	that	we	want	to	insert	something.	What	to	insert,	a
document	with	two	attributes	in	this	case,	follows	next.	The	curly	braces		{	}		signify	documents,	or	objects.	When	talking	about
records	in	a	collection,	we	call	them	documents.	Encoded	as	JSON,	we	call	them	objects.	Objects	can	also	be	nested.	Here's	an	example:

{

		"name":	{

				"first":	"Katie",

				"last":	"Foster"

		}

}

	INTO		is	a	mandatory	part	of	every		INSERT		operation	and	is	followed	by	the	collection	name	that	we	want	to	store	the	document	in.
Note	that	there	are	no	quote	marks	around	the	collection	name.

If	you	run	above	query,	there	will	be	an	empty	array	as	result	because	we	did	not	specify	what	to	return	using	a		RETURN		keyword.	It	is
optional	in	modification	queries,	but	mandatory	in	data	access	queries.	Even	with		RETURN	,	the	return	value	can	still	be	an	empty	array,
e.g.	if	the	specified	document	was	not	found.	Despite	the	empty	result,	the	above	query	still	created	a	new	user	document.	You	can	verify
this	with	the	document	browser.

Let's	add	another	user,	but	return	the	newly	created	document	this	time:

INSERT	{	name:	"James	Hendrix",	age:	69	}	INTO	users

RETURN	NEW

	NEW		is	a	pseudo-variable,	which	refers	to	the	document	created	by		INSERT	.	The	result	of	the	query	will	look	like	this:

[

		{

				"_key":	"10074",

				"_id":	"users/10074",

				"_rev":	"10074",

				"age":	69,

				"name":	"James	Hendrix"

		}

]

Getting	Started

12

Now	that	we	have	3	users	in	our	collection,	how	to	retrieve	them	all	with	a	single	query?	The	following	does	not	work:

RETURN	DOCUMENT("users/9883")

RETURN	DOCUMENT("users/9915")

RETURN	DOCUMENT("users/10074")

There	can	only	be	a	single		RETURN		statement	here	and	a	syntax	error	is	raised	if	you	try	to	execute	it.	The		DOCUMENT()		function	offers	a
secondary	signature	to	specify	multiple	document	handles,	so	we	could	do:

RETURN	DOCUMENT(["users/9883",	"users/9915",	"users/10074"])

An	array	with	the		_id	s	of	all	3	documents	is	passed	to	the	function.	Arrays	are	denoted	by	square	brackets		[]		and	their	elements
are	separated	by	commas.

But	what	if	we	add	more	users?	We	would	have	to	change	the	query	to	retrieve	the	newly	added	users	as	well.	All	we	want	to	say	with
our	query	is:	"For	every	user	in	the	collection	users,	return	the	user	document".	We	can	formulate	this	with	a		FOR		loop:

FOR	user	IN	users

		RETURN	user

It	expresses	to	iterate	over	every	document	in		users		and	to	use		user		as	variable	name,	which	we	can	use	to	refer	to	the	current	user
document.	It	could	also	be	called		doc	,		u		or		ahuacatlguacamole	,	this	is	up	to	you.	It	is	advisable	to	use	a	short	and	self-descriptive
name	however.

The	loop	body	tells	the	system	to	return	the	value	of	the	variable		user	,	which	is	a	single	user	document.	All	user	documents	are
returned	this	way:

[

		{

				"_key":	"9915",

				"_id":	"users/9915",

				"_rev":	"9915",

				"age":	27,

				"name":	"Katie	Foster"

		},

		{

				"_key":	"9883",

				"_id":	"users/9883",

				"_rev":	"9883",

				"age":	32,

				"name":	"John	Smith"

		},

		{

				"_key":	"10074",

				"_id":	"users/10074",

				"_rev":	"10074",

				"age":	69,

				"name":	"James	Hendrix"

		}

]

You	may	have	noticed	that	the	order	of	the	returned	documents	is	not	necessarily	the	same	as	they	were	inserted.	There	is	no	order
guaranteed	unless	you	explicitly	sort	them.	We	can	add	a		SORT		operation	very	easily:

FOR	user	IN	users

		SORT	user._key

		RETURN	user

This	does	still	not	return	the	desired	result:	James	(10074)	is	returned	before	John	(9883)	and	Katie	(9915).	The	reason	is	that	the		_key	
attribute	is	a	string	in	ArangoDB,	and	not	a	number.	The	individual	characters	of	the	strings	are	compared.		1		is	lower	than		9		and	the
result	is	therefore	"correct".	If	we	wanted	to	use	the	numerical	value	of	the		_key		attributes	instead,	we	could	convert	the	string	to	a
number	and	use	it	for	sorting.	There	are	some	implications	however.	We	are	better	off	sorting	something	else.	How	about	the	age,	in
descending	order?

Getting	Started

13

FOR	user	IN	users

		SORT	user.age	DESC

		RETURN	user

The	users	will	be	returned	in	the	following	order:	James	(69),	John	(32),	Katie	(27).	Instead	of		DESC		for	descending	order,		ASC		can	be
used	for	ascending	order.		ASC		is	the	default	though	and	can	be	omitted.

We	might	want	to	limit	the	result	set	to	a	subset	of	users,	based	on	the	age	attribute	for	example.	Let's	return	users	older	than	30	only:

FOR	user	IN	users

		FILTER	user.age	>	30

		SORT	user.age

		RETURN	user

This	will	return	John	and	James	(in	this	order).	Katie's	age	attribute	does	not	fulfill	the	criterion	(greater	than	30),	she	is	only	27	and
therefore	not	part	of	the	result	set.	We	can	make	her	age	to	return	her	user	document	again,	using	a	modification	query:

UPDATE	"9915"	WITH	{	age:	40	}	IN	users

RETURN	NEW

	UPDATE		allows	to	partially	edit	an	existing	document.	There	is	also		REPLACE	,	which	would	remove	all	attributes	(except	for		_key		and
	_id	,	which	remain	the	same)	and	only	add	the	specified	ones.		UPDATE		on	the	other	hand	only	replaces	the	specified	attributes	and
keeps	everything	else	as-is.

The		UPDATE		keyword	is	followed	by	the	document	key	(or	a	document	/	object	with	a		_key		attribute)	to	identify	what	to	modify.	The
attributes	to	update	are	written	as	object	after	the		WITH		keyword.		IN		denotes	in	which	collection	to	perform	this	operation	in,	just
like		INTO		(both	keywords	are	actually	interchangable	here).	The	full	document	with	the	changes	applied	is	returned	if	we	use	the		NEW	
pseudo-variable:

[

		{

				"_key":	"9915",

				"_id":	"users/9915",

				"_rev":	"12864",

				"age":	40,

				"name":	"Katie	Foster"

		}

If	we	used		REPLACE		instead,	the	name	attribute	would	be	gone.	With		UPDATE	,	the	attribute	is	kept	(the	same	would	apply	to	additional
attributes	if	we	had	them).

Let	us	run	our		FILTER		query	again,	but	only	return	the	user	names	this	time:

FOR	user	IN	users

		FILTER	user.age	>	30

		SORT	user.age

		RETURN	user.name

This	will	return	the	names	of	all	3	users:

[

		"John	Smith",

		"Katie	Foster",

		"James	Hendrix"

]

It	is	called	a	projection	if	only	a	subset	of	attributes	is	returned.	Another	kind	of	projection	is	to	change	the	structure	of	the	results:

FOR	user	IN	users

		RETURN	{	userName:	user.name,	age:	user.age	}

Getting	Started

14

The	query	defines	the	output	format	for	every	user	document.	The	user	name	is	returned	as		userName		instead	of		name	,	the	age	keeps
the	attribute	key	in	this	example:

[

		{

				"userName":	"James	Hendrix",

				"age":	69

		},

		{

				"userName":	"John	Smith",

				"age":	32

		},

		{

				"userName":	"Katie	Foster",

				"age":	40

		}

]

It	is	also	possible	to	compute	new	values:

FOR	user	IN	users

		RETURN	CONCAT(user.name,	"'s	age	is	",	user.age)

	CONCAT()		is	a	function	that	can	join	elements	together	to	a	string.	We	use	it	here	to	return	a	statement	for	every	user.	As	you	can	see,	the
result	set	does	not	always	have	to	be	an	array	of	objects:

[

		"James	Hendrix's	age	is	69",

		"John	Smith's	age	is	32",

		"Katie	Foster's	age	is	40"

]

Now	let's	do	something	crazy:	for	every	document	in	the	users	collection,	iterate	over	all	user	documents	again	and	return	user	pairs,	e.g.
John	and	Katie.	We	can	use	a	loop	inside	a	loop	for	this	to	get	the	cross	product	(every	possible	combination	of	all	user	records,	3	*	3	=
9).	We	don't	want	pairings	like	John	+	John	however,	so	let's	eliminate	them	with	a	filter	condition:

FOR	user1	IN	users

		FOR	user2	IN	users

				FILTER	user1	!=	user2

				RETURN	[user1.name,	user2.name]

We	get	6	pairings.	Pairs	like	James	+	John	and	John	+	James	are	basically	redundant,	but	fair	enough:

[

		["James	Hendrix",	"John	Smith"],

		["James	Hendrix",	"Katie	Foster"],

		["John	Smith",	"James	Hendrix"],

		["John	Smith",	"Katie	Foster"],

		["Katie	Foster",	"James	Hendrix"],

		["Katie	Foster",	"John	Smith"]

]

We	could	calculate	the	sum	of	both	ages	and	compute	something	new	this	way:

FOR	user1	IN	users

		FOR	user2	IN	users

				FILTER	user1	!=	user2

				RETURN	{

								pair:	[user1.name,	user2.name],

								sumOfAges:	user1.age	+	user2.age

				}

We	introduce	a	new	attribute		sumOfAges		and	add	up	both	ages	for	the	value:

[

Getting	Started

15

		{

				"pair":	["James	Hendrix",	"John	Smith"],

				"sumOfAges":	101

		},

		{

				"pair":	["James	Hendrix",	"Katie	Foster"],

				"sumOfAges":	109

		},

		{

				"pair":	["John	Smith",	"James	Hendrix"],

				"sumOfAges":	101

		},

		{

				"pair":	["John	Smith",	"Katie	Foster"],

				"sumOfAges":	72

		},

		{

				"pair":	["Katie	Foster",	"James	Hendrix"],

				"sumOfAges":	109

		},

		{

				"pair":	["Katie	Foster",	"John	Smith"],

				"sumOfAges":	72

		}

]

If	we	wanted	to	post-filter	on	the	new	attribute	to	only	return	pairs	with	a	sum	less	than	100,	we	should	define	a	variable	to	temporarily
store	the	sum,	so	that	we	can	use	it	in	a		FILTER		statement	as	well	as	in	the		RETURN		statement:

FOR	user1	IN	users

		FOR	user2	IN	users

				FILTER	user1	!=	user2

				LET	sumOfAges	=	user1.age	+	user2.age

				FILTER	sumOfAges	<	100

				RETURN	{

								pair:	[user1.name,	user2.name],

								sumOfAges:	sumOfAges

				}

The		LET		keyword	is	followed	by	the	designated	variable	name	(sumOfAges),	then	there's	a		=		symbol	and	the	value	or	an	expression
to	define	what	value	the	variable	is	supposed	to	have.	We	re-use	our	expression	to	calculate	the	sum	here.	We	then	have	another		FILTER	
to	skip	the	unwanted	pairings	and	make	use	of	the	variable	we	declared	before.	We	return	a	projection	with	an	array	of	the	user	names	and
the	calculated	age,	for	which	we	use	the	variable	again:

[

		{

				"pair":	["John	Smith",	"Katie	Foster"],

				"sumOfAges":	72

		},

		{

				"pair":	["Katie	Foster",	"John	Smith"],

				"sumOfAges":	72

		}

]

Pro	tip:	when	defining	objects,	if	the	desired	attribute	key	and	the	variable	to	use	for	the	attribute	value	are	the	same,	you	can	use	a
shorthand	notation:		{	sumOfAges	}		instead	of		{	sumOfAges:	sumOfAges	}	.

Finally,	let's	delete	one	of	the	user	documents:

REMOVE	"9883"	IN	users

It	deletes	the	user	John	(_key:	"9883").	We	could	also	remove	documents	in	a	loop	(same	goes	for		INSERT	,		UPDATE		and		REPLACE):

FOR	user	IN	users

				FILTER	user.age	>=	30

				REMOVE	user	IN	users

Getting	Started

16

The	query	deletes	all	users	whose	age	is	greater	than	or	equal	to	30.

How	to	continue

There	is	a	lot	more	to	discover	in	AQL	and	much	more	functionality	that	ArangoDB	offers.	Continue	reading	the	other	chapters	and
experiment	with	a	test	database	to	foster	your	knowledge.

If	you	want	to	write	more	AQL	queries	right	now,	have	a	look	here:

Data	Queries:	data	access	and	modification	queries
High-level	operations:	detailed	descriptions	of		FOR	,		FILTER		and	more	operations	not	shown	in	this	introduction
Functions:	a	reference	of	all	provided	functions

ArangoDB	programs
The	ArangoDB	package	comes	with	the	following	programs:

	arangod	:	The	ArangoDB	database	daemon.	This	server	program	is	intended	to	run	as	a	daemon	process	and	to	serve	the	various
clients	connection	to	the	server	via	TCP	/	HTTP.

	arangosh	:	The	ArangoDB	shell.	A	client	that	implements	a	read-eval-print	loop	(REPL)	and	provides	functions	to	access	and
administrate	the	ArangoDB	server.

	arangoimp	:	A	bulk	importer	for	the	ArangoDB	server.	It	supports	JSON	and	CSV.

	arangodump	:	A	tool	to	create	backups	of	an	ArangoDB	database	in	JSON	format.

	arangorestore	:	A	tool	to	load	data	of	a	backup	back	into	an	ArangoDB	database.

	arango-dfdb	:	A	datafile	debugger	for	ArangoDB.	It	is	primarily	intended	to	be	used	during	development	of	ArangoDB.

	arangobench	:	A	benchmark	and	test	tool.	It	can	be	used	for	performance	and	server	function	testing.

Getting	Started

17

Installing
First	of	all,	download	and	install	the	corresponding	RPM	or	Debian	package	or	use	homebrew	on	MacOS	X.	You	can	find	packages	for
various	operation	systems	at	our	install	section,	including	installers	for	Windows.

How	to	do	that	in	detail	is	described	in	the	subchapters	of	this	section.

On	how	to	set	up	a	cluster,	checkout	the	Deployment	chapter.

Installing

18

https://www.arangodb.com/download

Linux
Visit	the	official	ArangoDB	install	page	and	download	the	correct	package	for	your	Linux	distribution.	You	can	find	binary	packages
for	the	most	common	distributions	there.
Follow	the	instructions	to	use	your	favorite	package	manager	for	the	major	distributions.	After	setting	up	the	ArangoDB	repository
you	can	easily	install	ArangoDB	using	yum,	aptitude,	urpmi	or	zypper.
Debian	based	packages	will	ask	for	a	password	during	installation.	For	an	unattended	installation	for	Debian,	see	below.	Red-Hat
based	packages	will	set	a	random	password	during	installation.	For	other	distributions	or	to	change	the	password,	run		arango-
secure-installation		to	set	a	root	password.
Alternatively,	see	Compiling	if	you	want	to	build	ArangoDB	yourself.
Start	up	the	database	server.

Normally,	this	is	done	by	executing	the	following	command:

unix>	/etc/init.d/arangod	start

It	will	start	the	server,	and	do	that	as	well	at	system	boot	time.

To	stop	the	server	you	can	use	the	following	command:

unix>	/etc/init.d/arangod	stop

The	exact	commands	depend	on	your	Linux	distribution.	You	may	require	root	privileges	to	execute	these	commands.

Linux	Mint

Please	use	the	corresponding	Ubuntu	or	Debian	packages.

Unattended	Installation

Debian	based	package	will	ask	for	a	password	during	installation.	For	unattended	installation,	you	can	set	the	password	using	the	debconf
helpers.

echo	arangodb3	arangodb3/password	password	NEWPASSWORD	|	debconf-set-selections

echo	arangodb3	arangodb3/password_again	password	NEWPASSWORD	|	debconf-set-selections

The	commands	should	be	executed	prior	to	the	installation.

Red-Hat	based	packages	will	set	a	random	password	during	installation.	If	you	want	to	force	a	password,	execute

ARANGODB_DEFAULT_ROOT_PASSWORD=NEWPASSWORD	arango-secure-installation

The	command	should	be	executed	after	the	installation.

Non-Standard	Installation
If	you	compiled	ArangoDB	from	source	and	did	not	use	any	installation	package	–	or	using	non-default	locations	and/or	multiple
ArangoDB	instances	on	the	same	host	–	you	may	want	to	start	the	server	process	manually.	You	can	do	so	by	invoking	the	arangod
binary	from	the	command	line	as	shown	below:

unix>	/usr/local/sbin/arangod	/tmp/vocbase

20ZZ-XX-YYT12:37:08Z	[8145]	INFO	using	built-in	JavaScript	startup	files

20ZZ-XX-YYT12:37:08Z	[8145]	INFO	ArangoDB	(version	1.x.y)	is	ready	for	business

20ZZ-XX-YYT12:37:08Z	[8145]	INFO	Have	Fun!

Linux

19

https://www.arangodb.com/install
http://www.microhowto.info/howto/perform_an_unattended_installation_of_a_debian_package.html

To	stop	the	database	server	gracefully,	you	can	either	press	CTRL-C	or	by	send	the	SIGINT	signal	to	the	server	process.	On	many
systems	this	can	be	achieved	with	the	following	command:

unix>	kill	-2	`pidof	arangod`

Once	you	started	the	server,	there	should	be	a	running	instance	of	arangod	-	the	ArangoDB	database	server.

unix>	ps	auxw	|	fgrep	arangod

arangodb	14536	0.1	0.6	5307264	23464	s002	S	1:21pm	0:00.18	/usr/local/sbin/arangod

If	there	is	no	such	process,	check	the	log	file	/var/log/arangodb/arangod.log	for	errors.	If	you	see	a	log	message	like

2012-12-03T11:35:29Z	[12882]	ERROR	Database	directory	version	(1)	is	lower	than	server	version	(1.2).

2012-12-03T11:35:29Z	[12882]	ERROR	It	seems	like	you	have	upgraded	the	ArangoDB	binary.	If	this	is	what	you	wanted	to	do,	pleas

e	restart	with	the	--database.auto-upgrade	option	to	upgrade	the	data	in	the	database	directory.

2012-12-03T11:35:29Z	[12882]	FATAL	Database	version	check	failed.	Please	start	the	server	with	the	--database.auto-upgrade	opti

on

make	sure	to	start	the	server	once	with	the	--database.auto-upgrade	option.

Note	that	you	may	have	to	enable	logging	first.	If	you	start	the	server	in	a	shell,	you	should	see	errors	logged	there	as	well.

Linux

20

Mac	OS	X
The	preferred	method	for	installing	ArangoDB	under	Mac	OS	X	is	homebrew.	However,	in	case	you	are	not	using	homebrew,	we	provide
a	command-line	app	or	graphical	app	which	contains	all	the	executables.

Homebrew

If	you	are	using	homebrew,	then	you	can	install	the	latest	released	stable	version	of	ArangoDB	using	brew	as	follows:

brew	install	arangodb

This	will	install	the	current	stable	version	of	ArangoDB	and	all	dependencies	within	your	Homebrew	tree.	Note	that	the	server	will	be
installed	as:

/usr/local/sbin/arangod

You	can	start	the	server	by	running	the	command		/usr/local/sbin/arangod	&	.

Configuration	file	is	located	at

/usr/local/etc/arangodb3/arangod.conf

The	ArangoDB	shell	will	be	installed	as:

/usr/local/bin/arangosh

You	can	uninstall	ArangoDB	using:

brew	uninstall	arangodb

However,	in	case	you	started	ArangoDB	using	the	launchctl,	you	need	to	unload	it	before	uninstalling	the	server:

launchctl	unload	~/Library/LaunchAgents/homebrew.mxcl.arangodb.plist

Then	remove	the	LaunchAgent:

rm	~/Library/LaunchAgents/homebrew.mxcl.arangodb.plist

Note:	If	the	latest	ArangoDB	Version	is	not	shown	in	homebrew,	you	also	need	to	update	homebrew:

brew	update

Known	issues

Performance	-	the	LLVM	delivered	as	of	Mac	OS	X	El	Capitan	builds	slow	binaries.	Use	GCC	instead,	until	this	issue	has	been	fixed
by	Apple.
the	Commandline	argument	parsing	doesn't	accept	blanks	in	filenames;	the	CLI	version	below	does.
if	you	need	to	change	server	endpoint	while	starting	homebrew	version,	you	can	edit	arangod.conf	file	and	uncomment	line	with
endpoint	needed,	e.g.:

[server]

endpoint	=	tcp://0.0.0.0:8529

Mac	OS	X

21

http://brew.sh/

Graphical	App

In	case	you	are	not	using	homebrew,	we	also	provide	a	graphical	app.	You	can	download	it	from	here.

Choose	Mac	OS	X.	Download	and	install	the	application	ArangoDB	in	your	application	folder.

Command	line	App
In	case	you	are	not	using	homebrew,	we	also	provide	a	command-line	app.	You	can	download	it	from	here.

Choose	Mac	OS	X.	Download	and	install	the	application	ArangoDB-CLI	in	your	application	folder.

Starting	the	application	will	start	the	server	and	open	a	terminal	window	showing	you	the	log-file.

ArangoDB	server	has	been	started

The	database	directory	is	located	at

			'/Applications/ArangoDB-CLI.app/Contents/MacOS/opt/arangodb/var/lib/arangodb'

The	log	file	is	located	at

			'/Applications/ArangoDB-CLI.app/Contents/MacOS/opt/arangodb/var/log/arangodb/arangod.log'

You	can	access	the	server	using	a	browser	at	'http://127.0.0.1:8529/'

or	start	the	ArangoDB	shell

			'/Applications/ArangoDB-CLI.app/Contents/MacOS/arangosh'

Switching	to	log-file	now,	killing	this	windows	will	NOT	stop	the	server.

2013-10-27T19:42:04Z	[23840]	INFO	ArangoDB	(version	1.4.devel	[darwin])	is	ready	for	business.	Have	fun!

Note	that	it	is	possible	to	install	both,	the	homebrew	version	and	the	command-line	app.	You	should,	however,	edit	the	configuration	files
of	one	version	and	change	the	port	used.

Mac	OS	X

22

https://www.arangodb.com/download
https://www.arangodb.com/download

Windows
The	default	installation	directory	is	C:\Program	Files\ArangoDB-3.x.x.	During	the	installation	process	you	may	change	this.	In	the
following	description	we	will	assume	that	ArangoDB	has	been	installed	in	the	location	<ROOTDIR>.

You	have	to	be	careful	when	choosing	an	installation	directory.	You	need	either	write	permission	to	this	directory	or	you	need	to	modify
the	configuration	file	for	the	server	process.	In	the	latter	case	the	database	directory	and	the	Foxx	directory	have	to	be	writable	by	the
user.

Single-	and	Multiuser	Installation

There	are	two	main	modes	for	the	installer	of	ArangoDB.	The	installer	lets	you	select:

multi	user	installation	(default;	admin	privileges	required)	Will	install	ArangoDB	as	service.
single	user	installation	Allow	to	install	Arangodb	as	normal	user.	Requires	manual	starting	of	the	database	server.

CheckBoxes
The	checkboxes	allow	you	to	chose	weather	you	want	to:

chose	custom	install	paths
do	an	automatic	upgrade
keep	an	backup	of	your	data
add	executables	to	path
create	a	desktop	icon

or	not.

Custom	Install	Paths

This	checkbox	controls	if	you	will	be	able	to	override	the	default	paths	for	the	installation	in	subsequent	steps.

The	default	installation	paths	are:

Multi	User	Default:

Installation:	C:\Program	Files\ArangoDB-3.x.x
DataBase:	C:\ProgramData\ArangoDB
Foxx	Service:	C:\ProgramData\ArangoDB-apps

Single	User	Default:

Installation:	C:\Users\\\AppData\Local\ArangoDB-3.x.x
DataBase:	C:\Users\\\AppData\Local\ArangoDB
Foxx	Service:	C:\Users\\\AppData\Local\ArangoDB-apps

We	are	not	using	the	roaming	part	of	the	user's	profile,	because	doing	so	avoids	the	data	being	synced	to	the	windows	domain	controller.

Automatic	Upgrade

If	this	checkbox	is	selected	the	installer	will	attempt	to	perform	an	automatic	update.	For	more	information	please	see	Upgrading	from
Previous	Version.

Keep	Backup

Select	this	to	create	a	backup	of	your	database	directory	during	automatic	upgrade.	The	backup	will	be	created	next	to	your	current
database	directory	suffixed	by	a	time	stamp.

Windows

23

Add	to	Path

Select	this	to	add	the	binary	directory	to	your	system's	path	(multi	user	installation)	or	user's	path	(single	user	installation).

Desktop	Icon

Select	if	you	want	the	installer	to	create	Desktop	Icons	that	let	you:

access	the	web	inteface
start	the	commandline	client	(arangosh)
start	the	database	server	(single	user	installation	only)

Upgrading	from	Previous	Version
If	you	are	upgrading	ArangoDB	from	an	earlier	version	you	need	to	copy	your	old	database	directory	to	the	new	default	paths.
Upgrading	will	keep	your	old	data,	password	and	choice	of	storage	engine	as	it	is.	Switching	to	the	RocksDB	storage	engine	requires	a
export	and	reimport	of	your	data.

Starting
If	you	installed	ArangoDB	for	multiple	users	(as	a	service)	it	is	automatically	started.	Otherwise	you	need	to	use	the	link	that	was
created	on	you	Desktop	if	you	chose	to	let	the	installer	create	desktop	icons	or

the	executable	arangod.exe	located	in	<ROOTDIR>\bin.	This	will	use	the	configuration	file	arangod.conf	located	in
<ROOTDIR>\etc\arangodb,	which	you	can	adjust	to	your	needs	and	use	the	data	directory	<ROOTDIR>\var\lib\arangodb.	This	is	the
place	where	all	your	data	(databases	and	collections)	will	be	stored	by	default.

Please	check	the	output	of	the	arangod.exe	executable	before	going	on.	If	the	server	started	successfully,	you	should	see	a	line		ArangoDB
is	ready	for	business.	Have	fun!		at	the	end	of	its	output.

We	now	wish	to	check	that	the	installation	is	working	correctly	and	to	do	this	we	will	be	using	the	administration	web	interface.	Execute
arangod.exe	if	you	have	not	already	done	so,	then	open	up	your	web	browser	and	point	it	to	the	page:

http://127.0.0.1:8529/

Advanced	Starting

If	you	want	to	provide	our	own	start	scripts,	you	can	set	the	environment	variable	ARANGODB_CONFIG_PATH.	This	variable	should
point	to	a	directory	containing	the	configuration	files.

Using	the	Client

To	connect	to	an	already	running	ArangoDB	server	instance,	there	is	a	shell	arangosh.exe	located	in	<ROOTDIR>\bin.	This	starts	a	shell
which	can	be	used	–	amongst	other	things	–	to	administer	and	query	a	local	or	remote	ArangoDB	server.

Note	that	arangosh.exe	does	NOT	start	a	separate	server,	it	only	starts	the	shell.	To	use	it	you	must	have	a	server	running	somewhere,
e.g.	by	using	the	arangod.exe	executable.

arangosh.exe	uses	configuration	from	the	file	arangosh.conf	located	in	<ROOTDIR>\etc\arangodb\.	Please	adjust	this	to	your	needs	if
you	want	to	use	different	connection	settings	etc.

Uninstalling

To	uninstall	the	Arango	server	application	you	can	use	the	windows	control	panel	(as	you	would	normally	uninstall	an	application).	Note
however,	that	any	data	files	created	by	the	Arango	server	will	remain	as	well	as	the	<ROOTDIR>	directory.	To	complete	the
uninstallation	process,	remove	the	data	files	and	the	<ROOTDIR>	directory	manually.

Windows

24

Limitations	for	Cygwin

Please	note	some	important	limitations	when	running	ArangoDB	under	Cygwin:	Starting	ArangoDB	can	be	started	from	out	of	a	Cygwin
terminal,	but	pressing	CTRL-C	will	forcefully	kill	the	server	process	without	giving	it	a	chance	to	handle	the	kill	signal.	In	this	case,	a
regular	server	shutdown	is	not	possible,	which	may	leave	a	file	LOCK	around	in	the	server's	data	directory.	This	file	needs	to	be	removed
manually	to	make	ArangoDB	start	again.	Additionally,	as	ArangoDB	does	not	have	a	chance	to	handle	the	kill	signal,	the	server	cannot
forcefully	flush	any	data	to	disk	on	shutdown,	leading	to	potential	data	loss.	When	starting	ArangoDB	from	a	Cygwin	terminal	it	might
also	happen	that	no	errors	are	printed	in	the	terminal	output.	Starting	ArangoDB	from	an	MS-DOS	command	prompt	does	not	impose
these	limitations	and	is	thus	the	preferred	method.

Please	note	that	ArangoDB	uses	UTF-8	as	its	internal	encoding	and	that	the	system	console	must	support	a	UTF-8	codepage	(65001)
and	font.	It	may	be	necessary	to	manually	switch	the	console	font	to	a	font	that	supports	UTF-8.

Windows

25

Compiling	ArangoDB	from	scratch
The	following	sections	describe	how	to	compile	and	build	the	ArangoDB	from	scratch.	ArangoDB	will	compile	on	most	Linux	and	Mac
OS	X	systems.	We	assume	that	you	use	the	GNU	C/C++	compiler	or	clang/clang++	to	compile	the	source.	ArangoDB	has	been	tested
with	these	compilers,	but	should	be	able	to	compile	with	any	Posix-compliant,	C++11-enabled	compiler.	Please	let	us	know	whether	you
successfully	compiled	it	with	another	C/C++	compiler.

By	default,	cloning	the	github	repository	will	checkout	devel.	This	version	contains	the	development	version	of	the	ArangoDB.	Use	this
branch	if	you	want	to	make	changes	to	the	ArangoDB	source.

On	Windows	you	first	need	to	allow	and	enable	symlinks	for	your	user.

Please	checkout	the	cookbook	on	how	to	compile	ArangoDB.

Compiling

26

https://github.com/git-for-windows/git/wiki/Symbolic-Links#allowing-non-administrators-to-create-symbolic-links

Authentication
ArangoDB	allows	to	restrict	access	to	databases	to	certain	users.	All	users	of	the	system	database	are	considered	administrators.	During
installation	a	default	user	root	is	created,	which	has	access	to	all	databases.

You	should	create	a	database	for	your	application	together	with	a	user	that	has	access	rights	to	this	database.	See	Managing	Users.

Use	the	arangosh	to	create	a	new	database	and	user.

arangosh>	db._createDatabase("example");

arangosh>	var	users	=	require("@arangodb/users");

arangosh>	users.save("root@example",	"password");

arangosh>	users.grantDatabase("root@example",	"example");

You	can	now	connect	to	the	new	database	using	the	user	root@example.

shell>	arangosh	--server.username	"root@example"	--server.database	example

Authentication

27

Accessing	the	Web	Interface
ArangoDB	comes	with	a	built-in	web	interface	for	administration.	The	web	interface	can	be	accessed	via	the	URL:

http://127.0.0.1:8529

If	everything	works	as	expected,	you	should	see	the	login	view:

For	more	information	on	the	ArangoDB	web	interface,	see	Web	Interface

Accessing	the	Web	Interface

28

Coming	from	SQL
If	you	worked	with	a	relational	database	management	system	(RDBMS)	such	as	MySQL,	MariaDB	or	PostgreSQL,	you	will	be	familiar
with	its	query	language,	a	dialect	of	SQL	(Structured	Query	Language).

ArangoDB's	query	language	is	called	AQL.	There	are	some	similarities	between	both	languages	despite	the	different	data	models	of	the
database	systems.	The	most	notable	difference	is	probably	the	concept	of	loops	in	AQL,	which	makes	it	feel	more	like	a	programming
language.	It	suits	the	schema-less	model	more	natural	and	makes	the	query	language	very	powerful	while	remaining	easy	to	read	and	write.

To	get	started	with	AQL,	have	a	look	at	our	detailed	comparison	of	SQL	and	AQL.	It	will	also	help	you	to	translate	SQL	queries	to	AQL
when	migrating	to	ArangoDB.

How	do	browse	vectors	translate	into	document	queries?

In	traditional	SQL	you	may	either	fetch	all	columns	of	a	table	row	by	row,	using		SELECT	*	FROM	table	,	or	select	a	subset	of	the	columns.
The	list	of	table	columns	to	fetch	is	commonly	called	column	list	or	browse	vector:

SELECT	columnA,	columnB,	columnZ	FROM	table

Since	documents	aren't	two-dimensional,	and	neither	do	you	want	to	be	limited	to	returning	two-dimensional	lists,	the	requirements	for	a
query	language	are	higher.	AQL	is	thus	a	little	bit	more	complex	than	plain	SQL	at	first,	but	offers	much	more	flexibility	in	the	long	run.	It
lets	you	handle	arbitrarily	structured	documents	in	convenient	ways,	mostly	leaned	on	the	syntax	used	in	JavaScript.

Composing	the	documents	to	be	returned

The	AQL		RETURN		statement	returns	one	item	per	document	it	is	handed.	You	can	return	the	whole	document,	or	just	parts	of	it.	Given
that	oneDocument	is	a	document	(retrieved	like		LET	oneDocument	=	DOCUMENT("myusers/3456789")		for	instance),	it	can	be	returned	as-is
like	this:

RETURN	oneDocument

[

				{

								"_id":	"myusers/3456789",

								"_key":	"3456789"

								"_rev":	"14253647",

								"firstName":	"John",

								"lastName":	"Doe",

								"address":	{

												"city":	"Gotham",

												"street":	"Road	To	Nowhere	1"

								},

								"hobbies":	[

												{	name:	"swimming",	howFavorite:	10	},

												{	name:	"biking",	howFavorite:	6	},

												{	name:	"programming",	howFavorite:	4	}

]

				}

]

Return	the	hobbies	sub-structure	only:

RETURN	oneDocument.hobbies

[

				[

								{	name:	"swimming",	howFavorite:	10	},

								{	name:	"biking",	howFavorite:	6	},

								{	name:	"programming",	howFavorite:	4	}

]

Coming	from	SQL

29

https://arangodb.com/why-arangodb/sql-aql-comparison/

]

Return	the	hobbies	and	the	address:

RETURN	{

				hobbies:	oneDocument.hobbies,

				address:	oneDocument.address

}

[

				{

								hobbies:	[

												{	name:	"swimming",	howFavorite:	10	},

												{	name:	"biking",	howFavorite:	6	},

												{	name:	"programming",	howFavorite:	4	}

],

								address:	{

												"city":	"Gotham",

												"street":	"Road	To	Nowhere	1"

								}

				}

]

Return	the	first	hobby	only:

RETURN	oneDocument.hobbies[0].name

[

				"swimming"

]

Return	a	list	of	all	hobby	strings:

RETURN	{	hobbies:	oneDocument.hobbies[*].name	}

[

				{	hobbies:	["swimming",	"biking",	"porgramming"]	}

]

More	complex	array	and	object	manipulations	can	be	done	using	AQL	functions	and	operators.

Coming	from	SQL

30

Highlights

Version	3.3

Enterprise	Edition

Datacenter	to	Datacenter	Replication:	Replicate	the	entire	structure	and	content	of	an	ArangoDB	cluster	asynchronously	to
another	cluster	in	a	different	datacenter	with	ArangoSync.	Multi-datacenter	support	means	you	can	fallback	to	a	replica	of	your
cluster	in	case	of	a	disaster	in	one	datacenter.

Encrypted	Backups:	Arangodump	can	create	backups	encrypted	with	a	secret	key	using	AES256	block	cipher.

All	Editions

Server-level	Replication:	In	addition	to	per-database	replication,	there	is	now	an	additional		globalApplier	.	Start	the	global
replication	on	the	slave	once	and	all	current	and	future	databases	will	be	replicated	from	the	master	to	the	slave	automatically.

Asynchronous	Failover:	Make	a	single	server	instance	resilient	with	a	second	server	instance,	one	as	master	and	the	other	as
asynchronously	replicating	slave,	with	automatic	failover	to	the	slave	if	the	master	goes	down.

Also	see	What's	New	in	3.3.

Version	3.2

RocksDB	Storage	Engine:	You	can	now	use	as	much	data	in	ArangoDB	as	you	can	fit	on	your	disk.	Plus,	you	can	enjoy
performance	boosts	on	writes	by	having	only	document-level	locks

Pregel:	We	implemented	distributed	graph	processing	with	Pregel	to	discover	hidden	patterns,	identify	communities	and	perform	in-
depth	analytics	of	large	graph	data	sets.

Fault-Tolerant	Foxx:	The	Foxx	management	internals	have	been	rewritten	from	the	ground	up	to	make	sure	multi-coordinator
cluster	setups	always	keep	their	services	in	sync	and	new	coordinators	are	fully	initialized	even	when	all	existing	coordinators	are
unavailable.

Enterprise:	Working	with	some	of	our	largest	customers,	we’ve	added	further	security	and	scalability	features	to	ArangoDB
Enterprise	like	LDAP	integration,	Encryption	at	Rest,	and	the	brand	new	Satellite	Collections.

Also	see	What's	New	in	3.2.

Version	3.1
SmartGraphs:	Scale	with	graphs	to	a	cluster	and	stay	performant.	With	SmartGraphs	you	can	use	the	"smartness"	of	your
application	layer	to	shard	your	graph	efficiently	to	your	machines	and	let	traversals	run	locally.

Encryption	Control:	Choose	your	level	of	SSL	encryption

Auditing:	Keep	a	detailed	log	of	all	the	important	things	that	happened	in	ArangoDB.

Also	see	What's	New	in	3.1.

Version	3.0

self-organizing	cluster	with	synchronous	replication,	master/master	setup,	shared	nothing	architecture,	cluster	management
agency.

Deeply	integrated,	native	AQL	graph	traversal

Highlights

31

VelocyPack	as	new	internal	binary	storage	format	as	well	as	for	intermediate	AQL	values.

Persistent	indexes	via	RocksDB	suitable	for	sorting	and	range	queries.

Foxx	3.0:	overhauled	JS	framework	for	data-centric	microservices

Significantly	improved	Web	Interface

Also	see	What's	New	in	3.0.

Highlights

32

https://github.com/arangodb/velocypack

Scalability
ArangoDB	is	a	distributed	database	supporting	multiple	data	models,	and	can	thus	be	scaled	horizontally,	that	is,	by	using	many	servers,
typically	based	on	commodity	hardware.	This	approach	not	only	delivers	performance	as	well	as	capacity	improvements,	but	also
achieves	resilience	by	means	of	replication	and	automatic	fail-over.	Furthermore,	one	can	build	systems	that	scale	their	capacity
dynamically	up	and	down	automatically	according	to	demand.

One	can	also	scale	ArangoDB	vertically,	that	is,	by	using	ever	larger	servers.	There	is	no	built	in	limitation	in	ArangoDB,	for	example,	the
server	will	automatically	use	more	threads	if	more	CPUs	are	present.

However,	scaling	vertically	has	the	disadvantage	that	the	costs	grow	faster	than	linear	with	the	size	of	the	server,	and	none	of	the
resilience	and	dynamical	capabilities	can	be	achieved	in	this	way.

In	this	chapter	we	explain	the	distributed	architecture	of	ArangoDB	and	discuss	its	scalability	features	and	limitations:

ArangoDB's	distributed	architecture
Different	data	models	and	scalability
Limitations

Scalability

33

Architecture

The	cluster	architecture	of	ArangoDB	is	a	CP	master/master	model	with	no	single	point	of	failure.	With	"CP"	we	mean	that	in	the
presence	of	a	network	partition,	the	database	prefers	internal	consistency	over	availability.	With	"master/master"	we	mean	that	clients
can	send	their	requests	to	an	arbitrary	node,	and	experience	the	same	view	on	the	database	regardless.	"No	single	point	of	failure"	means
that	the	cluster	can	continue	to	serve	requests,	even	if	one	machine	fails	completely.

In	this	way,	ArangoDB	has	been	designed	as	a	distributed	multi-model	database.	This	section	gives	a	short	outline	on	the	cluster
architecture	and	how	the	above	features	and	capabilities	are	achieved.

Structure	of	an	ArangoDB	cluster

An	ArangoDB	cluster	consists	of	a	number	of	ArangoDB	instances	which	talk	to	each	other	over	the	network.	They	play	different	roles,
which	will	be	explained	in	detail	below.	The	current	configuration	of	the	cluster	is	held	in	the	"Agency",	which	is	a	highly-available
resilient	key/value	store	based	on	an	odd	number	of	ArangoDB	instances	running	Raft	Consensus	Protocol.

For	the	various	instances	in	an	ArangoDB	cluster	there	are	4	distinct	roles:	Agents,	Coordinators,	Primary	and	Secondary	DBservers.	In
the	following	sections	we	will	shed	light	on	each	of	them.	Note	that	the	tasks	for	all	roles	run	the	same	binary	from	the	same	Docker
image.

Agents

One	or	multiple	Agents	form	the	Agency	in	an	ArangoDB	cluster.	The	Agency	is	the	central	place	to	store	the	configuration	in	a	cluster.
It	performs	leader	elections	and	provides	other	synchronization	services	for	the	whole	cluster.	Without	the	Agency	none	of	the	other
components	can	operate.

While	generally	invisible	to	the	outside	it	is	the	heart	of	the	cluster.	As	such,	fault	tolerance	is	of	course	a	must	have	for	the	Agency.	To
achieve	that	the	Agents	are	using	the	Raft	Consensus	Algorithm.	The	algorithm	formally	guarantees	conflict	free	configuration
management	within	the	ArangoDB	cluster.

At	its	core	the	Agency	manages	a	big	configuration	tree.	It	supports	transactional	read	and	write	operations	on	this	tree,	and	other	servers
can	subscribe	to	HTTP	callbacks	for	all	changes	to	the	tree.

Coordinators

Coordinators	should	be	accessible	from	the	outside.	These	are	the	ones	the	clients	talk	to.	They	will	coordinate	cluster	tasks	like
executing	queries	and	running	Foxx	services.	They	know	where	the	data	is	stored	and	will	optimize	where	to	run	user	supplied	queries	or
parts	thereof.	Coordinators	are	stateless	and	can	thus	easily	be	shut	down	and	restarted	as	needed.

Primary	DBservers

Primary	DBservers	are	the	ones	where	the	data	is	actually	hosted.	They	host	shards	of	data	and	using	synchronous	replication	a	primary
may	either	be	leader	or	follower	for	a	shard.

They	should	not	be	accessed	from	the	outside	but	indirectly	through	the	coordinators.	They	may	also	execute	queries	in	part	or	as	a
whole	when	asked	by	a	coordinator.

Secondaries

Secondary	DBservers	are	asynchronous	replicas	of	primaries.	If	one	is	using	only	synchronous	replication,	one	does	not	need	secondaries
at	all.	For	each	primary,	there	can	be	one	or	more	secondaries.	Since	the	replication	works	asynchronously	(eventual	consistency),	the
replication	does	not	impede	the	performance	of	the	primaries.	On	the	other	hand,	their	replica	of	the	data	can	be	slightly	out	of	date.	The
secondaries	are	perfectly	suitable	for	backups	as	they	don't	interfere	with	the	normal	cluster	operation.

Cluster	ID

Every	non-Agency	ArangoDB	instance	in	a	cluster	is	assigned	a	unique	ID	during	its	startup.	Using	its	ID	a	node	is	identifiable
throughout	the	cluster.	All	cluster	operations	will	communicate	via	this	ID.

Architecture

34

https://raft.github.io/
https://raft.github.io/

Sharding

Using	the	roles	outlined	above	an	ArangoDB	cluster	is	able	to	distribute	data	in	so	called	shards	across	multiple	primaries.	From	the
outside	this	process	is	fully	transparent	and	as	such	we	achieve	the	goals	of	what	other	systems	call	"master-master	replication".	In	an
ArangoDB	cluster	you	talk	to	any	coordinator	and	whenever	you	read	or	write	data	it	will	automatically	figure	out	where	the	data	is
stored	(read)	or	to	be	stored	(write).	The	information	about	the	shards	is	shared	across	the	coordinators	using	the	Agency.

Also	see	Sharding	in	the	Administration	chapter.

Many	sensible	configurations

This	architecture	is	very	flexible	and	thus	allows	many	configurations,	which	are	suitable	for	different	usage	scenarios:

1.	 The	default	configuration	is	to	run	exactly	one	coordinator	and	one	primary	DBserver	on	each	machine.	This	achieves	the	classical
master/master	setup,	since	there	is	a	perfect	symmetry	between	the	different	nodes,	clients	can	equally	well	talk	to	any	one	of	the
coordinators	and	all	expose	the	same	view	to	the	data	store.

2.	 One	can	deploy	more	coordinators	than	DBservers.	This	is	a	sensible	approach	if	one	needs	a	lot	of	CPU	power	for	the	Foxx
services,	because	they	run	on	the	coordinators.

3.	 One	can	deploy	more	DBservers	than	coordinators	if	more	data	capacity	is	needed	and	the	query	performance	is	the	lesser
bottleneck

4.	 One	can	deploy	a	coordinator	on	each	machine	where	an	application	server	(e.g.	a	node.js	server)	runs,	and	the	Agents	and
DBservers	on	a	separate	set	of	machines	elsewhere.	This	avoids	a	network	hop	between	the	application	server	and	the	database	and
thus	decreases	latency.	Essentially,	this	moves	some	of	the	database	distribution	logic	to	the	machine	where	the	client	runs.

These	shall	suffice	for	now.	The	important	piece	of	information	here	is	that	the	coordinator	layer	can	be	scaled	and	deployed
independently	from	the	DBserver	layer.

Replication

ArangoDB	offers	two	ways	of	data	replication	within	a	cluster,	synchronous	and	asynchronous.	In	this	section	we	explain	some	details
and	highlight	the	advantages	and	disadvantages	respectively.

Synchronous	replication	with	automatic	fail-over

Synchronous	replication	works	on	a	per-shard	basis.	One	configures	for	each	collection,	how	many	copies	of	each	shard	are	kept	in	the
cluster.	At	any	given	time,	one	of	the	copies	is	declared	to	be	the	"leader"	and	all	other	replicas	are	"followers".	Write	operations	for	this
shard	are	always	sent	to	the	DBserver	which	happens	to	hold	the	leader	copy,	which	in	turn	replicates	the	changes	to	all	followers	before
the	operation	is	considered	to	be	done	and	reported	back	to	the	coordinator.	Read	operations	are	all	served	by	the	server	holding	the
leader	copy,	this	allows	to	provide	snapshot	semantics	for	complex	transactions.

If	a	DBserver	fails	that	holds	a	follower	copy	of	a	shard,	then	the	leader	can	no	longer	synchronize	its	changes	to	that	follower.	After	a
short	timeout	(3	seconds),	the	leader	gives	up	on	the	follower,	declares	it	to	be	out	of	sync,	and	continues	service	without	the	follower.
When	the	server	with	the	follower	copy	comes	back,	it	automatically	resynchronizes	its	data	with	the	leader	and	synchronous	replication
is	restored.

If	a	DBserver	fails	that	holds	a	leader	copy	of	a	shard,	then	the	leader	can	no	longer	serve	any	requests.	It	will	no	longer	send	a	heartbeat
to	the	Agency.	Therefore,	a	supervision	process	running	in	the	Raft	leader	of	the	Agency,	can	take	the	necessary	action	(after	15	seconds
of	missing	heartbeats),	namely	to	promote	one	of	the	servers	that	hold	in-sync	replicas	of	the	shard	to	leader	for	that	shard.	This	involves
a	reconfiguration	in	the	Agency	and	leads	to	the	fact	that	coordinators	now	contact	a	different	DBserver	for	requests	to	this	shard.	Service
resumes.	The	other	surviving	replicas	automatically	resynchronize	their	data	with	the	new	leader.	When	the	DBserver	with	the	original
leader	copy	comes	back,	it	notices	that	it	now	holds	a	follower	replica,	resynchronizes	its	data	with	the	new	leader	and	order	is	restored.

All	shard	data	synchronizations	are	done	in	an	incremental	way,	such	that	resynchronizations	are	quick.	This	technology	allows	to	move
shards	(follower	and	leader	ones)	between	DBservers	without	service	interruptions.	Therefore,	an	ArangoDB	cluster	can	move	all	the
data	on	a	specific	DBserver	to	other	DBservers	and	then	shut	down	that	server	in	a	controlled	way.	This	allows	to	scale	down	an
ArangoDB	cluster	without	service	interruption,	loss	of	fault	tolerance	or	data	loss.	Furthermore,	one	can	re-balance	the	distribution	of	the
shards,	either	manually	or	automatically.

All	these	operations	can	be	triggered	via	a	REST/JSON	API	or	via	the	graphical	web	UI.	All	fail-over	operations	are	completely	handled
within	the	ArangoDB	cluster.

Architecture

35

Obviously,	synchronous	replication	involves	a	certain	increased	latency	for	write	operations,	simply	because	there	is	one	more	network
hop	within	the	cluster	for	every	request.	Therefore	the	user	can	set	the	replication	factor	to	1,	which	means	that	only	one	copy	of	each
shard	is	kept,	thereby	switching	off	synchronous	replication.	This	is	a	suitable	setting	for	less	important	or	easily	recoverable	data	for
which	low	latency	write	operations	matter.

Asynchronous	replication	with	automatic	fail-over

Asynchronous	replication	works	differently,	in	that	it	is	organized	using	primary	and	secondary	DBservers.	Each	secondary	server
replicates	all	the	data	held	on	a	primary	by	polling	in	an	asynchronous	way.	This	process	has	very	little	impact	on	the	performance	of	the
primary.	The	disadvantage	is	that	there	is	a	delay	between	the	confirmation	of	a	write	operation	that	is	sent	to	the	client	and	the	actual
replication	of	the	data.	If	the	master	server	fails	during	this	delay,	then	committed	and	confirmed	data	can	be	lost.

Nevertheless,	we	also	offer	automatic	fail-over	with	this	setup.	Contrary	to	the	synchronous	case,	here	the	fail-over	management	is	done
from	outside	the	ArangoDB	cluster.	In	a	future	version	we	might	move	this	management	into	the	supervision	process	in	the	Agency,	but
as	of	now,	the	management	is	done	via	the	Mesos	framework	scheduler	for	ArangoDB	(see	below).

The	granularity	of	the	replication	is	a	whole	ArangoDB	instance	with	all	data	that	resides	on	that	instance,	which	means	that	you	need
twice	as	many	instances	as	without	asynchronous	replication.	Synchronous	replication	is	more	flexible	in	that	respect,	you	can	have
smaller	and	larger	instances,	and	if	one	fails,	the	data	can	be	rebalanced	across	the	remaining	ones.

Microservices	and	zero	administation

The	design	and	capabilities	of	ArangoDB	are	geared	towards	usage	in	modern	microservice	architectures	of	applications.	With	the	Foxx
services	it	is	very	easy	to	deploy	a	data	centric	microservice	within	an	ArangoDB	cluster.

In	addition,	one	can	deploy	multiple	instances	of	ArangoDB	within	the	same	project.	One	part	of	the	project	might	need	a	scalable
document	store,	another	might	need	a	graph	database,	and	yet	another	might	need	the	full	power	of	a	multi-model	database	actually
mixing	the	various	data	models.	There	are	enormous	efficiency	benefits	to	be	reaped	by	being	able	to	use	a	single	technology	for	various
roles	in	a	project.

To	simplify	life	of	the	devops	in	such	a	scenario	we	try	as	much	as	possible	to	use	a	zero	administration	approach	for	ArangoDB.	A
running	ArangoDB	cluster	is	resilient	against	failures	and	essentially	repairs	itself	in	case	of	temporary	failures.	See	the	next	section	for
further	capabilities	in	this	direction.

Apache	Mesos	integration

For	the	distributed	setup,	we	use	the	Apache	Mesos	infrastructure	by	default.	ArangoDB	is	a	fully	certified	package	for	DC/OS	and	can
thus	be	deployed	essentially	with	a	few	mouse	clicks	or	a	single	command,	once	you	have	an	existing	DC/OS	cluster.	But	even	on	a	plain
Apache	Mesos	cluster	one	can	deploy	ArangoDB	via	Marathon	with	a	single	API	call	and	some	JSON	configuration.

The	advantage	of	this	approach	is	that	we	can	not	only	implement	the	initial	deployment,	but	also	the	later	management	of	automatic
replacement	of	failed	instances	and	the	scaling	of	the	ArangoDB	cluster	(triggered	manually	or	even	automatically).	Since	all
manipulations	are	either	via	the	graphical	web	UI	or	via	JSON/REST	calls,	one	can	even	implement	auto-scaling	very	easily.

A	DC/OS	cluster	is	a	very	natural	environment	to	deploy	microservice	architectures,	since	it	is	so	convenient	to	deploy	various	services,
including	potentially	multiple	ArangoDB	cluster	instances	within	the	same	DC/OS	cluster.	The	built-in	service	discovery	makes	it
extremely	simple	to	connect	the	various	microservices	and	Mesos	automatically	takes	care	of	the	distribution	and	deployment	of	the
various	tasks.

See	the	Deployment	chapter	and	its	subsections	for	instructions.

It	is	possible	to	deploy	an	ArangoDB	cluster	by	simply	launching	a	bunch	of	Docker	containers	with	the	right	command	line	options	to
link	them	up,	or	even	on	a	single	machine	starting	multiple	ArangoDB	processes.	In	that	case,	synchronous	replication	will	work	within
the	deployed	ArangoDB	cluster,	and	automatic	fail-over	in	the	sense	that	the	duties	of	a	failed	server	will	automatically	be	assigned	to
another,	surviving	one.	However,	since	the	ArangoDB	cluster	cannot	within	itself	launch	additional	instances,	replacement	of	failed	nodes
is	not	automatic	and	scaling	up	and	down	has	to	be	managed	manually.	This	is	why	we	do	not	recommend	this	setup	for	production
deployment.

Architecture

36

Different	data	models	and	scalability

In	this	section	we	discuss	scalability	in	the	context	of	the	different	data	models	supported	by	ArangoDB.

Key/value	pairs

The	key/value	store	data	model	is	the	easiest	to	scale.	In	ArangoDB,	this	is	implemented	in	the	sense	that	a	document	collection	always
has	a	primary	key		_key		attribute	and	in	the	absence	of	further	secondary	indexes	the	document	collection	behaves	like	a	simple
key/value	store.

The	only	operations	that	are	possible	in	this	context	are	single	key	lookups	and	key/value	pair	insertions	and	updates.	If		_key		is	the
only	sharding	attribute	then	the	sharding	is	done	with	respect	to	the	primary	key	and	all	these	operations	scale	linearly.	If	the	sharding	is
done	using	different	shard	keys,	then	a	lookup	of	a	single	key	involves	asking	all	shards	and	thus	does	not	scale	linearly.

Document	store

For	the	document	store	case	even	in	the	presence	of	secondary	indexes	essentially	the	same	arguments	apply,	since	an	index	for	a	sharded
collection	is	simply	the	same	as	a	local	index	for	each	shard.	Therefore,	single	document	operations	still	scale	linearly	with	the	size	of	the
cluster,	unless	a	special	sharding	configuration	makes	lookups	or	write	operations	more	expensive.

For	a	deeper	analysis	of	this	topic	see	this	blog	post	in	which	good	linear	scalability	of	ArangoDB	for	single	document	operations	is
demonstrated.

Complex	queries	and	joins

The	AQL	query	language	allows	complex	queries,	using	multiple	collections,	secondary	indexes	as	well	as	joins.	In	particular	with	the
latter,	scaling	can	be	a	challenge,	since	if	the	data	to	be	joined	resides	on	different	machines,	a	lot	of	communication	has	to	happen.	The
AQL	query	execution	engine	organizes	a	data	pipeline	across	the	cluster	to	put	together	the	results	in	the	most	efficient	way.	The	query
optimizer	is	aware	of	the	cluster	structure	and	knows	what	data	is	where	and	how	it	is	indexed.	Therefore,	it	can	arrive	at	an	informed
decision	about	what	parts	of	the	query	ought	to	run	where	in	the	cluster.

Nevertheless,	for	certain	complicated	joins,	there	are	limits	as	to	what	can	be	achieved.

Graph	database

Graph	databases	are	particularly	good	at	queries	on	graphs	that	involve	paths	in	the	graph	of	an	a	priori	unknown	length.	For	example,
finding	the	shortest	path	between	two	vertices	in	a	graph,	or	finding	all	paths	that	match	a	certain	pattern	starting	at	a	given	vertex	are
such	examples.

However,	if	the	vertices	and	edges	along	the	occurring	paths	are	distributed	across	the	cluster,	then	a	lot	of	communication	is	necessary
between	nodes,	and	performance	suffers.	To	achieve	good	performance	at	scale,	it	is	therefore	necessary	to	get	the	distribution	of	the
graph	data	across	the	shards	in	the	cluster	right.	Most	of	the	time,	the	application	developers	and	users	of	ArangoDB	know	best,	how
their	graphs	ara	structured.	Therefore,	ArangoDB	allows	users	to	specify,	according	to	which	attributes	the	graph	data	is	sharded.	A
useful	first	step	is	usually	to	make	sure	that	the	edges	originating	at	a	vertex	reside	on	the	same	cluster	node	as	the	vertex.

Data	models

37

https://mesosphere.com/blog/2015/11/30/arangodb-benchmark-dcos/

Limitations

ArangoDB	has	no	built-in	limitations	to	horizontal	scalability.	The	central	resilient	Agency	will	easily	sustain	hundreds	of	DBservers	and
coordinators,	and	the	usual	database	operations	work	completely	decentrally	and	do	not	require	assistance	of	the	Agency.

Likewise,	the	supervision	process	in	the	Agency	can	easily	deal	with	lots	of	servers,	since	all	its	activities	are	not	performance	critical.

Obviously,	an	ArangoDB	cluster	is	limited	by	the	available	resources	of	CPU,	memory,	disk	and	network	bandwidth	and	latency.

Limitations

38

Data	models	&	modeling
This	chapter	introduces	ArangoDB's	core	concepts	and	covers

its	data	model	(or	data	models	respectively),
the	terminology	used	throughout	the	database	system	and	in	this	documentation,	as	well	as
aspects	to	consider	when	modeling	your	data	to	strike	a	balance	between	natural	data	structures	and	great	performance

You	will	also	find	usage	examples	on	how	to	interact	with	the	database	system	using	arangosh,	e.g.	how	to	create	and	drop	databases	/
collections,	or	how	to	save,	update,	replace	and	remove	documents.	You	can	do	all	this	using	the	web	interface	as	well	and	may	therefore
skip	these	sections	as	beginner.

Data	models	&	modeling

39

Concepts

Database	Interaction

ArangoDB	is	a	database	that	serves	documents	to	clients.	These	documents	are	transported	using	JSON	via	a	TCP	connection,	using	the
HTTP	protocol.	A	REST	API	is	provided	to	interact	with	the	database	system.

The	web	interface	that	comes	with	ArangoDB,	called	Aardvark,	provides	graphical	user	interface	that	is	easy	to	use.	An	interactive	shell,
called	Arangosh,	is	also	shipped.	In	addition,	there	are	so	called	drivers	that	make	it	easy	to	use	the	database	system	in	various
environments	and	programming	languages.	All	these	tools	use	the	HTTP	interface	of	the	server	and	remove	the	necessity	to	roll	own	low-
level	code	for	basic	communication	in	most	cases.

Data	model
The	documents	you	can	store	in	ArangoDB	closely	follow	the	JSON	format,	although	they	are	stored	in	a	binary	format	called
VelocyPack.	A	document	contains	zero	or	more	attributes,	each	of	these	attributes	having	a	value.	A	value	can	either	be	an	atomic	type,	i.
e.	number,	string,	boolean	or	null,	or	a	compound	type,	i.e.	an	array	or	embedded	document	/	object.	Arrays	and	sub-objects	can	contain
all	of	these	types,	which	means	that	arbitrarily	nested	data	structures	can	be	represented	in	a	single	document.

Documents	are	grouped	into	collections.	A	collection	contains	zero	or	more	documents.	If	you	are	familiar	with	relational	database
management	systems	(RDBMS)	then	it	is	safe	to	compare	collections	to	tables	and	documents	to	rows.	The	difference	is	that	in	a
traditional	RDBMS,	you	have	to	define	columns	before	you	can	store	records	in	a	table.	Such	definitions	are	also	known	as	schemas.
ArangoDB	is	schema-less,	which	means	that	there	is	no	need	to	define	what	attributes	a	document	can	have.	Every	single	document	can
have	a	completely	different	structure	and	still	be	stored	together	with	other	documents	in	a	single	collection.	In	practice,	there	will	be
common	denominators	among	the	documents	in	a	collection,	but	the	database	system	itself	doesn't	force	you	to	limit	yourself	to	a	certain
data	structure.

There	are	two	types	of	collections:	document	collection	(also	refered	to	as	vertex	collections	in	the	context	of	graphs)	as	well	as	edge
collections.	Edge	collections	store	documents	as	well,	but	they	include	two	special	attributes,	_from	and	_to,	which	are	used	to	create
relations	between	documents.	Usually,	two	documents	(vertices)	stored	in	document	collections	are	linked	by	a	document	(edge)	stored
in	an	edge	collection.	This	is	ArangoDB's	graph	data	model.	It	follows	the	mathematical	concept	of	a	directed,	labeled	graph,	except	that
edges	don't	just	have	labels,	but	are	full-blown	documents.

Collections	exist	inside	of	databases.	There	can	be	one	or	many	databases.	Different	databases	are	usually	used	for	multi	tenant	setups,
as	the	data	inside	them	(collections,	documents	etc.)	is	isolated	from	one	another.	The	default	database	_system	is	special,	because	it
cannot	be	removed.	Database	users	are	managed	in	this	database,	and	their	credentials	are	valid	for	all	databases	of	a	server	instance.

Data	Retrieval
Queries	are	used	to	filter	documents	based	on	certain	criteria,	to	compute	new	data,	as	well	as	to	manipulate	or	delete	existing
documents.	Queries	can	be	as	simple	as	a	"query	by	example"	or	as	complex	as	"joins"	using	many	collections	or	traversing	graph
structures.	They	are	written	in	the	ArangoDB	Query	Language	(AQL).

Cursors	are	used	to	iterate	over	the	result	of	queries,	so	that	you	get	easily	processable	batches	instead	of	one	big	hunk.

Indexes	are	used	to	speed	up	searches.	There	are	various	types	of	indexes,	such	as	hash	indexes	and	geo	indexes.

Concepts

40

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Representational_state_transfer
https://arangodb.com/downloads/arangodb-drivers/
https://github.com/arangodb/velocypack#readme

Handling	Databases
This	is	an	introduction	to	managing	databases	in	ArangoDB	from	within	JavaScript.

When	you	have	an	established	connection	to	ArangoDB,	the	current	database	can	be	changed	explicitly	using	the	db._useDatabase()
method.	This	will	switch	to	the	specified	database	(provided	it	exists	and	the	user	can	connect	to	it).	From	this	point	on,	any	following
action	in	the	same	shell	or	connection	will	use	the	specified	database,	unless	otherwise	specified.

Note:	If	the	database	is	changed,	client	drivers	need	to	store	the	current	database	name	on	their	side,	too.	This	is	because	connections	in
ArangoDB	do	not	contain	any	state	information.	All	state	information	is	contained	in	the	HTTP	request/response	data.

To	connect	to	a	specific	database	after	arangosh	has	started	use	the	command	described	above.	It	is	also	possible	to	specify	a	database
name	when	invoking	arangosh.	For	this	purpose,	use	the	command-line	parameter	--server.database,	e.g.

>	arangosh	--server.database	test	

Please	note	that	commands,	actions,	scripts	or	AQL	queries	should	never	access	multiple	databases,	even	if	they	exist.	The	only	intended
and	supported	way	in	ArangoDB	is	to	use	one	database	at	a	time	for	a	command,	an	action,	a	script	or	a	query.	Operations	started	in	one
database	must	not	switch	the	database	later	and	continue	operating	in	another.

Databases

41

Working	with	Databases

Database	Methods

The	following	methods	are	available	to	manage	databases	via	JavaScript.	Please	note	that	several	of	these	methods	can	be	used	from	the
_system	database	only.

Name

return	the	database	name		db._name()	

Returns	the	name	of	the	current	database	as	a	string.

Examples

arangosh>	require("@arangodb").db._name();

_system

ID

return	the	database	id		db._id()	

Returns	the	id	of	the	current	database	as	a	string.

Examples

arangosh>	require("@arangodb").db._id();

1

Path

return	the	path	to	database	files		db._path()	

Returns	the	filesystem	path	of	the	current	database	as	a	string.

Examples

arangosh>	require("@arangodb").db._path();

/tmp/arangosh_kC4NKW/tmp-22521-2650159011/data/databases/database-1

isSystem

return	the	database	type		db._isSystem()	

Returns	whether	the	currently	used	database	is	the	_system	database.	The	system	database	has	some	special	privileges	and	properties,	for
example,	database	management	operations	such	as	create	or	drop	can	only	be	executed	from	within	this	database.	Additionally,	the
_system	database	itself	cannot	be	dropped.

Use	Database

change	the	current	database		db._useDatabase(name)	

Changes	the	current	database	to	the	database	specified	by	name.	Note	that	the	database	specified	by	name	must	already	exist.

Changing	the	database	might	be	disallowed	in	some	contexts,	for	example	server-side	actions	(including	Foxx).

Working	with	Databases

42

When	performing	this	command	from	arangosh,	the	current	credentials	(username	and	password)	will	be	re-used.	These	credentials	might
not	be	valid	to	connect	to	the	database	specified	by	name.	Additionally,	the	database	only	be	accessed	from	certain	endpoints	only.	In
this	case,	switching	the	database	might	not	work,	and	the	connection	/	session	should	be	closed	and	restarted	with	different	username	and
password	credentials	and/or	endpoint	data.

List	Databases

return	the	list	of	all	existing	databases		db._databases()	

Returns	the	list	of	all	databases.	This	method	can	only	be	used	from	within	the	_system	database.

Create	Database

create	a	new	database		db._createDatabase(name,	options,	users)	

Creates	a	new	database	with	the	name	specified	by	name.	There	are	restrictions	for	database	names	(see	DatabaseNames).

Note	that	even	if	the	database	is	created	successfully,	there	will	be	no	change	into	the	current	database	to	the	new	database.	Changing	the
current	database	must	explicitly	be	requested	by	using	the	db._useDatabase	method.

The	options	attribute	currently	has	no	meaning	and	is	reserved	for	future	use.

The	optional	users	attribute	can	be	used	to	create	initial	users	for	the	new	database.	If	specified,	it	must	be	a	list	of	user	objects.	Each
user	object	can	contain	the	following	attributes:

username:	the	user	name	as	a	string.	This	attribute	is	mandatory.
passwd:	the	user	password	as	a	string.	If	not	specified,	then	it	defaults	to	an	empty	string.
active:	a	boolean	flag	indicating	whether	the	user	account	should	be	active	or	not.	The	default	value	is	true.
extra:	an	optional	JSON	object	with	extra	user	information.	The	data	contained	in	extra	will	be	stored	for	the	user	but	not	be
interpreted	further	by	ArangoDB.

If	no	initial	users	are	specified,	a	default	user	root	will	be	created	with	an	empty	string	password.	This	ensures	that	the	new	database	will
be	accessible	via	HTTP	after	it	is	created.

You	can	create	users	in	a	database	if	no	initial	user	is	specified.	Switch	into	the	new	database	(username	and	password	must	be	identical
to	the	current	session)	and	add	or	modify	users	with	the	following	commands.

		require("@arangodb/users").save(username,	password,	true);

		require("@arangodb/users").update(username,	password,	true);

		require("@arangodb/users").remove(username);

Alternatively,	you	can	specify	user	data	directly.	For	example:

		db._createDatabase("newDB",	{},	[{	username:	"newUser",	passwd:	"123456",	active:	true}])

Those	methods	can	only	be	used	from	within	the	_system	database.

Drop	Database

drop	an	existing	database		db._dropDatabase(name)	

Drops	the	database	specified	by	name.	The	database	specified	by	name	must	exist.

Note:	Dropping	databases	is	only	possible	from	within	the	_system	database.	The	_system	database	itself	cannot	be	dropped.

Databases	are	dropped	asynchronously,	and	will	be	physically	removed	if	all	clients	have	disconnected	and	references	have	been	garbage-
collected.

Engine	statistics

retrieve	statistics	related	to	the	storage	engine-rocksdb		db._engineStats()	

Returns	some	statistics	related	to	storage	engine	activity,	including	figures	about	data	size,	cache	usage,	etc.

Working	with	Databases

43

Note:	Currently	this	only	produces	useful	output	for	the	RocksDB	engine.

Working	with	Databases

44

Notes	about	Databases
Please	keep	in	mind	that	each	database	contains	its	own	system	collections,	which	need	to	be	set	up	when	a	database	is	created.	This	will
make	the	creation	of	a	database	take	a	while.

Replication	is	configured	on	a	per-database	level,	meaning	that	any	replication	logging	or	applying	for	a	new	database	must	be	configured
explicitly	after	a	new	database	has	been	created.

Foxx	applications	are	also	available	only	in	the	context	of	the	database	they	have	been	installed	in.	A	new	database	will	only	provide
access	to	the	system	applications	shipped	with	ArangoDB	(that	is	the	web	interface	at	the	moment)	and	no	other	Foxx	applications	until
they	are	explicitly	installed	for	the	particular	database.

Notes	about	Databases

45

JavaScript	Interface	to	Collections
This	is	an	introduction	to	ArangoDB's	interface	for	collections	and	how	to	handle	collections	from	the	JavaScript	shell	arangosh.	For
other	languages	see	the	corresponding	language	API.

The	most	important	call	is	the	call	to	create	a	new	collection.

Address	of	a	Collection

All	collections	in	ArangoDB	have	a	unique	identifier	and	a	unique	name.	ArangoDB	internally	uses	the	collection's	unique	identifier	to
look	up	collections.	This	identifier,	however,	is	managed	by	ArangoDB	and	the	user	has	no	control	over	it.	In	order	to	allow	users	to	use
their	own	names,	each	collection	also	has	a	unique	name	which	is	specified	by	the	user.	To	access	a	collection	from	the	user	perspective,
the	collection	name	should	be	used,	i.e.:

Collection

	db._collection(collection-name)	

A	collection	is	created	by	a	"db._create"	call.

For	example:	Assume	that	the	collection	identifier	is	7254820	and	the	name	is	demo,	then	the	collection	can	be	accessed	as:

db._collection("demo")

If	no	collection	with	such	a	name	exists,	then	null	is	returned.

There	is	a	short-cut	that	can	be	used	for	non-system	collections:

Collection	name

	db.collection-name	

This	call	will	either	return	the	collection	named	db.collection-name	or	create	a	new	one	with	that	name	and	a	set	of	default	properties.

Note:	Creating	a	collection	on	the	fly	using	db.collection-name	is	not	recommend	and	does	not	work	in	arangosh.	To	create	a	new
collection,	please	use

Create

	db._create(collection-name)	

This	call	will	create	a	new	collection	called	collection-name.	This	method	is	a	database	method	and	is	documented	in	detail	at	Database
Methods

Synchronous	replication

Starting	in	ArangoDB	3.0,	the	distributed	version	offers	synchronous	replication,	which	means	that	there	is	the	option	to	replicate	all
data	automatically	within	the	ArangoDB	cluster.	This	is	configured	for	sharded	collections	on	a	per	collection	basis	by	specifying	a
"replication	factor"	when	the	collection	is	created.	A	replication	factor	of	k	means	that	altogether	k	copies	of	each	shard	are	kept	in	the
cluster	on	k	different	servers,	and	are	kept	in	sync.	That	is,	every	write	operation	is	automatically	replicated	on	all	copies.

This	is	organised	using	a	leader/follower	model.	At	all	times,	one	of	the	servers	holding	replicas	for	a	shard	is	"the	leader"	and	all	others
are	"followers",	this	configuration	is	held	in	the	Agency	(see	Scalability	for	details	of	the	ArangoDB	cluster	architecture).	Every	write
operation	is	sent	to	the	leader	by	one	of	the	coordinators,	and	then	replicated	to	all	followers	before	the	operation	is	reported	to	have
succeeded.	The	leader	keeps	a	record	of	which	followers	are	currently	in	sync.	In	case	of	network	problems	or	a	failure	of	a	follower,	a
leader	can	and	will	drop	a	follower	temporarily	after	3	seconds,	such	that	service	can	resume.	In	due	course,	the	follower	will
automatically	resynchronize	with	the	leader	to	restore	resilience.

Collections

46

If	a	leader	fails,	the	cluster	Agency	automatically	initiates	a	failover	routine	after	around	15	seconds,	promoting	one	of	the	followers	to
leader.	The	other	followers	(and	the	former	leader,	when	it	comes	back),	automatically	resynchronize	with	the	new	leader	to	restore
resilience.	Usually,	this	whole	failover	procedure	can	be	handled	transparently	for	the	coordinator,	such	that	the	user	code	does	not	even
see	an	error	message.

Obviously,	this	fault	tolerance	comes	at	a	cost	of	increased	latency.	Each	write	operation	needs	an	additional	network	roundtrip	for	the
synchronous	replication	of	the	followers,	but	all	replication	operations	to	all	followers	happen	concurrently.	This	is,	why	the	default
replication	factor	is	1,	which	means	no	replication.

For	details	on	how	to	switch	on	synchronous	replication	for	a	collection,	see	the	database	method		db._create(collection-name)		in	the
section	about	Database	Methods.

Collections

47

Collection	Methods

Drop

drops	a	collection		collection.drop(options)	

Drops	a	collection	and	all	its	indexes	and	data.	In	order	to	drop	a	system	collection,	an	options	object	with	attribute	isSystem	set	to	true
must	be	specified.

Note:	dropping	a	collection	in	a	cluster,	which	is	prototype	for	sharing	in	other	collections	is	prohibited.	In	order	to	be	able	to	drop	such
a	collection,	all	dependent	collections	must	be	dropped	first.

Examples

arangosh>	col	=	db.example;

[ArangoCollection	15320,	"example"	(type	document,	status	loaded)]

arangosh>	col.drop();

arangosh>	col;

[ArangoCollection	15320,	"example"	(type	document,	status	deleted)]

arangosh>	col	=	db._example;

[ArangoCollection	15324,	"_example"	(type	document,	status	loaded)]

arangosh>	col.drop({	isSystem:	true	});

arangosh>	col;

[ArangoCollection	15324,	"_example"	(type	document,	status	deleted)]

Truncate

truncates	a	collection		collection.truncate()	

Truncates	a	collection,	removing	all	documents	but	keeping	all	its	indexes.

Examples

Truncates	a	collection:

arangosh>	col	=	db.example;

arangosh>	col.save({	"Hello"	:	"World"	});

arangosh>	col.count();

arangosh>	col.truncate();

arangosh>	col.count();

show	execution	results

Properties

gets	or	sets	the	properties	of	a	collection		collection.properties()	

Returns	an	object	containing	all	collection	properties.

waitForSync:	If	true	creating	a	document	will	only	return	after	the	data	was	synced	to	disk.

journalSize	:	The	size	of	the	journal	in	bytes.	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

isVolatile:	If	true	then	the	collection	data	will	be	kept	in	memory	only	and	ArangoDB	will	not	write	or	sync	the	data	to	disk.	This
option	is	meaningful	for	the	MMFiles	storage	engine	only.

Collection	Methods

48

keyOptions	(optional)	additional	options	for	key	generation.	This	is	a	JSON	array	containing	the	following	attributes	(note:	some	of
the	attributes	are	optional):

type:	the	type	of	the	key	generator	used	for	the	collection.
allowUserKeys:	if	set	to	true,	then	it	is	allowed	to	supply	own	key	values	in	the	_key	attribute	of	a	document.	If	set	to	false,
then	the	key	generator	will	solely	be	responsible	for	generating	keys	and	supplying	own	key	values	in	the	_key	attribute	of
documents	is	considered	an	error.
increment:	increment	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.
offset:	initial	offset	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.

indexBuckets:	number	of	buckets	into	which	indexes	using	a	hash	table	are	split.	The	default	is	16	and	this	number	has	to	be	a	power
of	2	and	less	than	or	equal	to	1024.	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

For	very	large	collections	one	should	increase	this	to	avoid	long	pauses	when	the	hash	table	has	to	be	initially	built	or	resized,	since
buckets	are	resized	individually	and	can	be	initially	built	in	parallel.	For	example,	64	might	be	a	sensible	value	for	a	collection	with
100	000	000	documents.	Currently,	only	the	edge	index	respects	this	value,	but	other	index	types	might	follow	in	future	ArangoDB
versions.	Changes	(see	below)	are	applied	when	the	collection	is	loaded	the	next	time.

In	a	cluster	setup,	the	result	will	also	contain	the	following	attributes:

numberOfShards:	the	number	of	shards	of	the	collection.

shardKeys:	contains	the	names	of	document	attributes	that	are	used	to	determine	the	target	shard	for	documents.

replicationFactor:	determines	how	many	copies	of	each	shard	are	kept	on	different	DBServers.

	collection.properties(properties)	

Changes	the	collection	properties.	properties	must	be	an	object	with	one	or	more	of	the	following	attribute(s):

waitForSync:	If	true	creating	a	document	will	only	return	after	the	data	was	synced	to	disk.

journalSize	:	The	size	of	the	journal	in	bytes.	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

indexBuckets	:	See	above,	changes	are	only	applied	when	the	collection	is	loaded	the	next	time.	This	option	is	meaningful	for	the
MMFiles	storage	engine	only.

replicationFactor	:	Change	the	number	of	shard	copies	kept	on	different	DBServers,	valid	values	are	integer	numbers	in	the	range	of
1-10	(Cluster	only)

Note:	it	is	not	possible	to	change	the	journal	size	after	the	journal	or	datafile	has	been	created.	Changing	this	parameter	will	only	effect
newly	created	journals.	Also	note	that	you	cannot	lower	the	journal	size	to	less	then	size	of	the	largest	document	already	stored	in	the
collection.

Note:	some	other	collection	properties,	such	as	type,	isVolatile,	or	keyOptions	cannot	be	changed	once	the	collection	is	created.

Examples

Read	all	properties

arangosh>	db.example.properties();

show	execution	results
Change	a	property

arangosh>	db.example.properties({	waitForSync	:	true	});

show	execution	results

Figures

returns	the	figures	of	a	collection		collection.figures()	

Returns	an	object	containing	statistics	about	the	collection.	Note	:	Retrieving	the	figures	will	always	load	the	collection	into	memory.

alive.count:	The	number	of	currently	active	documents	in	all	datafiles	and	journals	of	the	collection.	Documents	that	are	contained	in

Collection	Methods

49

the	write-ahead	log	only	are	not	reported	in	this	figure.

alive.size:	The	total	size	in	bytes	used	by	all	active	documents	of	the	collection.	Documents	that	are	contained	in	the	write-ahead	log
only	are	not	reported	in	this	figure.
dead.count:	The	number	of	dead	documents.	This	includes	document	versions	that	have	been	deleted	or	replaced	by	a	newer	version.
Documents	deleted	or	replaced	that	are	contained	in	the	write-ahead	log	only	are	not	reported	in	this	figure.
dead.size:	The	total	size	in	bytes	used	by	all	dead	documents.
dead.deletion:	The	total	number	of	deletion	markers.	Deletion	markers	only	contained	in	the	write-ahead	log	are	not	reporting	in	this
figure.
datafiles.count:	The	number	of	datafiles.
datafiles.fileSize:	The	total	filesize	of	datafiles	(in	bytes).
journals.count:	The	number	of	journal	files.
journals.fileSize:	The	total	filesize	of	the	journal	files	(in	bytes).
compactors.count:	The	number	of	compactor	files.
compactors.fileSize:	The	total	filesize	of	the	compactor	files	(in	bytes).
shapefiles.count:	The	number	of	shape	files.	This	value	is	deprecated	and	kept	for	compatibility	reasons	only.	The	value	will	always
be	0	since	ArangoDB	2.0	and	higher.
shapefiles.fileSize:	The	total	filesize	of	the	shape	files.	This	value	is	deprecated	and	kept	for	compatibility	reasons	only.	The	value
will	always	be	0	in	ArangoDB	2.0	and	higher.
shapes.count:	The	total	number	of	shapes	used	in	the	collection.	This	includes	shapes	that	are	not	in	use	anymore.	Shapes	that	are
contained	in	the	write-ahead	log	only	are	not	reported	in	this	figure.
shapes.size:	The	total	size	of	all	shapes	(in	bytes).	This	includes	shapes	that	are	not	in	use	anymore.	Shapes	that	are	contained	in
the	write-ahead	log	only	are	not	reported	in	this	figure.
attributes.count:	The	total	number	of	attributes	used	in	the	collection.	Note:	the	value	includes	data	of	attributes	that	are	not	in	use
anymore.	Attributes	that	are	contained	in	the	write-ahead	log	only	are	not	reported	in	this	figure.
attributes.size:	The	total	size	of	the	attribute	data	(in	bytes).	Note:	the	value	includes	data	of	attributes	that	are	not	in	use	anymore.
Attributes	that	are	contained	in	the	write-ahead	log	only	are	not	reported	in	this	figure.
indexes.count:	The	total	number	of	indexes	defined	for	the	collection,	including	the	pre-defined	indexes	(e.g.	primary	index).
indexes.size:	The	total	memory	allocated	for	indexes	in	bytes.
lastTick:	The	tick	of	the	last	marker	that	was	stored	in	a	journal	of	the	collection.	This	might	be	0	if	the	collection	does	not	yet	have
a	journal.
uncollectedLogfileEntries:	The	number	of	markers	in	the	write-ahead	log	for	this	collection	that	have	not	been	transferred	to	journals
or	datafiles.
documentReferences:	The	number	of	references	to	documents	in	datafiles	that	JavaScript	code	currently	holds.	This	information	can
be	used	for	debugging	compaction	and	unload	issues.
waitingFor:	An	optional	string	value	that	contains	information	about	which	object	type	is	at	the	head	of	the	collection's	cleanup
queue.	This	information	can	be	used	for	debugging	compaction	and	unload	issues.
compactionStatus.time:	The	point	in	time	the	compaction	for	the	collection	was	last	executed.	This	information	can	be	used	for
debugging	compaction	issues.
compactionStatus.message:	The	action	that	was	performed	when	the	compaction	was	last	run	for	the	collection.	This	information
can	be	used	for	debugging	compaction	issues.

Note:	collection	data	that	are	stored	in	the	write-ahead	log	only	are	not	reported	in	the	results.	When	the	write-ahead	log	is	collected,
documents	might	be	added	to	journals	and	datafiles	of	the	collection,	which	may	modify	the	figures	of	the	collection.	Also	note	that
	waitingFor		and		compactionStatus		may	be	empty	when	called	on	a	coordinator	in	a	cluster.

Additionally,	the	filesizes	of	collection	and	index	parameter	JSON	files	are	not	reported.	These	files	should	normally	have	a	size	of	a	few
bytes	each.	Please	also	note	that	the	fileSize	values	are	reported	in	bytes	and	reflect	the	logical	file	sizes.	Some	filesystems	may	use
optimisations	(e.g.	sparse	files)	so	that	the	actual	physical	file	size	is	somewhat	different.	Directories	and	sub-directories	may	also
require	space	in	the	file	system,	but	this	space	is	not	reported	in	the	fileSize	results.

That	means	that	the	figures	reported	do	not	reflect	the	actual	disk	usage	of	the	collection	with	100%	accuracy.	The	actual	disk	usage	of	a
collection	is	normally	slightly	higher	than	the	sum	of	the	reported	fileSize	values.	Still	the	sum	of	the	fileSize	values	can	still	be	used	as	a
lower	bound	approximation	of	the	disk	usage.

Examples

arangosh>	db.demo.figures()

Collection	Methods

50

show	execution	results

Load

loads	a	collection		collection.load()	

Loads	a	collection	into	memory.

Note:	cluster	collections	are	loaded	at	all	times.

Examples

arangosh>	col	=	db.example;

[ArangoCollection	15395,	"example"	(type	document,	status	loaded)]

arangosh>	col.load();

arangosh>	col;

[ArangoCollection	15395,	"example"	(type	document,	status	loaded)]

Revision

returns	the	revision	id	of	a	collection		collection.revision()	

Returns	the	revision	id	of	the	collection

The	revision	id	is	updated	when	the	document	data	is	modified,	either	by	inserting,	deleting,	updating	or	replacing	documents	in	it.

The	revision	id	of	a	collection	can	be	used	by	clients	to	check	whether	data	in	a	collection	has	changed	or	if	it	is	still	unmodified	since	a
previous	fetch	of	the	revision	id.

The	revision	id	returned	is	a	string	value.	Clients	should	treat	this	value	as	an	opaque	string,	and	only	use	it	for	equality/non-equality
comparisons.

Path

returns	the	physical	path	of	the	collection		collection.path()	

The	path	operation	returns	a	string	with	the	physical	storage	path	for	the	collection	data.

Note:	this	method	will	return	nothing	meaningful	in	a	cluster.	In	a	single-server	ArangoDB,	this	method	will	only	return	meaningful	data
for	the	MMFiles	engine.

Checksum

calculates	a	checksum	for	the	data	in	a	collection		collection.checksum(withRevisions,	withData)	

The	checksum	operation	calculates	an	aggregate	hash	value	for	all	document	keys	contained	in	collection	collection.

If	the	optional	argument	withRevisions	is	set	to	true,	then	the	revision	ids	of	the	documents	are	also	included	in	the	hash	calculation.

If	the	optional	argument	withData	is	set	to	true,	then	all	user-defined	document	attributes	are	also	checksummed.	Including	the	document
data	in	checksumming	will	make	the	calculation	slower,	but	is	more	accurate.

The	checksum	calculation	algorithm	changed	in	ArangoDB	3.0,	so	checksums	from	3.0	and	earlier	versions	for	the	same	data	will	differ.

Note:	this	method	is	not	available	in	a	cluster.

Unload

unloads	a	collection		collection.unload()	

Starts	unloading	a	collection	from	memory.	Note	that	unloading	is	deferred	until	all	query	have	finished.

Note:	cluster	collections	cannot	be	unloaded.

Examples

Collection	Methods

51

arangosh>	col	=	db.example;

[ArangoCollection	7407,	"example"	(type	document,	status	loaded)]

arangosh>	col.unload();

arangosh>	col;

[ArangoCollection	7407,	"example"	(type	document,	status	unloaded)]

Rename

renames	a	collection		collection.rename(new-name)	

Renames	a	collection	using	the	new-name.	The	new-name	must	not	already	be	used	for	a	different	collection.	new-name	must	also	be	a
valid	collection	name.	For	more	information	on	valid	collection	names	please	refer	to	the	naming	conventions.

If	renaming	fails	for	any	reason,	an	error	is	thrown.	If	renaming	the	collection	succeeds,	then	the	collection	is	also	renamed	in	all	graph
definitions	inside	the		_graphs		collection	in	the	current	database.

Note:	this	method	is	not	available	in	a	cluster.

Examples

arangosh>	c	=	db.example;

[ArangoCollection	15478,	"example"	(type	document,	status	loaded)]

arangosh>	c.rename("better-example");

arangosh>	c;

[ArangoCollection	15478,	"better-example"	(type	document,	status	loaded)]

Rotate

rotates	the	current	journal	of	a	collection		collection.rotate()	

Rotates	the	current	journal	of	a	collection.	This	operation	makes	the	current	journal	of	the	collection	a	read-only	datafile	so	it	may
become	a	candidate	for	garbage	collection.	If	there	is	currently	no	journal	available	for	the	collection,	the	operation	will	fail	with	an	error.

Note:	this	method	is	specific	for	the	MMFiles	storage	engine,	and	there	it	is	not	available	in	a	cluster.

Note:	please	note	that	you	need	appropriate	user	permissions	to	execute	this.

To	do	the	rename	collections	in	first	place	you	need	to	have	administrative	rights	on	the	database
To	have	access	to	the	resulting	renamed	collection	you	either	need	to	have	access	to	all	collections	of	that	database	(*)	or	a	main
system	administrator	has	to	give	you	access	to	the	newly	named	one.

Collection	Methods

52

Database	Methods

Collection

returns	a	single	collection	or	null		db._collection(collection-name)	

Returns	the	collection	with	the	given	name	or	null	if	no	such	collection	exists.

	db._collection(collection-identifier)	

Returns	the	collection	with	the	given	identifier	or	null	if	no	such	collection	exists.	Accessing	collections	by	identifier	is	discouraged	for
end	users.	End	users	should	access	collections	using	the	collection	name.

Examples

Get	a	collection	by	name:

arangosh>	db._collection("demo");

[ArangoCollection	91,	"demo"	(type	document,	status	loaded)]

Get	a	collection	by	id:

arangosh>	db._collection(123456);

[ArangoCollection	123456,	"demo"	(type	document,	status	loaded)]

Unknown	collection:

arangosh>	db._collection("unknown");

null

Create

creates	a	new	document	or	edge	collection		db._create(collection-name)	

Creates	a	new	document	collection	named	collection-name.	If	the	collection	name	already	exists	or	if	the	name	format	is	invalid,	an	error	is
thrown.	For	more	information	on	valid	collection	names	please	refer	to	the	naming	conventions.

	db._create(collection-name,	properties)	

properties	must	be	an	object	with	the	following	attributes:

waitForSync	(optional,	default	false):	If	true	creating	a	document	will	only	return	after	the	data	was	synced	to	disk.

journalSize	(optional,	default	is	a	configuration	parameter:	The	maximal	size	of	a	journal	or	datafile.	Note	that	this	also	limits	the
maximal	size	of	a	single	object.	Must	be	at	least	1MB.

isSystem	(optional,	default	is	false):	If	true,	create	a	system	collection.	In	this	case	collection-name	should	start	with	an	underscore.
End	users	should	normally	create	non-system	collections	only.	API	implementors	may	be	required	to	create	system	collections	in
very	special	occasions,	but	normally	a	regular	collection	will	do.

isVolatile	(optional,	default	is	false):	If	true	then	the	collection	data	is	kept	in-memory	only	and	not	made	persistent.	Unloading	the
collection	will	cause	the	collection	data	to	be	discarded.	Stopping	or	re-starting	the	server	will	also	cause	full	loss	of	data	in	the
collection.	The	collection	itself	will	remain	however	(only	the	data	is	volatile).	Setting	this	option	will	make	the	resulting	collection
be	slightly	faster	than	regular	collections	because	ArangoDB	does	not	enforce	any	synchronization	to	disk	and	does	not	calculate
any	CRC	checksums	for	datafiles	(as	there	are	no	datafiles).	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

keyOptions	(optional):	additional	options	for	key	generation.	If	specified,	then	keyOptions	should	be	a	JSON	object	containing	the
following	attributes	(note:	some	of	them	are	optional):

type:	specifies	the	type	of	the	key	generator.	The	currently	available	generators	are	traditional	and	autoincrement.	(note:
autoincrement	is	currently	only	supported	for	non-sharded	collections)

Database	Methods

53

allowUserKeys:	if	set	to	true,	then	it	is	allowed	to	supply	own	key	values	in	the	_key	attribute	of	a	document.	If	set	to	false,
then	the	key	generator	will	solely	be	responsible	for	generating	keys	and	supplying	own	key	values	in	the	_key	attribute	of
documents	is	considered	an	error.
increment:	increment	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.
offset:	initial	offset	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.

numberOfShards	(optional,	default	is	1):	in	a	cluster,	this	value	determines	the	number	of	shards	to	create	for	the	collection.	In	a
single	server	setup,	this	option	is	meaningless.

shardKeys	(optional,	default	is		["_key"]):	in	a	cluster,	this	attribute	determines	which	document	attributes	are	used	to	determine
the	target	shard	for	documents.	Documents	are	sent	to	shards	based	on	the	values	they	have	in	their	shard	key	attributes.	The	values
of	all	shard	key	attributes	in	a	document	are	hashed,	and	the	hash	value	is	used	to	determine	the	target	shard.	Note	that	values	of
shard	key	attributes	cannot	be	changed	once	set.	This	option	is	meaningless	in	a	single	server	setup.

When	choosing	the	shard	keys,	one	must	be	aware	of	the	following	rules	and	limitations:	In	a	sharded	collection	with	more	than	one
shard	it	is	not	possible	to	set	up	a	unique	constraint	on	an	attribute	that	is	not	the	one	and	only	shard	key	given	in	shardKeys.	This
is	because	enforcing	a	unique	constraint	would	otherwise	make	a	global	index	necessary	or	need	extensive	communication	for	every
single	write	operation.	Furthermore,	if	_key	is	not	the	one	and	only	shard	key,	then	it	is	not	possible	to	set	the	_key	attribute	when
inserting	a	document,	provided	the	collection	has	more	than	one	shard.	Again,	this	is	because	the	database	has	to	enforce	the	unique
constraint	on	the	_key	attribute	and	this	can	only	be	done	efficiently	if	this	is	the	only	shard	key	by	delegating	to	the	individual
shards.

replicationFactor	(optional,	default	is	1):	in	a	cluster,	this	attribute	determines	how	many	copies	of	each	shard	are	kept	on	different
DBServers.	The	value	1	means	that	only	one	copy	(no	synchronous	replication)	is	kept.	A	value	of	k	means	that	k-1	replicas	are
kept.	Any	two	copies	reside	on	different	DBServers.	Replication	between	them	is	synchronous,	that	is,	every	write	operation	to	the
"leader"	copy	will	be	replicated	to	all	"follower"	replicas,	before	the	write	operation	is	reported	successful.

If	a	server	fails,	this	is	detected	automatically	and	one	of	the	servers	holding	copies	take	over,	usually	without	an	error	being
reported.

When	using	the	Enterprise	version	of	ArangoDB	the	replicationFactor	may	be	set	to	"satellite"	making	the	collection	locally	joinable
on	every	database	server.	This	reduces	the	number	of	network	hops	dramatically	when	using	joins	in	AQL	at	the	costs	of	reduced
write	performance	on	these	collections.

distributeShardsLike	distribute	the	shards	of	this	collection	cloning	the	shard	distribution	of	another.	If	this	value	is	set	it	will	copy
replicationFactor	and	numberOfShards	from	the	other	collection,	the	attributes	in	this	collection	will	be	ignored	and	can	be	ommited.

	db._create(collection-name,	properties,	type)	

Specifies	the	optional	type	of	the	collection,	it	can	either	be	document	or	edge.	On	default	it	is	document.	Instead	of	giving	a	type	you	can
also	use	db._createEdgeCollection	or	db._createDocumentCollection.

	db._create(collection-name,	properties[,	type],	options)	

As	an	optional	third	(if	the	type	string	is	being	omitted)	or	fourth	parameter	you	can	specify	an	optional	options	map	that	controls	how
the	cluster	will	create	the	collection.	These	options	are	only	relevant	at	creation	time	and	will	not	be	persisted:

waitForSyncReplication	(default:	true)	When	enabled	the	server	will	only	report	success	back	to	the	client	if	all	replicas	have	created
the	collection.	Set	to	false	if	you	want	faster	server	responses	and	don't	care	about	full	replication.

enforceReplicationFactor	(default:	true)	When	enabled	which	means	the	server	will	check	if	there	are	enough	replicas	available	at
creation	time	and	bail	out	otherwise.	Set	to	false	to	disable	this	extra	check.

Examples

With	defaults:

arangosh>	c	=	db._create("users");

arangosh>	c.properties();

show	execution	results
With	properties:

arangosh>	c	=	db._create("users",	{	waitForSync	:	true,

Database	Methods

54

........>	journalSize	:	1024	*	1204});

arangosh>	c.properties();

show	execution	results
With	a	key	generator:

arangosh>	db._create("users",

........>	{	keyOptions:	{	type:	"autoincrement",	offset:	10,	increment:	5	}	});

arangosh>	db.users.save({	name:	"user	1"	});

arangosh>	db.users.save({	name:	"user	2"	});

arangosh>	db.users.save({	name:	"user	3"	});

show	execution	results
With	a	special	key	option:

arangosh>	db._create("users",	{	keyOptions:	{	allowUserKeys:	false	}	});

arangosh>	db.users.save({	name:	"user	1"	});

arangosh>	db.users.save({	name:	"user	2",	_key:	"myuser"	});

arangosh>	db.users.save({	name:	"user	3"	});

show	execution	results
creates	a	new	edge	collection		db._createEdgeCollection(collection-name)	

Creates	a	new	edge	collection	named	collection-name.	If	the	collection	name	already	exists	an	error	is	thrown.	The	default	value	for
waitForSync	is	false.

	db._createEdgeCollection(collection-name,	properties)	

properties	must	be	an	object	with	the	following	attributes:

waitForSync	(optional,	default	false):	If	true	creating	a	document	will	only	return	after	the	data	was	synced	to	disk.
journalSize	(optional,	default	is	"configuration	parameter"):	The	maximal	size	of	a	journal	or	datafile.	Note	that	this	also	limits	the
maximal	size	of	a	single	object	and	must	be	at	least	1MB.

creates	a	new	document	collection		db._createDocumentCollection(collection-name)	

Creates	a	new	document	collection	named	collection-name.	If	the	document	name	already	exists	and	error	is	thrown.

All	Collections

returns	all	collections		db._collections()	

Returns	all	collections	of	the	given	database.

Examples

arangosh>	db._collections();

show	execution	results

Collection	Name

selects	a	collection	from	the	vocbase		db.collection-name	

Returns	the	collection	with	the	given	collection-name.	If	no	such	collection	exists,	create	a	collection	named	collection-name	with	the
default	properties.

Examples

arangosh>	db.example;

Database	Methods

55

[ArangoCollection	15211,	"example"	(type	document,	status	loaded)]

Drop

drops	a	collection		db._drop(collection)	

Drops	a	collection	and	all	its	indexes	and	data.

	db._drop(collection-identifier)	

Drops	a	collection	identified	by	collection-identifier	with	all	its	indexes	and	data.	No	error	is	thrown	if	there	is	no	such	collection.

	db._drop(collection-name)	

Drops	a	collection	named	collection-name	and	all	its	indexes.	No	error	is	thrown	if	there	is	no	such	collection.

	db._drop(collection-name,	options)	

In	order	to	drop	a	system	collection,	one	must	specify	an	options	object	with	attribute	isSystem	set	to	true.	Otherwise	it	is	not	possible
to	drop	system	collections.

Note:	cluster	collection,	which	are	prototypes	for	collections	with	distributeShardsLike	parameter,	cannot	be	dropped.

Examples

Drops	a	collection:

arangosh>	col	=	db.example;

[ArangoCollection	15257,	"example"	(type	document,	status	loaded)]

arangosh>	db._drop(col);

arangosh>	col;

[ArangoCollection	15257,	"example"	(type	document,	status	loaded)]

Drops	a	collection	identified	by	name:

arangosh>	col	=	db.example;

[ArangoCollection	15261,	"example"	(type	document,	status	loaded)]

arangosh>	db._drop("example");

arangosh>	col;

[ArangoCollection	15261,	"example"	(type	document,	status	deleted)]

Drops	a	system	collection

arangosh>	col	=	db._example;

[ArangoCollection	15265,	"_example"	(type	document,	status	loaded)]

arangosh>	db._drop("_example",	{	isSystem:	true	});

arangosh>	col;

[ArangoCollection	15265,	"_example"	(type	document,	status	deleted)]

Truncate

truncates	a	collection		db._truncate(collection)	

Truncates	a	collection,	removing	all	documents	but	keeping	all	its	indexes.

	db._truncate(collection-identifier)	

Truncates	a	collection	identified	by	collection-identified.	No	error	is	thrown	if	there	is	no	such	collection.

	db._truncate(collection-name)	

Truncates	a	collection	named	collection-name.	No	error	is	thrown	if	there	is	no	such	collection.

Examples

Database	Methods

56

Truncates	a	collection:

arangosh>	col	=	db.example;

arangosh>	col.save({	"Hello"	:	"World"	});

arangosh>	col.count();

arangosh>	db._truncate(col);

arangosh>	col.count();

show	execution	results
Truncates	a	collection	identified	by	name:

arangosh>	col	=	db.example;

arangosh>	col.save({	"Hello"	:	"World"	});

arangosh>	col.count();

arangosh>	db._truncate("example");

arangosh>	col.count();

show	execution	results

Database	Methods

57

Documents
This	is	an	introduction	to	ArangoDB's	interface	for	working	with	documents	from	the	JavaScript	shell	arangosh	or	in	JavaScript	code	in
the	server.	For	other	languages	see	the	corresponding	language	API.

Basics	and	Terminology:	section	on	the	basic	approach
Collection	Methods:	detailed	API	description	for	collection	objects
Database	Methods:	detailed	API	description	for	database	objects

Documents

58

Basics	and	Terminology
Documents	in	ArangoDB	are	JSON	objects.	These	objects	can	be	nested	(to	any	depth)	and	may	contain	lists.	Each	document	has	a
unique	primary	key	which	identifies	it	within	its	collection.	Furthermore,	each	document	is	uniquely	identified	by	its	document	handle
across	all	collections	in	the	same	database.	Different	revisions	of	the	same	document	(identified	by	its	handle)	can	be	distinguished	by
their	document	revision.	Any	transaction	only	ever	sees	a	single	revision	of	a	document.	For	example:

{

		"_id"	:	"myusers/3456789",

		"_key"	:	"3456789",

		"_rev"	:	"14253647",

		"firstName"	:	"John",

		"lastName"	:	"Doe",

		"address"	:	{

				"street"	:	"Road	To	Nowhere	1",

				"city"	:	"Gotham"

		},

		"hobbies"	:	[

				{name:	"swimming",	howFavorite:	10},

				{name:	"biking",	howFavorite:	6},

				{name:	"programming",	howFavorite:	4}

]

}

All	documents	contain	special	attributes:	the	document	handle	is	stored	as	a	string	in		_id	,	the	document's	primary	key	in		_key		and
the	document	revision	in		_rev	.	The	value	of	the		_key		attribute	can	be	specified	by	the	user	when	creating	a	document.		_id		and
	_key		values	are	immutable	once	the	document	has	been	created.	The		_rev		value	is	maintained	by	ArangoDB	automatically.

Document	Handle

A	document	handle	uniquely	identifies	a	document	in	the	database.	It	is	a	string	and	consists	of	the	collection's	name	and	the	document
key	(_key		attribute)	separated	by		/	.

Document	Key

A	document	key	uniquely	identifies	a	document	in	the	collection	it	is	stored	in.	It	can	and	should	be	used	by	clients	when	specific
documents	are	queried.	The	document	key	is	stored	in	the		_key		attribute	of	each	document.	The	key	values	are	automatically	indexed
by	ArangoDB	in	a	collection's	primary	index.	Thus	looking	up	a	document	by	its	key	is	a	fast	operation.	The	_key	value	of	a	document	is
immutable	once	the	document	has	been	created.	By	default,	ArangoDB	will	auto-generate	a	document	key	if	no	_key	attribute	is
specified,	and	use	the	user-specified	_key	otherwise.	The	generated	_key	is	guaranteed	to	be	unique	in	the	collection	it	was	generated	for.
This	also	applies	to	sharded	collections	in	a	cluster.	It	can't	be	guaranteed	that	the	_key	is	unique	within	a	database	or	across	a	whole
node	or	instance	however.

This	behavior	can	be	changed	on	a	per-collection	level	by	creating	collections	with	the		keyOptions		attribute.

Using		keyOptions		it	is	possible	to	disallow	user-specified	keys	completely,	or	to	force	a	specific	regime	for	auto-generating	the		_key	
values.

Document	Revision

As	ArangoDB	supports	MVCC	(Multiple	Version	Concurrency	Control),	documents	can	exist	in	more	than	one	revision.	The	document
revision	is	the	MVCC	token	used	to	specify	a	particular	revision	of	a	document	(identified	by	its		_id).	It	is	a	string	value	that
contained	(up	to	ArangoDB	3.0)	an	integer	number	and	is	unique	within	the	list	of	document	revisions	for	a	single	document.	In
ArangoDB	>=	3.1	the	_rev	strings	are	in	fact	time	stamps.	They	use	the	local	clock	of	the	DBserver	that	actually	writes	the	document
and	have	millisecond	accuracy.	Actually,	a	"Hybrid	Logical	Clock"	is	used	(for	this	concept	see	this	paper).

Within	one	shard	it	is	guaranteed	that	two	different	document	revisions	have	a	different	_rev	string,	even	if	they	are	written	in	the	same
millisecond,	and	that	these	stamps	are	ascending.

Basics	and	Terminology

59

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

Note	however	that	different	servers	in	your	cluster	might	have	a	clock	skew,	and	therefore	between	different	shards	or	even	between
different	collections	the	time	stamps	are	not	guaranteed	to	be	comparable.

The	Hybrid	Logical	Clock	feature	does	one	thing	to	address	this	issue:	Whenever	a	message	is	sent	from	some	server	A	in	your	cluster	to
another	one	B,	it	is	ensured	that	any	timestamp	taken	on	B	after	the	message	has	arrived	is	greater	than	any	timestamp	taken	on	A	before
the	message	was	sent.	This	ensures	that	if	there	is	some	"causality"	between	events	on	different	servers,	time	stamps	increase	from	cause
to	effect.	A	direct	consequence	of	this	is	that	sometimes	a	server	has	to	take	timestamps	that	seem	to	come	from	the	future	of	its	own
clock.	It	will	however	still	produce	ever	increasing	timestamps.	If	the	clock	skew	is	small,	then	your	timestamps	will	relatively	accurately
describe	the	time	when	the	document	revision	was	actually	written.

ArangoDB	uses	64bit	unsigned	integer	values	to	maintain	document	revisions	internally.	At	this	stage	we	intentionally	do	not	document
the	exact	format	of	the	revision	values.	When	returning	document	revisions	to	clients,	ArangoDB	will	put	them	into	a	string	to	ensure	the
revision	is	not	clipped	by	clients	that	do	not	support	big	integers.	Clients	should	treat	the	revision	returned	by	ArangoDB	as	an	opaque
string	when	they	store	or	use	it	locally.	This	will	allow	ArangoDB	to	change	the	format	of	revisions	later	if	this	should	be	required	(as	has
happened	with	3.1	with	the	Hybrid	Logical	Clock).	Clients	can	use	revisions	to	perform	simple	equality/non-equality	comparisons	(e.g.
to	check	whether	a	document	has	changed	or	not),	but	they	should	not	use	revision	ids	to	perform	greater/less	than	comparisons	with
them	to	check	if	a	document	revision	is	older	than	one	another,	even	if	this	might	work	for	some	cases.

Document	revisions	can	be	used	to	conditionally	query,	update,	replace	or	delete	documents	in	the	database.	In	order	to	find	a	particular
revision	of	a	document,	you	need	the	document	handle	or	key,	and	the	document	revision.

Multiple	Documents	in	a	single	Command

Beginning	with	ArangoDB	3.0	the	basic	document	API	has	been	extended	to	handle	not	only	single	documents	but	multiple	documents	in
a	single	command.	This	is	crucial	for	performance,	in	particular	in	the	cluster	situation,	in	which	a	single	request	can	involve	multiple
network	hops	within	the	cluster.	Another	advantage	is	that	it	reduces	the	overhead	of	individual	network	round	trips	between	the	client
and	the	server.	The	general	idea	to	perform	multiple	document	operations	in	a	single	command	is	to	use	JSON	arrays	of	objects	in	the
place	of	a	single	document.	As	a	consequence,	document	keys,	handles	and	revisions	for	preconditions	have	to	be	supplied	embedded	in
the	individual	documents	given.	Multiple	document	operations	are	restricted	to	a	single	document	or	edge	collection.	See	the	API
descriptions	for	collection	objects	for	details.	Note	that	the	API	for	database	objects	do	not	offer	these	operations.

Basics	and	Terminology

60

Collection	Methods

All

	collection.all()	

Fetches	all	documents	from	a	collection	and	returns	a	cursor.	You	can	use	toArray,	next,	or	hasNext	to	access	the	result.	The	result	can	be
limited	using	the	skip	and	limit	operator.

Examples

Use	toArray	to	get	all	documents	at	once:

arangosh>	db.five.save({	name	:	"one"	});

arangosh>	db.five.save({	name	:	"two"	});

arangosh>	db.five.save({	name	:	"three"	});

arangosh>	db.five.save({	name	:	"four"	});

arangosh>	db.five.save({	name	:	"five"	});

arangosh>	db.five.all().toArray();

show	execution	results
Use	limit	to	restrict	the	documents:

arangosh>	db.five.save({	name	:	"one"	});

arangosh>	db.five.save({	name	:	"two"	});

arangosh>	db.five.save({	name	:	"three"	});

arangosh>	db.five.save({	name	:	"four"	});

arangosh>	db.five.save({	name	:	"five"	});

arangosh>	db.five.all().limit(2).toArray();

show	execution	results

Query	by	example
	collection.byExample(example)	

Fetches	all	documents	from	a	collection	that	match	the	specified	example	and	returns	a	cursor.

You	can	use	toArray,	next,	or	hasNext	to	access	the	result.	The	result	can	be	limited	using	the	skip	and	limit	operator.

An	attribute	name	of	the	form	a.b	is	interpreted	as	attribute	path,	not	as	attribute.	If	you	use

{	"a"	:	{	"c"	:	1	}	}

as	example,	then	you	will	find	all	documents,	such	that	the	attribute	a	contains	a	document	of	the	form	{c	:	1	}.	For	example	the
document

{	"a"	:	{	"c"	:	1	},	"b"	:	1	}

will	match,	but	the	document

{	"a"	:	{	"c"	:	1,	"b"	:	1	}	}

will	not.

However,	if	you	use

{	"a.c"	:	1	}

Collection	Methods

61

then	you	will	find	all	documents,	which	contain	a	sub-document	in	a	that	has	an	attribute	c	of	value	1.	Both	the	following	documents

{	"a"	:	{	"c"	:	1	},	"b"	:	1	}

and

{	"a"	:	{	"c"	:	1,	"b"	:	1	}	}

will	match.

collection.byExample(path1,	value1,	...)

As	alternative	you	can	supply	an	array	of	paths	and	values.

Examples

Use	toArray	to	get	all	documents	at	once:

arangosh>	db.users.save({	name:	"Gerhard"	});

arangosh>	db.users.save({	name:	"Helmut"	});

arangosh>	db.users.save({	name:	"Angela"	});

arangosh>	db.users.all().toArray();

arangosh>	db.users.byExample({	"_id"	:	"users/20"	}).toArray();

arangosh>	db.users.byExample({	"name"	:	"Gerhard"	}).toArray();

arangosh>	db.users.byExample({	"name"	:	"Helmut",	"_id"	:	"users/15"	}).toArray();

show	execution	results
Use	next	to	loop	over	all	documents:

arangosh>	db.users.save({	name:	"Gerhard"	});

arangosh>	db.users.save({	name:	"Helmut"	});

arangosh>	db.users.save({	name:	"Angela"	});

arangosh>	var	a	=	db.users.byExample({"name"	:	"Angela"	});

arangosh>	while	(a.hasNext())	print(a.next());

show	execution	results

First	Example

	collection.firstExample(example)	

Returns	some	document	of	a	collection	that	matches	the	specified	example.	If	no	such	document	exists,	null	will	be	returned.	The	example
has	to	be	specified	as	paths	and	values.	See	byExample	for	details.

	collection.firstExample(path1,	value1,	...)	

As	alternative	you	can	supply	an	array	of	paths	and	values.

Examples

arangosh>	db.users.firstExample("name",	"Angela");

show	execution	results

Range

	collection.range(attribute,	left,	right)	

Collection	Methods

62

Returns	all	documents	from	a	collection	such	that	the	attribute	is	greater	or	equal	than	left	and	strictly	less	than	right.

You	can	use	toArray,	next,	or	hasNext	to	access	the	result.	The	result	can	be	limited	using	the	skip	and	limit	operator.

An	attribute	name	of	the	form	a.b	is	interpreted	as	attribute	path,	not	as	attribute.

Note:	the	range	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	retrieving	documents	from	a	collection	within	a	specific	range	is	to	use	an	AQL	query	as	follows:

FOR	doc	IN	@@collection

		FILTER	doc.value	>=	@left	&&	doc.value	<	@right

		LIMIT	@skip,	@limit

		RETURN	doc

Examples

Use	toArray	to	get	all	documents	at	once:

arangosh>	db.old.ensureIndex({	type:	"skiplist",	fields:	["age"]	});

arangosh>	db.old.save({	age:	15	});

arangosh>	db.old.save({	age:	25	});

arangosh>	db.old.save({	age:	30	});

arangosh>	db.old.range("age",	10,	30).toArray();

show	execution	results

Closed	range

	collection.closedRange(attribute,	left,	right)	

Returns	all	documents	of	a	collection	such	that	the	attribute	is	greater	or	equal	than	left	and	less	or	equal	than	right.

You	can	use	toArray,	next,	or	hasNext	to	access	the	result.	The	result	can	be	limited	using	the	skip	and	limit	operator.

An	attribute	name	of	the	form	a.b	is	interpreted	as	attribute	path,	not	as	attribute.

Note:	the	closedRange	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	retrieving	documents	from	a	collection	within	a	specific	range	is	to	use	an	AQL	query	as	follows:

FOR	doc	IN	@@collection

		FILTER	doc.value	>=	@left	&&	doc.value	<=	@right

		LIMIT	@skip,	@limit

		RETURN	doc

Examples

Use	toArray	to	get	all	documents	at	once:

arangosh>	db.old.ensureIndex({	type:	"skiplist",	fields:	["age"]	});

arangosh>	db.old.save({	age:	15	});

arangosh>	db.old.save({	age:	25	});

arangosh>	db.old.save({	age:	30	});

arangosh>	db.old.closedRange("age",	10,	30).toArray();

show	execution	results

Any

	collection.any()	

Returns	a	random	document	from	the	collection	or	null	if	none	exists.

Note:	this	method	is	expensive	when	using	the	RocksDB	storage	engine.

Collection	Methods

63

Count

	collection.count()	

Returns	the	number	of	living	documents	in	the	collection.

Examples

arangosh>	db.users.count();

0

toArray

	collection.toArray()	

Converts	the	collection	into	an	array	of	documents.	Never	use	this	call	in	a	production	environment	as	it	will	basically	create	a	copy	of
your	collection	in	RAM	which	will	use	resources	depending	on	the	number	and	size	of	the	documents	in	your	collecion.

Document
	collection.document(object)	

The	document	method	finds	a	document	given	an	object	object	containing	the	_id	or	_key	attribute.	The	method	returns	the	document	if	it
can	be	found.	If	both	attributes	are	given,	the	_id	takes	precedence,	it	is	an	error,	if	the	collection	part	of	the	_id	does	not	match	the
collection.

An	error	is	thrown	if	_rev	is	specified	but	the	document	found	has	a	different	revision	already.	An	error	is	also	thrown	if	no	document
exists	with	the	given	_id	or	_key	value.

Please	note	that	if	the	method	is	executed	on	the	arangod	server	(e.g.	from	inside	a	Foxx	application),	an	immutable	document	object	will
be	returned	for	performance	reasons.	It	is	not	possible	to	change	attributes	of	this	immutable	object.	To	update	or	patch	the	returned
document,	it	needs	to	be	cloned/copied	into	a	regular	JavaScript	object	first.	This	is	not	necessary	if	the	document	method	is	called	from
out	of	arangosh	or	from	any	other	client.

	collection.document(document-handle)	

As	before.	Instead	of	object	a	document-handle	can	be	passed	as	first	argument.	No	revision	can	be	specified	in	this	case.

	collection.document(document-key)	

As	before.	Instead	of	object	a	document-key	can	be	passed	as	first	argument.

	collection.document(array)	

This	variant	allows	to	perform	the	operation	on	a	whole	array	of	arguments.	The	behavior	is	exactly	as	if	document	would	have	been
called	on	all	members	of	the	array	separately	and	all	results	are	returned	in	an	array.	If	an	error	occurs	with	any	of	the	documents,	no
exception	is	risen!	Instead	of	a	document	an	error	object	is	returned	in	the	result	array.

Examples

Returns	the	document	for	a	document-handle:

arangosh>	db.example.document("example/2873916");

show	execution	results
Returns	the	document	for	a	document-key:

arangosh>	db.example.document("2873916");

show	execution	results
Returns	the	document	for	an	object:

arangosh>	db.example.document({_id:	"example/2873916"});

Collection	Methods

64

show	execution	results
Returns	the	document	for	an	array	of	two	keys:

arangosh>	db.example.document(["2873916","2873917"]);

show	execution	results
An	error	is	raised	if	the	document	is	unknown:

arangosh>	db.example.document("example/4472917");

[ArangoError	1202:	document	not	found]

An	error	is	raised	if	the	handle	is	invalid:

arangosh>	db.example.document("");

[ArangoError	1205:	illegal	document	handle]

Changes	in	3.0	from	2.8:

document	can	now	query	multiple	documents	with	one	call.

Exists

checks	whether	a	document	exists		collection.exists(object)	

The	exists	method	determines	whether	a	document	exists	given	an	object		object		containing	the	_id	or	_key	attribute.	If	both	attributes
are	given,	the	_id	takes	precedence,	it	is	an	error,	if	the	collection	part	of	the	_id	does	not	match	the	collection.

An	error	is	thrown	if	_rev	is	specified	but	the	document	found	has	a	different	revision	already.

Instead	of	returning	the	found	document	or	an	error,	this	method	will	only	return	an	object	with	the	attributes	_id,	_key	and	_rev,	or	false
if	no	document	with	the	given	_id	or	_key	exists.	It	can	thus	be	used	for	easy	existence	checks.

This	method	will	throw	an	error	if	used	improperly,	e.g.	when	called	with	a	non-document	handle,	a	non-document,	or	when	a	cross-
collection	request	is	performed.

	collection.exists(document-handle)	

As	before.	Instead	of	object	a	document-handle	can	be	passed	as	first	argument.

	collection.exists(document-key)	

As	before.	Instead	of	object	a	document-key	can	be	passed	as	first	argument.

	collection.exists(array)	

This	variant	allows	to	perform	the	operation	on	a	whole	array	of	arguments.	The	behavior	is	exactly	as	if	exists	would	have	been	called	on
all	members	of	the	array	separately	and	all	results	are	returned	in	an	array.	If	an	error	occurs	with	any	of	the	documents,	the	operation
stops	immediately	returning	only	an	error	object.

Changes	in	3.0	from	2.8:

In	the	case	of	a	revision	mismatch	exists	now	throws	an	error	instead	of	simply	returning	false.	This	is	to	make	it	possible	to	tell	the
difference	between	a	revision	mismatch	and	a	non-existing	document.

exists	can	now	query	multiple	documents	with	one	call.

Lookup	By	Keys
	collection.documents(keys)	

Collection	Methods

65

Looks	up	the	documents	in	the	specified	collection	using	the	array	of	keys	provided.	All	documents	for	which	a	matching	key	was
specified	in	the	keys	array	and	that	exist	in	the	collection	will	be	returned.	Keys	for	which	no	document	can	be	found	in	the	underlying
collection	are	ignored,	and	no	exception	will	be	thrown	for	them.

This	method	is	deprecated	in	favour	of	the	array	variant	of	document.

Examples

arangosh>	keys	=	[];

arangosh>	for	(var	i	=	0;	i	<	10;	++i)	{

........>			db.example.insert({	_key:	"test"	+	i,	value:	i	});

........>			keys.push("test"	+	i);

........>	}

arangosh>	db.example.documents(keys);

show	execution	results

Insert

	collection.insert(data)	

Creates	a	new	document	in	the	collection	from	the	given	data.	The	data	must	be	an	object.	The	attributes	_id	and	_rev	are	ignored	and	are
automatically	generated.	A	unique	value	for	the	attribute	_key	will	be	automatically	generated	if	not	specified.	If	specified,	there	must	not
be	a	document	with	the	given	_key	in	the	collection.

The	method	returns	a	document	with	the	attributes	_id,	_key	and	_rev.	The	attribute	_id	contains	the	document	handle	of	the	newly
created	document,	the	attribute	_key	the	document	key	and	the	attribute	_rev	contains	the	document	revision.

	collection.insert(data,	options)	

Creates	a	new	document	in	the	collection	from	the	given	data	as	above.	The	optional	options	parameter	must	be	an	object	and	can	be	used
to	specify	the	following	options:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
silent:	If	this	flag	is	set	to	true,	the	method	does	not	return	any	output.
returnNew:	If	this	flag	is	set	to	true,	the	complete	new	document	is	returned	in	the	output	under	the	attribute	new.

Note:	since	ArangoDB	2.2,	insert	is	an	alias	for	save.

	collection.insert(array)	

	collection.insert(array,	options)	

These	two	variants	allow	to	perform	the	operation	on	a	whole	array	of	arguments.	The	behavior	is	exactly	as	if	insert	would	have	been
called	on	all	members	of	the	array	separately	and	all	results	are	returned	in	an	array.	If	an	error	occurs	with	any	of	the	documents,	no
exception	is	risen!	Instead	of	a	document	an	error	object	is	returned	in	the	result	array.	The	options	behave	exactly	as	before.

Changes	in	3.0	from	2.8:

The	options	silent	and	returnNew	are	new.	The	method	can	now	insert	multiple	documents	with	one	call.

Examples

arangosh>	db.example.insert({	Hello	:	"World"	});

arangosh>	db.example.insert({	Hello	:	"World"	},	{waitForSync:	true});

show	execution	results

arangosh>	db.example.insert([{	Hello	:	"World"	},	{Hello:	"there"}])

Collection	Methods

66

arangosh>	db.example.insert([{	Hello	:	"World"	},	{}],	{waitForSync:	true});

show	execution	results

Replace

	collection.replace(selector,	data)	

Replaces	an	existing	document	described	by	the	selector,	which	must	be	an	object	containing	the	_id	or	_key	attribute.	There	must	be	a
document	with	that	_id	or	_key	in	the	current	collection.	This	document	is	then	replaced	with	the	data	given	as	second	argument.	Any
attribute	_id,	_key	or	_rev	in	data	is	ignored.

The	method	returns	a	document	with	the	attributes	_id,	_key,	_rev	and	_oldRev.	The	attribute	_id	contains	the	document	handle	of	the
updated	document,	the	attribute	_rev	contains	the	document	revision	of	the	updated	document,	the	attribute	_oldRev	contains	the
revision	of	the	old	(now	replaced)	document.

If	the	selector	contains	a	_rev	attribute,	the	method	first	checks	that	the	specified	revision	is	the	current	revision	of	that	document.	If	not,
there	is	a	conflict,	and	an	error	is	thrown.

	collection.replace(selector,	data,	options)	

As	before,	but	options	must	be	an	object	that	can	contain	the	following	boolean	attributes:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
overwrite:	If	this	flag	is	set	to	true,	a	_rev	attribute	in	the	selector	is	ignored.
returnNew:	If	this	flag	is	set	to	true,	the	complete	new	document	is	returned	in	the	output	under	the	attribute	new.
returnOld:	If	this	flag	is	set	to	true,	the	complete	previous	revision	of	the	document	is	returned	in	the	output	under	the	attribute	old.
silent:	If	this	flag	is	set	to	true,	no	output	is	returned.

	collection.replace(document-handle,	data)	

	collection.replace(document-handle,	data,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	precondition	is	tested.

	collection.replace(document-key,	data)	

	collection.replace(document-key,	data,	options)	

As	before.	Instead	of	selector	a	document-key	can	be	passed	as	first	argument.	No	revision	precondition	is	tested.

	collection.replace(selectorarray,	dataarray)	

	collection.replace(selectorarray,	dataarray,	options)	

These	two	variants	allow	to	perform	the	operation	on	a	whole	array	of	selector/data	pairs.	The	two	arrays	given	as	selectorarray	and
dataarray	must	have	the	same	length.	The	behavior	is	exactly	as	if	replace	would	have	been	called	on	all	respective	members	of	the	two
arrays	and	all	results	are	returned	in	an	array.	If	an	error	occurs	with	any	of	the	documents,	no	exception	is	risen!	Instead	of	a	document
an	error	object	is	returned	in	the	result	array.	The	options	behave	exactly	as	before.

Examples

Create	and	update	a	document:

arangosh>	a1	=	db.example.insert({	a	:	1	});

arangosh>	a2	=	db.example.replace(a1,	{	a	:	2	});

arangosh>	a3	=	db.example.replace(a1,	{	a	:	3	});

show	execution	results
Use	a	document	handle:

arangosh>	a1	=	db.example.insert({	a	:	1	});

Collection	Methods

67

arangosh>	a2	=	db.example.replace("example/3903044",	{	a	:	2	});

show	execution	results

Changes	in	3.0	from	2.8:

The	options	silent,	returnNew	and	returnOld	are	new.	The	method	can	now	replace	multiple	documents	with	one	call.

Update

	collection.update(selector,	data)	

Updates	an	existing	document	described	by	the	selector,	which	must	be	an	object	containing	the	_id	or	_key	attribute.	There	must	be	a
document	with	that	_id	or	_key	in	the	current	collection.	This	document	is	then	patched	with	the	data	given	as	second	argument.	Any
attribute	_id,	_key	or	_rev	in	data	is	ignored.

The	method	returns	a	document	with	the	attributes	_id,	_key,	_rev	and	_oldRev.	The	attribute	_id	contains	the	document	handle	of	the
updated	document,	the	attribute	_rev	contains	the	document	revision	of	the	updated	document,	the	attribute	_oldRev	contains	the
revision	of	the	old	(now	updated)	document.

If	the	selector	contains	a	_rev	attribute,	the	method	first	checks	that	the	specified	revision	is	the	current	revision	of	that	document.	If	not,
there	is	a	conflict,	and	an	error	is	thrown.

	collection.update(selector,	data,	options)	

As	before,	but	options	must	be	an	object	that	can	contain	the	following	boolean	attributes:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
overwrite:	If	this	flag	is	set	to	true,	a	_rev	attribute	in	the	selector	is	ignored.
returnNew:	If	this	flag	is	set	to	true,	the	complete	new	document	is	returned	in	the	output	under	the	attribute	new.
returnOld:	If	this	flag	is	set	to	true,	the	complete	previous	revision	of	the	document	is	returned	in	the	output	under	the	attribute	old.
silent:	If	this	flag	is	set	to	true,	no	output	is	returned.
keepNull:	The	optional	keepNull	parameter	can	be	used	to	modify	the	behavior	when	handling	null	values.	Normally,	null	values	are
stored	in	the	database.	By	setting	the	keepNull	parameter	to	false,	this	behavior	can	be	changed	so	that	all	attributes	in	data	with	null
values	will	be	removed	from	the	target	document.
mergeObjects:	Controls	whether	objects	(not	arrays)	will	be	merged	if	present	in	both	the	existing	and	the	patch	document.	If	set	to
false,	the	value	in	the	patch	document	will	overwrite	the	existing	document's	value.	If	set	to	true,	objects	will	be	merged.	The	default
is	true.

	collection.update(document-handle,	data)	

	collection.update(document-handle,	data,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	precondition	is	tested.

	collection.update(document-key,	data)	

	collection.update(document-key,	data,	options)	

As	before.	Instead	of	selector	a	document-key	can	be	passed	as	first	argument.	No	revision	precondition	is	tested.

	collection.update(selectorarray,	dataarray)	

	collection.update(selectorarray,	dataarray,	options)	

These	two	variants	allow	to	perform	the	operation	on	a	whole	array	of	selector/data	pairs.	The	two	arrays	given	as	selectorarray	and
dataarray	must	have	the	same	length.	The	behavior	is	exactly	as	if	update	would	have	been	called	on	all	respective	members	of	the	two
arrays	and	all	results	are	returned	in	an	array.	If	an	error	occurs	with	any	of	the	documents,	no	exception	is	risen!	Instead	of	a	document
an	error	object	is	returned	in	the	result	array.	The	options	behave	exactly	as	before.

Examples

Create	and	update	a	document:

Collection	Methods

68

arangosh>	a1	=	db.example.insert({"a"	:	1});

arangosh>	a2	=	db.example.update(a1,	{"b"	:	2,	"c"	:	3});

arangosh>	a3	=	db.example.update(a1,	{"d"	:	4});

arangosh>	a4	=	db.example.update(a2,	{"e"	:	5,	"f"	:	6	});

arangosh>	db.example.document(a4);

arangosh>	a5	=	db.example.update(a4,	{"a"	:	1,	c	:	9,	e	:	42	});

arangosh>	db.example.document(a5);

show	execution	results
Use	a	document	handle:

arangosh>	a1	=	db.example.insert({"a"	:	1});

arangosh>	a2	=	db.example.update("example/18612115",	{	"x"	:	1,	"y"	:	2	});

show	execution	results
Use	the	keepNull	parameter	to	remove	attributes	with	null	values:

arangosh>	db.example.insert({"a"	:	1});

arangosh>	db.example.update("example/19988371",

........>	{	"b"	:	null,	"c"	:	null,	"d"	:	3	});

arangosh>	db.example.document("example/19988371");

arangosh>	db.example.update("example/19988371",	{	"a"	:	null	},	false,	false);

arangosh>	db.example.document("example/19988371");

arangosh>	db.example.update("example/19988371",

........>	{	"b"	:	null,	"c":	null,	"d"	:	null	},	false,	false);

arangosh>	db.example.document("example/19988371");

show	execution	results
Patching	array	values:

arangosh>		db.example.insert({"a"	:	{	"one"	:	1,	"two"	:	2,	"three"	:	3	},

........>	"b"	:	{	}});

arangosh>	db.example.update("example/20774803",	{"a"	:	{	"four"	:	4	},

........>	"b"	:	{	"b1"	:	1	}});

arangosh>	db.example.document("example/20774803");

arangosh>	db.example.update("example/20774803",	{	"a"	:	{	"one"	:	null	},

........>																																									"b"	:	null	},

........>	false,	false);

arangosh>	db.example.document("example/20774803");

show	execution	results

Changes	in	3.0	from	2.8:

The	options	silent,	returnNew	and	returnOld	are	new.	The	method	can	now	update	multiple	documents	with	one	call.

Remove

	collection.remove(selector)	

Removes	a	document	described	by	the	selector,	which	must	be	an	object	containing	the	_id	or	_key	attribute.	There	must	be	a	document
with	that	_id	or	_key	in	the	current	collection.	This	document	is	then	removed.

The	method	returns	a	document	with	the	attributes	_id,	_key	and	_rev.	The	attribute	_id	contains	the	document	handle	of	the	removed
document,	the	attribute	_rev	contains	the	document	revision	of	the	removed	document.

Collection	Methods

69

If	the	selector	contains	a	_rev	attribute,	the	method	first	checks	that	the	specified	revision	is	the	current	revision	of	that	document.	If	not,
there	is	a	conflict,	and	an	error	is	thrown.

	collection.remove(selector,	options)	

As	before,	but	options	must	be	an	object	that	can	contain	the	following	boolean	attributes:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
overwrite:	If	this	flag	is	set	to	true,	a	_rev	attribute	in	the	selector	is	ignored.
returnOld:	If	this	flag	is	set	to	true,	the	complete	previous	revision	of	the	document	is	returned	in	the	output	under	the	attribute	old.
silent:	If	this	flag	is	set	to	true,	no	output	is	returned.

	collection.remove(document-handle)	

	collection.remove(document-handle,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	check	is	performed.

	collection.remove(document-key)	

	collection.remove(document-handle,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	check	is	performed.

	collection.remove(selectorarray)	

	collection.remove(selectorarray,options)	

These	two	variants	allow	to	perform	the	operation	on	a	whole	array	of	selectors.	The	behavior	is	exactly	as	if	remove	would	have	been
called	on	all	members	of	the	array	separately	and	all	results	are	returned	in	an	array.	If	an	error	occurs	with	any	of	the	documents,	no
exception	is	risen!	Instead	of	a	document	an	error	object	is	returned	in	the	result	array.	The	options	behave	exactly	as	before.

Examples

Remove	a	document:

arangosh>	a1	=	db.example.insert({	a	:	1	});

arangosh>	db.example.document(a1);

arangosh>	db.example.remove(a1);

arangosh>	db.example.document(a1);

show	execution	results
Remove	a	document	with	a	conflict:

arangosh>	a1	=	db.example.insert({	a	:	1	});

arangosh>	a2	=	db.example.replace(a1,	{	a	:	2	});

arangosh>	db.example.remove(a1);

arangosh>	db.example.remove(a1,	true);

arangosh>	db.example.document(a1);

show	execution	results

Changes	in	3.0	from	2.8:

The	method	now	returns	not	only	true	but	information	about	the	removed	document(s).	The	options	silent	and	returnOld	are	new.	The
method	can	now	remove	multiple	documents	with	one	call.

Remove	By	Keys

	collection.removeByKeys(keys)	

Collection	Methods

70

Looks	up	the	documents	in	the	specified	collection	using	the	array	of	keys	provided,	and	removes	all	documents	from	the	collection
whose	keys	are	contained	in	the	keys	array.	Keys	for	which	no	document	can	be	found	in	the	underlying	collection	are	ignored,	and	no
exception	will	be	thrown	for	them.

The	method	will	return	an	object	containing	the	number	of	removed	documents	in	the	removed	sub-attribute,	and	the	number	of	not-
removed/ignored	documents	in	the	ignored	sub-attribute.

This	method	is	deprecated	in	favour	of	the	array	variant	of	remove.

Examples

arangosh>	keys	=	[];

arangosh>	for	(var	i	=	0;	i	<	10;	++i)	{

........>			db.example.insert({	_key:	"test"	+	i,	value:	i	});

........>			keys.push("test"	+	i);

........>	}

arangosh>	db.example.removeByKeys(keys);

show	execution	results

Remove	By	Example
	collection.removeByExample(example)	

Removes	all	documents	matching	an	example.

	collection.removeByExample(document,	waitForSync)	

The	optional	waitForSync	parameter	can	be	used	to	force	synchronization	of	the	document	deletion	operation	to	disk	even	in	case	that
the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	parameter	can	be	used	to	force	synchronization	of
just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,
then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.

	collection.removeByExample(document,	waitForSync,	limit)	

The	optional	limit	parameter	can	be	used	to	restrict	the	number	of	removals	to	the	specified	value.	If	limit	is	specified	but	less	than	the
number	of	documents	in	the	collection,	it	is	undefined	which	documents	are	removed.

Examples

arangosh>	db.example.removeByExample({Hello	:	"world"});

1

Replace	By	Example

	collection.replaceByExample(example,	newValue)	

Replaces	all	documents	matching	an	example	with	a	new	document	body.	The	entire	document	body	of	each	document	matching	the
example	will	be	replaced	with	newValue.	The	document	meta-attributes	_id,	_key	and	_rev	will	not	be	replaced.

	collection.replaceByExample(document,	newValue,	waitForSync)	

The	optional	waitForSync	parameter	can	be	used	to	force	synchronization	of	the	document	replacement	operation	to	disk	even	in	case
that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	parameter	can	be	used	to	force
synchronization	of	just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to
disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

	collection.replaceByExample(document,	newValue,	waitForSync,	limit)	

The	optional	limit	parameter	can	be	used	to	restrict	the	number	of	replacements	to	the	specified	value.	If	limit	is	specified	but	less	than
the	number	of	documents	in	the	collection,	it	is	undefined	which	documents	are	replaced.

Collection	Methods

71

Examples

arangosh>	db.example.save({	Hello	:	"world"	});

arangosh>	db.example.replaceByExample({	Hello:	"world"	},	{Hello:	"mars"},	false,	5);

show	execution	results

Update	By	Example
	collection.updateByExample(example,	newValue)	

Partially	updates	all	documents	matching	an	example	with	a	new	document	body.	Specific	attributes	in	the	document	body	of	each
document	matching	the	example	will	be	updated	with	the	values	from	newValue.	The	document	meta-attributes	_id,	_key	and	_rev	cannot
be	updated.

Partial	update	could	also	be	used	to	append	new	fields,	if	there	were	no	old	field	with	same	name.

	collection.updateByExample(document,	newValue,	keepNull,	waitForSync)	

The	optional	keepNull	parameter	can	be	used	to	modify	the	behavior	when	handling	null	values.	Normally,	null	values	are	stored	in	the
database.	By	setting	the	keepNull	parameter	to	false,	this	behavior	can	be	changed	so	that	all	attributes	in	data	with	null	values	will	be
removed	from	the	target	document.

The	optional	waitForSync	parameter	can	be	used	to	force	synchronization	of	the	document	replacement	operation	to	disk	even	in	case
that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	parameter	can	be	used	to	force
synchronization	of	just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to
disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

	collection.updateByExample(document,	newValue,	keepNull,	waitForSync,	limit)	

The	optional	limit	parameter	can	be	used	to	restrict	the	number	of	updates	to	the	specified	value.	If	limit	is	specified	but	less	than	the
number	of	documents	in	the	collection,	it	is	undefined	which	documents	are	updated.

	collection.updateByExample(document,	newValue,	options)	

Using	this	variant,	the	options	for	the	operation	can	be	passed	using	an	object	with	the	following	sub-attributes:

keepNull
waitForSync
limit
mergeObjects

Examples

arangosh>	db.example.save({	Hello	:	"world",	foo	:	"bar"	});

arangosh>	db.example.updateByExample({	Hello:	"world"	},	{	Hello:	"foo",	World:	"bar"	},	

false);

arangosh>	db.example.byExample({	Hello:	"foo"	}).toArray()

show	execution	results

Collection	type
	collection.type()	

Returns	the	type	of	a	collection.	Possible	values	are:

2:	document	collection
3:	edge	collection

Get	the	Version	of	ArangoDB
	db._version()	

Collection	Methods

72

Returns	the	server	version	string.	Note	that	this	is	not	the	version	of	the	database.

Examples

arangosh>	require("@arangodb").db._version();

3.3.5

Edges

Edges	are	normal	documents	that	always	contain	a		_from		and	a		_to		attribute.	Therefore,	you	can	use	the	document	methods	to
operate	on	edges.	The	following	methods,	however,	are	specific	to	edges.

	edge-collection.edges(vertex)	

The	edges	operator	finds	all	edges	starting	from	(outbound)	or	ending	in	(inbound)	vertex.

	edge-collection.edges(vertices)	

The	edges	operator	finds	all	edges	starting	from	(outbound)	or	ending	in	(inbound)	a	document	from	vertices,	which	must	be	a	list	of
documents	or	document	handles.

arangosh>	db._create("vertex");

arangosh>	db._createEdgeCollection("relation");

arangosh>	var	myGraph	=	{};

arangosh>	myGraph.v1	=	db.vertex.insert({	name	:	"vertex	1"	});

arangosh>	myGraph.v2	=	db.vertex.insert({	name	:	"vertex	2"	});

arangosh>	myGraph.e1	=	db.relation.insert(myGraph.v1,	myGraph.v2,

........>	{	label	:	"knows"});

arangosh>	db._document(myGraph.e1);

arangosh>	db.relation.edges(myGraph.e1._id);

show	execution	results
	edge-collection.inEdges(vertex)	

The	edges	operator	finds	all	edges	ending	in	(inbound)	vertex.

	edge-collection.inEdges(vertices)	

The	edges	operator	finds	all	edges	ending	in	(inbound)	a	document	from	vertices,	which	must	a	list	of	documents	or	document	handles.

Examples

arangosh>	db._create("vertex");

arangosh>	db._createEdgeCollection("relation");

arangosh>	myGraph.v1	=	db.vertex.insert({	name	:	"vertex	1"	});

arangosh>	myGraph.v2	=	db.vertex.insert({	name	:	"vertex	2"	});

arangosh>	myGraph.e1	=	db.relation.insert(myGraph.v1,	myGraph.v2,

........>	{	label	:	"knows"});

arangosh>	db._document(myGraph.e1);

arangosh>	db.relation.inEdges(myGraph.v1._id);

arangosh>	db.relation.inEdges(myGraph.v2._id);

show	execution	results
	edge-collection.outEdges(vertex)	

The	edges	operator	finds	all	edges	starting	from	(outbound)	vertices.

	edge-collection.outEdges(vertices)	

The	edges	operator	finds	all	edges	starting	from	(outbound)	a	document	from	vertices,	which	must	a	list	of	documents	or	document
handles.

Examples

Collection	Methods

73

arangosh>	db._create("vertex");

arangosh>	db._createEdgeCollection("relation");

arangosh>	myGraph.v1	=	db.vertex.insert({	name	:	"vertex	1"	});

arangosh>	myGraph.v2	=	db.vertex.insert({	name	:	"vertex	2"	});

arangosh>	myGraph.e1	=	db.relation.insert(myGraph.v1,	myGraph.v2,

........>	{	label	:	"knows"});

arangosh>	db._document(myGraph.e1);

arangosh>	db.relation.outEdges(myGraph.v1._id);

arangosh>	db.relation.outEdges(myGraph.v2._id);

show	execution	results

Misc

	collection.iterate(iterator,	options)	

Iterates	over	some	elements	of	the	collection	and	apply	the	function	iterator	to	the	elements.	The	function	will	be	called	with	the
document	as	first	argument	and	the	current	number	(starting	with	0)	as	second	argument.

options	must	be	an	object	with	the	following	attributes:

limit	(optional,	default	none):	use	at	most	limit	documents.

probability	(optional,	default	all):	a	number	between	0	and	1.	Documents	are	chosen	with	this	probability.

Examples

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(j	=	-180;		j	<=	180;		j	+=	10)	{

........>				db.example.save({	name	:	"Name/"	+	i	+	"/"	+	j,

........>																						home	:	[i,	j],

........>																						work	:	[-i,	-j]	});

........>		}

........>	}

........>	

arangosh>	db.example.ensureIndex({	type:	"geo",	fields:	["home"]	});

arangosh>	items	=	db.example.getIndexes().map(function(x)	{	return	x.id;	});

........>	db.example.index(items[1]);

show	execution	results

Collection	Methods

74

Database	Methods

Document

	db._document(object)	

The	_document	method	finds	a	document	given	an	object	object	containing	the	_id	attribute.	The	method	returns	the	document	if	it	can	be
found.

An	error	is	thrown	if	_rev	is	specified	but	the	document	found	has	a	different	revision	already.	An	error	is	also	thrown	if	no	document
exists	with	the	given	_id.

Please	note	that	if	the	method	is	executed	on	the	arangod	server	(e.g.	from	inside	a	Foxx	application),	an	immutable	document	object	will
be	returned	for	performance	reasons.	It	is	not	possible	to	change	attributes	of	this	immutable	object.	To	update	or	patch	the	returned
document,	it	needs	to	be	cloned/copied	into	a	regular	JavaScript	object	first.	This	is	not	necessary	if	the	_document	method	is	called	from
out	of	arangosh	or	from	any	other	client.

	db._document(document-handle)	

As	before.	Instead	of	object	a	document-handle	can	be	passed	as	first	argument.	No	revision	can	be	specified	in	this	case.

Examples

Returns	the	document:

arangosh>	db._document("example/12345");

show	execution	results

Exists
	db._exists(object)	

The	_exists	method	determines	whether	a	document	exists	given	an	object		object		containing	the	_id	attribute.

An	error	is	thrown	if	_rev	is	specified	but	the	document	found	has	a	different	revision	already.

Instead	of	returning	the	found	document	or	an	error,	this	method	will	only	return	an	object	with	the	attributes	_id,	_key	and	_rev,	or	false
if	no	document	with	the	given	_id	or	_key	exists.	It	can	thus	be	used	for	easy	existence	checks.

This	method	will	throw	an	error	if	used	improperly,	e.g.	when	called	with	a	non-document	handle,	a	non-document,	or	when	a	cross-
collection	request	is	performed.

	db._exists(document-handle)	

As	before.	Instead	of	object	a	document-handle	can	be	passed	as	first	argument.

Changes	in	3.0	from	2.8:

In	the	case	of	a	revision	mismatch	_exists	now	throws	an	error	instead	of	simply	returning	false.	This	is	to	make	it	possible	to	tell	the
difference	between	a	revision	mismatch	and	a	non-existing	document.

Replace

	db._replace(selector,	data)	

Replaces	an	existing	document	described	by	the	selector,	which	must	be	an	object	containing	the	_id	attribute.	There	must	be	a	document
with	that	_id	in	the	current	database.	This	document	is	then	replaced	with	the	data	given	as	second	argument.	Any	attribute	_id,	_key	or
_rev	in	data	is	ignored.

The	method	returns	a	document	with	the	attributes	_id,	_key,	_rev	and	_oldRev.	The	attribute	_id	contains	the	document	handle	of	the
updated	document,	the	attribute	_rev	contains	the	document	revision	of	the	updated	document,	the	attribute	_oldRev	contains	the
revision	of	the	old	(now	replaced)	document.

Database	Methods

75

If	the	selector	contains	a	_rev	attribute,	the	method	first	checks	that	the	specified	revision	is	the	current	revision	of	that	document.	If	not,
there	is	a	conflict,	and	an	error	is	thrown.

	collection.replace(selector,	data,	options)	

As	before,	but	options	must	be	an	object	that	can	contain	the	following	boolean	attributes:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
overwrite:	If	this	flag	is	set	to	true,	a	_rev	attribute	in	the	selector	is	ignored.
returnNew:	If	this	flag	is	set	to	true,	the	complete	new	document	is	returned	in	the	output	under	the	attribute	new.
returnOld:	If	this	flag	is	set	to	true,	the	complete	previous	revision	of	the	document	is	returned	in	the	output	under	the	attribute	old.
silent:	If	this	flag	is	set	to	true,	no	output	is	returned.

	db._replace(document-handle,	data)	

	db._replace(document-handle,	data,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	precondition	is	tested.

Examples

Create	and	replace	a	document:

arangosh>	a1	=	db.example.insert({	a	:	1	});

arangosh>	a2	=	db._replace(a1,	{	a	:	2	});

arangosh>	a3	=	db._replace(a1,	{	a	:	3	});

show	execution	results

Changes	in	3.0	from	2.8:

The	options	silent,	returnNew	and	returnOld	are	new.

Update

	db._update(selector,	data)	

Updates	an	existing	document	described	by	the	selector,	which	must	be	an	object	containing	the	_id	attribute.	There	must	be	a	document
with	that	_id	in	the	current	database.	This	document	is	then	patched	with	the	data	given	as	second	argument.	Any	attribute	_id,	_key	or
_rev	in	data	is	ignored.

The	method	returns	a	document	with	the	attributes	_id,	_key,	_rev	and	_oldRev.	The	attribute	_id	contains	the	document	handle	of	the
updated	document,	the	attribute	_rev	contains	the	document	revision	of	the	updated	document,	the	attribute	_oldRev	contains	the
revision	of	the	old	(now	updated)	document.

If	the	selector	contains	a	_rev	attribute,	the	method	first	checks	that	the	specified	revision	is	the	current	revision	of	that	document.	If	not,
there	is	a	conflict,	and	an	error	is	thrown.

	db._update(selector,	data,	options)	

As	before,	but	options	must	be	an	object	that	can	contain	the	following	boolean	attributes:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
overwrite:	If	this	flag	is	set	to	true,	a	_rev	attribute	in	the	selector	is	ignored.
returnNew:	If	this	flag	is	set	to	true,	the	complete	new	document	is	returned	in	the	output	under	the	attribute	new.
returnOld:	If	this	flag	is	set	to	true,	the	complete	previous	revision	of	the	document	is	returned	in	the	output	under	the	attribute	old.

Database	Methods

76

silent:	If	this	flag	is	set	to	true,	no	output	is	returned.
keepNull:	The	optional	keepNull	parameter	can	be	used	to	modify	the	behavior	when	handling	null	values.	Normally,	null	values	are
stored	in	the	database.	By	setting	the	keepNull	parameter	to	false,	this	behavior	can	be	changed	so	that	all	attributes	in	data	with	null
values	will	be	removed	from	the	target	document.
mergeObjects:	Controls	whether	objects	(not	arrays)	will	be	merged	if	present	in	both	the	existing	and	the	patch	document.	If	set	to
false,	the	value	in	the	patch	document	will	overwrite	the	existing	document's	value.	If	set	to	true,	objects	will	be	merged.	The	default
is	true.

	db._update(document-handle,	data)	

	db._update(document-handle,	data,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	precondition	is	tested.

Examples

Create	and	update	a	document:

arangosh>	a1	=	db.example.insert({	a	:	1	});

arangosh>	a2	=	db._update(a1,	{	b	:	2	});

arangosh>	a3	=	db._update(a1,	{	c	:	3	});

show	execution	results

Changes	in	3.0	from	2.8:

The	options	silent,	returnNew	and	returnOld	are	new.

Remove
	db._remove(selector)	

Removes	a	document	described	by	the	selector,	which	must	be	an	object	containing	the	_id	attribute.	There	must	be	a	document	with	that
_id	in	the	current	database.	This	document	is	then	removed.

The	method	returns	a	document	with	the	attributes	_id,	_key	and	_rev.	The	attribute	_id	contains	the	document	handle	of	the	removed
document,	the	attribute	_rev	contains	the	document	revision	of	the	removed	eocument.

If	the	selector	contains	a	_rev	attribute,	the	method	first	checks	that	the	specified	revision	is	the	current	revision	of	that	document.	If	not,
there	is	a	conflict,	and	an	error	is	thrown.

	db._remove(selector,	options)	

As	before,	but	options	must	be	an	object	that	can	contain	the	following	boolean	attributes:

waitForSync:	One	can	force	synchronization	of	the	document	creation	operation	to	disk	even	in	case	that	the	waitForSync	flag	is
been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	option	can	be	used	to	force	synchronization	of	just	specific
operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the
collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	parameter	cannot	be	used	to	disable	synchronization	for
collections	that	have	a	default	waitForSync	value	of	true.
overwrite:	If	this	flag	is	set	to	true,	a	_rev	attribute	in	the	selector	is	ignored.
returnOld:	If	this	flag	is	set	to	true,	the	complete	previous	revision	of	the	document	is	returned	in	the	output	under	the	attribute	old.
silent:	If	this	flag	is	set	to	true,	no	output	is	returned.

	db._remove(document-handle)	

	db._remove(document-handle,	options)	

As	before.	Instead	of	selector	a	document-handle	can	be	passed	as	first	argument.	No	revision	check	is	performed.

Examples

Remove	a	document:

arangosh>	a1	=	db.example.insert({	a	:	1	});

Database	Methods

77

arangosh>	db._remove(a1);

arangosh>	db._remove(a1);

arangosh>	db._remove(a1,	{overwrite:	true});

show	execution	results
Remove	the	document	in	the	revision		a1		with	a	conflict:

arangosh>	a1	=	db.example.insert({	a	:	1	});

arangosh>	a2	=	db._replace(a1,	{	a	:	2	});

arangosh>	db._remove(a1);

arangosh>	db._remove(a1,	{overwrite:	true});

arangosh>	db._document(a1);

show	execution	results
Remove	a	document	using	new	signature:

arangosh>	db.example.insert({	_key:	"11265325374",	a:		1	});

arangosh>	db.example.remove("example/11265325374",

........>	{	overwrite:	true,	waitForSync:	false})

show	execution	results

Changes	in	3.0	from	2.8:

The	method	now	returns	not	only	true	but	information	about	the	removed	document(s).	The	options	silent	and	returnOld	are	new.

Database	Methods

78

Graphs,	Vertices	&	Edges
Graphs,	vertices	&	edges	are	defined	in	the	Graphs	chapter	in	details.

Related	blog	posts:

Graphs	in	data	modeling	-	is	the	emperor	naked?
Index	Free	Adjacency	or	Hybrid	Indexes	for	Graph	Databases

Graphs,	Vertices	&	Edges

79

https://medium.com/@neunhoef/graphs-in-data-modeling-is-the-emperor-naked-2e65e2744413#.x0a5z66ji
https://www.arangodb.com/2016/04/index-free-adjacency-hybrid-indexes-graph-databases/

Naming	Conventions	in	ArangoDB
The	following	naming	conventions	should	be	followed	by	users	when	creating	databases,	collections	and	documents	in	ArangoDB.

Naming	Conventions

80

Database	Names
ArangoDB	will	always	start	up	with	a	default	database,	named	_system.	Users	can	create	additional	databases	in	ArangoDB,	provided	the
database	names	conform	to	the	following	constraints:

Database	names	must	only	consist	of	the	letters	a	to	z	(both	lower	and	upper	case	allowed),	the	numbers	0	to	9,	and	the	underscore
(_)	or	dash	(-)	symbols	This	also	means	that	any	non-ASCII	database	names	are	not	allowed
Database	names	must	always	start	with	a	letter.	Database	names	starting	with	an	underscore	are	considered	to	be	system	databases,
and	users	should	not	create	or	delete	those
The	maximum	allowed	length	of	a	database	name	is	64	bytes
Database	names	are	case-sensitive

Database	Names

81

Collection	Names
Users	can	pick	names	for	their	collections	as	desired,	provided	the	following	naming	constraints	are	not	violated:

Collection	names	must	only	consist	of	the	letters	a	to	z	(both	in	lower	and	upper	case),	the	numbers	0	to	9,	and	the	underscore	(_)
or	dash	(-)	symbols.	This	also	means	that	any	non-ASCII	collection	names	are	not	allowed
User-defined	collection	names	must	always	start	with	a	letter.	System	collection	names	must	start	with	an	underscore.	All	collection
names	starting	with	an	underscore	are	considered	to	be	system	collections	that	are	for	ArangoDB's	internal	use	only.	System
collection	names	should	not	be	used	by	end	users	for	their	own	collections
The	maximum	allowed	length	of	a	collection	name	is	64	bytes
Collection	names	are	case-sensitive

Collection	Names

82

Document	Keys
Users	can	define	their	own	keys	for	documents	they	save.	The	document	key	will	be	saved	along	with	a	document	in	the	_key	attribute.
Users	can	pick	key	values	as	required,	provided	that	the	values	conform	to	the	following	restrictions:

The	key	must	be	a	string	value.	Numeric	keys	are	not	allowed,	but	any	numeric	value	can	be	put	into	a	string	and	can	then	be	used	as
document	key.
The	key	must	be	at	least	1	byte	and	at	most	254	bytes	long.	Empty	keys	are	disallowed	when	specified	(though	it	may	be	valid	to
completely	omit	the	_key	attribute	from	a	document)
It	must	consist	of	the	letters	a-z	(lower	or	upper	case),	the	digits	0-9	or	any	of	the	following	punctuation	characters:		_			-			:			.	
	@			()			+			,			=			;			$!			*			'			%	
Any	other	characters,	especially	multi-byte	UTF-8	sequences,	whitespace	or	punctuation	characters	cannot	be	used	inside	key
values
The	key	must	be	unique	within	the	collection	it	is	used

Keys	are	case-sensitive,	i.e.	myKey	and	MyKEY	are	considered	to	be	different	keys.

Specifying	a	document	key	is	optional	when	creating	new	documents.	If	no	document	key	is	specified	by	the	user,	ArangoDB	will	create
the	document	key	itself	as	each	document	is	required	to	have	a	key.

There	are	no	guarantees	about	the	format	and	pattern	of	auto-generated	document	keys	other	than	the	above	restrictions.	Clients	should
therefore	treat	auto-generated	document	keys	as	opaque	values	and	not	rely	on	their	format.

The	current	format	for	generated	keys	is	a	string	containing	numeric	digits.	The	numeric	values	reflect	chronological	time	in	the	sense	that
_key	values	generated	later	will	contain	higher	numbers	than	_key	values	generated	earlier.	But	the	exact	value	that	will	be	generated	by
the	server	is	not	predictable.	Note	that	if	you	sort	on	the	_key	attribute,	string	comparison	will	be	used,	which	means		"100"		is	less	than
	"99"		etc.

Document	Keys

83

Attribute	Names
Users	can	pick	attribute	names	for	document	attributes	as	desired,	provided	the	following	attribute	naming	constraints	are	not	violated:

Attribute	names	starting	with	an	underscore	are	considered	to	be	system	attributes	for	ArangoDB's	internal	use.	Such	attribute
names	are	already	used	by	ArangoDB	for	special	purposes:

_id	is	used	to	contain	a	document's	handle
_key	is	used	to	contain	a	document's	user-defined	key
_rev	is	used	to	contain	the	document's	revision	number
In	edge	collections,	the

_from
_to

attributes	are	used	to	reference	other	documents.

More	system	attributes	may	be	added	in	the	future	without	further	notice	so	end	users	should	try	to	avoid	using	their	own	attribute
names	starting	with	underscores.

Theoretically,	attribute	names	can	include	punctuation	and	special	characters	as	desired,	provided	the	name	is	a	valid	UTF-8	string.
For	maximum	portability,	special	characters	should	be	avoided	though.	For	example,	attribute	names	may	contain	the	dot	symbol,
but	the	dot	has	a	special	meaning	in	JavaScript	and	also	in	AQL,	so	when	using	such	attribute	names	in	one	of	these	languages,	the
attribute	name	needs	to	be	quoted	by	the	end	user.	Overall	it	might	be	better	to	use	attribute	names	which	don't	require	any
quoting/escaping	in	all	languages	used.	This	includes	languages	used	by	the	client	(e.g.	Ruby,	PHP)	if	the	attributes	are	mapped	to
object	members	there.

Attribute	names	starting	with	an	at-mark	(@)	will	need	to	be	enclosed	in	backticks	when	used	in	an	AQL	query	to	tell	them	apart
from	bind	variables.	Therefore	we	do	not	encourage	the	use	of	attributes	starting	with	at-marks,	though	they	will	work	when	used
properly.
ArangoDB	does	not	enforce	a	length	limit	for	attribute	names.	However,	long	attribute	names	may	use	more	memory	in	result	sets
etc.	Therefore	the	use	of	long	attribute	names	is	discouraged.
Attribute	names	are	case-sensitive.
Attributes	with	empty	names	(an	empty	string)	are	disallowed.

Attribute	Names

84

Handling	Indexes
This	is	an	introduction	to	ArangoDB's	interface	for	indexes	in	general.
There	are	special	sections	for

Index	Basics:	Introduction	to	all	index	types
Which	index	to	use	when:	Index	type	and	options	adviser
Index	Utilization:	How	ArangoDB	uses	indexes
Working	with	Indexes:	How	to	handle	indexes	programmatically	using	the		db		object

Hash	Indexes
Skiplists
Persistent	Indexes
Fulltext	Indexes
Geo-spatial	Indexes
Vertex-centric	Indexes

Indexing

85

Index	basics

Indexes	allow	fast	access	to	documents,	provided	the	indexed	attribute(s)	are	used	in	a	query.	While	ArangoDB	automatically	indexes
some	system	attributes,	users	are	free	to	create	extra	indexes	on	non-system	attributes	of	documents.

User-defined	indexes	can	be	created	on	collection	level.	Most	user-defined	indexes	can	be	created	by	specifying	the	names	of	the	index
attributes.	Some	index	types	allow	indexing	just	one	attribute	(e.g.	fulltext	index)	whereas	other	index	types	allow	indexing	multiple
attributes	at	the	same	time.

The	system	attributes		_id	,		_key	,		_from		and		_to		are	automatically	indexed	by	ArangoDB,	without	the	user	being	required	to	create
extra	indexes	for	them.		_id		and		_key		are	covered	by	a	collection's	primary	key,	and		_from		and		_to		are	covered	by	an	edge
collection's	edge	index	automatically.

Using	the	system	attribute		_id		in	user-defined	indexes	is	not	possible,	but	indexing		_key	,		_rev	,		_from	,	and		_to		is.

ArangoDB	provides	the	following	index	types:

Primary	Index

For	each	collection	there	will	always	be	a	primary	index	which	is	a	hash	index	for	the	document	keys	(_key		attribute)	of	all	documents
in	the	collection.	The	primary	index	allows	quick	selection	of	documents	in	the	collection	using	either	the		_key		or		_id		attributes.	It
will	be	used	from	within	AQL	queries	automatically	when	performing	equality	lookups	on		_key		or		_id	.

There	are	also	dedicated	functions	to	find	a	document	given	its		_key		or		_id		that	will	always	make	use	of	the	primary	index:

db.collection.document("<document-key>");

db._document("<document-id>");

As	the	primary	index	is	an	unsorted	hash	index,	it	cannot	be	used	for	non-equality	range	queries	or	for	sorting.

The	primary	index	of	a	collection	cannot	be	dropped	or	changed,	and	there	is	no	mechanism	to	create	user-defined	primary	indexes.

Edge	Index

Every	edge	collection	also	has	an	automatically	created	edge	index.	The	edge	index	provides	quick	access	to	documents	by	either	their
	_from		or		_to		attributes.	It	can	therefore	be	used	to	quickly	find	connections	between	vertex	documents	and	is	invoked	when	the
connecting	edges	of	a	vertex	are	queried.

Edge	indexes	are	used	from	within	AQL	when	performing	equality	lookups	on		_from		or		_to		values	in	an	edge	collections.	There	are
also	dedicated	functions	to	find	edges	given	their		_from		or		_to		values	that	will	always	make	use	of	the	edge	index:

db.collection.edges("<from-value>");

db.collection.edges("<to-value>");

db.collection.outEdges("<from-value>");

db.collection.outEdges("<to-value>");

db.collection.inEdges("<from-value>");

db.collection.inEdges("<to-value>");

Internally,	the	edge	index	is	implemented	as	a	hash	index,	which	stores	the	union	of	all		_from		and		_to		attributes.	It	can	be	used	for
equality	lookups,	but	not	for	range	queries	or	for	sorting.	Edge	indexes	are	automatically	created	for	edge	collections.	It	is	not	possible	to
create	user-defined	edge	indexes.	However,	it	is	possible	to	freely	use	the		_from		and		_to		attributes	in	user-defined	indexes.

An	edge	index	cannot	be	dropped	or	changed.

Hash	Index

A	hash	index	can	be	used	to	quickly	find	documents	with	specific	attribute	values.	The	hash	index	is	unsorted,	so	it	supports	equality
lookups	but	no	range	queries	or	sorting.

Index	Basics

86

A	hash	index	can	be	created	on	one	or	multiple	document	attributes.	A	hash	index	will	only	be	used	by	a	query	if	all	index	attributes	are
present	in	the	search	condition,	and	if	all	attributes	are	compared	using	the	equality	(==)	operator.	Hash	indexes	are	used	from	within
AQL	and	several	query	functions,	e.g.		byExample	,		firstExample		etc.

Hash	indexes	can	optionally	be	declared	unique,	then	disallowing	saving	the	same	value(s)	in	the	indexed	attribute(s).	Hash	indexes	can
optionally	be	sparse.

The	different	types	of	hash	indexes	have	the	following	characteristics:

unique	hash	index:	all	documents	in	the	collection	must	have	different	values	for	the	attributes	covered	by	the	unique	index.
Trying	to	insert	a	document	with	the	same	key	value	as	an	already	existing	document	will	lead	to	a	unique	constraint	violation.

This	type	of	index	is	not	sparse.	Documents	that	do	not	contain	the	index	attributes	or	that	have	a	value	of		null		in	the	index
attribute(s)	will	still	be	indexed.	A	key	value	of		null		may	only	occur	once	in	the	index,	so	this	type	of	index	cannot	be	used	for
optional	attributes.

The	unique	option	can	also	be	used	to	ensure	that	no	duplicate	edges	are	created,	by	adding	a	combined	index	for	the	fields		_from	
and		_to		to	an	edge	collection.

unique,	sparse	hash	index:	all	documents	in	the	collection	must	have	different	values	for	the	attributes	covered	by	the	unique
index.	Documents	in	which	at	least	one	of	the	index	attributes	is	not	set	or	has	a	value	of		null		are	not	included	in	the	index.	This
type	of	index	can	be	used	to	ensure	that	there	are	no	duplicate	keys	in	the	collection	for	documents	which	have	the	indexed
attributes	set.	As	the	index	will	exclude	documents	for	which	the	indexed	attributes	are		null		or	not	set,	it	can	be	used	for	optional
attributes.

non-unique	hash	index:	all	documents	in	the	collection	will	be	indexed.	This	type	of	index	is	not	sparse.	Documents	that	do	not
contain	the	index	attributes	or	that	have	a	value	of		null		in	the	index	attribute(s)	will	still	be	indexed.	Duplicate	key	values	can
occur	and	do	not	lead	to	unique	constraint	violations.

non-unique,	sparse	hash	index:	only	those	documents	will	be	indexed	that	have	all	the	indexed	attributes	set	to	a	value	other	than
	null	.	It	can	be	used	for	optional	attributes.

The	amortized	complexity	of	lookup,	insert,	update,	and	removal	operations	in	unique	hash	indexes	is	O(1).

Non-unique	hash	indexes	have	an	amortized	complexity	of	O(1)	for	insert,	update,	and	removal	operations.	That	means	non-unique	hash
indexes	can	be	used	on	attributes	with	low	cardinality.

If	a	hash	index	is	created	on	an	attribute	that	is	missing	in	all	or	many	of	the	documents,	the	behavior	is	as	follows:

if	the	index	is	sparse,	the	documents	missing	the	attribute	will	not	be	indexed	and	not	use	index	memory.	These	documents	will	not
influence	the	update	or	removal	performance	for	the	index.

if	the	index	is	non-sparse,	the	documents	missing	the	attribute	will	be	contained	in	the	index	with	a	key	value	of		null	.

Hash	indexes	support	indexing	array	values	if	the	index	attribute	name	is	extended	with	a	[*].

Skiplist	Index

A	skiplist	is	a	sorted	index	structure.	It	can	be	used	to	quickly	find	documents	with	specific	attribute	values,	for	range	queries	and	for
returning	documents	from	the	index	in	sorted	order.	Skiplists	will	be	used	from	within	AQL	and	several	query	functions,	e.g.		byExample	,
	firstExample		etc.

Skiplist	indexes	will	be	used	for	lookups,	range	queries	and	sorting	only	if	either	all	index	attributes	are	provided	in	a	query,	or	if	a
leftmost	prefix	of	the	index	attributes	is	specified.

For	example,	if	a	skiplist	index	is	created	on	attributes		value1		and		value2	,	the	following	filter	conditions	can	use	the	index	(note:	the
	<=		and		>=		operators	are	intentionally	omitted	here	for	the	sake	of	brevity):

FILTER	doc.value1	==	...

FILTER	doc.value1	<	...

FILTER	doc.value1	>	...

FILTER	doc.value1	>	...	&&	doc.value1	<	...

FILTER	doc.value1	==	...	&&	doc.value2	==	...

FILTER	doc.value1	==	...	&&	doc.value2	>	...

FILTER	doc.value1	==	...	&&	doc.value2	>	...	&&	doc.value2	<	...

Index	Basics

87

In	order	to	use	a	skiplist	index	for	sorting,	the	index	attributes	must	be	specified	in	the		SORT		clause	of	the	query	in	the	same	order	as
they	appear	in	the	index	definition.	Skiplist	indexes	are	always	created	in	ascending	order,	but	they	can	be	used	to	access	the	indexed
elements	in	both	ascending	or	descending	order.	However,	for	a	combined	index	(an	index	on	multiple	attributes)	this	requires	that	the	sort
orders	in	a	single	query	as	specified	in	the		SORT		clause	must	be	either	all	ascending	(optionally	ommitted	as	ascending	is	the	default)	or
all	descending.

For	example,	if	the	skiplist	index	is	created	on	attributes		value1		and		value2		(in	this	order),	then	the	following	sorts	clauses	can	use
the	index	for	sorting:

	SORT	value1	ASC,	value2	ASC		(and	its	equivalent		SORT	value1,	value2)
	SORT	value1	DESC,	value2	DESC	

	SORT	value1	ASC		(and	its	equivalent		SORT	value1)
	SORT	value1	DESC	

The	following	sort	clauses	cannot	make	use	of	the	index	order,	and	require	an	extra	sort	step:

	SORT	value1	ASC,	value2	DESC	

	SORT	value1	DESC,	value2	ASC	

	SORT	value2		(and	its	equivalent		SORT	value2	ASC)
	SORT	value2	DESC		(because	first	indexed	attribute		value1		is	not	used	in	sort	clause)

Note:	the	latter	two	sort	clauses	cannot	use	the	index	because	the	sort	clause	does	not	refer	to	a	leftmost	prefix	of	the	index	attributes.

Skiplists	can	optionally	be	declared	unique,	disallowing	saving	the	same	value	in	the	indexed	attribute.	They	can	be	sparse	or	non-sparse.

The	different	types	of	skiplist	indexes	have	the	following	characteristics:

unique	skiplist	index:	all	documents	in	the	collection	must	have	different	values	for	the	attributes	covered	by	the	unique	index.
Trying	to	insert	a	document	with	the	same	key	value	as	an	already	existing	document	will	lead	to	a	unique	constraint	violation.

This	type	of	index	is	not	sparse.	Documents	that	do	not	contain	the	index	attributes	or	that	have	a	value	of		null		in	the	index
attribute(s)	will	still	be	indexed.	A	key	value	of		null		may	only	occur	once	in	the	index,	so	this	type	of	index	cannot	be	used	for
optional	attributes.

unique,	sparse	skiplist	index:	all	documents	in	the	collection	must	have	different	values	for	the	attributes	covered	by	the	unique
index.	Documents	in	which	at	least	one	of	the	index	attributes	is	not	set	or	has	a	value	of		null		are	not	included	in	the	index.	This
type	of	index	can	be	used	to	ensure	that	there	are	no	duplicate	keys	in	the	collection	for	documents	which	have	the	indexed
attributes	set.	As	the	index	will	exclude	documents	for	which	the	indexed	attributes	are		null		or	not	set,	it	can	be	used	for	optional
attributes.

non-unique	skiplist	index:	all	documents	in	the	collection	will	be	indexed.	This	type	of	index	is	not	sparse.	Documents	that	do	not
contain	the	index	attributes	or	that	have	a	value	of		null		in	the	index	attribute(s)	will	still	be	indexed.	Duplicate	key	values	can
occur	and	do	not	lead	to	unique	constraint	violations.

non-unique,	sparse	skiplist	index:	only	those	documents	will	be	indexed	that	have	all	the	indexed	attributes	set	to	a	value	other
than		null	.	It	can	be	used	for	optional	attributes.

The	operational	amortized	complexity	for	skiplist	indexes	is	logarithmically	correlated	with	the	number	of	documents	in	the	index.

Skiplist	indexes	support	indexing	array	values	if	the	index	attribute	name	is	extended	with	a	[*]`.

Persistent	Index

The	persistent	index	is	a	sorted	index	with	persistence.	The	index	entries	are	written	to	disk	when	documents	are	stored	or	updated.	That
means	the	index	entries	do	not	need	to	be	rebuilt	from	the	collection	data	when	the	server	is	restarted	or	the	indexed	collection	is	initially
loaded.	Thus	using	persistent	indexes	may	reduce	collection	loading	times.

The	persistent	index	type	can	be	used	for	secondary	indexes	at	the	moment.	That	means	the	persistent	index	currently	cannot	be	made
the	only	index	for	a	collection,	because	there	will	always	be	the	in-memory	primary	index	for	the	collection	in	addition,	and	potentially
more	indexes	(such	as	the	edges	index	for	an	edge	collection).

The	index	implementation	is	using	the	RocksDB	engine,	and	it	provides	logarithmic	complexity	for	insert,	update,	and	remove	operations.
As	the	persistent	index	is	not	an	in-memory	index,	it	does	not	store	pointers	into	the	primary	index	as	all	the	in-memory	indexes	do,	but
instead	it	stores	a	document's	primary	key.	To	retrieve	a	document	via	a	persistent	index	via	an	index	value	lookup,	there	will	therefore	be

Index	Basics

88

an	additional	O(1)	lookup	into	the	primary	index	to	fetch	the	actual	document.

As	the	persistent	index	is	sorted,	it	can	be	used	for	point	lookups,	range	queries	and	sorting	operations,	but	only	if	either	all	index
attributes	are	provided	in	a	query,	or	if	a	leftmost	prefix	of	the	index	attributes	is	specified.

Geo	Index

Users	can	create	additional	geo	indexes	on	one	or	multiple	attributes	in	collections.	A	geo	index	is	used	to	find	places	on	the	surface	of	the
earth	fast.

The	geo	index	stores	two-dimensional	coordinates.	It	can	be	created	on	either	two	separate	document	attributes	(latitude	and	longitude)	or
a	single	array	attribute	that	contains	both	latitude	and	longitude.	Latitude	and	longitude	must	be	numeric	values.

The	geo	index	provides	operations	to	find	documents	with	coordinates	nearest	to	a	given	comparison	coordinate,	and	to	find	documents
with	coordinates	that	are	within	a	specifiable	radius	around	a	comparison	coordinate.

The	geo	index	is	used	via	dedicated	functions	in	AQL,	the	simple	queries	functions	and	it	is	implicitly	applied	when	in	AQL	a	SORT	or
FILTER	is	used	with	the	distance	function.	Otherwise	it	will	not	be	used	for	other	types	of	queries	or	conditions.

Fulltext	Index

A	fulltext	index	can	be	used	to	find	words,	or	prefixes	of	words	inside	documents.	A	fulltext	index	can	be	created	on	a	single	attribute
only,	and	will	index	all	words	contained	in	documents	that	have	a	textual	value	in	that	attribute.	Only	words	with	a	(specifiable)	minimum
length	are	indexed.	Word	tokenization	is	done	using	the	word	boundary	analysis	provided	by	libicu,	which	is	taking	into	account	the
selected	language	provided	at	server	start.	Words	are	indexed	in	their	lower-cased	form.	The	index	supports	complete	match	queries	(full
words)	and	prefix	queries,	plus	basic	logical	operations	such	as		and	,		or		and		not		for	combining	partial	results.

The	fulltext	index	is	sparse,	meaning	it	will	only	index	documents	for	which	the	index	attribute	is	set	and	contains	a	string	value.
Additionally,	only	words	with	a	configurable	minimum	length	will	be	included	in	the	index.

The	fulltext	index	is	used	via	dedicated	functions	in	AQL	or	the	simple	queries,	but	will	not	be	enabled	for	other	types	of	queries	or
conditions.

Indexing	attributes	and	sub-attributes

Top-level	as	well	as	nested	attributes	can	be	indexed.	For	attributes	at	the	top	level,	the	attribute	names	alone	are	required.	To	index	a
single	field,	pass	an	array	with	a	single	element	(string	of	the	attribute	key)	to	the	fields	parameter	of	the	ensureIndex()	method.	To	create
a	combined	index	over	multiple	fields,	simply	add	more	members	to	the	fields	array:

//	{	name:	"Smith",	age:	35	}

db.posts.ensureIndex({	type:	"hash",	fields:	["name"]	})

db.posts.ensureIndex({	type:	"hash",	fields:	["name",	"age"]	})

To	index	sub-attributes,	specify	the	attribute	path	using	the	dot	notation:

//	{	name:	{last:	"Smith",	first:	"John"	}	}

db.posts.ensureIndex({	type:	"hash",	fields:	["name.last"]	})

db.posts.ensureIndex({	type:	"hash",	fields:	["name.last",	"name.first"]	})

Indexing	array	values

If	an	index	attribute	contains	an	array,	ArangoDB	will	store	the	entire	array	as	the	index	value	by	default.	Accessing	individual	members
of	the	array	via	the	index	is	not	possible	this	way.

To	make	an	index	insert	the	individual	array	members	into	the	index	instead	of	the	entire	array	value,	a	special	array	index	needs	to	be
created	for	the	attribute.	Array	indexes	can	be	set	up	like	regular	hash	or	skiplist	indexes	using	the		collection.ensureIndex()		function.
To	make	a	hash	or	skiplist	index	an	array	index,	the	index	attribute	name	needs	to	be	extended	with	[*]	when	creating	the	index	and	when
filtering	in	an	AQL	query	using	the		IN		operator.

The	following	example	creates	an	array	hash	index	on	the		tags		attribute	in	a	collection	named		posts	:

Index	Basics

89

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*]"]	});

db.posts.insert({	tags:	["foobar",	"baz",	"quux"]	});

This	array	index	can	then	be	used	for	looking	up	individual		tags		values	from	AQL	queries	via	the		IN		operator:

FOR	doc	IN	posts

		FILTER	'foobar'	IN	doc.tags

		RETURN	doc

It	is	possible	to	add	the	array	expansion	operator	[*],	but	it	is	not	mandatory.	You	may	use	it	to	indicate	that	an	array	index	is	used,	it	is
purely	cosmetic	however:

FOR	doc	IN	posts

		FILTER	'foobar'	IN	doc.tags[*]

		RETURN	doc

The	following	FILTER	conditions	will	not	use	the	array	index:

FILTER	doc.tags	ANY	==	'foobar'

FILTER	doc.tags	ANY	IN	'foobar'

FILTER	doc.tags	IN	'foobar'

FILTER	doc.tags	==	'foobar'

FILTER	'foobar'	==	doc.tags

It	is	also	possible	to	create	an	index	on	subattributes	of	array	values.	This	makes	sense	if	the	index	attribute	is	an	array	of	objects,	e.g.

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*].name"]	});

db.posts.insert({	tags:	[{	name:	"foobar"	},	{	name:	"baz"	},	{	name:	"quux"	}]	});

The	following	query	will	then	use	the	array	index	(this	does	require	the	array	expansion	operator):

FOR	doc	IN	posts

		FILTER	'foobar'	IN	doc.tags[*].name

		RETURN	doc

If	you	store	a	document	having	the	array	which	does	contain	elements	not	having	the	subattributes	this	document	will	also	be	indexed
with	the	value		null	,	which	in	ArangoDB	is	equal	to	attribute	not	existing.

ArangoDB	supports	creating	array	indexes	with	a	single	[*]	operator	per	index	attribute.	For	example,	creating	an	index	as	follows	is	not
supported:

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*].name[*].value"]	});

Array	values	will	automatically	be	de-duplicated	before	being	inserted	into	an	array	index.	For	example,	if	the	following	document	is
inserted	into	the	collection,	the	duplicate	array	value		bar		will	be	inserted	only	once:

db.posts.insert({	tags:	["foobar",	"bar",	"bar"]	});

This	is	done	to	avoid	redudant	storage	of	the	same	index	value	for	the	same	document,	which	would	not	provide	any	benefit.

If	an	array	index	is	declared	unique,	the	de-duplication	of	array	values	will	happen	before	inserting	the	values	into	the	index,	so	the	above
insert	operation	with	two	identical	values		bar		will	not	necessarily	fail

It	will	always	fail	if	the	index	already	contains	an	instance	of	the		bar		value.	However,	if	the	value		bar		is	not	already	present	in	the
index,	then	the	de-duplication	of	the	array	values	will	effectively	lead	to		bar		being	inserted	only	once.

To	turn	off	the	deduplication	of	array	values,	it	is	possible	to	set	the	deduplicate	attribute	on	the	array	index	to		false	.	The	default
value	for	deduplicate	is		true		however,	so	de-duplication	will	take	place	if	not	explicitly	turned	off.

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*]"],	deduplicate:	false	});

Index	Basics

90

//	will	fail	now

db.posts.insert({	tags:	["foobar",	"bar",	"bar"]	});

If	an	array	index	is	declared	and	you	store	documents	that	do	not	have	an	array	at	the	specified	attribute	this	document	will	not	be
inserted	in	the	index.	Hence	the	following	objects	will	not	be	indexed:

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*]"]	});

db.posts.insert({	something:	"else"	});

db.posts.insert({	tags:	null	});

db.posts.insert({	tags:	"this	is	no	array"	});

db.posts.insert({	tags:	{	content:	[1,	2,	3]	}	});

An	array	index	is	able	to	index	explicit		null		values.	When	queried	for		null	values,	it	will	only	return	those	documents	having
explicitly		null		stored	in	the	array,	it	will	not	return	any	documents	that	do	not	have	the	array	at	all.

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*]"]	});

db.posts.insert({tags:	null})	//	Will	not	be	indexed

db.posts.insert({tags:	[]})		//	Will	not	be	indexed

db.posts.insert({tags:	[null]});	//	Will	be	indexed	for	null

db.posts.insert({tags:	[null,	1,	2]});	//	Will	be	indexed	for	null,	1	and	2

Declaring	an	array	index	as	sparse	does	not	have	an	effect	on	the	array	part	of	the	index,	this	in	particular	means	that	explicit		null	
values	are	also	indexed	in	the	sparse	version.	If	an	index	is	combined	from	an	array	and	a	normal	attribute	the	sparsity	will	apply	for	the
attribute	e.g.:

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*]",	"name"],	sparse:	true	});

db.posts.insert({tags:	null,	name:	"alice"})	//	Will	not	be	indexed

db.posts.insert({tags:	[],	name:	"alice"})	//	Will	not	be	indexed

db.posts.insert({tags:	[1,	2,	3]})	//	Will	not	be	indexed

db.posts.insert({tags:	[1,	2,	3],	name:	null})	//	Will	not	be	indexed

db.posts.insert({tags:	[1,	2,	3],	name:	"alice"})

//	Will	be	indexed	for	[1,	"alice"],	[2,	"alice"],	[3,	"alice"]

db.posts.insert({tags:	[null],	name:	"bob"})

//	Will	be	indexed	for	[null,	"bob"]

Please	note	that	filtering	using	array	indexes	only	works	from	within	AQL	queries	and	only	if	the	query	filters	on	the	indexed	attribute
using	the		IN		operator.	The	other	comparison	operators	(==	,		!=	,		>	,		>=	,		<	,		<=	,		ANY	,		ALL	,		NONE)	currently	cannot	use
array	indexes.

Vertex	centric	indexes

As	mentioned	above,	the	most	important	indexes	for	graphs	are	the	edge	indexes,	indexing	the		_from		and		_to		attributes	of	edge
collections.	They	provide	very	quick	access	to	all	edges	originating	in	or	arriving	at	a	given	vertex,	which	allows	to	quickly	find	all
neighbours	of	a	vertex	in	a	graph.

In	many	cases	one	would	like	to	run	more	specific	queries,	for	example	finding	amongst	the	edges	originating	in	a	given	vertex	only	those
with	the	20	latest	time	stamps.	Exactly	this	is	achieved	with	"vertex	centric	indexes".	In	a	sense	these	are	localized	indexes	for	an	edge
collection,	which	sit	at	every	single	vertex.

Technically,	they	are	implemented	in	ArangoDB	as	indexes,	which	sort	the	complete	edge	collection	first	by		_from		and	then	by	other
attributes.	If	we	for	example	have	a	skiplist	index	on	the	attributes		_from		and		timestamp		of	an	edge	collection,	we	can	answer	the
above	question	very	quickly	with	a	single	range	lookup	in	the	index.

Since	ArangoDB	3.0	one	can	create	sorted	indexes	(type	"skiplist"	and	"persistent")	that	index	the	special	edge	attributes		_from		or
	_to		and	additionally	other	attributes.	Since	ArangoDB	3.1,	these	are	used	in	graph	traversals,	when	appropriate		FILTER		statements
are	found	by	the	optimizer.

For	example,	to	create	a	vertex	centric	index	of	the	above	type,	you	would	simply	do

db.edges.ensureIndex({"type":"skiplist",	"fields":	["_from",	"timestamp"]});

Then,	queries	like

Index	Basics

91

FOR	v,	e,	p	IN	1..1	OUTBOUND	"V/1"	edges

		FILTER	e.timestamp	ALL	>=	"2016-11-09"

		RETURN	p

will	be	considerably	faster	in	case	there	are	many	edges	originating	in	vertex		"V/1"		but	only	few	with	a	recent	time	stamp.

Index	Basics

92

Which	Index	to	use	when

ArangoDB	automatically	indexes	the		_key		attribute	in	each	collection.	There	is	no	need	to	index	this	attribute	separately.	Please	note
that	a	document's		_id		attribute	is	derived	from	the		_key		attribute,	and	is	thus	implicitly	indexed,	too.

ArangoDB	will	also	automatically	create	an	index	on		_from		and		_to		in	any	edge	collection,	meaning	incoming	and	outgoing
connections	can	be	determined	efficiently.

Index	types

Users	can	define	additional	indexes	on	one	or	multiple	document	attributes.	Several	different	index	types	are	provided	by	ArangoDB.
These	indexes	have	different	usage	scenarios:

hash	index:	provides	quick	access	to	individual	documents	if	(and	only	if)	all	indexed	attributes	are	provided	in	the	search	query.	The
index	will	only	be	used	for	equality	comparisons.	It	does	not	support	range	queries	and	cannot	be	used	for	sorting.

The	hash	index	is	a	good	candidate	if	all	or	most	queries	on	the	indexed	attribute(s)	are	equality	comparisons.	The	unique	hash	index
provides	an	amortized	complexity	of	O(1)	for	insert,	update,	remove	and	lookup	operations.	The	non-unique	hash	index	provides
O(1)	inserts,	updates	and	removes,	and	will	allow	looking	up	documents	by	index	value	with	amortized	O(n)	complexity,	with	n
being	the	number	of	documents	with	that	index	value.

A	non-unique	hash	index	on	an	optional	document	attribute	should	be	declared	sparse	so	that	it	will	not	index	documents	for	which
the	index	attribute	is	not	set.

skiplist	index:	skiplists	keep	the	indexed	values	in	an	order,	so	they	can	be	used	for	equality	lookups,	range	queries	and	for	sorting.
For	high	selectivity	attributes,	skiplist	indexes	will	have	a	higher	overhead	than	hash	indexes.	For	low	selectivity	attributes,	skiplist
indexes	will	be	more	efficient	than	non-unique	hash	indexes.

Additionally,	skiplist	indexes	allow	more	use	cases	(e.g.	range	queries,	sorting)	than	hash	indexes.	Furthermore,	they	can	be	used	for
lookups	based	on	a	leftmost	prefix	of	the	index	attributes.

persistent	index:	a	persistent	index	behaves	much	like	the	sorted	skiplist	index,	except	that	all	index	values	are	persisted	on	disk	and
do	not	need	to	be	rebuilt	in	memory	when	the	server	is	restarted	or	the	indexed	collection	is	reloaded.	The	operations	in	a	persistent
index	have	logarithmic	complexity,	but	operations	have	may	have	a	higher	constant	factor	than	the	operations	in	a	skiplist	index,
because	the	persistent	index	may	need	to	make	extra	roundtrips	to	the	primary	index	to	fetch	the	actual	documents.

A	persistent	index	can	be	used	for	equality	lookups,	range	queries	and	for	sorting.	For	high	selectivity	attributes,	persistent	indexes
will	have	a	higher	overhead	than	skiplist	or	hash	indexes.

Persistent	indexes	allow	more	use	cases	(e.g.	range	queries,	sorting)	than	hash	indexes.	Furthermore,	they	can	be	used	for	lookups
based	on	a	leftmost	prefix	of	the	index	attributes.	In	contrast	to	the	in-memory	skiplist	indexes,	persistent	indexes	do	not	need	to	be
rebuilt	in-memory	so	they	don't	influence	the	loading	time	of	collections	as	other	in-memory	indexes	do.

geo	index:	the	geo	index	provided	by	ArangoDB	allows	searching	for	documents	within	a	radius	around	a	two-dimensional	earth
coordinate	(point),	or	to	find	documents	with	are	closest	to	a	point.	Document	coordinates	can	either	be	specified	in	two	different
document	attributes	or	in	a	single	attribute,	e.g.

{	"latitude":	50.9406645,	"longitude":	6.9599115	}

or

{	"coords":	[50.9406645,	6.9599115]	}

Geo	indexes	will	be	invoked	via	special	functions	or	AQL	optimization.	The	optimization	can	be	triggered	when	a	collection	with
geo	index	is	enumerated	and	a	SORT	or	FILTER	statement	is	used	in	conjunction	with	the	distance	function.

fulltext	index:	a	fulltext	index	can	be	used	to	index	all	words	contained	in	a	specific	attribute	of	all	documents	in	a	collection.	Only
words	with	a	(specifiable)	minimum	length	are	indexed.	Word	tokenization	is	done	using	the	word	boundary	analysis	provided	by
libicu,	which	is	taking	into	account	the	selected	language	provided	at	server	start.

Which	index	to	use	when

93

The	index	supports	complete	match	queries	(full	words)	and	prefix	queries.	Fulltext	indexes	will	only	be	invoked	via	special
functions.

Sparse	vs.	non-sparse	indexes

Hash	indexes	and	skiplist	indexes	can	optionally	be	created	sparse.	A	sparse	index	does	not	contain	documents	for	which	at	least	one	of
the	index	attribute	is	not	set	or	contains	a	value	of		null	.

As	such	documents	are	excluded	from	sparse	indexes,	they	may	contain	fewer	documents	than	their	non-sparse	counterparts.	This
enables	faster	indexing	and	can	lead	to	reduced	memory	usage	in	case	the	indexed	attribute	does	occur	only	in	some,	but	not	all	documents
of	the	collection.	Sparse	indexes	will	also	reduce	the	number	of	collisions	in	non-unique	hash	indexes	in	case	non-existing	or	optional
attributes	are	indexed.

In	order	to	create	a	sparse	index,	an	object	with	the	attribute		sparse		can	be	added	to	the	index	creation	commands:

db.collection.ensureIndex({	type:	"hash",	fields:	["attributeName"],	sparse:	true	});	

db.collection.ensureIndex({	type:	"hash",	fields:	["attributeName1",	"attributeName2"],	sparse:	true	});	

db.collection.ensureIndex({	type:	"hash",	fields:	["attributeName"],	unique:	true,	sparse:	true	});	

db.collection.ensureIndex({	type:	"hash",	fields:	["attributeName1",	"attributeName2"],	unique:	true,	sparse:	true	});	

db.collection.ensureIndex({	type:	"skiplist",	fields:	["attributeName"],	sparse:	true	});	

db.collection.ensureIndex({	type:	"skiplist",	fields:	["attributeName1",	"attributeName2"],	sparse:	true	});	

db.collection.ensureIndex({	type:	"skiplist",	fields:	["attributeName"],	unique:	true,	sparse:	true	});	

db.collection.ensureIndex({	type:	"skiplist",	fields:	["attributeName1",	"attributeName2"],	unique:	true,	sparse:	true	});

When	not	explicitly	set,	the		sparse		attribute	defaults	to		false		for	new	indexes.	Other	indexes	than	hash	and	skiplist	do	not	support
sparsity.

As	sparse	indexes	may	exclude	some	documents	from	the	collection,	they	cannot	be	used	for	all	types	of	queries.	Sparse	hash	indexes
cannot	be	used	to	find	documents	for	which	at	least	one	of	the	indexed	attributes	has	a	value	of		null	.	For	example,	the	following	AQL
query	cannot	use	a	sparse	index,	even	if	one	was	created	on	attribute		attr	:

FOR	doc	In	collection	

		FILTER	doc.attr	==	null	

		RETURN	doc

If	the	lookup	value	is	non-constant,	a	sparse	index	may	or	may	not	be	used,	depending	on	the	other	types	of	conditions	in	the	query.	If
the	optimizer	can	safely	determine	that	the	lookup	value	cannot	be		null	,	a	sparse	index	may	be	used.	When	uncertain,	the	optimizer
will	not	make	use	of	a	sparse	index	in	a	query	in	order	to	produce	correct	results.

For	example,	the	following	queries	cannot	use	a	sparse	index	on		attr		because	the	optimizer	will	not	know	beforehand	whether	the
values	which	are	compared	to		doc.attr		will	include		null	:

FOR	doc	In	collection	

		FILTER	doc.attr	==	SOME_FUNCTION(...)	

		RETURN	doc

FOR	other	IN	otherCollection	

		FOR	doc	In	collection	

				FILTER	doc.attr	==	other.attr	

				RETURN	doc

Sparse	skiplist	indexes	can	be	used	for	sorting	if	the	optimizer	can	safely	detect	that	the	index	range	does	not	include		null		for	any	of
the	index	attributes.

Note	that	if	you	intend	to	use	joins	it	may	be	clever	to	use	non-sparsity	and	maybe	even	uniqueness	for	that	attribute,	else	all	items
containing	the		null		value	will	match	against	each	other	and	thus	produce	large	results.

Which	index	to	use	when

94

Index	Utilization
In	most	cases	ArangoDB	will	use	a	single	index	per	collection	in	a	given	query.	AQL	queries	can	use	more	than	one	index	per	collection
when	multiple	FILTER	conditions	are	combined	with	a	logical		OR		and	these	can	be	covered	by	indexes.	AQL	queries	will	use	a	single
index	per	collection	when	FILTER	conditions	are	combined	with	logical		AND	.

Creating	multiple	indexes	on	different	attributes	of	the	same	collection	may	give	the	query	optimizer	more	choices	when	picking	an	index.
Creating	multiple	indexes	on	different	attributes	can	also	help	in	speeding	up	different	queries,	with	FILTER	conditions	on	different
attributes.

It	is	often	beneficial	to	create	an	index	on	more	than	just	one	attribute.	By	adding	more	attributes	to	an	index,	an	index	can	become	more
selective	and	thus	reduce	the	number	of	documents	that	queries	need	to	process.

ArangoDB's	primary	indexes,	edges	indexes	and	hash	indexes	will	automatically	provide	selectivity	estimates.	Index	selectivity	estimates
are	provided	in	the	web	interface,	the		getIndexes()		return	value	and	in	the		explain()		output	for	a	given	query.

The	more	selective	an	index	is,	the	more	documents	it	will	filter	on	average.	The	index	selectivity	estimates	are	therefore	used	by	the
optimizer	when	creating	query	execution	plans	when	there	are	multiple	indexes	the	optimizer	can	choose	from.	The	optimizer	will	then
select	a	combination	of	indexes	with	the	lowest	estimated	total	cost.	In	general,	the	optimizer	will	pick	the	indexes	with	the	highest
estimated	selectivity.

Sparse	indexes	may	or	may	not	be	picked	by	the	optimizer	in	a	query.	As	sparse	indexes	do	not	contain		null		values,	they	will	not	be
used	for	queries	if	the	optimizer	cannot	safely	determine	whether	a	FILTER	condition	includes		null		values	for	the	index	attributes.	The
optimizer	policy	is	to	produce	correct	results,	regardless	of	whether	or	which	index	is	used	to	satisfy	FILTER	conditions.	If	it	is	unsure
about	whether	using	an	index	will	violate	the	policy,	it	will	not	make	use	of	the	index.

Troubleshooting

When	in	doubt	about	whether	and	which	indexes	will	be	used	for	executing	a	given	AQL	query,	click	the	Explain	button	in	the	web
interface	in	the	Queries	view	or	use	the		explain()		method	for	the	statement	as	follows	(from	the	ArangoShell):

var	query	=	"FOR	doc	IN	collection	FILTER	doc.value	>	42	RETURN	doc";

var	stmt	=	db._createStatement(query);

stmt.explain();

The		explain()		command	will	return	a	detailed	JSON	representation	of	the	query's	execution	plan.	The	JSON	explain	output	is	intended
to	be	used	by	code.	To	get	a	human-readable	and	much	more	compact	explanation	of	the	query,	there	is	an	explainer	tool:

var	query	=	"FOR	doc	IN	collection	FILTER	doc.value	>	42	RETURN	doc";

require("@arangodb/aql/explainer").explain(query);

If	any	of	the	explain	methods	shows	that	a	query	is	not	using	indexes,	the	following	steps	may	help:

check	if	the	attribute	names	in	the	query	are	correctly	spelled.	In	a	schema-free	database,	documents	in	the	same	collection	can	have
varying	structures.	There	is	no	such	thing	as	a	non-existing	attribute	error.	A	query	that	refers	to	attribute	names	not	present	in	any
of	the	documents	will	not	return	an	error,	and	obviously	will	not	benefit	from	indexes.

check	the	return	value	of	the		getIndexes()		method	for	the	collections	used	in	the	query	and	validate	that	indexes	are	actually
present	on	the	attributes	used	in	the	query's	filter	conditions.

if	indexes	are	present	but	not	used	by	the	query,	the	indexes	may	have	the	wrong	type.	For	example,	a	hash	index	will	only	be	used
for	equality	comparisons	(i.e.		==)	but	not	for	other	comparison	types	such	as		<	,		<=	,		>	,		>=	.	Additionally	hash	indexes	will
only	be	used	if	all	of	the	index	attributes	are	used	in	the	query's	FILTER	conditions.	A	skiplist	index	will	only	be	used	if	at	least	its
first	attribute	is	used	in	a	FILTER	condition.	If	additionally	of	the	skiplist	index	attributes	are	specified	in	the	query	(from	left-to-
right),	they	may	also	be	used	and	allow	to	filter	more	documents.

using	indexed	attributes	as	function	parameters	or	in	arbitrary	expressions	will	likely	lead	to	the	index	on	the	attribute	not	being
used.	For	example,	the	following	queries	will	not	use	an	index	on		value	:

Index	Utilization

95

FOR	doc	IN	collection	FILTER	TO_NUMBER(doc.value)	==	42	RETURN	doc

FOR	doc	IN	collection	FILTER	doc.value	-	1	==	42	RETURN	doc

In	these	cases	the	queries	should	be	rewritten	so	that	only	the	index	attribute	is	present	on	one	side	of	the	operator,	or	additional
filters	and	indexes	should	be	used	to	restrict	the	amount	of	documents	otherwise.

certain	AQL	functions	such	as		WITHIN()		or		FULLTEXT()		do	utilize	indexes	internally,	but	their	use	is	not	mentioned	in	the	query
explanation	for	functions	in	general.	These	functions	will	raise	query	errors	(at	runtime)	if	no	suitable	index	is	present	for	the
collection	in	question.

the	query	optimizer	will	in	general	pick	one	index	per	collection	in	a	query.	It	can	pick	more	than	one	index	per	collection	if	the
FILTER	condition	contains	multiple	branches	combined	with	logical		OR	.	For	example,	the	following	queries	can	use	indexes:

FOR	doc	IN	collection	FILTER	doc.value1	==	42	||	doc.value1	==	23	RETURN	doc

FOR	doc	IN	collection	FILTER	doc.value1	==	42	||	doc.value2	==	23	RETURN	doc

FOR	doc	IN	collection	FILTER	doc.value1	<	42	||	doc.value2	>	23	RETURN	doc

The	two		OR	s	in	the	first	query	will	be	converted	to	an		IN		list,	and	if	there	is	a	suitable	index	on		value1	,	it	will	be	used.	The
second	query	requires	two	separate	indexes	on		value1		and		value2		and	will	use	them	if	present.	The	third	query	can	use	the
indexes	on		value1		and		value2		when	they	are	sorted.

Index	Utilization

96

Working	with	Indexes

Index	Identifiers	and	Handles

An	index	handle	uniquely	identifies	an	index	in	the	database.	It	is	a	string	and	consists	of	the	collection	name	and	an	index	identifier
separated	by	a		/	.	The	index	identifier	part	is	a	numeric	value	that	is	auto-generated	by	ArangoDB.

A	specific	index	of	a	collection	can	be	accessed	using	its	index	handle	or	index	identifier	as	follows:

db.collection.index("<index-handle>");

db.collection.index("<index-identifier>");

db._index("<index-handle>");

For	example:	Assume	that	the	index	handle,	which	is	stored	in	the		_id		attribute	of	the	index,	is		demo/362549736		and	the	index	was
created	in	a	collection	named		demo	.	Then	this	index	can	be	accessed	as:

db.demo.index("demo/362549736");

Because	the	index	handle	is	unique	within	the	database,	you	can	leave	out	the	collection	and	use	the	shortcut:

db._index("demo/362549736");

Collection	Methods

Listing	all	indexes	of	a	collection

returns	information	about	the	indexes		getIndexes()	

Returns	an	array	of	all	indexes	defined	for	the	collection.

Note	that		_key		implicitly	has	an	index	assigned	to	it.

arangosh>	db.test.ensureHashIndex("hashListAttribute",

........>	"hashListSecondAttribute.subAttribute");

arangosh>	db.test.getIndexes();

show	execution	results

Creating	an	index

Indexes	should	be	created	using	the	general	method	ensureIndex.	This	method	obsoletes	the	specialized	index-specific	methods
ensureHashIndex,	ensureSkiplist,	ensureUniqueConstraint	etc.

ensures	that	an	index	exists		collection.ensureIndex(index-description)	

Ensures	that	an	index	according	to	the	index-description	exists.	A	new	index	will	be	created	if	none	exists	with	the	given	description.

The	index-description	must	contain	at	least	a	type	attribute.	Other	attributes	may	be	necessary,	depending	on	the	index	type.

type	can	be	one	of	the	following	values:

hash:	hash	index
skiplist:	skiplist	index
fulltext:	fulltext	index
geo1:	geo	index,	with	one	attribute
geo2:	geo	index,	with	two	attributes

Working	with	Indexes

97

sparse	can	be	true	or	false.

For	hash,	and	skiplist	the	sparsity	can	be	controlled,	fulltext	and	geo	are	sparse	by	definition.

unique	can	be	true	or	false	and	is	supported	by	hash	or	skiplist

Calling	this	method	returns	an	index	object.	Whether	or	not	the	index	object	existed	before	the	call	is	indicated	in	the	return	attribute
isNewlyCreated.

deduplicate	can	be	true	or	false	and	is	supported	by	array	indexes	of	type	hash	or	skiplist.	It	controls	whether	inserting	duplicate	index
values	from	the	same	document	into	a	unique	array	index	will	lead	to	a	unique	constraint	error	or	not.	The	default	value	is	true,	so	only	a
single	instance	of	each	non-unique	index	value	will	be	inserted	into	the	index	per	document.	Trying	to	insert	a	value	into	the	index	that
already	exists	in	the	index	will	always	fail,	regardless	of	the	value	of	this	attribute.

Examples

arangosh>	db.test.ensureIndex({	type:	"hash",	fields:	["a"],	sparse:	true	});

arangosh>	db.test.ensureIndex({	type:	"hash",	fields:	["a",	"b"],	unique:	true	});

show	execution	results

Dropping	an	index

drops	an	index		collection.dropIndex(index)	

Drops	the	index.	If	the	index	does	not	exist,	then	false	is	returned.	If	the	index	existed	and	was	dropped,	then	true	is	returned.	Note	that
you	cannot	drop	some	special	indexes	(e.g.	the	primary	index	of	a	collection	or	the	edge	index	of	an	edge	collection).

	collection.dropIndex(index-handle)	

Same	as	above.	Instead	of	an	index	an	index	handle	can	be	given.

arangosh>	db.example.ensureSkiplist("a",	"b");

arangosh>	var	indexInfo	=	db.example.getIndexes();

arangosh>	indexInfo;

arangosh>	db.example.dropIndex(indexInfo[0])

arangosh>	db.example.dropIndex(indexInfo[1].id)

arangosh>	indexInfo	=	db.example.getIndexes();

show	execution	results

Load	Indexes	into	Memory

Loads	all	indexes	of	this	collection	into	Memory.		collection.loadIndexesIntoMemory()	

This	function	tries	to	cache	all	index	entries	of	this	collection	into	the	main	memory.	Therefore	it	iterates	over	all	indexes	of	the	collection
and	stores	the	indexed	values,	not	the	entire	document	data,	in	memory.	All	lookups	that	could	be	found	in	the	cache	are	much	faster	than
lookups	not	stored	in	the	cache	so	you	get	a	nice	performance	boost.	It	is	also	guaranteed	that	the	cache	is	consistent	with	the	stored
data.

For	the	time	being	this	function	is	only	useful	on	RocksDB	storage	engine,	as	in	MMFiles	engine	all	indexes	are	in	memory	anyways.

On	RocksDB	this	function	honors	all	memory	limits,	if	the	indexes	you	want	to	load	are	smaller	than	your	memory	limit	this	function
guarantees	that	most	index	values	are	cached.	If	the	index	is	larger	than	your	memory	limit	this	function	will	fill	up	values	up	to	this	limit
and	for	the	time	being	there	is	no	way	to	control	which	indexes	of	the	collection	should	have	priority	over	others.

arangosh>	db.example.loadIndexesIntoMemory();

{	

		"result"	:	true	

}

Working	with	Indexes

98

Database	Methods

Fetching	an	index	by	handle

finds	an	index		db._index(index-handle)	

Returns	the	index	with	index-handle	or	null	if	no	such	index	exists.

arangosh>	db.example.ensureIndex({	type:	"skiplist",	fields:	["a",	"b"]	});

arangosh>	var	indexInfo	=	db.example.getIndexes().map(function(x)	{	return	x.id;	});

arangosh>	indexInfo;

arangosh>	db._index(indexInfo[0])

arangosh>	db._index(indexInfo[1])

show	execution	results

Dropping	an	index

drops	an	index		db._dropIndex(index)	

Drops	the	index.	If	the	index	does	not	exist,	then	false	is	returned.	If	the	index	existed	and	was	dropped,	then	true	is	returned.

	db._dropIndex(index-handle)	

Drops	the	index	with	index-handle.

arangosh>	db.example.ensureIndex({	type:	"skiplist",	fields:	["a",	"b"]	});

arangosh>	var	indexInfo	=	db.example.getIndexes();

arangosh>	indexInfo;

arangosh>	db._dropIndex(indexInfo[0])

arangosh>	db._dropIndex(indexInfo[1].id)

arangosh>	indexInfo	=	db.example.getIndexes();

show	execution	results

Revalidating	whether	an	index	is	used

finds	an	index

So	you've	created	an	index,	and	since	its	maintainance	isn't	for	free,	you	definitely	want	to	know	whether	your	query	can	utilize	it.

You	can	use	explain	to	verify	whether	skiplists	or	hash	indexes	are	used	(if	you	omit		colors:	false		you	will	get	nice	colors	in
ArangoShell):

arangosh>	var	explain	=	require("@arangodb/aql/explainer").explain;

arangosh>	db.example.ensureIndex({	type:	"skiplist",	fields:	["a",	"b"]	});

arangosh>	explain("FOR	doc	IN	example	FILTER	doc.a	<	23	RETURN	doc",	{colors:false});

show	execution	results

Working	with	Indexes

99

Hash	Indexes

Introduction	to	Hash	Indexes

It	is	possible	to	define	a	hash	index	on	one	or	more	attributes	(or	paths)	of	a	document.	This	hash	index	is	then	used	in	queries	to	locate
documents	in	O(1)	operations.	If	the	hash	index	is	unique,	then	no	two	documents	are	allowed	to	have	the	same	set	of	attribute	values.

Creating	a	new	document	or	updating	a	document	will	fail	if	the	uniqueness	is	violated.	If	the	index	is	declared	sparse,	a	document	will	be
excluded	from	the	index	and	no	uniqueness	checks	will	be	performed	if	any	index	attribute	value	is	not	set	or	has	a	value	of		null	.

Accessing	Hash	Indexes	from	the	Shell

Unique	Hash	Indexes

Ensures	that	a	unique	constraint	exists:		collection.ensureIndex({	type:	"hash",	fields:	["field1",	...,	"fieldn"],	unique:	true	})	

Creates	a	unique	hash	index	on	all	documents	using	field1,	...	fieldn	as	attribute	paths.	At	least	one	attribute	path	has	to	be	given.	The
index	will	be	non-sparse	by	default.

All	documents	in	the	collection	must	differ	in	terms	of	the	indexed	attributes.	Creating	a	new	document	or	updating	an	existing	document
will	will	fail	if	the	attribute	uniqueness	is	violated.

To	create	a	sparse	unique	index,	set	the	sparse	attribute	to		true	:

	collection.ensureIndex({	type:	"hash",	fields:	["field1",	...,	"fieldn"],	unique:	true,	sparse:	true	})	

In	case	that	the	index	was	successfully	created,	the	index	identifier	is	returned.

Non-existing	attributes	will	default	to		null	.	In	a	sparse	index	all	documents	will	be	excluded	from	the	index	for	which	all	specified	index
attributes	are		null	.	Such	documents	will	not	be	taken	into	account	for	uniqueness	checks.

In	a	non-sparse	index,	all	documents	regardless	of		null		-	attributes	will	be	indexed	and	will	be	taken	into	account	for	uniqueness
checks.

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.test.ensureIndex({	type:	"hash",	fields:	["a",	"b.c"],	unique:	true	});

arangosh>	db.test.save({	a	:	1,	b	:	{	c	:	1	}	});

arangosh>	db.test.save({	a	:	1,	b	:	{	c	:	1	}	});

arangosh>	db.test.save({	a	:	1,	b	:	{	c	:	null	}	});

arangosh>	db.test.save({	a	:	1	});

show	execution	results

Non-unique	Hash	Indexes

Ensures	that	a	non-unique	hash	index	exists:		collection.ensureIndex({	type:	"hash",	fields:	["field1",	...,	"fieldn"]	})	

Creates	a	non-unique	hash	index	on	all	documents	using	field1,	...	fieldn	as	attribute	paths.	At	least	one	attribute	path	has	to	be	given.	The
index	will	be	non-sparse	by	default.

To	create	a	sparse	unique	index,	set	the	sparse	attribute	to		true	:

	collection.ensureIndex({	type:	"hash",	fields:	["field1",	...,	"fieldn"],	sparse:	true	})	

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.test.ensureIndex({	type:	"hash",	fields:	["a"]	});

arangosh>	db.test.save({	a	:	1	});

Hash	Indexes

100

arangosh>	db.test.save({	a	:	1	});

arangosh>	db.test.save({	a	:	null	});

show	execution	results

Hash	Array	Indexes

Ensures	that	a	hash	array	index	exists	(non-unique):		collection.ensureIndex({	type:	"hash",	fields:	["field1[*]",	...,	"fieldn[*]"]
})	

Creates	a	non-unique	hash	array	index	for	the	individual	elements	of	the	array	attributes	field1[*],	...	fieldn[*]	found	in	the	documents.	At
least	one	attribute	path	has	to	be	given.	The	index	always	treats	the	indexed	arrays	as	sparse.

It	is	possible	to	combine	array	indexing	with	standard	indexing:		collection.ensureIndex({	type:	"hash",	fields:	["field1[*]",
"field2"]	})	

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.test.ensureIndex({	type:	"hash",	fields:	["a[*]"]	});

arangosh>	db.test.save({	a	:	[1,	2]	});

arangosh>	db.test.save({	a	:	[1,	3]	});

arangosh>	db.test.save({	a	:	null	});

show	execution	results

Ensure	uniqueness	of	relations	in	edge	collections

It	is	possible	to	create	secondary	indexes	using	the	edge	attributes		_from		and		_to	,	starting	with	ArangoDB	3.0.	A	combined	index	over
both	fields	together	with	the	unique	option	enabled	can	be	used	to	prevent	duplicate	relations	from	being	created.

For	example,	a	document	collection	verts	might	contain	vertices	with	the	document	handles		verts/A	,		verts/B		and		verts/C	.	Relations
between	these	documents	can	be	stored	in	an	edge	collection	edges	for	instance.	Now,	you	may	want	to	make	sure	that	the	vertex
	verts/A		is	never	linked	to		verts/B		by	an	edge	more	than	once.	This	can	be	achieved	by	adding	a	unique,	non-sparse	hash	index	for	the
fields		_from		and		_to	:

db.edges.ensureIndex({	type:	"hash",	fields:	["_from",	"_to"],	unique:	true	});

Creating	an	edge		{	_from:	"verts/A",	_to:	"verts/B"	}		in	edges	will	be	accepted,	but	only	once.	Another	attempt	to	store	an	edge	with
the	relation	A	→	B	will	be	rejected	by	the	server	with	a	unique	constraint	violated	error.	This	includes	updates	to	the		_from		and		_to	
fields.

Note	that	adding	a	relation	B	→	A	is	still	possible,	so	is	A	→	A	and	B	→	B,	because	they	are	all	different	relations	in	a	directed	graph.
Each	one	can	only	occur	once	however.

Hash	Indexes

101

Skiplists

Introduction	to	Skiplist	Indexes

This	is	an	introduction	to	ArangoDB's	skiplists.

It	is	possible	to	define	a	skiplist	index	on	one	or	more	attributes	(or	paths)	of	documents.	This	skiplist	is	then	used	in	queries	to	locate
documents	within	a	given	range.	If	the	skiplist	is	declared	unique,	then	no	two	documents	are	allowed	to	have	the	same	set	of	attribute
values.

Creating	a	new	document	or	updating	a	document	will	fail	if	the	uniqueness	is	violated.	If	the	skiplist	index	is	declared	sparse,	a	document
will	be	excluded	from	the	index	and	no	uniqueness	checks	will	be	performed	if	any	index	attribute	value	is	not	set	or	has	a	value	of		null	.

Accessing	Skiplist	Indexes	from	the	Shell

Unique	Skiplist	Index

Ensures	that	a	unique	skiplist	index	exists:		collection.ensureIndex({	type:	"skiplist",	fields:	["field1",	...,	"fieldn"],	unique:
true	})	

Creates	a	unique	skiplist	index	on	all	documents	using	field1,	...	fieldn	as	attribute	paths.	At	least	one	attribute	path	has	to	be	given.	The
index	will	be	non-sparse	by	default.

All	documents	in	the	collection	must	differ	in	terms	of	the	indexed	attributes.	Creating	a	new	document	or	updating	an	existing	document
will	fail	if	the	attribute	uniqueness	is	violated.

To	create	a	sparse	unique	index,	set	the	sparse	attribute	to		true	:

	collection.ensureIndex({	type:	"skiplist",	fields:	["field1",	...,	"fieldn"],	unique:	true,	sparse:	true	})	

In	a	sparse	index	all	documents	will	be	excluded	from	the	index	that	do	not	contain	at	least	one	of	the	specified	index	attributes	or	that
have	a	value	of		null		in	any	of	the	specified	index	attributes.	Such	documents	will	not	be	indexed,	and	not	be	taken	into	account	for
uniqueness	checks.

In	a	non-sparse	index,	these	documents	will	be	indexed	(for	non-present	indexed	attributes,	a	value	of		null		will	be	used)	and	will	be
taken	into	account	for	uniqueness	checks.

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.ids.ensureIndex({	type:	"skiplist",	fields:	["myId"],	unique:	true	});

arangosh>	db.ids.save({	"myId":	123	});

arangosh>	db.ids.save({	"myId":	456	});

arangosh>	db.ids.save({	"myId":	789	});

arangosh>	db.ids.save({	"myId":	123	});

show	execution	results

arangosh>	db.ids.ensureIndex({	type:	"skiplist",	fields:	["name.first",	"name.last"],	

unique:	true	});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"hansen"	}});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"jens",	"last":	"jensen"	}});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"jensen"	}});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"hansen"	}});

show	execution	results

Non-unique	Skiplist	Index

Skiplists

102

Ensures	that	a	non-unique	skiplist	index	exists:		collection.ensureIndex({	type:	"skiplist",	fields:	["field1",	...,	"fieldn"]	})	

Creates	a	non-unique	skiplist	index	on	all	documents	using	field1,	...	fieldn	as	attribute	paths.	At	least	one	attribute	path	has	to	be	given.
The	index	will	be	non-sparse	by	default.

To	create	a	sparse	non-unique	index,	set	the	sparse	attribute	to		true	.

	collection.ensureIndex({	type:	"skiplist",	fields:	["field1",	...,	"fieldn"],	sparse:	true	})	

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.names.ensureIndex({	type:	"skiplist",	fields:	["first"]	});

arangosh>	db.names.save({	"first"	:	"Tim"	});

arangosh>	db.names.save({	"first"	:	"Tom"	});

arangosh>	db.names.save({	"first"	:	"John"	});

arangosh>	db.names.save({	"first"	:	"Tim"	});

arangosh>	db.names.save({	"first"	:	"Tom"	});

show	execution	results

Skiplist	Array	Index

Ensures	that	a	skiplist	array	index	exists	(non-unique):		collection.ensureIndex({	type:	"skiplist",	fields:	["field1[*]",	...,
"fieldn[*]"]	})	

Creates	a	non-unique	skiplist	array	index	for	the	individual	elements	of	the	array	attributes	field1[*],	...	fieldn[*]	found	in	the	documents.
At	least	one	attribute	path	has	to	be	given.	The	index	always	treats	the	indexed	arrays	as	sparse.

It	is	possible	to	combine	array	indexing	with	standard	indexing:		collection.ensureIndex({	type:	"skiplist",	fields:	["field1[*]",
"field2"]	})	

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.test.ensureIndex({	type:	"skiplist",	fields:	["a[*]"]	});

arangosh>	db.test.save({	a	:	[1,	2]	});

arangosh>	db.test.save({	a	:	[1,	3]	});

arangosh>	db.test.save({	a	:	null	});

show	execution	results

Query	by	example	using	a	skiplist	index

Constructs	a	query-by-example	using	a	skiplist	index:		collection.byExample(example)	

Selects	all	documents	from	the	collection	that	match	the	specified	example	and	returns	a	cursor.	A	skiplist	index	will	be	used	if	present.

You	can	use	toArray,	next,	or	hasNext	to	access	the	result.	The	result	can	be	limited	using	the	skip	and	limit	operator.

An	attribute	name	of	the	form	a.b	is	interpreted	as	attribute	path,	not	as	attribute.	If	you	use

{	"a"	:	{	"c"	:	1	}	}

as	example,	then	you	will	find	all	documents,	such	that	the	attribute	a	contains	a	document	of	the	form	{c	:	1	}.	For	example	the
document

{	"a"	:	{	"c"	:	1	},	"b"	:	1	}

will	match,	but	the	document

{	"a"	:	{	"c"	:	1,	"b"	:	1	}	}

Skiplists

103

will	not.

However,	if	you	use

{	"a.c"	:	1	},

then	you	will	find	all	documents,	which	contain	a	sub-document	in	a	that	has	an	attribute	c	of	value	1.	Both	the	following	documents

{	"a"	:	{	"c"	:	1	},	"b"	:	1	}

and

{	"a"	:	{	"c"	:	1,	"b"	:	1	}	}

will	match.

Skiplists

104

Persistent	indexes

Introduction	to	Persistent	Indexes

This	is	an	introduction	to	ArangoDB's	persistent	indexes.

It	is	possible	to	define	a	persistent	index	on	one	or	more	attributes	(or	paths)	of	documents.	The	index	is	then	used	in	queries	to	locate
documents	within	a	given	range.	If	the	index	is	declared	unique,	then	no	two	documents	are	allowed	to	have	the	same	set	of	attribute
values.

Creating	a	new	document	or	updating	a	document	will	fail	if	the	uniqueness	is	violated.	If	the	index	is	declared	sparse,	a	document	will	be
excluded	from	the	index	and	no	uniqueness	checks	will	be	performed	if	any	index	attribute	value	is	not	set	or	has	a	value	of		null	.

Accessing	Persistent	Indexes	from	the	Shell

ensures	that	a	unique	persistent	index	exists		collection.ensureIndex({	type:	"persistent",	fields:	["field1",	...,	"fieldn"],
unique:	true	})	

Creates	a	unique	persistent	index	on	all	documents	using	field1,	...	fieldn	as	attribute	paths.	At	least	one	attribute	path	has	to	be	given.
The	index	will	be	non-sparse	by	default.

All	documents	in	the	collection	must	differ	in	terms	of	the	indexed	attributes.	Creating	a	new	document	or	updating	an	existing	document
will	will	fail	if	the	attribute	uniqueness	is	violated.

To	create	a	sparse	unique	index,	set	the	sparse	attribute	to		true	:

	collection.ensureIndex({	type:	"persistent",	fields:	["field1",	...,	"fieldn"],	unique:	true,	sparse:	true	})	

In	a	sparse	index	all	documents	will	be	excluded	from	the	index	that	do	not	contain	at	least	one	of	the	specified	index	attributes	or	that
have	a	value	of		null		in	any	of	the	specified	index	attributes.	Such	documents	will	not	be	indexed,	and	not	be	taken	into	account	for
uniqueness	checks.

In	a	non-sparse	index,	these	documents	will	be	indexed	(for	non-present	indexed	attributes,	a	value	of		null		will	be	used)	and	will	be
taken	into	account	for	uniqueness	checks.

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.ids.ensureIndex({	type:	"persistent",	fields:	["myId"],	unique:	true	});

arangosh>	db.ids.save({	"myId":	123	});

arangosh>	db.ids.save({	"myId":	456	});

arangosh>	db.ids.save({	"myId":	789	});

arangosh>	db.ids.save({	"myId":	123	});

show	execution	results

arangosh>	db.ids.ensureIndex({	type:	"persistent",	fields:	["name.first",	"name.last"],	

unique:	true	});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"hansen"	}});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"jens",	"last":	"jensen"	}});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"jensen"	}});

arangosh>	db.ids.save({	"name"	:	{	"first"	:	"hans",	"last":	"hansen"	}});

show	execution	results
ensures	that	a	non-unique	persistent	index	exists		collection.ensureIndex({	type:	"persistent",	fields:	["field1",	...,	"fieldn"]	})	

Creates	a	non-unique	persistent	index	on	all	documents	using	field1,	...	fieldn	as	attribute	paths.	At	least	one	attribute	path	has	to	be
given.	The	index	will	be	non-sparse	by	default.

Persistent

105

To	create	a	sparse	unique	index,	set	the	sparse	attribute	to		true	.

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

arangosh>	db.names.ensureIndex({	type:	"persistent",	fields:	["first"]	});

arangosh>	db.names.save({	"first"	:	"Tim"	});

arangosh>	db.names.save({	"first"	:	"Tom"	});

arangosh>	db.names.save({	"first"	:	"John"	});

arangosh>	db.names.save({	"first"	:	"Tim"	});

arangosh>	db.names.save({	"first"	:	"Tom"	});

show	execution	results

Query	by	example	using	a	persistent	index

constructs	a	query-by-example	using	a	persistent	index		collection.byExample(example)	

Selects	all	documents	from	the	collection	that	match	the	specified	example	and	returns	a	cursor.	A	persistent	index	will	be	used	if	present.

You	can	use	toArray,	next,	or	hasNext	to	access	the	result.	The	result	can	be	limited	using	the	skip	and	limit	operator.

An	attribute	name	of	the	form	a.b	is	interpreted	as	attribute	path,	not	as	attribute.	If	you	use

{	"a"	:	{	"c"	:	1	}	}

as	example,	then	you	will	find	all	documents,	such	that	the	attribute	a	contains	a	document	of	the	form	{c	:	1	}.	For	example	the
document

{	"a"	:	{	"c"	:	1	},	"b"	:	1	}

will	match,	but	the	document

{	"a"	:	{	"c"	:	1,	"b"	:	1	}	}

will	not.

However,	if	you	use

{	"a.c"	:	1	},

then	you	will	find	all	documents,	which	contain	a	sub-document	in	a	that	has	an	attribute	c	of	value	1.	Both	the	following	documents

{	"a"	:	{	"c"	:	1	},	"b"	:	1	}

and

{	"a"	:	{	"c"	:	1,	"b"	:	1	}	}

will	match.

Persistent	Indexes	and	Server	Language
The	order	of	index	entries	in	persistent	indexes	adheres	to	the	configured	server	language.	If,	however,	the	server	is	restarted	with	a
different	language	setting	as	when	the	persistent	index	was	created,	not	all	documents	may	be	returned	anymore	and	the	sort	order	of
those	which	are	returned	can	be	wrong	(whenever	the	persistent	index	is	consulted).

To	fix	persistent	indexes	after	a	language	change,	delete	and	re-create	them.	Skiplist	indexes	are	not	affected,	because	they	are	not
persisted	and	automatically	rebuilt	on	every	server	start.

Persistent

106

Persistent

107

Fulltext	indexes
This	is	an	introduction	to	ArangoDB's	fulltext	indexes.

Introduction	to	Fulltext	Indexes

A	fulltext	index	can	be	used	to	find	words,	or	prefixes	of	words	inside	documents.

A	fulltext	index	can	be	defined	on	one	attribute	only,	and	will	include	all	words	contained	in	documents	that	have	a	textual	value	in	the
index	attribute.	Since	ArangoDB	2.6	the	index	will	also	include	words	from	the	index	attribute	if	the	index	attribute	is	an	array	of	strings,
or	an	object	with	string	value	members.

For	example,	given	a	fulltext	index	on	the		translations		attribute	and	the	following	documents,	then	searching	for		лиса		using	the
fulltext	index	would	return	only	the	first	document.	Searching	for	the	index	for	the	exact	string		Fox		would	return	the	first	two
documents,	and	searching	for		prefix:Fox		would	return	all	three	documents:

{	translations:	{	en:	"fox",	de:	"Fuchs",	fr:	"renard",	ru:	"лиса"	}	}

{	translations:	"Fox	is	the	English	translation	of	the	German	word	Fuchs"	}

{	translations:	["ArangoDB",	"document",	"database",	"Foxx"]	}

Note	that	deeper	nested	objects	are	ignored.	For	example,	a	fulltext	index	on	translations	would	index	Fuchs,	but	not	fox,	given	the
following	document	structure:

{	translations:	{	en:	{	US:	"fox"	},	de:	"Fuchs"	}

If	you	need	to	search	across	multiple	fields	and/or	nested	objects,	you	may	write	all	the	strings	into	a	special	attribute,	which	you	then
create	the	index	on	(it	might	be	necessary	to	clean	the	strings	first,	e.g.	remove	line	breaks	and	strip	certain	words).

If	the	index	attribute	is	neither	a	string,	an	object	or	an	array,	its	contents	will	not	be	indexed.	When	indexing	the	contents	of	an	array
attribute,	an	array	member	will	only	be	included	in	the	index	if	it	is	a	string.	When	indexing	the	contents	of	an	object	attribute,	an	object
member	value	will	only	be	included	in	the	index	if	it	is	a	string.	Other	data	types	are	ignored	and	not	indexed.

Currently,	fulltext	indexes	are	not	yet	supported	with	the	RocksDB	storage	engine.	Thus	the	function		FULLTEXT()		will	be	unavailable
when	using	this	storage	engine.	To	use	fulltext	indexes,	please	use	the	MMFiles	storage	engine	for	the	time	being.

Accessing	Fulltext	Indexes	from	the	Shell

Ensures	that	a	fulltext	index	exists:

	collection.ensureIndex({	type:	"fulltext",	fields:	["field"],	minLength:	minLength	})	

Creates	a	fulltext	index	on	all	documents	on	attribute	field.

Fulltext	indexes	are	implicitly	sparse:	all	documents	which	do	not	have	the	specified	field	attribute	or	that	have	a	non-qualifying	value	in
their	field	attribute	will	be	ignored	for	indexing.

Only	a	single	attribute	can	be	indexed.	Specifying	multiple	attributes	is	unsupported.

The	minimum	length	of	words	that	are	indexed	can	be	specified	via	the	minLength	parameter.	Words	shorter	than	minLength	characters
will	not	be	indexed.	minLength	has	a	default	value	of	2,	but	this	value	might	be	changed	in	future	versions	of	ArangoDB.	It	is	thus
recommended	to	explicitly	specify	this	value.

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details	is	returned.

arangosh>	db.example.ensureIndex({	type:	"fulltext",	fields:	["text"],	minLength:	3	});

arangosh>	db.example.save({	text	:	"the	quick	brown",	b	:	{	c	:	1	}	});

arangosh>	db.example.save({	text	:	"quick	brown	fox",	b	:	{	c	:	2	}	});

arangosh>	db.example.save({	text	:	"brown	fox	jums",	b	:	{	c	:	3	}	});

arangosh>	db.example.save({	text	:	"fox	jumps	over",	b	:	{	c	:	4	}	});

Fulltext	Indexes

108

arangosh>	db.example.save({	text	:	"jumps	over	the",	b	:	{	c	:	5	}	});

arangosh>	db.example.save({	text	:	"over	the	lazy",	b	:	{	c	:	6	}	});

arangosh>	db.example.save({	text	:	"the	lazy	dog",	b	:	{	c	:	7	}	});

arangosh>	db._query("FOR	document	IN	FULLTEXT(example,	'text',	'the')	RETURN	document");

show	execution	results
Looks	up	a	fulltext	index:

	collection.lookupFulltextIndex(attribute,	minLength)	

Checks	whether	a	fulltext	index	on	the	given	attribute	attribute	exists.

Fulltext	AQL	Functions

Fulltext	AQL	functions	are	detailed	in	Fulltext	functions.

Fulltext	Indexes

109

Geo	Indexes

Introduction	to	Geo	Indexes

This	is	an	introduction	to	ArangoDB's	geo	indexes.

AQL's	geographic	features	are	described	in	Geo	functions.

ArangoDB	uses	Hilbert	curves	to	implement	geo-spatial	indexes.	See	this	blog	for	details.

A	geo-spatial	index	assumes	that	the	latitude	is	between	-90	and	90	degree	and	the	longitude	is	between	-180	and	180	degree.	A	geo	index
will	ignore	all	documents	which	do	not	fulfill	these	requirements.

Accessing	Geo	Indexes	from	the	Shell

ensures	that	a	geo	index	exists		collection.ensureIndex({	type:	"geo",	fields:	["location"]	})	

Creates	a	geo-spatial	index	on	all	documents	using	location	as	path	to	the	coordinates.	The	value	of	the	attribute	has	to	be	an	array	with	at
least	two	numeric	values.	The	array	must	contain	the	latitude	(first	value)	and	the	longitude	(second	value).

All	documents,	which	do	not	have	the	attribute	path	or	have	a	non-conforming	value	in	it	are	excluded	from	the	index.

A	geo	index	is	implicitly	sparse,	and	there	is	no	way	to	control	its	sparsity.

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

To	create	a	geo	index	on	an	array	attribute	that	contains	longitude	first,	set	the	geoJson	attribute	to		true	.	This	corresponds	to	the
format	described	in	RFC	7946	Position

	collection.ensureIndex({	type:	"geo",	fields:	["location"],	geoJson:	true	})	

To	create	a	geo-spatial	index	on	all	documents	using	latitude	and	longitude	as	separate	attribute	paths,	two	paths	need	to	be	specified	in
the	fields	array:

	collection.ensureIndex({	type:	"geo",	fields:	["latitude",	"longitude"]	})	

In	case	that	the	index	was	successfully	created,	an	object	with	the	index	details,	including	the	index-identifier,	is	returned.

Examples

Create	a	geo	index	for	an	array	attribute:

arangosh>	db.geo.ensureIndex({	type:	"geo",	fields:	["loc"]	});

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>					for	(j	=	-180;	j	<=	180;	j	+=	10)	{

........>									db.geo.save({	name	:	"Name/"	+	i	+	"/"	+	j,	loc:	[i,	j]	});

........>					}

........>	}

arangosh>	db.geo.count();

arangosh>	db.geo.near(0,	0).limit(3).toArray();

arangosh>	db.geo.near(0,	0).count();

show	execution	results
Create	a	geo	index	for	a	hash	array	attribute:

arangosh>	db.geo2.ensureIndex({	type:	"geo",	fields:	["location.latitude",	

"location.longitude"]	});

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>					for	(j	=	-180;	j	<=	180;	j	+=	10)	{

........>									db.geo2.save({	name	:	"Name/"	+	i	+	"/"	+	j,	location:	{	latitude	:	i,	

longitude	:	j	}	});

Geo	Indexes

110

https://www.arangodb.com/2012/03/31/using-hilbert-curves-and-polyhedrons-for-geo-indexing
https://tools.ietf.org/html/rfc7946#section-3.1.1

........>					}

........>	}

arangosh>	db.geo2.near(0,	0).limit(3).toArray();

show	execution	results
Use	GeoIndex	with	AQL	SORT	statement:

arangosh>	db.geoSort.ensureIndex({	type:	"geo",	fields:	["latitude",	"longitude"]	});

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>					for	(j	=	-180;	j	<=	180;	j	+=	10)	{

........>									db.geoSort.save({	name	:	"Name/"	+	i	+	"/"	+	j,	latitude	:	i,	longitude	

:	j	});

........>					}

........>	}

arangosh>	var	query	=	"FOR	doc	in	geoSort	SORT	DISTANCE(doc.latitude,	doc.longitude,	0,	0)	

LIMIT	5	RETURN	doc"

arangosh>	db._explain(query,	{},	{colors:	false});

arangosh>	db._query(query);

show	execution	results
Use	GeoIndex	with	AQL	FILTER	statement:

arangosh>	db.geoFilter.ensureIndex({	type:	"geo",	fields:	["latitude",	"longitude"]	});

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>					for	(j	=	-180;	j	<=	180;	j	+=	10)	{

........>									db.geoFilter.save({	name	:	"Name/"	+	i	+	"/"	+	j,	latitude	:	i,	

longitude	:	j	});

........>					}

........>	}

arangosh>	var	query	=	"FOR	doc	in	geoFilter	FILTER	DISTANCE(doc.latitude,	doc.longitude,	

0,	0)	<	2000	RETURN	doc"

arangosh>	db._explain(query,	{},	{colors:	false});

arangosh>	db._query(query);

show	execution	results
constructs	a	geo	index	selection		collection.geo(location-attribute)	

Looks	up	a	geo	index	defined	on	attribute	location_attribute.

Returns	a	geo	index	object	if	an	index	was	found.	The		near		or		within		operators	can	then	be	used	to	execute	a	geo-spatial	query	on	this
particular	index.

This	is	useful	for	collections	with	multiple	defined	geo	indexes.

	collection.geo(location_attribute,	true)	

Looks	up	a	geo	index	on	a	compound	attribute	location_attribute.

Returns	a	geo	index	object	if	an	index	was	found.	The		near		or		within		operators	can	then	be	used	to	execute	a	geo-spatial	query	on	this
particular	index.

	collection.geo(latitude_attribute,	longitude_attribute)	

Looks	up	a	geo	index	defined	on	the	two	attributes	latitude_attribute	and	longitude-attribute.

Returns	a	geo	index	object	if	an	index	was	found.	The		near		or		within		operators	can	then	be	used	to	execute	a	geo-spatial	query	on	this
particular	index.

Note:	this	method	is	not	yet	supported	by	the	RocksDB	storage	engine.

Geo	Indexes

111

Note:	the	geo	simple	query	helper	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	running	geo	queries	is	to	use	their	AQL	equivalents.

Examples

Assume	you	have	a	location	stored	as	list	in	the	attribute	home	and	a	destination	stored	in	the	attribute	work.	Then	you	can	use	the		geo	
operator	to	select	which	geo-spatial	attributes	(and	thus	which	index)	to	use	in	a		near		query.

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(j	=	-180;		j	<=	180;		j	+=	10)	{

........>				db.complex.save({	name	:	"Name/"	+	i	+	"/"	+	j,

........>																						home	:	[i,	j],

........>																						work	:	[-i,	-j]	});

........>		}

........>	}

........>	

arangosh>	db.complex.near(0,	170).limit(5);

arangosh>	db.complex.ensureIndex({	type:	"geo",	fields:	["home"]	});

arangosh>	db.complex.near(0,	170).limit(5).toArray();

arangosh>	db.complex.geo("work").near(0,	170).limit(5);

arangosh>	db.complex.ensureIndex({	type:	"geo",	fields:	["work"]	});

arangosh>	db.complex.geo("work").near(0,	170).limit(5).toArray();

show	execution	results
constructs	a	near	query	for	a	collection		collection.near(latitude,	longitude)	

The	returned	list	is	sorted	according	to	the	distance,	with	the	nearest	document	to	the	coordinate	(latitude,	longitude)	coming	first.	If	there
are	near	documents	of	equal	distance,	documents	are	chosen	randomly	from	this	set	until	the	limit	is	reached.	It	is	possible	to	change	the
limit	using	the	limit	operator.

In	order	to	use	the	near	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	then	one	geo-spatial	index,	you	can	use	the	geo	operator	to	select	a	particular	index.

Note:		near		does	not	support	negative	skips.	//	However,	you	can	still	use		limit		followed	to	skip.

	collection.near(latitude,	longitude).limit(limit)	

Limits	the	result	to	limit	documents	instead	of	the	default	100.

Note:	Unlike	with	multiple	explicit	limits,		limit		will	raise	the	implicit	default	limit	imposed	by		within	.

	collection.near(latitude,	longitude).distance()	

This	will	add	an	attribute		distance		to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document	in
meters.

	collection.near(latitude,	longitude).distance(name)	

This	will	add	an	attribute	name	to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document	in
meters.

Note:	this	method	is	not	yet	supported	by	the	RocksDB	storage	engine.

Note:	the	near	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of	ArangoDB.
The	preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	use	the	AQL	NEAR	function	in	an	AQL	query
as	follows:

FOR	doc	IN	NEAR(@@collection,	@latitude,	@longitude,	@limit)

				RETURN	doc

Examples

To	get	the	nearest	two	locations:

Geo	Indexes

112

arangosh>	db.geo.ensureIndex({	type:	"geo",	fields:	["loc"]	});

arangosh>	for	(var	i	=	-90;		i	<=	90;		i	+=	10)	{

........>			for	(var	j	=	-180;	j	<=	180;	j	+=	10)	{

........>					db.geo.save({

........>								name	:	"Name/"	+	i	+	"/"	+	j,

........>								loc:	[i,	j]	});

........>	}	}

arangosh>	db.geo.near(0,	0).limit(2).toArray();

show	execution	results
If	you	need	the	distance	as	well,	then	you	can	use	the		distance		operator:

arangosh>	db.geo.ensureIndex({	type:	"geo",	fields:	["loc"]	});

arangosh>	for	(var	i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(var	j	=	-180;	j	<=	180;	j	+=	10)	{

........>					db.geo.save({

........>									name	:	"Name/"	+	i	+	"/"	+	j,

........>									loc:	[i,	j]	});

........>	}	}

arangosh>	db.geo.near(0,	0).distance().limit(2).toArray();

show	execution	results
constructs	a	within	query	for	a	collection		collection.within(latitude,	longitude,	radius)	

This	will	find	all	documents	within	a	given	radius	around	the	coordinate	(latitude,	longitude).	The	returned	array	is	sorted	by	distance,
beginning	with	the	nearest	document.

In	order	to	use	the	within	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	then	one	geo-spatial	index,	you	can	use	the		geo		operator	to	select	a	particular	index.

	collection.within(latitude,	longitude,	radius).distance()	

This	will	add	an	attribute		_distance		to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document
in	meters.

	collection.within(latitude,	longitude,	radius).distance(name)	

This	will	add	an	attribute	name	to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document	in
meters.

Note:	this	method	is	not	yet	supported	by	the	RocksDB	storage	engine.

Note:	the	within	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	retrieving	documents	from	a	collection	using	the	within	operator	is	to	use	the	AQL	WITHIN	function
in	an	AQL	query	as	follows:

FOR	doc	IN	WITHIN(@@collection,	@latitude,	@longitude,	@radius,	@distanceAttributeName)

				RETURN	doc

Examples

To	find	all	documents	within	a	radius	of	2000	km	use:

arangosh>	for	(var	i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(var	j	=	-180;	j	<=	180;	j	+=	10)	{

........>	db.geo.save({	name	:	"Name/"	+	i	+	"/"	+	j,	loc:	[i,	j]	});	}	}

arangosh>	db.geo.within(0,	0,	2000	*	1000).distance().toArray();

show	execution	results
ensures	that	a	geo	index	exists		collection.ensureIndex({	type:	"geo",	fields:	["location"]	})	

Geo	Indexes

113

Since	ArangoDB	2.5,	this	method	is	an	alias	for	ensureGeoIndex	since	geo	indexes	are	always	sparse,	meaning	that	documents	that	do	not
contain	the	index	attributes	or	have	non-numeric	values	in	the	index	attributes	will	not	be	indexed.	ensureGeoConstraint	is	deprecated	and
ensureGeoIndex	should	be	used	instead.

The	index	does	not	provide	a		unique		option	because	of	its	limited	usability.	It	would	prevent	identical	coordinates	from	being	inserted
only,	but	even	a	slightly	different	location	(like	1	inch	or	1	cm	off)	would	be	unique	again	and	not	considered	a	duplicate,	although	it
probably	should.	The	desired	threshold	for	detecting	duplicates	may	vary	for	every	project	(including	how	to	calculate	the	distance	even)
and	needs	to	be	implemented	on	the	application	layer	as	needed.	You	can	write	a	Foxx	service	for	this	purpose	and	make	use	of	the	AQL
geo	functions	to	find	nearby	coordinates	supported	by	a	geo	index.

Geo	Indexes

114

Vertex	Centric	Indexes

Introduction	to	Vertex	Centric	Indexes

In	ArangoDB	there	are	special	indices	designed	to	speed	up	graph	operations,	especially	if	the	graph	contains	supernodes	(vertices	that
have	an	exceptionally	high	amount	of	connected	edges).	These	indices	are	called	vertex	centric	indexes	and	can	be	used	in	addition	to	the
existing	edge	index.

Motivation

The	idea	of	this	index	is	to	index	a	combination	of	a	vertex,	the	direction	and	any	arbitrary	set	of	other	attributes	on	the	edges.	To	take	an
example,	if	we	have	an	attribute	called		type		on	the	edges,	we	can	use	an	outbound	vertex-centric	index	on	this	attribute	to	find	all	edges
attached	to	a	vertex	with	a	given		type	.	The	following	query	example	could	benefit	from	such	an	index:

FOR	v,	e,	p	IN	3..5	OUTBOUND	@start	GRAPH	@graphName

		FILTER	p.edges[*].type	ALL	==	"friend"

		RETURN	v

Using	the	built-in	edge-index	ArangoDB	can	find	the	list	of	all	edges	attached	to	the	vertex	fast,	but	still	it	has	to	walk	through	this	list
and	check	if	all	of	them	have	the	attribute		type	==	"friend"	.	Using	a	vertex-centric	index	would	allow	ArangoDB	to	find	all	edges	for
the	vertex	having	the	attribute		type	==	"friend"		in	the	same	time	and	can	save	the	iteration	to	verify	the	condition.

Index	creation
A	vertex-centric	can	be	either	of	the	following	types:

Hash	Index
Skiplist	Index
Persistent	Index

And	is	created	using	their	creation	operations.	However	in	the	list	of	fields	used	to	create	the	index	we	have	to	include	either		_from		or
	_to	.	Let	us	again	explain	this	by	an	example.	Assume	we	want	to	create	an	hash-based	outbound	vertex-centric	index	on	the	attribute
	type	.	This	can	be	created	with	the	following	way:

arangosh>	db.collection.ensureIndex({	type:	"hash",	fields:	["_from",	"type"]	})

show	execution	results
All	options	that	are	supported	by	the	respective	indexes	are	supported	by	the	vertex-centric	index	as	well.

Index	usage

The	AQL	optimizer	can	decide	to	use	a	vertex-centric	whenever	suitable,	however	it	is	not	guaranteed	that	this	index	is	used,	the
optimizer	may	estimate	that	an	other	index	is	assumed	to	be	better.	The	optimizer	will	consider	this	type	of	indexes	on	explicit	filtering
of		_from		respectively		_to	:

FOR	edge	IN	collection

		FILTER	edge._from	==	"vertices/123456"	AND	edge.type	==	"friend"

		RETURN	edge

and	during	pattern	matching	queries:

FOR	v,	e,	p	IN	3..5	OUTBOUND	@start	GRAPH	@graphName

		FILTER	p.edges[*].type	ALL	==	"friend"

		RETURN	v

Vertex	Centric	Indexes

115

Vertex	Centric	Indexes

116

ArangoDB	Graphs

First	Steps	with	Graphs

A	Graph	consists	of	vertices	and	edges.	Edges	are	stored	as	documents	in	edge	collections.	A	vertex	can	be	a	document	of	a	document
collection	or	of	an	edge	collection	(so	edges	can	be	used	as	vertices).	Which	collections	are	used	within	a	named	graph	is	defined	via	edge
definitions.	A	named	graph	can	contain	more	than	one	edge	definition,	at	least	one	is	needed.	Graphs	allow	you	to	structure	your	models
in	line	with	your	domain	and	group	them	logically	in	collections	and	giving	you	the	power	to	query	them	in	the	same	graph	queries.

New	to	graphs?	Take	our	free	graph	course	for	freshers	and	get	from	zero	knowledge	to	advanced	query	techniques.

Coming	from	a	relational	background	-	what's	a	graph?

In	SQL	you	commonly	have	the	construct	of	a	relation	table	to	store	n:m	relations	between	two	data	tables.	An	edge	collection	is
somewhat	similar	to	these	relation	tables;	vertex	collections	resemble	the	data	tables	with	the	objects	to	connect.	While	simple	graph
queries	with	fixed	number	of	hops	via	the	relation	table	may	be	doable	in	SQL	with	several	nested	joins,	graph	databases	can	handle	an
arbitrary	number	of	these	hops	over	edge	collections	-	this	is	called	traversal.	Also	edges	in	one	edge	collection	may	point	to	several
vertex	collections.	Its	common	to	have	attributes	attached	to	edges,	i.e.	a	label	naming	this	interconnection.	Edges	have	a	direction,	with
their	relations		_from		and		_to		pointing	from	one	document	to	another	document	stored	in	vertex	collections.	In	queries	you	can	define
in	which	directions	the	edge	relations	may	be	followed	(OUTBOUND	:		_from		→		_to	,		INBOUND	:		_from		←		_to	,		ANY	:		_from		↔
	_to).

Named	Graphs

Named	graphs	are	completely	managed	by	ArangoDB,	and	thus	also	visible	in	the	web	interface.	They	use	the	full	spectrum	of
ArangoDB's	graph	features.	You	may	access	them	via	several	interfaces.

AQL	Graph	Operations	with	several	flavors:
AQL	Traversals	on	both	named	and	anonymous	graphs
AQL	Shortest	Path	on	both	named	and	anonymous	graph

JavaScript	General	Graph	implementation,	as	you	may	use	it	in	Foxx	Services
Graph	Management;	creating	&	manipualating	graph	definitions;	inserting,	updating	and	deleting	vertices	and	edges	into	graphs
Graph	Functions	for	working	with	edges	and	vertices,	to	analyze	them	and	their	relations

JavaScript	Smart	Graph	implementation,	for	scalable	graphs
Smart	Graph	Management;	creating	&	manipualating	SmartGraph	definitions;	Differences	to	General	Graph

RESTful	General	Graph	interface	used	to	implement	graph	management	in	client	drivers

Manipulating	collections	of	named	graphs	with	regular	document	functions

The	underlying	collections	of	the	named	graphs	are	still	accessible	using	the	standard	methods	for	collections.	However	the	graph	module
adds	an	additional	layer	on	top	of	these	collections	giving	you	the	following	guarantees:

All	modifications	are	executed	transactional
If	you	delete	a	vertex	all	edges	will	be	deleted,	you	will	never	have	loose	ends
If	you	insert	an	edge	it	is	checked	if	the	edge	matches	the	edge	definitions,	your	edge	collections	will	only	contain	valid	edges

These	guarantees	are	lost	if	you	access	the	collections	in	any	other	way	than	the	graph	module	or	AQL,	so	if	you	delete	documents	from
your	vertex	collections	directly,	the	edges	pointing	to	them	will	be	remain	in	place.

Anonymous	graphs

Sometimes	you	may	not	need	all	the	powers	of	named	graphs,	but	some	of	its	bits	may	be	valuable	to	you.	You	may	use	anonymous
graphs	in	the	traversals	and	in	the	Working	with	Edges	chapter.	Anonymous	graphs	don't	have	edge	definitions	describing	which	vertex
collection	is	connected	by	which	edge	collection.	The	graph	model	has	to	be	maintained	in	the	client	side	code.	This	gives	you	more
freedom	than	the	strict	named	graphs.

Graphs

117

https://www.arangodb.com/arangodb-graph-course/

AQL	Graph	Operations	are	available	for	both,	named	and	anonymous	graphs:
AQL	Traversals
AQL	Shortest	Path

When	to	choose	anonymous	or	named	graphs?

As	noted	above,	named	graphs	ensure	graph	integrity,	both	when	inserting	or	removing	edges	or	vertices.	So	you	won't	encounter	dangling
edges,	even	if	you	use	the	same	vertex	collection	in	several	named	graphs.	This	involves	more	operations	inside	the	database	which	come
at	a	cost.	Therefore	anonymous	graphs	may	be	faster	in	many	operations.	So	this	question	may	be	narrowed	down	to:	'Can	I	afford	the
additional	effort	or	do	I	need	the	warranty	for	integrity?'.

Multiple	edge	collections	vs.		FILTER	s	on	edge	document	attributes

If	you	want	to	only	traverse	edges	of	a	specific	type,	there	are	two	ways	to	achieve	this.	The	first	would	be	an	attribute	in	the	edge
document	-	i.e.		type	,	where	you	specify	a	differentiator	for	the	edge	-	i.e.		"friends"	,		"family"	,		"married"		or		"workmates"	,	so	you
can	later		FILTER	e.type	=	"friends"		if	you	only	want	to	follow	the	friend	edges.

Another	way,	which	may	be	more	efficient	in	some	cases,	is	to	use	different	edge	collections	for	different	types	of	edges,	so	you	have
	friend_edges	,		family_edges	,		married_edges		and		workmate_edges		as	collection	names.	You	can	then	configure	several	named	graphs
including	a	subset	of	the	available	edge	and	vertex	collections	-	or	you	use	anonymous	graph	queries,	where	you	specify	a	list	of	edge
collections	to	take	into	account	in	that	query.	To	only	follow	friend	edges,	you	would	specify		friend_edges		as	sole	edge	collection.

Both	approaches	have	advantages	and	disadvantages.		FILTER		operations	on	ede	attributes	will	do	comparisons	on	each	traversed	edge,
which	may	become	CPU-intense.	When	not	finding	the	edges	in	the	first	place	because	of	the	collection	containing	them	is	not	traversed
at	all,	there	will	never	be	a	reason	to	actualy	check	for	their		type		attribute	with		FILTER	.

The	multiple	edge	collections	approach	is	limited	by	the	number	of	collections	that	can	be	used	simultaneously	in	one	query.	Every
collection	used	in	a	query	requires	some	resources	inside	of	ArangoDB	and	the	number	is	therefore	limited	to	cap	the	resource
requirements.	You	may	also	have	constraints	on	other	edge	attributes,	such	as	a	hash	index	with	a	unique	constraint,	which	requires	the
documents	to	be	in	a	single	collection	for	the	uniqueness	guarantee,	and	it	may	thus	not	be	possible	to	store	the	different	types	of	edges
in	multiple	edeg	collections.

So,	if	your	edges	have	about	a	dozen	different	types,	it's	okay	to	choose	the	collection	approach,	otherwise	the		FILTER		approach	is
preferred.	You	can	still	use		FILTER		operations	on	edges	of	course.	You	can	get	rid	of	a		FILTER		on	the		type		with	the	former	approach,
everything	else	can	stay	the	same.

Which	part	of	my	data	is	an	Edge	and	which	a	Vertex?

The	main	objects	in	your	data	model,	such	as	users,	groups	or	articles,	are	usually	considered	to	be	vertices.	For	each	type	of	object,	a
document	collection	(also	called	vertex	collection)	should	store	the	individual	entities.	Entities	can	be	connected	by	edges	to	express	and
classify	relations	between	vertices.	It	often	makes	sense	to	have	an	edge	collection	per	relation	type.

ArangoDB	does	not	require	you	to	store	your	data	in	graph	structures	with	edges	and	vertices,	you	can	also	decide	to	embed	attributes
such	as	which	groups	a	user	is	part	of,	or		_id	s	of	documents	in	another	document	instead	of	connecting	the	documents	with	edges.	It
can	be	a	meaningful	performance	optimization	for	1:n	relationships,	if	your	data	is	not	focused	on	relations	and	you	don't	need	graph
traversal	with	varying	depth.	It	usually	means	to	introduce	some	redundancy	and	possibly	inconsistencies	if	you	embed	data,	but	it	can
be	an	acceptable	tradeoff.

Vertices

Let's	say	we	have	two	vertex	collections,		Users		and		Groups	.	Documents	in	the		Groups		collection	contain	the	attributes	of	the	Group,
i.e.	when	it	was	founded,	its	subject,	an	icon	URL	and	so	on.		Users		documents	contain	the	data	specific	to	a	user	-	like	all	names,
birthdays,	Avatar	URLs,	hobbies...

Edges

We	can	use	an	edge	collection	to	store	relations	between	users	and	groups.	Since	multiple	users	may	be	in	an	arbitrary	number	of	groups,
this	is	an	m:n	relation.	The	edge	collection	can	be	called		UsersInGroups		with	i.e.	one	edge	with		_from		pointing	to		Users/John		and
	_to		pointing	to		Groups/BowlingGroupHappyPin	.	This	makes	the	user	John	a	member	of	the	group	Bowling	Group	Happy	Pin.

Graphs

118

Attributes	of	this	relation	may	contain	qualifiers	to	this	relation,	like	the	permissions	of	John	in	this	group,	the	date	when	he	joined	the
group	etc.

So	roughly	put,	if	you	use	documents	and	their	attributes	in	a	sentence,	nouns	would	typically	be	vertices,	verbs	become	the	edges.	You
can	see	this	in	the	knows	graph	below:

	Alice	knows	Bob,	who	in	term	knows	Charlie.

Advantages	of	this	approach

Graphs	give	you	the	advantage	of	not	just	being	able	to	have	a	fixed	number	of	m:n	relations	in	a	row,	but	an	arbitrary	number.	Edges	can
be	traversed	in	both	directions,	so	it's	easy	to	determine	all	groups	a	user	is	in,	but	also	to	find	out	which	members	a	certain	group	has.
Users	could	also	be	interconnected	to	create	a	social	network.

Using	the	graph	data	model,	dealing	with	data	that	has	lots	of	relations	stays	manageable	and	can	be	queried	in	very	flexible	ways,
whereas	it	would	cause	headache	to	handle	it	in	a	relational	database	system.

Backup	and	restore

For	sure	you	want	to	have	backups	of	your	graph	data,	you	can	use	Arangodump	to	create	the	backup,	and	Arangorestore	to	restore	a
backup	into	a	new	ArangoDB.	You	should	however	note	that:

you	need	the	system	collection		_graphs		if	you	backup	named	graphs.
you	need	to	backup	the	complete	set	of	all	edge	and	vertex	collections	your	graph	consists	of.	Partial	dump/restore	may	not	work.

Managing	graphs

By	default	you	should	use	the	interface	your	driver	provides	to	manage	graphs.

This	is	i.e.	documented	in	Graphs-Section	of	the	ArangoDB	Java	driver.

Example	Graphs

ArangoDB	comes	with	a	set	of	easily	graspable	graphs	that	are	used	to	demonstrate	the	APIs.	You	can	use	the		add	samples		tab	in	the
	create	graph		window	in	the	webinterface,	or	load	the	module		@arangodb/graph-examples/example-graph		in	arangosh	and	use	it	to	create
instances	of	these	graphs	in	your	ArangoDB.	Once	you've	created	them,	you	can	inspect	them	in	the	webinterface	-	which	was	used	to
create	the	pictures	below.

You	can	easily	look	into	the	innards	of	this	script	for	reference	about	howto	manage	graphs	programatically.

The	Knows_Graph

Graphs

119

https://github.com/arangodb/arangodb-java-driver#graphs
https://github.com/arangodb/arangodb/blob/devel/js/common/modules/%40arangodb/graph-examples/example-graph.js

A	set	of	persons	knowing	each	other:	

The	knows	graph	consists	of	one	vertex	collection		persons		connected	via	one	edge	collection		knows	.	It	will	contain	five	persons	Alice,
Bob,	Charlie,	Dave	and	Eve.	We	will	have	the	following	directed	relations:

Alice	knows	Bob
Bob	knows	Charlie
Bob	knows	Dave
Eve	knows	Alice
Eve	knows	Bob

This	is	how	we	create	it,	inspect	its	vertices	and	edges,	and	drop	it	again:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("knows_graph");

arangosh>	db.persons.toArray()

arangosh>	db.knows.toArray();

arangosh>	examples.dropGraph("knows_graph");

show	execution	results

The	Social	Graph

A	set	of	persons	and	their	relations:

Graphs

120

This	example	has	female	and	male	persons	as	vertices	in	two	vertex	collections	-		female		and		male	.	The	edges	are	their	connections	in
the		relation		edge	collection.	This	is	how	we	create	it,	inspect	its	vertices	and	edges,	and	drop	it	again:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	db.female.toArray()

arangosh>	db.male.toArray()

arangosh>	db.relation.toArray()

arangosh>	examples.dropGraph("social");

show	execution	results

The	City	Graph

A	set	of	european	cities,	and	their	fictional	traveling	distances	as	connections:

Graphs

121

The	example	has	the	cities	as	vertices	in	several	vertex	collections	-		germanCity		and		frenchCity	.	The	edges	are	their	interconnections	in
several	edge	collections		french	/	german	/	international	Highway	.	This	is	how	we	create	it,	inspect	its	edges	and	vertices,	and	drop	it
again:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	db.frenchCity.toArray();

arangosh>	db.germanCity.toArray();

arangosh>	db.germanHighway.toArray();

arangosh>	db.frenchHighway.toArray();

arangosh>	db.internationalHighway.toArray();

arangosh>	examples.dropGraph("routeplanner");

show	execution	results

The	Traversal	Graph

This	graph	was	designed	to	demonstrate	filters	in	traversals.	It	has	some	labels	to	filter	on	it.

Graphs

122

The	example	has	all	its	vertices	in	the	circles	collection,	and	an	edges	edge	collection	to	connect	them.	Circles	have	unique	numeric	labels.
Edges	have	two	boolean	attributes	(theFalse	always	being	false,	theTruth	always	being	true)	and	a	label	sorting	B	-	D	to	the	left	side,	G	-
K	to	the	right	side.	Left	and	right	side	split	into	Paths	-	at	B	and	G	which	are	each	direct	neighbours	of	the	root-node	A.	Starting	from	A
the	graph	has	a	depth	of	3	on	all	its	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("traversalGraph");

arangosh>	db.circles.toArray();

arangosh>	db.edges.toArray();

arangosh>	examples.dropGraph("traversalGraph");

show	execution	results

The	World	Graph

The	world	country	graph	structures	its	nodes	like	that:	world	→	continent	→	country	→	capital.	In	some	cases	edge	directions	aren't
forward	(therefore	it	will	be	displayed	disjunct	in	the	graph	viewer).	It	has	two	ways	of	creating	it.	One	using	the	named	graph	utilities
(worldCountry),	one	without	(worldCountryUnManaged).	It	is	used	to	demonstrate	raw	traversal	operations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("worldCountry");

arangosh>	db.worldVertices.toArray();

arangosh>	db.worldEdges.toArray();

arangosh>	examples.dropGraph("worldCountry");

arangosh>	var	g	=	examples.loadGraph("worldCountryUnManaged");

arangosh>	examples.dropGraph("worldCountryUnManaged");

show	execution	results

Graphs

123

Cookbook	examples

The	above	referenced	chapters	describe	the	various	APIs	of	ArangoDBs	graph	engine	with	small	examples.	Our	cookbook	has	some	more
real	life	examples:

Traversing	a	graph	in	full	depth
Using	an	example	vertex	with	the	java	driver
Retrieving	documents	from	ArangoDB	without	knowing	the	structure
Using	a	custom	visitor	from	node.js
AQL	Example	Queries	on	an	Actors	and	Movies	Database

Higher	volume	graph	examples

All	of	the	above	examples	are	rather	small	so	they	are	easier	to	comprehend	and	can	demonstrate	the	way	the	functionality	works.	There
are	however	several	datasets	freely	available	on	the	web	that	are	a	lot	bigger.	We	collected	some	of	them	with	import	scripts	so	you	may
play	around	with	them.	Another	huge	graph	is	the	Pokec	social	network	from	Slovakia	that	we	used	for	performance	testing	on	several
databases;	You	will	find	importing	scripts	etc.	in	this	blogpost.

Graphs

124

https://github.com/arangodb/example-datasets
https://snap.stanford.edu/data/soc-pokec.html
https://www.arangodb.com/2015/06/multi-model-benchmark/

Graphs
This	chapter	describes	the	general-graph	module.	It	allows	you	to	define	a	graph	that	is	spread	across	several	edge	and	document
collections.	This	allows	you	to	structure	your	models	in	line	with	your	domain	and	group	them	logically	in	collections	giving	you	the
power	to	query	them	in	the	same	graph	queries.	There	is	no	need	to	include	the	referenced	collections	within	the	query,	this	module	will
handle	it	for	you.

Three	Steps	to	create	a	graph

Create	a	graph

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	var	graph	=	graph_module._create("myGraph");

arangosh>	graph;

{[Graph]	

}

Add	some	vertex	collections

arangosh>	graph._addVertexCollection("shop");

arangosh>	graph._addVertexCollection("customer");

arangosh>	graph._addVertexCollection("pet");

arangosh>	graph;

show	execution	results
Define	relations	on	the	Graph

arangosh>	var	rel	=	graph_module._relation("isCustomer",	["shop"],	["customer"]);

arangosh>	graph._extendEdgeDefinitions(rel);

arangosh>	graph;

show	execution	results

General	Graphs

125

Graph	Management
This	chapter	describes	the	javascript	interface	for	creating	and	modifying	named	graphs.	In	order	to	create	a	non	empty	graph	the
functionality	to	create	edge	definitions	has	to	be	introduced	first:

Edge	Definitions

An	edge	definition	is	always	a	directed	relation	of	a	graph.	Each	graph	can	have	arbitrary	many	relations	defined	within	the	edge
definitions	array.

Initialize	the	list

Create	a	list	of	edge	definitions	to	construct	a	graph.

	graph_module._edgeDefinitions(relation1,	relation2,	...,	relationN)	

The	list	of	edge	definitions	of	a	graph	can	be	managed	by	the	graph	module	itself.	This	function	is	the	entry	point	for	the	management	and
will	return	the	correct	list.

Parameters

relationX	(optional)	An	object	representing	a	definition	of	one	relation	in	the	graph

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	directed_relation	=	graph_module._relation("lives_in",	"user",	"city");

arangosh>	undirected_relation	=	graph_module._relation("knows",	"user",	"user");

arangosh>	edgedefinitions	=	graph_module._edgeDefinitions(directed_relation,	

undirected_relation);

show	execution	results

Extend	the	list

Extend	the	list	of	edge	definitions	to	construct	a	graph.

	graph_module._extendEdgeDefinitions(edgeDefinitions,	relation1,	relation2,	...,	relationN)	

In	order	to	add	more	edge	definitions	to	the	graph	before	creating	this	function	can	be	used	to	add	more	definitions	to	the	initial	list.

Parameters

edgeDefinitions	(required)	A	list	of	relation	definition	objects.
relationX	(required)	An	object	representing	a	definition	of	one	relation	in	the	graph

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	directed_relation	=	graph_module._relation("lives_in",	"user",	"city");

arangosh>	undirected_relation	=	graph_module._relation("knows",	"user",	"user");

arangosh>	edgedefinitions	=	graph_module._edgeDefinitions(directed_relation);

arangosh>	edgedefinitions	=	graph_module._extendEdgeDefinitions(undirected_relation);

show	execution	results

Relation

Define	a	directed	relation.

Graph	Management

126

	graph_module._relation(relationName,	fromVertexCollections,	toVertexCollections)	

The	relationName	defines	the	name	of	this	relation	and	references	to	the	underlying	edge	collection.	The	fromVertexCollections	is	an
Array	of	document	collections	holding	the	start	vertices.	The	toVertexCollections	is	an	Array	of	document	collections	holding	the	target
vertices.	Relations	are	only	allowed	in	the	direction	from	any	collection	in	fromVertexCollections	to	any	collection	in	toVertexCollections.

Parameters

relationName	(required)	The	name	of	the	edge	collection	where	the	edges	should	be	stored.	Will	be	created	if	it	does	not	yet	exist.
fromVertexCollections	(required)	One	or	a	list	of	collection	names.	Source	vertices	for	the	edges	have	to	be	stored	in	these
collections.	Collections	will	be	created	if	they	do	not	exist.
toVertexCollections	(required)	One	or	a	list	of	collection	names.	Target	vertices	for	the	edges	have	to	be	stored	in	these	collections.
Collections	will	be	created	if	they	do	not	exist.

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph_module._relation("has_bought",	["Customer",	"Company"],	["Groceries",	

"Electronics"]);

show	execution	results

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph_module._relation("has_bought",	"Customer",	"Product");

show	execution	results

Create	a	graph
After	having	introduced	edge	definitions	a	graph	can	be	created.

Create	a	graph

	graph_module._create(graphName,	edgeDefinitions,	orphanCollections)	

The	creation	of	a	graph	requires	the	name	of	the	graph	and	a	definition	of	its	edges.

For	every	type	of	edge	definition	a	convenience	method	exists	that	can	be	used	to	create	a	graph.	Optionally	a	list	of	vertex	collections
can	be	added,	which	are	not	used	in	any	edge	definition.	These	collections	are	referred	to	as	orphan	collections	within	this	chapter.	All
collections	used	within	the	creation	process	are	created	if	they	do	not	exist.

Parameters

graphName	(required)	Unique	identifier	of	the	graph
edgeDefinitions	(optional)	List	of	relation	definition	objects
orphanCollections	(optional)	List	of	additional	vertex	collection	names

Examples

Create	an	empty	graph,	edge	definitions	can	be	added	at	runtime:

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph	=	graph_module._create("myGraph");

{[Graph]	

}

Create	a	graph	using	an	edge	collection		edges		and	a	single	vertex	collection		vertices	

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	var	edgeDefinitions	=	[{	collection:	"edges",	"from":	["vertices"],	"to"	:	[

"vertices"]	}];

Graph	Management

127

arangosh>	graph	=	graph_module._create("myGraph",	edgeDefinitions);

{[Graph]	

		"edges"	:	[ArangoCollection	16454,	"edges"	(type	edge,	status	loaded)],	

		"vertices"	:	[ArangoCollection	16449,	"vertices"	(type	document,	status	loaded)]	

}

Create	a	graph	with	edge	definitions	and	orphan	collections:

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph	=	graph_module._create("myGraph",

........>	[graph_module._relation("myRelation",	["male",	"female"],	["male",	"female"])],	

["sessions"]);

show	execution	results

Complete	Example	to	create	a	graph

Example	Call:

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	var	edgeDefinitions	=	graph_module._edgeDefinitions();

arangosh>	graph_module._extendEdgeDefinitions(edgeDefinitions,	

graph_module._relation("friend_of",	"Customer",	"Customer"));

arangosh>	graph_module._extendEdgeDefinitions(

........>	edgeDefinitions,	graph_module._relation(

........>	"has_bought",	["Customer",	"Company"],	["Groceries",	"Electronics"]));

arangosh>	graph_module._create("myStore",	edgeDefinitions);

show	execution	results
alternative	call:

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>		var	edgeDefinitions	=	graph_module._edgeDefinitions(

........>		graph_module._relation("friend_of",	["Customer"],	["Customer"]),	

graph_module._relation(

........>	"has_bought",	["Customer",	"Company"],	["Groceries",	"Electronics"]));

arangosh>	graph_module._create("myStore",	edgeDefinitions);

show	execution	results

List	available	graphs

List	all	graphs.

	graph_module._list()	

Lists	all	graph	names	stored	in	this	database.

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph_module._list();

[]

Load	a	graph

Graph	Management

128

Get	a	graph

	graph_module._graph(graphName)	

A	graph	can	be	retrieved	by	its	name.

Parameters

graphName	(required)	Unique	identifier	of	the	graph

Examples

Get	a	graph:

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph	=	graph_module._graph("social");

show	execution	results

Remove	a	graph

Remove	a	graph

	graph_module._drop(graphName,	dropCollections)	

A	graph	can	be	dropped	by	its	name.	This	can	drop	all	collections	contained	in	the	graph	as	long	as	they	are	not	used	within	other	graphs.
To	drop	the	collections	only	belonging	to	this	graph,	the	optional	parameter	drop-collections	has	to	be	set	to	true.

Parameters

graphName	(required)	Unique	identifier	of	the	graph
dropCollections	(optional)	Define	if	collections	should	be	dropped	(default:	false)

Examples

Drop	a	graph	and	keep	collections:

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph_module._drop("social");

true

arangosh>	db._collection("female");

[ArangoCollection	16541,	"female"	(type	document,	status	loaded)]

arangosh>	db._collection("male");

[ArangoCollection	16544,	"male"	(type	document,	status	loaded)]

arangosh>	db._collection("relation");

[ArangoCollection	16547,	"relation"	(type	edge,	status	loaded)]

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	graph_module._drop("social",	true);

true

arangosh>	db._collection("female");

null

arangosh>	db._collection("male");

null

arangosh>	db._collection("relation");

null

Modify	a	graph	definition	during	runtime
After	you	have	created	an	graph	its	definition	is	not	immutable.	You	can	still	add,	delete	or	modify	edge	definitions	and	vertex	collections.

Graph	Management

129

Extend	the	edge	definitions

Add	another	edge	definition	to	the	graph

	graph._extendEdgeDefinitions(edgeDefinition)	

Extends	the	edge	definitions	of	a	graph.	If	an	orphan	collection	is	used	in	this	edge	definition,	it	will	be	removed	from	the	orphanage.	If
the	edge	collection	of	the	edge	definition	to	add	is	already	used	in	the	graph	or	used	in	a	different	graph	with	different	from	and/or	to
collections	an	error	is	thrown.

Parameters

edgeDefinition	(required)	The	relation	definition	to	extend	the	graph

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	ed2	=	graph_module._relation("myEC2",	["myVC1"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._extendEdgeDefinitions(ed2);

Modify	an	edge	definition

Modify	an	relation	definition

	graph_module._editEdgeDefinition(edgeDefinition)	

Edits	one	relation	definition	of	a	graph.	The	edge	definition	used	as	argument	will	replace	the	existing	edge	definition	of	the	graph	which
has	the	same	collection.	Vertex	Collections	of	the	replaced	edge	definition	that	are	not	used	in	the	new	definition	will	transform	to	an
orphan.	Orphans	that	are	used	in	this	new	edge	definition	will	be	deleted	from	the	list	of	orphans.	Other	graphs	with	the	same	edge
definition	will	be	modified,	too.

Parameters

edgeDefinition	(required)	The	edge	definition	to	replace	the	existing	edge	definition	with	the	same	attribute	collection.

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph")

arangosh>	var	original	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	modified	=	graph_module._relation("myEC1",	["myVC2"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[original]);

arangosh>	graph._editEdgeDefinitions(modified);

Delete	an	edge	definition

Delete	one	relation	definition

	graph_module._deleteEdgeDefinition(edgeCollectionName,	dropCollection)	

Deletes	a	relation	definition	defined	by	the	edge	collection	of	a	graph.	If	the	collections	defined	in	the	edge	definition	(collection,	from,	to)
are	not	used	in	another	edge	definition	of	the	graph,	they	will	be	moved	to	the	orphanage.

Parameters

edgeCollectionName	(required)	Name	of	edge	collection	in	the	relation	definition.
dropCollection	(optional)	Define	if	the	edge	collection	should	be	dropped.	Default	false.

Examples

Remove	an	edge	definition	but	keep	the	edge	collection:

arangosh>	var	graph_module	=	require("@arangodb/general-graph")

Graph	Management

130

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	ed2	=	graph_module._relation("myEC2",	["myVC1"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1,	ed2]);

arangosh>	graph._deleteEdgeDefinition("myEC1");

arangosh>	db._collection("myEC1");

[ArangoCollection	22173,	"myEC1"	(type	edge,	status	loaded)]

Remove	an	edge	definition	and	drop	the	edge	collection:

arangosh>	var	graph_module	=	require("@arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	ed2	=	graph_module._relation("myEC2",	["myVC1"],	["myVC3"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1,	ed2]);

arangosh>	graph._deleteEdgeDefinition("myEC1",	true);

arangosh>	db._collection("myEC1");

null

Extend	vertex	Collections

Each	graph	can	have	an	arbitrary	amount	of	vertex	collections,	which	are	not	part	of	any	edge	definition	of	the	graph.	These	collections
are	called	orphan	collections.	If	the	graph	is	extended	with	an	edge	definition	using	one	of	the	orphans,	it	will	be	removed	from	the	set	of
orphan	collection	automatically.

Add	a	vertex	collection

Add	a	vertex	collection	to	the	graph

	graph._addVertexCollection(vertexCollectionName,	createCollection)	

Adds	a	vertex	collection	to	the	set	of	orphan	collections	of	the	graph.	If	the	collection	does	not	exist,	it	will	be	created.	If	it	is	already
used	by	any	edge	definition	of	the	graph,	an	error	will	be	thrown.

Parameters

vertexCollectionName	(required)	Name	of	vertex	collection.
createCollection	(optional)	If	true	the	collection	will	be	created	if	it	does	not	exist.	Default:	true.

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph");

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._addVertexCollection("myVC3",	true);

Get	the	orphaned	collections

Get	all	orphan	collections

	graph._orphanCollections()	

Returns	all	vertex	collections	of	the	graph	that	are	not	used	in	any	edge	definition.

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._addVertexCollection("myVC3",	true);

arangosh>	graph._orphanCollections();

Graph	Management

131

[

		"myVC3"	

]

Remove	a	vertex	collection

Remove	a	vertex	collection	from	the	graph

	graph._removeVertexCollection(vertexCollectionName,	dropCollection)	

Removes	a	vertex	collection	from	the	graph.	Only	collections	not	used	in	any	relation	definition	can	be	removed.	Optionally	the	collection
can	be	deleted,	if	it	is	not	used	in	any	other	graph.

Parameters

vertexCollectionName	(required)	Name	of	vertex	collection.
dropCollection	(optional)	If	true	the	collection	will	be	dropped	if	it	is	not	used	in	any	other	graph.	Default:	false.

Examples

arangosh>	var	graph_module	=	require("@arangodb/general-graph")

arangosh>	var	ed1	=	graph_module._relation("myEC1",	["myVC1"],	["myVC2"]);

arangosh>	var	graph	=	graph_module._create("myGraph",	[ed1]);

arangosh>	graph._addVertexCollection("myVC3",	true);

arangosh>	graph._addVertexCollection("myVC4",	true);

arangosh>	graph._orphanCollections();

arangosh>	graph._removeVertexCollection("myVC3");

arangosh>	graph._orphanCollections();

show	execution	results

Maniuplating	Vertices

Save	a	vertex

Create	a	new	vertex	in	vertexCollectionName

	graph.vertexCollectionName.save(data)	

Parameters

data	(required)	JSON	data	of	vertex.

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.male.save({name:	"Floyd",	_key:	"floyd"});

show	execution	results

Replace	a	vertex

Replaces	the	data	of	a	vertex	in	collection	vertexCollectionName

	graph.vertexCollectionName.replace(vertexId,	data,	options)	

Parameters

vertexId	(required)	_id	attribute	of	the	vertex
data	(required)	JSON	data	of	vertex.

Graph	Management

132

options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.male.save({neym:	"Jon",	_key:	"john"});

arangosh>	graph.male.replace("male/john",	{name:	"John"});

show	execution	results

Update	a	vertex

Updates	the	data	of	a	vertex	in	collection	vertexCollectionName

	graph.vertexCollectionName.update(vertexId,	data,	options)	

Parameters

vertexId	(required)	_id	attribute	of	the	vertex
data	(required)	JSON	data	of	vertex.
options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.female.save({name:	"Lynda",	_key:	"linda"});

arangosh>	graph.female.update("female/linda",	{name:	"Linda",	_key:	"linda"});

show	execution	results

Remove	a	vertex

Removes	a	vertex	in	collection	vertexCollectionName

	graph.vertexCollectionName.remove(vertexId,	options)	

Additionally	removes	all	ingoing	and	outgoing	edges	of	the	vertex	recursively	(see	edge	remove).

Parameters

vertexId	(required)	_id	attribute	of	the	vertex
options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.male.save({name:	"Kermit",	_key:	"kermit"});

arangosh>	db._exists("male/kermit")

arangosh>	graph.male.remove("male/kermit")

arangosh>	db._exists("male/kermit")

show	execution	results

Manipulating	Edges

Save	a	new	edge

Graph	Management

133

Creates	an	edge	from	vertex	from	to	vertex	to	in	collection	edgeCollectionName

	graph.edgeCollectionName.save(from,	to,	data,	options)	

Parameters

from	(required)	_id	attribute	of	the	source	vertex
to	(required)	_id	attribute	of	the	target	vertex
data	(required)	JSON	data	of	the	edge
options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("male/bob",	"female/alice",	{type:	"married",	_key:	

"bobAndAlice"});

show	execution	results
If	the	collections	of	from	and	to	are	not	defined	in	an	edge	definition	of	the	graph,	the	edge	will	not	be	stored.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save(

........>		"relation/aliceAndBob",

........>			"female/alice",

........>	{type:	"married",	_key:	"bobAndAlice"});

[ArangoError	1906:	invalid	edge	between	relation/aliceAndBob	and	female/alice.	Doesn't	

conform	to	any	edge	definition]

Replace	an	edge

Replaces	the	data	of	an	edge	in	collection	edgeCollectionName.	Note	that		_from		and		_to		are	mandatory.

	graph.edgeCollectionName.replace(edgeId,	data,	options)	

Parameters

edgeId	(required)	_id	attribute	of	the	edge
data	(required)	JSON	data	of	the	edge
options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("female/alice",	"female/diana",	{typo:	"nose",	_key:	

"aliceAndDiana"});

arangosh>	graph.relation.replace("relation/aliceAndDiana",	{type:	"knows",	_from:	

"female/alice",	_to:	"female/diana"});

show	execution	results

Update	an	edge

Updates	the	data	of	an	edge	in	collection	edgeCollectionName

	graph.edgeCollectionName.update(edgeId,	data,	options)	

Parameters

Graph	Management

134

edgeId	(required)	_id	attribute	of	the	edge
data	(required)	JSON	data	of	the	edge
options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("female/alice",	"female/diana",	{type:	"knows",	_key:	

"aliceAndDiana"});

arangosh>	graph.relation.update("relation/aliceAndDiana",	{type:	"quarreled",	_key:	

"aliceAndDiana"});

show	execution	results

Remove	an	edge

Removes	an	edge	in	collection	edgeCollectionName

	graph.edgeCollectionName.remove(edgeId,	options)	

If	this	edge	is	used	as	a	vertex	by	another	edge,	the	other	edge	will	be	removed	(recursively).

Parameters

edgeId	(required)	_id	attribute	of	the	edge
options	(optional)	See	collection	documentation

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	graph.relation.save("female/alice",	"female/diana",	{_key:	"aliceAndDiana"});

arangosh>	db._exists("relation/aliceAndDiana")

arangosh>	graph.relation.remove("relation/aliceAndDiana")

arangosh>	db._exists("relation/aliceAndDiana")

show	execution	results

Connect	edges

Get	all	connecting	edges	between	2	groups	of	vertices	defined	by	the	examples

	graph._getConnectingEdges(vertexExample,	vertexExample2,	options)	

The	function	accepts	an	id,	an	example,	a	list	of	examples	or	even	an	empty	example	as	parameter	for	vertexExample.

Parameters

vertexExample1	(optional)	See	Definition	of	examples
vertexExample2	(optional)	See	Definition	of	examples
options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:

edgeExamples:	Filter	the	edges,	see	Definition	of	examples
edgeCollectionRestriction	:	One	or	a	list	of	edge-collection	names	that	should	be	considered	to	be	on	the	path.
vertex1CollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	on	the	intermediate	vertex
steps.
vertex2CollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	on	the	intermediate	vertex
steps.

Examples

A	route	planner	example,	all	connecting	edges	between	capitals.

Graph	Management

135

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._getConnectingEdges({isCapital	:	true},	{isCapital	:	true});

[]

Graph	Management

136

Graph	Functions
This	chapter	describes	various	functions	on	a	graph.	A	lot	of	these	accept	a	vertex	(or	edge)	example	as	parameter	as	defined	in	the	next
section.

Examples	will	explain	the	API	on	the	the	city	graph:

Definition	of	examples
For	many	of	the	following	functions	examples	can	be	passed	in	as	a	parameter.	Examples	are	used	to	filter	the	result	set	for	objects	that
match	the	conditions.	These	examples	can	have	the	following	values:

null,	there	is	no	matching	executed	all	found	results	are	valid.
A	string,	only	results	are	returned,	which	_id	equal	the	value	of	the	string
An	example	object,	defining	a	set	of	attributes.	Only	results	having	these	attributes	are	matched.
A	list	containing	example	objects	and/or	strings.	All	results	matching	at	least	one	of	the	elements	in	the	list	are	returned.

Get	vertices	from	edges.

Get	vertex	from	of	an	edge

Get	the	source	vertex	of	an	edge

	graph._fromVertex(edgeId)	

Returns	the	vertex	defined	with	the	attribute	_from	of	the	edge	with	edgeId	as	its	_id.

Parameters

edgeId	(required)	_id	attribute	of	the	edge

Examples

Graph	Functions

137

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	any	=	require("@arangodb").db.relation.any();

arangosh>	graph._fromVertex("relation/"	+	any._key);

show	execution	results

Get	vertex	to	of	an	edge

Get	the	target	vertex	of	an	edge

	graph._toVertex(edgeId)	

Returns	the	vertex	defined	with	the	attribute	_to	of	the	edge	with	edgeId	as	its	_id.

Parameters

edgeId	(required)	_id	attribute	of	the	edge

Examples

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("social");

arangosh>	var	any	=	require("@arangodb").db.relation.any();

arangosh>	graph._toVertex("relation/"	+	any._key);

show	execution	results

_neighbors

Get	all	neighbors	of	the	vertices	defined	by	the	example

	graph._neighbors(vertexExample,	options)	

The	function	accepts	an	id,	an	example,	a	list	of	examples	or	even	an	empty	example	as	parameter	for	vertexExample.	The	complexity	of
this	method	is	O(n*m^x)	with	n	being	the	vertices	defined	by	the	parameter	vertexExamplex,	m	the	average	amount	of	neighbors	and	x
the	maximal	depths.	Hence	the	default	call	would	have	a	complexity	of	O(n*m);

Parameters

vertexExample	(optional)	See	Definition	of	examples
options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:

direction:	The	direction	of	the	edges.	Possible	values	are	outbound,	inbound	and	any	(default).
edgeExamples:	Filter	the	edges,	see	Definition	of	examples
neighborExamples:	Filter	the	neighbor	vertices,	see	Definition	of	examples
edgeCollectionRestriction	:	One	or	a	list	of	edge-collection	names	that	should	be	considered	to	be	on	the	path.
vertexCollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	on	the	intermediate	vertex	steps.
minDepth:	Defines	the	minimal	number	of	intermediate	steps	to	neighbors	(default	is	1).
maxDepth:	Defines	the	maximal	number	of	intermediate	steps	to	neighbors	(default	is	1).

Examples

A	route	planner	example,	all	neighbors	of	capitals.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._neighbors({isCapital	:	true});

show	execution	results
A	route	planner	example,	all	outbound	neighbors	of	Hamburg.

Graph	Functions

138

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._neighbors('germanCity/Hamburg',	{direction	:	'outbound',	maxDepth	:	2});

show	execution	results

_commonNeighbors

Get	all	common	neighbors	of	the	vertices	defined	by	the	examples.

	graph._commonNeighbors(vertex1Example,	vertex2Examples,	optionsVertex1,	optionsVertex2)	

This	function	returns	the	intersection	of	graph_module._neighbors(vertex1Example,	optionsVertex1)	and
graph_module._neighbors(vertex2Example,	optionsVertex2).	For	parameter	documentation	see	_neighbors.

The	complexity	of	this	method	is	O(n*m^x)	with	n	being	the	maximal	amount	of	vertices	defined	by	the	parameters	vertexExamples,	m
the	average	amount	of	neighbors	and	x	the	maximal	depths.	Hence	the	default	call	would	have	a	complexity	of	O(n*m);

Examples

A	route	planner	example,	all	common	neighbors	of	capitals.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonNeighbors({isCapital	:	true},	{isCapital	:	true});

show	execution	results
A	route	planner	example,	all	common	outbound	neighbors	of	Hamburg	with	any	other	location	which	have	a	maximal	depth	of	2	:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonNeighbors(

........>			'germanCity/Hamburg',

........>			{},

........>			{direction	:	'outbound',	maxDepth	:	2},

........>	{direction	:	'outbound',	maxDepth	:	2});

show	execution	results

_countCommonNeighbors
Get	the	amount	of	common	neighbors	of	the	vertices	defined	by	the	examples.

	graph._countCommonNeighbors(vertex1Example,	vertex2Examples,	optionsVertex1,	optionsVertex2)	

Similar	to	_commonNeighbors	but	returns	count	instead	of	the	elements.

Examples

A	route	planner	example,	all	common	neighbors	of	capitals.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	var	example	=	{	isCapital:	true	};

arangosh>	var	options	=	{	includeData:	true	};

arangosh>	graph._countCommonNeighbors(example,	example,	options,	options);

show	execution	results

Graph	Functions

139

A	route	planner	example,	all	common	outbound	neighbors	of	Hamburg	with	any	other	location	which	have	a	maximal	depth	of	2	:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	var	options	=	{	direction:	'outbound',	maxDepth:	2,	includeData:	true	};

arangosh>	graph._countCommonNeighbors('germanCity/Hamburg',	{},	options,	options);

show	execution	results

_commonProperties
Get	the	vertices	of	the	graph	that	share	common	properties.

	graph._commonProperties(vertex1Example,	vertex2Examples,	options)	

The	function	accepts	an	id,	an	example,	a	list	of	examples	or	even	an	empty	example	as	parameter	for	vertex1Example	and
vertex2Example.

The	complexity	of	this	method	is	O(n)	with	n	being	the	maximal	amount	of	vertices	defined	by	the	parameters	vertexExamples.

Parameters

vertex1Examples	(optional)	Filter	the	set	of	source	vertices,	see	Definition	of	examples

vertex2Examples	(optional)	Filter	the	set	of	vertices	compared	to,	see	Definition	of	examples

options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:
vertex1CollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	searched	for	source	vertices.
vertex2CollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	searched	for	compare	vertices.
ignoreProperties	:	One	or	a	list	of	attribute	names	of	a	document	that	should	be	ignored.

Examples

A	route	planner	example,	all	locations	with	the	same	properties:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonProperties({},	{});

show	execution	results
A	route	planner	example,	all	cities	which	share	same	properties	except	for	population.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._commonProperties({},	{},	{ignoreProperties:	'population'});

show	execution	results

_countCommonProperties
Get	the	amount	of	vertices	of	the	graph	that	share	common	properties.

	graph._countCommonProperties(vertex1Example,	vertex2Examples,	options)	

Similar	to	_commonProperties	but	returns	count	instead	of	the	objects.

Examples

A	route	planner	example,	all	locations	with	the	same	properties:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

Graph	Functions

140

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._countCommonProperties({},	{});

show	execution	results
A	route	planner	example,	all	German	cities	which	share	same	properties	except	for	population.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._countCommonProperties({},	{},	{vertex1CollectionRestriction	:	

'germanCity',

........>	vertex2CollectionRestriction	:	'germanCity'	,ignoreProperties:	'population'});

show	execution	results

_paths

The	_paths	function	returns	all	paths	of	a	graph.

	graph._paths(options)	

This	function	determines	all	available	paths	in	a	graph.

The	complexity	of	this	method	is	O(n*n*m)	with	n	being	the	amount	of	vertices	in	the	graph	and	m	the	average	amount	of	connected
edges;

Parameters

options	(optional)	An	object	containing	options,	see	below:
direction:	The	direction	of	the	edges.	Possible	values	are	any,	inbound	and	outbound	(default).
followCycles	(optional):	If	set	to	true	the	query	follows	cycles	in	the	graph,	default	is	false.
minLength	(optional):	Defines	the	minimal	length	a	path	must	have	to	be	returned	(default	is	0).
maxLength	(optional):	Defines	the	maximal	length	a	path	must	have	to	be	returned	(default	is	10).

Examples

Return	all	paths	of	the	graph	"social":

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("social");

arangosh>	g._paths();

show	execution	results
Return	all	inbound	paths	of	the	graph	"social"	with	a	maximal	length	of	1	and	a	minimal	length	of	2:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("social");

arangosh>	g._paths({direction	:	'inbound',	minLength	:	1,	maxLength	:		2});

show	execution	results

_shortestPath

The	_shortestPath	function	returns	all	shortest	paths	of	a	graph.

	graph._shortestPath(startVertexExample,	endVertexExample,	options)	

Graph	Functions

141

This	function	determines	all	shortest	paths	in	a	graph.	The	function	accepts	an	id,	an	example,	a	list	of	examples	or	even	an	empty
example	as	parameter	for	start	and	end	vertex.	The	length	of	a	path	is	by	default	the	amount	of	edges	from	one	start	vertex	to	an	end
vertex.	The	option	weight	allows	the	user	to	define	an	edge	attribute	representing	the	length.

Parameters

startVertexExample	(optional)	An	example	for	the	desired	start	Vertices	(see	Definition	of	examples).
endVertexExample	(optional)	An	example	for	the	desired	end	Vertices	(see	Definition	of	examples).
options	(optional)	An	object	containing	options,	see	below:

direction:	The	direction	of	the	edges	as	a	string.	Possible	values	are	outbound,	inbound	and	any	(default).
edgeCollectionRestriction:	One	or	multiple	edge	collection	names.	Only	edges	from	these	collections	will	be	considered	for	the
path.
startVertexCollectionRestriction:	One	or	multiple	vertex	collection	names.	Only	vertices	from	these	collections	will	be
considered	as	start	vertex	of	a	path.
endVertexCollectionRestriction:	One	or	multiple	vertex	collection	names.	Only	vertices	from	these	collections	will	be	considered
as	end	vertex	of	a	path.
weight:	The	name	of	the	attribute	of	the	edges	containing	the	length	as	a	string.
defaultWeight:	Only	used	with	the	option	weight.	If	an	edge	does	not	have	the	attribute	named	as	defined	in	option	weight	this
default	is	used	as	length.	If	no	default	is	supplied	the	default	would	be	positive	Infinity	so	the	path	could	not	be	calculated.

Examples

A	route	planner	example,	shortest	path	from	all	german	to	all	french	cities:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._shortestPath({},	{},	{weight	:	'distance',	endVertexCollectionRestriction	:	

'frenchCity',

........>	startVertexCollectionRestriction	:	'germanCity'});

show	execution	results
A	route	planner	example,	shortest	path	from	Hamburg	and	Cologne	to	Lyon:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._shortestPath([{_id:	'germanCity/Cologne'},{_id:	'germanCity/Munich'}],	

'frenchCity/Lyon',

........>	{weight	:	'distance'});

show	execution	results

_distanceTo

The	_distanceTo	function	returns	all	paths	and	there	distance	within	a	graph.

	graph._distanceTo(startVertexExample,	endVertexExample,	options)	

This	function	is	a	wrapper	of	graph._shortestPath.	It	does	not	return	the	actual	path	but	only	the	distance	between	two	vertices.

Examples

A	route	planner	example,	shortest	distance	from	all	german	to	all	french	cities:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._distanceTo({},	{},	{weight	:	'distance',	endVertexCollectionRestriction	:	

'frenchCity',

........>	startVertexCollectionRestriction	:	'germanCity'});

Graph	Functions

142

show	execution	results
A	route	planner	example,	shortest	distance	from	Hamburg	and	Cologne	to	Lyon:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	g._distanceTo([{_id:	'germanCity/Cologne'},{_id:	'germanCity/Munich'}],	

'frenchCity/Lyon',

........>	{weight	:	'distance'});

show	execution	results

_absoluteEccentricity
Get	the	eccentricity	of	the	vertices	defined	by	the	examples.

	graph._absoluteEccentricity(vertexExample,	options)	

The	function	accepts	an	id,	an	example,	a	list	of	examples	or	even	an	empty	example	as	parameter	for	vertexExample.

Parameters

vertexExample	(optional)	Filter	the	vertices,	see	Definition	of	examples
options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:

direction:	The	direction	of	the	edges.	Possible	values	are	outbound,	inbound	and	any	(default).
edgeCollectionRestriction	:	One	or	a	list	of	edge-collection	names	that	should	be	considered	to	be	on	the	path.
startVertexCollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	for	source	vertices.
endVertexCollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	for	target	vertices.
weight:	The	name	of	the	attribute	of	the	edges	containing	the	weight.
defaultWeight:	Only	used	with	the	option	weight.	If	an	edge	does	not	have	the	attribute	named	as	defined	in	option	weight	this
default	is	used	as	weight.	If	no	default	is	supplied	the	default	would	be	positive	infinity	so	the	path	and	hence	the	eccentricity
can	not	be	calculated.

Examples

A	route	planner	example,	the	absolute	eccentricity	of	all	locations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteEccentricity({});

show	execution	results
A	route	planner	example,	the	absolute	eccentricity	of	all	locations.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteEccentricity({},	{weight	:	'distance'});

show	execution	results
A	route	planner	example,	the	absolute	eccentricity	of	all	cities	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteEccentricity({},	{startVertexCollectionRestriction	:	

'germanCity',

........>	direction	:	'outbound',	weight	:	'distance'});

show	execution	results

Graph	Functions

143

http://en.wikipedia.org/wiki/Distance_%28graph_theory%29

_eccentricity

Get	the	normalized	eccentricity	of	the	vertices	defined	by	the	examples.

	graph._eccentricity(vertexExample,	options)	

Similar	to	_absoluteEccentricity	but	returns	a	normalized	result.

Examples

A	route	planner	example,	the	eccentricity	of	all	locations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._eccentricity();

show	execution	results
A	route	planner	example,	the	weighted	eccentricity.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._eccentricity({weight	:	'distance'});

show	execution	results

_absoluteCloseness

Get	the	closeness	of	the	vertices	defined	by	the	examples.

	graph._absoluteCloseness(vertexExample,	options)	

The	function	accepts	an	id,	an	example,	a	list	of	examples	or	even	an	empty	example	as	parameter	for	vertexExample.

Parameters

vertexExample	(optional)	Filter	the	vertices,	see	Definition	of	examples
options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:

direction:	The	direction	of	the	edges.	Possible	values	are	outbound,	inbound	and	any	(default).
edgeCollectionRestriction	:	One	or	a	list	of	edge-collection	names	that	should	be	considered	to	be	on	the	path.
startVertexCollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	for	source	vertices.
endVertexCollectionRestriction	:	One	or	a	list	of	vertex-collection	names	that	should	be	considered	for	target	vertices.
weight:	The	name	of	the	attribute	of	the	edges	containing	the	weight.
defaultWeight:	Only	used	with	the	option	weight.	If	an	edge	does	not	have	the	attribute	named	as	defined	in	option	weight	this
default	is	used	as	weight.	If	no	default	is	supplied	the	default	would	be	positive	infinity	so	the	path	and	hence	the	closeness	can
not	be	calculated.

Examples

A	route	planner	example,	the	absolute	closeness	of	all	locations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteCloseness({});

show	execution	results
A	route	planner	example,	the	absolute	closeness	of	all	locations.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

Graph	Functions

144

http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
http://en.wikipedia.org/wiki/Centrality#Closeness_centrality

arangosh>	graph._absoluteCloseness({},	{weight	:	'distance'});

show	execution	results
A	route	planner	example,	the	absolute	closeness	of	all	German	Cities	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteCloseness({},	{startVertexCollectionRestriction	:	'germanCity',

........>	direction	:	'outbound',	weight	:	'distance'});

show	execution	results

_closeness

Get	the	normalized	closeness	of	graphs	vertices.

	graph._closeness(options)	

Similar	to	_absoluteCloseness	but	returns	a	normalized	value.

Examples

A	route	planner	example,	the	normalized	closeness	of	all	locations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._closeness();

show	execution	results
A	route	planner	example,	the	closeness	of	all	locations.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._closeness({weight	:	'distance'});

show	execution	results
A	route	planner	example,	the	closeness	of	all	cities	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._closeness({direction	:	'outbound',	weight	:	'distance'});

show	execution	results

_absoluteBetweenness
Get	the	betweenness	of	all	vertices	in	the	graph.

	graph._absoluteBetweenness(vertexExample,	options)	

Parameters

vertexExample	(optional)	Filter	the	vertices,	see	Definition	of	examples
options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:

direction:	The	direction	of	the	edges.	Possible	values	are	outbound,	inbound	and	any	(default).
weight:	The	name	of	the	attribute	of	the	edges	containing	the	weight.
defaultWeight:	Only	used	with	the	option	weight.	If	an	edge	does	not	have	the	attribute	named	as	defined	in	option	weight	this

Graph	Functions

145

http://en.wikipedia.org/wiki/Centrality#Closeness_centrality
http://en.wikipedia.org/wiki/Betweenness_centrality

default	is	used	as	weight.	If	no	default	is	supplied	the	default	would	be	positive	infinity	so	the	path	and	hence	the	betweeness
can	not	be	calculated.

Examples

A	route	planner	example,	the	absolute	betweenness	of	all	locations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteBetweenness({});

show	execution	results
A	route	planner	example,	the	absolute	betweenness	of	all	locations.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteBetweenness({weight	:	'distance'});

{	

}

A	route	planner	example,	the	absolute	betweenness	of	all	cities	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._absoluteBetweenness({direction	:	'outbound',	weight	:	'distance'});

{	

}

_betweenness

Get	the	normalized	betweenness	of	graphs	vertices.

	graph_module._betweenness(options)	

Similar	to	_absoluteBetweeness	but	returns	normalized	values.

Examples

A	route	planner	example,	the	betweenness	of	all	locations.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._betweenness();

show	execution	results
A	route	planner	example,	the	betweenness	of	all	locations.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._betweenness({weight	:	'distance'});

show	execution	results
A	route	planner	example,	the	betweenness	of	all	cities	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._betweenness({direction	:	'outbound',	weight	:	'distance'});

Graph	Functions

146

http://en.wikipedia.org/wiki/Betweenness_centrality

show	execution	results

_radius
Get	the	radius	of	a	graph.

`

Parameters

options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:
direction:	The	direction	of	the	edges.	Possible	values	are	outbound,	inbound	and	any	(default).
weight:	The	name	of	the	attribute	of	the	edges	containing	the	weight.
defaultWeight:	Only	used	with	the	option	weight.	If	an	edge	does	not	have	the	attribute	named	as	defined	in	option	weight	this
default	is	used	as	weight.	If	no	default	is	supplied	the	default	would	be	positive	infinity	so	the	path	and	hence	the	radius	can
not	be	calculated.

Examples

A	route	planner	example,	the	radius	of	the	graph.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._radius();

1

A	route	planner	example,	the	radius	of	the	graph.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._radius({weight	:	'distance'});

1

A	route	planner	example,	the	radius	of	the	graph	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._radius({direction	:	'outbound',	weight	:	'distance'});

1

_diameter

Get	the	diameter	of	a	graph.

	graph._diameter(graphName,	options)	

Parameters

options	(optional)	An	object	defining	further	options.	Can	have	the	following	values:
direction:	The	direction	of	the	edges.	Possible	values	are	outbound,	inbound	and	any	(default).
weight:	The	name	of	the	attribute	of	the	edges	containing	the	weight.
defaultWeight:	Only	used	with	the	option	weight.	If	an	edge	does	not	have	the	attribute	named	as	defined	in	option	weight	this
default	is	used	as	weight.	If	no	default	is	supplied	the	default	would	be	positive	infinity	so	the	path	and	hence	the	radius	can
not	be	calculated.

Examples

Graph	Functions

147

http://en.wikipedia.org/wiki/Eccentricity_%28graph_theory%29
http://en.wikipedia.org/wiki/Eccentricity_%28graph_theory%29

A	route	planner	example,	the	diameter	of	the	graph.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._diameter();

1

A	route	planner	example,	the	diameter	of	the	graph.	This	considers	the	actual	distances.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._diameter({weight	:	'distance'});

1

A	route	planner	example,	the	diameter	of	the	graph	regarding	only	outbound	paths.

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("routeplanner");

arangosh>	graph._diameter({direction	:	'outbound',	weight	:	'distance'});

1

Graph	Functions

148

SmartGraphs
This	feature	is	only	available	in	the	Enterprise	Edition.

This	chapter	describes	the	smart-graph	module.	It	enables	you	to	manage	graphs	at	scale,	it	will	give	a	vast	performance	benefit	for	all
graphs	sharded	in	an	ArangoDB	Cluster.	On	a	single	server	this	feature	is	pointless,	hence	it	is	only	available	in	a	cluster	mode.	In	terms
of	querying	there	is	no	difference	between	smart	and	General	Graphs.	The	former	are	a	transparent	replacement	for	the	latter.	So	for
querying	the	graph	please	refer	to	AQL	Graph	Operations	and	Graph	Functions	sections.	The	optimizer	is	clever	enough	to	identify	if
we	are	on	a	SmartGraph	or	not.

The	difference	is	only	in	the	management	section:	creating	and	modifying	the	underlying	collections	of	the	graph.	For	a	detailed	API
reference	please	refer	to	SmartGraph	Management.

What	makes	a	graph	smart?

Most	graphs	have	one	feature	that	divides	the	entire	graph	into	several	smaller	subgraphs.	These	subgraphs	have	a	large	amount	of	edges
that	only	connect	vertices	in	the	same	subgraph	and	only	have	few	edges	connecting	vertices	from	other	subgraphs.	Examples	for	these
graphs	are:

Social	Networks

Typically	the	feature	here	is	the	region/country	users	live	in.	Every	user	typicalliy	has	more	contacts	in	the	same	region/country
then	she	has	in	other	regions/countries

Transport	Systems

For	those	also	the	feature	is	the	region/country.	You	have	many	local	transportion	but	only	few	accross	countries.

E-Commerce

In	this	case	probably	the	category	of	products	is	a	good	feature.	Often	products	of	the	same	category	are	bought	together.

If	this	feature	is	known,	SmartGraphs	can	make	use	if	it.	When	creating	a	SmartGraph	you	have	to	define	a	smartAttribute,	which	is	the
name	of	an	attribute	stored	in	every	vertex.	The	graph	will	than	be	automatically	sharded	in	such	a	way	that	all	vertices	with	the	same
value	are	stored	on	the	same	physical	machine,	all	edges	connecting	vertices	with	identical	smartAttribute	values	are	stored	on	this
machine	as	well.	During	query	time	the	query	optimizer	and	the	query	executor	both	know	for	every	document	exactly	where	it	is	stored
and	can	thereby	minimize	network	overhead.	Everything	that	can	be	computed	locally	will	be	computed	locally.

Benefits	of	SmartGraphs

Because	of	the	above	described	guaranteed	sharding,	the	performance	of	queries	that	only	cover	one	subgraph	have	a	performance	almost
equal	to	an	only	local	computation.	Queries	that	cover	more	than	one	subgraph	require	some	network	overhead.	The	more	subgraphs	are
touched	the	more	network	cost	will	apply.	However	the	overall	performance	is	never	worse	than	the	same	query	on	a	General	Graph.

Getting	started

First	of	all	SmartGraphs	cannot	use	existing	collections,	when	switching	to	SmartGraph	from	an	existing	data	set	you	have	to	import	the
data	into	a	fresh	SmartGraph.	This	switch	can	be	easily	achieved	with	arangodump	and	arangorestore.	The	only	thing	you	have	to	change
in	this	pipeline	is	that	you	create	the	new	collections	with	the	SmartGraph	before	starting		arangorestore	.

Create	a	graph

In	comparison	to	General	Graph	we	have	to	add	more	options	when	creating	the	graph.	The	two	options		smartGraphAttribute		and
	numberOfShards		are	required	and	cannot	be	modifed	later.

arangosh>	var	graph_module	=	require("@arangodb/smart-graph");

arangosh>	var	graph	=	graph_module._create("myGraph",	[],	[],	{smartGraphAttribute:	"region",	numberOfShards:	9});

arangosh>	graph;

[SmartGraph	myGraph	EdgeDefinitions:	[]	VertexCollections:	[]]

Add	some	vertex	collections

SmartGraphs

149

This	is	again	identical	to	General	Graph.	The	module	will	setup	correct	sharding	for	all	these	collections.	Note:	The	collections	have
to	be	new.

arangosh>	graph._addVertexCollection("shop");

arangosh>	graph._addVertexCollection("customer");

arangosh>	graph._addVertexCollection("pet");

arangosh>	graph;

[SmartGraph	myGraph	EdgeDefinitions:	[]	VertexCollections:	["shop",	"customer",	"pet"]]

Define	relations	on	the	Graph

arangosh>	var	rel	=	graph_module._relation("isCustomer",	["shop"],	["customer"]);

arangosh>	graph._extendEdgeDefinitions(rel);

arangosh>	graph;

[SmartGraph	myGraph	EdgeDefinitions:	["isCustomer:	[shop]	->	[customer]"]	VertexCollections:	["pet"]]

SmartGraphs

150

Smart	Graph	Management
This	chapter	describes	the	JavaScript	interface	for	creating	and	modifying	SmartGraphs.	At	first	you	have	to	note	that	every	SmartGraph
is	a	specialized	version	of	a	General	Graph,	which	means	all	of	the	General	Graph	functionality	is	available	on	a	SmartGraph	as	well.	The
major	difference	of	both	modules	is	handling	of	the	underlying	collections,	the	General	Graph	does	not	enforce	or	maintain	any	sharding
of	the	collections	and	can	therefor	combine	arbitrary	sets	of	existing	collections.	SmartGraphs	enforce	and	rely	on	a	special	sharding	of
the	underlying	collections	and	hence	can	only	work	with	collections	that	are	created	through	the	SmartGraph	itself.	This	also	means	that
SmartGraphs	cannot	be	overlapping,	a	collection	can	either	be	sharded	for	one	SmartGraph	or	for	the	other.	If	you	need	to	make	sure	that
all	queries	can	be	executed	with	SmartGraph	performance,	just	create	one	large	SmartGraph	covering	everything	and	query	it	stating	the
subset	of	edge	collections	explicitly.	To	generally	understand	the	concept	of	this	module	please	read	the	chapter	about	General	Graph
Management	first.	In	the	following	we	will	only	describe	the	overloaded	functionality.	Everything	else	works	identical	in	both	modules.

Create	a	graph

Also	SmartGraphs	require	edge	relations	to	be	created,	the	format	of	the	relations	is	identical.	The	only	difference	is	that	all	collections
used	within	the	relations	to	create	a	new	SmartGraph	cannot	exist	yet.	They	have	to	be	created	by	the	Graph	in	order	to	enforce	the
correct	sharding.

Create	a	graph

	graph_module._create(graphName,	edgeDefinitions,	orphanCollections,	smartOptions)	

The	creation	of	a	graph	requires	the	name	and	some	SmartGraph	options.	Due	to	the	API		edgeDefinitions		and		orphanCollections	
have	to	be	given,	but	both	can	be	empty	arrays	and	can	be	created	later.	The		edgeDefinitions		can	be	created	using	the	convenience
method		_relation		known	from	the		general-graph		module,	which	is	also	available	here.		orphanCollections		again	is	just	a	list	of
additional	vertex	collections	which	are	not	yet	connected	via	edges	but	should	follow	the	same	sharding	to	be	connected	later	on.	All
collections	used	within	the	creation	process	are	newly	created.	The	process	will	fail	if	one	of	them	already	exists.	All	newly	created
collections	will	immediately	be	dropped	again	in	the	failed	case.

Parameters

graphName	(required)	Unique	identifier	of	the	graph
edgeDefinitions	(required)	List	of	relation	definition	objects,	may	be	empty
orphanCollections	(required)	List	of	additional	vertex	collection	names,	may	be	empty
smartOptions	(required)	A	JSON	object	having	the	following	keys:

numberOfShards	(required)	The	number	of	shards	that	will	be	created	for	each	collection.	To	maintain	the	correct	sharding	all
collections	need	an	identical	number	of	shards.	This	cannot	be	modified	after	creation	of	the	graph.
smartGraphAttribute	(required)	The	attribute	that	will	be	used	for	sharding.	All	vertices	are	required	to	have	this	attribute	set
and	it	has	to	be	a	string.	Edges	derive	the	attribute	from	their	connected	vertices.

Examples

Create	an	empty	graph,	edge	definitions	can	be	added	at	runtime:

arangosh>	var	graph_module	=	require("@arangodb/smart-graph");

arangosh>	var	graph	=	graph_module._create("myGraph",	[],	[],	{smartGraphAttribute:	"region",	numberOfShards:	9});

[SmartGraph	myGraph	EdgeDefinitions:	[]	VertexCollections:	[]]

Create	a	graph	using	an	edge	collection		edges		and	a	single	vertex	collection		vertices	

arangosh>	var	graph_module	=	require("@arangodb/smart-graph");

arangosh>	var	edgeDefinitions	=	[graph_module._relation("edges",	"vertices",	"vertices")];

arangosh>	var	graph	=	graph_module._create("myGraph",	edgeDefinitions,	[],	{smartGraphAttribute:	"region",	numberOfShards:	9});

[SmartGraph	myGraph	EdgeDefinitions:	["edges:	[vertices]	->	[vertices]"]	VertexCollections:	[]]

Create	a	graph	with	edge	definitions	and	orphan	collections:

arangosh>	var	graph_module	=	require("@arangodb/smart-graph");

arangosh>	var	edgeDefinitions	=	[graph_module._relation("myRelation",	["male",	"female"],	["male",	"female"])];

SmartGraph	Management

151

arangosh>	var	graph	=	graph_module._create("myGraph",	edgeDefinitions,	["sessions"],	{smartGraphAttribute:	"region",	numberOfSh

ards:	9});

[Graph	myGraph	EdgeDefinitions:	[

		"myRelation:	[female,	male]	->	[female,	male]"	

]	VertexCollections:	[

		"sessions"	

]]

Modify	a	graph	definition	during	runtime
After	you	have	created	a	SmartGraph	its	definition	is	also	not	immutable.	You	can	still	add	or	remove	relations.	This	is	again	identical	to
General	Graphs.	However	there	is	one	important	difference:	You	can	only	add	collections	that	either	do	not	exist,	or	that	have	been
created	by	this	graph	earlier.	The	later	can	be	achieved	if	you	for	example	remove	an	orphan	collection	from	this	graph,	without	dropping
the	collection	itself.	Than	after	some	time	you	decide	to	add	it	again,	it	can	be	used.	This	is	because	the	enforced	sharding	is	still	applied
to	this	vertex	collection,	hence	it	is	suitable	to	be	added	again.

Remove	a	vertex	collection

Remove	a	vertex	collection	from	the	graph

	graph._removeVertexCollection(vertexCollectionName,	dropCollection)	

In	most	cases	this	function	works	identically	to	the	General	Graph	one.	But	there	is	one	special	case:	The	first	vertex	collection	added	to
the	graph	(either	orphan	or	within	a	relation)	defines	the	sharding	for	all	collections	within	the	graph.	This	collection	can	never	be
removed	from	the	graph.

Parameters

vertexCollectionName	(required)	Name	of	vertex	collection.
dropCollection	(optional)	If	true	the	collection	will	be	dropped	if	it	is	not	used	in	any	other	graph.	Default:	false.

Examples

The	following	example	shows	that	you	cannot	drop	the	initial	collection.	You	have	to	drop	the	complete	graph.	If	you	just	want	to	get	rid
of	the	data		truncate		it.

		arangosh>	var	graph_module	=	require("@arangodb/smart-graph")

		arangosh>	var	relation	=	graph_module._relation("edges",	"vertices",	"vertices");

		arangosh>	var	graph	=	graph_module._create("myGraph",	[relation],	["other"],	{smartGraphAttribute:	"region",	numberOfShards:	

9});

		arangosh>	graph._orphanCollections();

		[

				"other"

]

		arangosh>	graph._deleteEdgeDefinition("edges");

		arangosh>	graph._orphanCollections();

		[

				"vertices",

				"other"

]

		arangosh>	graph._removeVertexCollection("other");

		arangosh>	graph._orphanCollections();

		[

				"vertices"

]

		arangosh>	graph._removeVertexCollection("vertices");

		ArangoError	4002:	cannot	drop	this	smart	collection

SmartGraph	Management

152

Traversals
ArangoDB	provides	several	ways	to	query	graph	data.	Very	simple	operations	can	be	composed	with	the	low-level	edge	methods	edges,
inEdges,	and	outEdges	for	edge	collections.	These	work	on	named	and	anonymous	graphs.	For	more	complex	operations,	ArangoDB
provides	predefined	traversal	objects.

Also	Traversals	have	been	added	to	AQL.	Please	read	the	chapter	about	AQL	traversersals	before	you	continue	reading	here.	Most	of	the
traversal	cases	are	covered	by	AQL	and	will	be	executed	in	an	optimized	way.	Only	if	the	logic	for	your	is	too	complex	to	be	defined
using	AQL	filters	you	can	use	the	traversal	object	defined	here	which	gives	you	complete	programmatic	access	to	the	data.

For	any	of	the	following	examples,	we'll	be	using	the	example	collections	v	and	e,	populated	with	continents,	countries	and	capitals	data
listed	below	(see	Example	Data).

Starting	from	Scratch
ArangoDB	provides	the	edges,	inEdges,	and	outEdges	methods	for	edge	collections.	These	methods	can	be	used	to	quickly	determine	if	a
vertex	is	connected	to	other	vertices,	and	which.	This	functionality	can	be	exploited	to	write	very	simple	graph	queries	in	JavaScript.

For	example,	to	determine	which	edges	are	linked	to	the	world	vertex,	we	can	use	inEdges:

db.e.inEdges('v/world').forEach(function(edge)	{	

		require("@arangodb").print(edge._from,	"->",	edge.type,	"->",	edge._to);	

});

inEdges	will	give	us	all	ingoing	edges	for	the	specified	vertex	v/world.	The	result	is	a	JavaScript	array	that	we	can	iterate	over	and	print
the	results:

v/continent-africa	->	is-in	->	v/world

v/continent-south-america	->	is-in	->	v/world

v/continent-asia	->	is-in	->	v/world

v/continent-australia	->	is-in	->	v/world

v/continent-europe	->	is-in	->	v/world

v/continent-north-america	->	is-in	->	v/world

Note:	edges,	inEdges,	and	outEdges	return	an	array	of	edges.	If	we	want	to	retrieve	the	linked	vertices,	we	can	use	each	edges'	_from	and
_to	attributes	as	follows:

db.e.inEdges('v/world').forEach(function(edge)	{	

		require("@arangodb").print(db._document(edge._from).name,	"->",	edge.type,	"->",	db._document(edge._to).name);	

});

We	are	using	the	document	method	from	the	db	object	to	retrieve	the	connected	vertices	now.

While	this	may	be	sufficient	for	one-level	graph	operations,	writing	a	traversal	by	hand	may	become	too	complex	for	multi-level
traversals.

Traversals

153

Getting	started
To	use	a	traversal	object,	we	first	need	to	require	the	traversal	module:

var	traversal	=	require("@arangodb/graph/traversal");

var	examples	=	require("@arangodb/graph-examples/example-graph.js");

examples.loadGraph("worldCountry");

We	then	need	to	setup	a	configuration	for	the	traversal	and	determine	at	which	vertex	to	start	the	traversal:

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("worldCountry"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander,

		maxDepth:	1

};

var	startVertex	=	db._document("v/world");

Note:	The	startVertex	needs	to	be	a	document,	not	only	a	document	id.

We	can	then	create	a	traverser	and	start	the	traversal	by	calling	its	traverse	method.	Note	that	traverse	needs	a	result	object,	which	it	can
modify	in	place:

var	result	=	{

		visited:	{

				vertices:	[],

				paths:	[]

		}

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

Finally,	we	can	print	the	contents	of	the	results	object,	limited	to	the	visited	vertices.	We	will	only	print	the	name	and	type	of	each
visited	vertex	for	brevity:

require("@arangodb").print(result.visited.vertices.map(function(vertex)	{

		return	vertex.name	+	"	("	+	vertex.type	+	")";

}));

The	full	script,	which	includes	all	steps	carried	out	so	far	is	thus:

var	traversal	=	require("@arangodb/graph/traversal");

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("worldCountry"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander,

		maxDepth:	1

};

var	startVertex	=	db._document("v/world");

var	result	=	{

		visited:	{

				vertices:	[],

				paths:	[]

		}

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

Using	Traversal	Objects

154

require("@arangodb").print(result.visited.vertices.map(function(vertex)	{

		return	vertex.name	+	"	("	+	vertex.type	+	")";

}));

The	result	is	an	array	of	vertices	that	were	visited	during	the	traversal,	starting	at	the	start	vertex	(i.e.	v/world	in	our	example):

[

		"World	(root)",

		"Africa	(continent)",

		"Asia	(continent)",

		"Australia	(continent)",

		"Europe	(continent)",

		"North	America	(continent)",

		"South	America	(continent)"

]

Note:	The	result	is	limited	to	vertices	directly	connected	to	the	start	vertex.	We	achieved	this	by	setting	the	maxDepth	attribute	to	1.	Not
setting	it	would	return	the	full	array	of	vertices.

Traversal	Direction

For	the	examples	contained	in	this	manual,	we'll	be	starting	the	traversals	at	vertex	v/world.	Vertices	in	our	graph	are	connected	like	this:

v/world	<-	is-in	<-	continent	(Africa)	<-	is-in	<-	country	(Algeria)	<-	is-in	<-	capital	(Algiers)

To	get	any	meaningful	results,	we	must	traverse	the	graph	in	inbound	order.	This	means,	we'll	be	following	all	incoming	edges	of	to	a
vertex.	In	the	traversal	configuration,	we	have	specified	this	via	the	expander	attribute:

var	config	=	{

		...

		expander:	traversal.inboundExpander

};

For	other	graphs,	we	might	want	to	traverse	via	the	outgoing	edges.	For	this,	we	can	use	the	outboundExpander.	There	is	also	an
anyExpander,	which	will	follow	both	outgoing	and	incoming	edges.	This	should	be	used	with	care	and	the	traversal	should	always	be
limited	to	a	maximum	number	of	iterations	(e.g.	using	the	maxIterations	attribute)	in	order	to	terminate	at	some	point.

To	invoke	the	default	outbound	expander	for	a	graph,	simply	use	the	predefined	function:

var	config	=	{

		...

		expander:	traversal.outboundExpander

};

Please	note	the	outbound	expander	will	not	produce	any	output	for	the	examples	if	we	still	start	the	traversal	at	the	v/world	vertex.

Still,	we	can	use	the	outbound	expander	if	we	start	somewhere	else	in	the	graph,	e.g.

var	traversal	=	require("@arangodb/graph/traversal");

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.outboundExpander

};

var	startVertex	=	db._document("v/capital-algiers");

var	result	=	{

		visited:	{

				vertices:	[],

				paths:	[]

		}

};

Using	Traversal	Objects

155

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

require("@arangodb").print(result.visited.vertices.map(function(vertex)	{

		return	vertex.name	+	"	("	+	vertex.type	+	")";

}));

The	result	is:

[

		"Algiers	(capital)",

		"Algeria	(country)",

		"Africa	(continent)",

		"World	(root)"

]

which	confirms	that	now	we're	going	outbound.

Traversal	Strategy

Depth-first	traversals

The	visitation	order	of	vertices	is	determined	by	the	strategy	and	order	attributes	set	in	the	configuration.	We	chose	depthfirst	and
preorder,	meaning	the	traverser	will	visit	each	vertex	before	handling	connected	edges	(pre-order),	and	descend	into	any	connected	edges
before	processing	other	vertices	on	the	same	level	(depth-first).

Let's	remove	the	maxDepth	attribute	now.	We'll	now	be	getting	all	vertices	(directly	and	indirectly	connected	to	the	start	vertex):

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander

};

var	result	=	{

		visited:	{

				vertices:	[],

				paths:	[]

		}

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(result,	startVertex);

require("@arangodb").print(result.visited.vertices.map(function(vertex)	{

		return	vertex.name	+	"	("	+	vertex.type	+	")";

}));

The	result	will	be	a	longer	array,	assembled	in	depth-first,	pre-order	order.	For	each	continent	found,	the	traverser	will	descend	into	linked
countries,	and	then	into	the	linked	capital:

[

		"World	(root)",

		"Africa	(continent)",

		"Algeria	(country)",

		"Algiers	(capital)",

		"Angola	(country)",

		"Luanda	(capital)",

		"Botswana	(country)",

		"Gaborone	(capital)",

		"Burkina	Faso	(country)",

		"Ouagadougou	(capital)",

		...

]

Using	Traversal	Objects

156

Let's	switch	the	order	attribute	from	preorder	to	postorder.	This	will	make	the	traverser	visit	vertices	after	all	connected	vertices	were
visited	(i.e.	most	distant	vertices	will	be	emitted	first):

[

		"Algiers	(capital)",

		"Algeria	(country)",

		"Luanda	(capital)",

		"Angola	(country)",

		"Gaborone	(capital)",

		"Botswana	(country)",

		"Ouagadougou	(capital)",

		"Burkina	Faso	(country)",

		"Bujumbura	(capital)",

		"Burundi	(country)",

		"Yaounde	(capital)",

		"Cameroon	(country)",

		"N'Djamena	(capital)",

		"Chad	(country)",

		"Yamoussoukro	(capital)",

		"Cote	d'Ivoire	(country)",

		"Cairo	(capital)",

		"Egypt	(country)",

		"Asmara	(capital)",

		"Eritrea	(country)",

		"Africa	(continent)",

		...

]

Breadth-first	traversals

If	we	go	back	to	preorder,	but	change	the	strategy	to	breadth-first	and	re-run	the	traversal,	we'll	see	that	the	return	order	changes,	and
items	on	the	same	level	will	be	returned	adjacently:

[

		"World	(root)",

		"Africa	(continent)",

		"Asia	(continent)",

		"Australia	(continent)",

		"Europe	(continent)",

		"North	America	(continent)",

		"South	America	(continent)",

		"Burkina	Faso	(country)",

		"Burundi	(country)",

		"Cameroon	(country)",

		"Chad	(country)",

		"Algeria	(country)",

		"Angola	(country)",

		...

]

Note:	The	order	of	items	returned	for	the	same	level	is	undefined.	This	is	because	there	is	no	natural	order	of	edges	for	a	vertex	with
multiple	connected	edges.	To	explicitly	set	the	order	for	edges	on	the	same	level,	you	can	specify	an	edge	comparator	function	with	the
sort	attribute:

var	config	=	{

		...

		sort:	function	(l,	r)	{	return	l._key	<	r._key	?	1	:	-1;	}

		...

};

The	arguments	l	and	r	are	edge	documents.	This	will	traverse	edges	of	the	same	vertex	in	backward	_key	order:

[

		"World	(root)",

		"South	America	(continent)",

		"North	America	(continent)",

		"Europe	(continent)",

		"Australia	(continent)",

		"Asia	(continent)",

Using	Traversal	Objects

157

		"Africa	(continent)",

		"Ecuador	(country)",

		"Colombia	(country)",

		"Chile	(country)",

		"Brazil	(country)",

		"Bolivia	(country)",

		"Argentina	(country)",

		...

]

Note:	This	attribute	only	works	for	the	usual	expanders	traversal.inboundExpander,	traversal.outboundExpander,
traversal.anyExpander	and	their	corresponding	"WithLabels"	variants.	If	you	are	using	custom	expanders	you	have	to	organize	the
sorting	within	the	specified	expander.

Writing	Custom	Visitors

So	far	we	have	used	much	of	the	traverser's	default	functions.	The	traverser	is	very	configurable	and	many	of	the	default	functions	can	be
overridden	with	custom	functionality.

For	example,	we	have	been	using	the	default	visitor	function	(which	is	always	used	if	the	configuration	does	not	contain	the	visitor
attribute).	The	default	visitor	function	is	called	for	each	vertex	in	a	traversal,	and	will	push	it	into	the	result.	This	is	the	reason	why	the
result	variable	looked	different	after	the	traversal,	and	needed	to	be	initialized	before	the	traversal	was	started.

Note	that	the	default	visitor	(named		trackingVisitor)	will	add	every	visited	vertex	into	the	result,	including	the	full	paths	from	the	start
vertex.	This	is	useful	for	learning	and	debugging	purposes,	but	should	be	avoided	in	production	because	it	might	produce	(and	copy)	huge
amounts	of	data.	Instead,	only	those	data	should	be	copied	into	the	result	that	are	actually	necessary.

The	traverser	comes	with	the	following	predefined	visitors:

trackingVisitor:	this	is	the	default	visitor.	It	will	copy	all	data	of	each	visited	vertex	plus	the	full	path	information	into	the	result.
This	can	be	slow	if	the	result	set	is	huge	or	vertices	contain	a	lot	of	data.
countingVisitor:	this	is	a	very	lightweight	visitor:	all	it	does	is	increase	a	counter	in	the	result	for	each	vertex	visited.	Vertex	data	and
paths	will	not	be	copied	into	the	result.
doNothingVisitor:	if	no	action	shall	be	carried	out	when	a	vertex	is	visited,	this	visitor	can	be	employed.	It	will	not	do	anything	and
will	thus	be	fast.	It	can	be	used	for	performance	comparisons	with	other	visitors.

We	can	also	write	our	own	visitor	function	if	we	want	to.	The	general	function	signature	for	visitor	functions	is	as	follows:

var	config	=	{

		...

		visitor:	function	(config,	result,	vertex,	path,	connected)	{	...	}

};

Note:	the	connected	parameter	value	will	only	be	set	if	the	traversal	order	is	set	to	preorder-expander.	Otherwise,	this	parameter	won't
be	set	by	the	traverser.

Visitor	functions	are	not	expected	to	return	any	values.	Instead,	they	can	modify	the	result	variable	(e.g.	by	pushing	the	current	vertex
into	it),	or	do	anything	else.	For	example,	we	can	create	a	simple	visitor	function	that	only	prints	information	about	the	current	vertex	as
we	traverse:

var	config	=	{

		datasource:	traversal.generalGraphDatasourceFactory("world_graph"),

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	traversal.visitAllFilter,

		expander:	traversal.inboundExpander,

		visitor:	function	(config,	result,	vertex,	path)	{

				require("@arangodb").print("visiting	vertex",	vertex.name);

		}

};

var	traverser	=	new	traversal.Traverser(config);

traverser.traverse(undefined,	startVertex);

To	write	a	visitor	that	increments	a	counter	each	time	a	vertex	is	visited,	we	could	write	the	following	custom	visitor:

Using	Traversal	Objects

158

config.visitor	=	function	(config,	result,	vertex,	path,	connected)	{

		if	(!	result)	{

				result	=	{	};

		}

		if	(!	result.hasOwnProperty('count'))	{

				result.count	=	0;

		}

		++result.count;

}

Note	that	such	visitor	is	already	predefined	(it's	the	countingVisitor	described	above).	It	can	be	used	as	follows:

config.visitor	=	traversal.countingVisitor;

Another	example	of	a	visitor	is	one	that	collects	the		_id		values	of	all	vertices	visited:

config.visitor	=	function	(config,	result,	vertex,	path,	connected)	{

		if	(!	result)	{

				result	=	{	};

		}

		if	(!	result.hasOwnProperty("visited"))	{

				result.visited	=	{	vertices:	[]	};

		}

		result.visited.vertices.push(vertex._id);

}

When	the	traversal	order	is	set	to	preorder-expander,	the	traverser	will	pass	a	fifth	parameter	value	into	the	visitor	function.	This
parameter	contains	the	connected	edges	of	the	visited	vertex	as	an	array.	This	can	be	handy	because	in	this	case	the	visitor	will	get	all
information	about	the	vertex	and	the	connected	edges	together.

For	example,	the	following	visitor	can	be	used	to	print	only	leaf	nodes	(that	do	not	have	any	further	connected	edges):

config.visitor	=	function	(config,	result,	vertex,	path,	connected)	{

		if	(connected	&&	connected.length	===	0)	{

				require("@arangodb").print("found	a	leaf-node:	",	vertex);

		}

}

Note	that	for	this	visitor	to	work,	the	traversal	order	attribute	needs	to	be	set	to	the	value	preorder-expander.

Filtering	Vertices	and	Edges

Filtering	Vertices

So	far	we	have	printed	or	returned	all	vertices	that	were	visited	during	the	traversal.	This	is	not	always	required.	If	the	result	shall	be
restrict	to	just	specific	vertices,	we	can	use	a	filter	function	for	vertices.	It	can	be	defined	by	setting	the	filter	attribute	of	a	traversal
configuration,	e.g.:

var	config	=	{

		filter:	function	(config,	vertex,	path)	{

				if	(vertex.type	!==	'capital')	{

						return	'exclude';

				}

		}

}

The	above	filter	function	will	exclude	all	vertices	that	do	not	have	a	type	value	of	capital.	The	filter	function	will	be	called	for	each	vertex
found	during	the	traversal.	It	will	receive	the	traversal	configuration,	the	current	vertex,	and	the	full	path	from	the	traversal	start	vertex	to
the	current	vertex.	The	path	consists	of	an	array	of	edges,	and	an	array	of	vertices.	We	could	also	filter	everything	but	capitals	by

Using	Traversal	Objects

159

checking	the	length	of	the	path	from	the	start	vertex	to	the	current	vertex.	Capitals	will	have	a	distance	of	3	from	the	v/world	start	vertex
(capital	→	is-in	→	country	→	is-in	→	continent	→	is-in	→	world):

var	config	=	{

		...

		filter:	function	(config,	vertex,	path)	{

				if	(path.edges.length	<	3)	{

						return	'exclude';

				}

		}

}

Note:	If	a	filter	function	returns	nothing	(or	undefined),	the	current	vertex	will	be	included,	and	all	connected	edges	will	be	followed.	If	a
filter	function	returns	exclude	the	current	vertex	will	be	excluded	from	the	result,	and	all	still	all	connected	edges	will	be	followed.	If	a
filter	function	returns	prune,	the	current	vertex	will	be	included,	but	no	connected	edges	will	be	followed.

For	example,	the	following	filter	function	will	not	descend	into	connected	edges	of	continents,	limiting	the	depth	of	the	traversal.	Still,
continent	vertices	will	be	included	in	the	result:

var	config	=	{

		...

		filter:	function	(config,	vertex,	path)	{

				if	(vertex.type	===	'continent')	{

						return	'prune';

				}

		}

}

It	is	also	possible	to	combine	exclude	and	prune	by	returning	an	array	with	both	values:

return	['exclude',	'prune'];

Filtering	Edges

It	is	possible	to	exclude	certain	edges	from	the	traversal.	To	filter	on	edges,	a	filter	function	can	be	defined	via	the	expandFilter	attribute.
The	expandFilter	is	a	function	which	is	called	for	each	edge	during	a	traversal.

It	will	receive	the	current	edge	(edge	variable)	and	the	vertex	which	the	edge	connects	to	(in	the	direction	of	the	traversal).	It	also	receives
the	current	path	from	the	start	vertex	up	to	the	current	vertex	(excluding	the	current	edge	and	the	vertex	the	edge	points	to).

If	the	function	returns	true,	the	edge	will	be	followed.	If	the	function	returns	false,	the	edge	will	not	be	followed.	Here	is	a	very	simple
custom	edge	filter	function	implementation,	which	simply	includes	edges	if	the	(edges)	path	length	is	less	than	1,	and	will	exclude	any
other	edges.	This	will	effectively	terminate	the	traversal	after	the	first	level	of	edges:

var	config	=	{

		...

		expandFilter:	function	(config,	vertex,	edge,	path)	{

				return	(path.edges.length	<	1);

		}

};

Writing	Custom	Expanders

The	edges	connected	to	a	vertex	are	determined	by	the	expander.	So	far	we	have	used	a	default	expander	(the	default	inbound	expander	to
be	precise).	The	default	inbound	expander	simply	enumerates	all	connected	ingoing	edges	for	a	vertex,	based	on	the	edge	collection
specified	in	the	traversal	configuration.

There	is	also	a	default	outbound	expander,	which	will	enumerate	all	connected	outgoing	edges.	Finally,	there	is	an	any	expander,	which
will	follow	both	ingoing	and	outgoing	edges.

If	connected	edges	must	be	determined	in	some	different	fashion	for	whatever	reason,	a	custom	expander	can	be	written	and	registered	by
setting	the	expander	attribute	of	the	configuration.	The	expander	function	signature	is	as	follows:

Using	Traversal	Objects

160

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{	...	}

}

It	is	the	expander's	responsibility	to	return	all	edges	and	vertices	directly	connected	to	the	current	vertex	(which	is	passed	via	the	vertex
variable).	The	full	path	from	the	start	vertex	up	to	the	current	vertex	is	also	supplied	via	the	path	variable.	An	expander	is	expected	to
return	an	array	of	objects,	which	need	to	have	an	edge	and	a	vertex	attribute	each.

Note:	If	you	want	to	rely	on	a	particular	order	in	which	the	edges	are	traversed,	you	have	to	sort	the	edges	returned	by	your	expander
within	the	code	of	the	expander.	The	functions	to	get	outbound,	inbound	or	any	edges	from	a	vertex	do	not	guarantee	any	particular	order!

A	custom	implementation	of	an	inbound	expander	could	look	like	this	(this	is	a	non-deterministic	expander,	which	randomly	decides
whether	or	not	to	include	connected	edges):

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{

				var	connected	=	[];

				var	datasource	=	config.datasource;

				datasource.getInEdges(vertex._id).forEach(function	(edge)	{

						if	(Math.random()	>=	0.5)	{

								connected.push({	edge:	edge,	vertex:	(edge._from)	});

						}

				});

				return	connected;

		}

};

A	custom	expander	can	also	be	used	as	an	edge	filter	because	it	has	full	control	over	which	edges	will	be	returned.

Following	are	two	examples	of	custom	expanders	that	pick	edges	based	on	attributes	of	the	edges	and	the	connected	vertices.

Finding	the	connected	edges	/	vertices	based	on	an	attribute	when	in	the	connected	vertices.	The	goal	is	to	follow	the	edge	that	leads	to	the
vertex	with	the	highest	value	in	the	when	attribute:

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{

				var	datasource	=	config.datasource;

				//	determine	all	outgoing	edges

				var	outEdges	=	datasource.getOutEdges(vertex);

				if	(outEdges.length	===	0)	{

						return	[];

				}

				var	data	=	[];

				outEdges.forEach(function	(edge)	{

						data.push({	edge:	edge,	vertex:	datasource.getInVertex(edge)	});

				});

				//	sort	outgoing	vertices	according	to	"when"	attribute	value

				data.sort(function	(l,	r)	{

						if	(l.vertex.when	===	r.vertex.when)	{

								return	0;

						}

						return	(l.vertex.when	<	r.vertex.when	?	1	:	-1);

				});

				//	pick	first	vertex	found	(with	highest	"when"	attribute	value)

				return	[data[0]];

		}

		...

};

Finding	the	connected	edges	/	vertices	based	on	an	attribute	when	in	the	edge	itself.	The	goal	is	to	pick	the	one	edge	(out	of	potentially
many)	that	has	the	highest	when	attribute	value:

Using	Traversal	Objects

161

var	config	=	{

		...

		expander:	function	(config,	vertex,	path)	{

				var	datasource	=	config.datasource;

				//	determine	all	outgoing	edges

				var	outEdges	=	datasource.getOutEdges(vertex);

				if	(outEdges.length	===	0)	{

						return	[];	//	return	an	empty	array

				}

				//	sort	all	outgoing	edges	according	to	"when"	attribute

				outEdges.sort(function	(l,	r)	{

						if	(l.when	===	r.when)	{

								return	0;

						}

						return	(l.when	<	r.when	?	-1	:	1);

				});

				//	return	first	edge	(the	one	with	highest	"when"	value)

				var	edge	=	outEdges[0];

				try	{

						var	v	=	datasource.getInVertex(edge);

						return	[{	edge:	edge,	vertex:	v	}];

				}

				catch	(e)	{	}

				return	[];

		}

		...

};

Handling	Uniqueness

Graphs	may	contain	cycles.	To	be	on	top	of	what	happens	when	a	traversal	encounters	a	vertex	or	an	edge	it	has	already	visited,	there	are
configuration	options.

The	default	configuration	is	to	visit	every	vertex,	regardless	of	whether	it	was	already	visited	in	the	same	traversal.	However,	edges	will
by	default	only	be	followed	if	they	are	not	already	present	in	the	current	path.

Imagine	the	following	graph	which	contains	a	cycle:

A	->	B	->	C	->	A

When	the	traversal	finds	the	edge	from	C	to	A,	it	will	by	default	follow	it.	This	is	because	we	have	not	seen	this	edge	yet.	It	will	also	visit
vertex	A	again.	This	is	because	by	default	all	vertices	will	be	visited,	regardless	of	whether	already	visited	or	not.

However,	the	traversal	will	not	again	following	the	outgoing	edge	from	A	to	B.	This	is	because	we	already	have	the	edge	from	A	to	B	in	our
current	path.

These	default	settings	will	prevent	infinite	traversals.

To	adjust	the	uniqueness	for	visiting	vertices,	there	are	the	following	options	for	uniqueness.vertices:

"none":	always	visit	a	vertices,	regardless	of	whether	it	was	already	visited	or	not
"global":	visit	a	vertex	only	if	it	was	not	visited	in	the	traversal
"path":	visit	a	vertex	if	it	is	not	included	in	the	current	path

To	adjust	the	uniqueness	for	following	edges,	there	are	the	following	options	for	uniqueness.edges:

"none":	always	follow	an	edge,	regardless	of	whether	it	was	followed	before
"global":	follow	an	edge	only	if	it	wasn't	followed	in	the	traversal
"path":	follow	an	edge	if	it	is	not	included	in	the	current	path

Note	that	uniqueness	checking	will	have	some	effect	on	both	runtime	and	memory	usage.	For	example,	when	uniqueness	checks	are	set	to
"global" ,	arrays	of	visited	vertices	and	edges	must	be	kept	in	memory	while	the	traversal	is	executed.	Global	uniqueness	should	thus	only
be	used	when	a	traversal	is	expected	to	visit	few	nodes.

Using	Traversal	Objects

162

In	terms	of	runtime,	turning	off	uniqueness	checks	(by	setting	both	options	to	"none")	is	the	best	choice,	but	it	is	only	safe	for	graphs
that	do	not	contain	cycles.	When	uniqueness	checks	are	deactivated	in	a	graph	with	cycles,	the	traversal	might	not	abort	in	a	sensible
amount	of	time.

Optimizations

There	are	a	few	options	for	making	a	traversal	run	faster.

The	best	option	is	to	make	the	amount	of	visited	vertices	and	followed	edges	as	small	as	possible.	This	can	be	achieved	by	writing
custom	filter	and	expander	functions.	Such	functions	should	only	include	vertices	of	interest,	and	only	follow	edges	that	might	be
interesting.

Traversal	depth	can	also	be	bounded	with	the	minDepth	and	maxDepth	options.

Another	way	to	speed	up	traversals	is	to	write	a	custom	visitor	function.	The	default	visitor	function	(trackingVisitor)	will	copy	every
visited	vertex	into	the	result.	If	vertices	contain	lots	of	data,	this	might	be	expensive.	It	is	therefore	recommended	to	only	copy	such	data
into	the	result	that	is	actually	needed.	The	default	visitor	function	will	also	copy	the	full	path	to	the	visited	document	into	the	result.
This	is	even	more	expensive	and	should	be	avoided	if	possible.

If	the	goal	of	a	traversal	is	to	only	count	the	number	of	visited	vertices,	the	prefab	countingVisitor
will	be	much	more	efficient	than	the	default	visitor.

For	graphs	that	are	known	to	not	contain	any	cycles,	uniqueness	checks	should	be	turned	off.	This	can	achieved	via	the	uniqueness
configuration	options.	Note	that	uniqueness	checks	should	not	be	turned	off	for	graphs	that	are	known	contain	cycles	or	if	there	is	no
information	about	the	graph's	structure.

By	default,	a	traversal	will	only	process	a	limited	number	of	vertices.	This	is	protect	the	user	from	unintentionally	run	a	never-ending
traversal	on	a	graph	with	cyclic	data.	How	many	vertices	will	be	processed	at	most	is	determined	by	the	maxIterations	configuration
option.	If	a	traversal	hits	the	cap	specified	by	maxIterations,	it	will	abort	and	throw	a	too	many	iterations	exception.	If	this	error	is
encountered,	the	maxIterations	value	should	be	increased	if	it	is	made	sure	that	the	other	traversal	configuration	parameters	are	sane	and
the	traversal	will	abort	naturally	at	some	point.

Finally,	the	buildVertices	configuration	option	can	be	set	to	false	to	avoid	looking	up	and	fully	constructing	vertex	data.	If	all	that's	needed
from	vertices	are	the	_id	or	_key	attributes,	the	buildvertices	option	can	be	set	to	false.	If	visitor,	filter	or	expandFilter	functions	need	to
access	other	vertex	attributes,	the	option	should	not	be	changed.

Configuration	Overview

This	section	summarizes	the	configuration	attributes	for	the	traversal	object.	The	configuration	can	consist	of	the	following	attributes:

visitor:	visitor	function	for	vertices.	It	will	be	called	for	all	non-excluded	vertices.	The	general	visitor	function	signature	is	function
(config,	result,	vertex,	path).	If	the	traversal	order	is	preorder-expander,	the	connecting	edges	of	the	visited	vertex	will	be	passed	as
the	fifth	parameter,	extending	the	function	signature	to:	function	(config,	result,	vertex,	path,	edges).

Visitor	functions	are	not	expected	to	return	values,	but	they	may	modify	the	result	variable	as	needed	(e.g.	by	pushing	vertex	data
into	the	result).

expander:	expander	function	that	is	responsible	for	returning	edges	and	vertices	directly	connected	to	a	vertex.	The	function
signature	is	function	(config,	vertex,	path).	The	expander	function	is	required	to	return	an	array	of	connection	objects,	consisting	of
an	edge	and	vertex	attribute	each.	If	there	are	no	connecting	edges,	the	expander	is	expected	to	return	an	empty	array.
filter:	vertex	filter	function.	The	function	signature	is	function	(config,	vertex,	path).	It	may	return	one	of	the	following	values:

undefined:	vertex	will	be	included	in	the	result	and	connected	edges	will	be	traversed
"exclude":	vertex	will	not	be	included	in	the	result	and	connected	edges	will	be	traversed
"prune":	vertex	will	be	included	in	the	result	but	connected	edges	will	not	be	traversed
["prune" ,	"exclude"]:	vertex	will	not	be	included	in	the	result	and	connected	edges	will	not	be	returned

expandFilter:	filter	function	applied	on	each	edge/vertex	combination	determined	by	the	expander.	The	function	signature	is	function
(config,	vertex,	edge,	path).	The	function	should	return	true	if	the	edge/vertex	combination	should	be	processed,	and	false	if	it	should
be	ignored.
sort:	a	filter	function	to	determine	the	order	in	which	connected	edges	are	processed.	The	function	signature	is	function	(l,	r).	The
function	is	required	to	return	one	of	the	following	values:

-1	if	l	should	have	a	sort	value	less	than	r

Using	Traversal	Objects

163

1	if	l	should	have	a	higher	sort	value	than	r
0	if	l	and	r	have	the	same	sort	value

strategy:	determines	the	visitation	strategy.	Possible	values	are	depthfirst	and	breadthfirst.
order:	determines	the	visitation	order.	Possible	values	are	preorder,	postorder,	and	preorder-expander.	preorder-expander	is	the
same	as	preorder,	except	that	the	signature	of	the	visitor	function	will	change	as	described	above.
itemOrder:	determines	the	order	in	which	connections	returned	by	the	expander	will	be	processed.	Possible	values	are	forward	and
backward.
maxDepth:	if	set	to	a	value	greater	than	0,	this	will	limit	the	traversal	to	this	maximum	depth.
minDepth:	if	set	to	a	value	greater	than	0,	all	vertices	found	on	a	level	below	the	minDepth	level	will	not	be	included	in	the	result.
maxIterations:	the	maximum	number	of	iterations	that	the	traversal	is	allowed	to	perform.	It	is	sensible	to	set	this	number	so
unbounded	traversals	will	terminate	at	some	point.
uniqueness:	an	object	that	defines	how	repeated	visitations	of	vertices	should	be	handled.	The	uniqueness	object	can	have	a	sub-
attribute	vertices,	and	a	sub-attribute	edges.	Each	sub-attribute	can	have	one	of	the	following	values:

"none":	no	uniqueness	constraints
"path":	element	is	excluded	if	it	is	already	contained	in	the	current	path.	This	setting	may	be	sensible	for	graphs	that	contain
cycles	(e.g.	A	→	B	→	C	→	A).
"global":	element	is	excluded	if	it	was	already	found/visited	at	any	point	during	the	traversal.

buildVertices:	this	attribute	controls	whether	vertices	encountered	during	the	traversal	will	be	looked	up	in	the	database	and	will	be
made	available	to	visitor,	filter,	and	expandFilter	functions.	By	default,	vertices	will	be	looked	up	and	made	available.	However,
there	are	some	special	use	cases	when	fully	constructing	vertex	objects	is	not	necessary	and	can	be	avoided.	For	example,	if	a
traversal	is	meant	to	only	count	the	number	of	visited	vertices	but	do	not	read	any	data	from	vertices,	this	option	might	be	set	to
true.

Using	Traversal	Objects

164

Example	Data
The	following	examples	all	use	a	vertex	collection	v	and	an	edge	collection	e.	The	vertex	collection	v	contains	continents,	countries,	and
capitals.	The	edge	collection	e	contains	connections	between	continents	and	countries,	and	between	countries	and	capitals.

To	set	up	the	collections	and	populate	them	with	initial	data,	the	following	script	was	used:

db._create("v");

db._createEdgeCollection("e");

//	vertices:	root	node	

db.v.save({	_key:	"world",	name:	"World",	type:	"root"	});

//	vertices:	continents	

db.v.save({	_key:	"continent-africa",	name:	"Africa",	type:	"continent"	});

db.v.save({	_key:	"continent-asia",	name:	"Asia",	type:	"continent"	});

db.v.save({	_key:	"continent-australia",	name:	"Australia",	type:	"continent"	});

db.v.save({	_key:	"continent-europe",	name:	"Europe",	type:	"continent"	});

db.v.save({	_key:	"continent-north-america",	name:	"North	America",	type:	"continent"	});

db.v.save({	_key:	"continent-south-america",	name:	"South	America",	type:	"continent"	});

//	vertices:	countries	

db.v.save({	_key:	"country-afghanistan",	name:	"Afghanistan",	type:	"country",	code:	"AFG"	});

db.v.save({	_key:	"country-albania",	name:	"Albania",	type:	"country",	code:	"ALB"	});

db.v.save({	_key:	"country-algeria",	name:	"Algeria",	type:	"country",	code:	"DZA"	});

db.v.save({	_key:	"country-andorra",	name:	"Andorra",	type:	"country",	code:	"AND"	});

db.v.save({	_key:	"country-angola",	name:	"Angola",	type:	"country",	code:	"AGO"	});

db.v.save({	_key:	"country-antigua-and-barbuda",	name:	"Antigua	and	Barbuda",	type:	"country",	code:	"ATG"	});

db.v.save({	_key:	"country-argentina",	name:	"Argentina",	type:	"country",	code:	"ARG"	});

db.v.save({	_key:	"country-australia",	name:	"Australia",	type:	"country",	code:	"AUS"	});

db.v.save({	_key:	"country-austria",	name:	"Austria",	type:	"country",	code:	"AUT"	});

db.v.save({	_key:	"country-bahamas",	name:	"Bahamas",	type:	"country",	code:	"BHS"	});

db.v.save({	_key:	"country-bahrain",	name:	"Bahrain",	type:	"country",	code:	"BHR"	});

db.v.save({	_key:	"country-bangladesh",	name:	"Bangladesh",	type:	"country",	code:	"BGD"	});

db.v.save({	_key:	"country-barbados",	name:	"Barbados",	type:	"country",	code:	"BRB"	});

db.v.save({	_key:	"country-belgium",	name:	"Belgium",	type:	"country",	code:	"BEL"	});

db.v.save({	_key:	"country-bhutan",	name:	"Bhutan",	type:	"country",	code:	"BTN"	});

db.v.save({	_key:	"country-bolivia",	name:	"Bolivia",	type:	"country",	code:	"BOL"	});

db.v.save({	_key:	"country-bosnia-and-herzegovina",	name:	"Bosnia	and	Herzegovina",	type:	"country",	code:	"BIH"	});

db.v.save({	_key:	"country-botswana",	name:	"Botswana",	type:	"country",	code:	"BWA"	});

db.v.save({	_key:	"country-brazil",	name:	"Brazil",	type:	"country",	code:	"BRA"	});

db.v.save({	_key:	"country-brunei",	name:	"Brunei",	type:	"country",	code:	"BRN"	});

db.v.save({	_key:	"country-bulgaria",	name:	"Bulgaria",	type:	"country",	code:	"BGR"	});

db.v.save({	_key:	"country-burkina-faso",	name:	"Burkina	Faso",	type:	"country",	code:	"BFA"	});

db.v.save({	_key:	"country-burundi",	name:	"Burundi",	type:	"country",	code:	"BDI"	});

db.v.save({	_key:	"country-cambodia",	name:	"Cambodia",	type:	"country",	code:	"KHM"	});

db.v.save({	_key:	"country-cameroon",	name:	"Cameroon",	type:	"country",	code:	"CMR"	});

db.v.save({	_key:	"country-canada",	name:	"Canada",	type:	"country",	code:	"CAN"	});

db.v.save({	_key:	"country-chad",	name:	"Chad",	type:	"country",	code:	"TCD"	});

db.v.save({	_key:	"country-chile",	name:	"Chile",	type:	"country",	code:	"CHL"	});

db.v.save({	_key:	"country-colombia",	name:	"Colombia",	type:	"country",	code:	"COL"	});

db.v.save({	_key:	"country-cote-d-ivoire",	name:	"Cote	d'Ivoire",	type:	"country",	code:	"CIV"	});

db.v.save({	_key:	"country-croatia",	name:	"Croatia",	type:	"country",	code:	"HRV"	});

db.v.save({	_key:	"country-czech-republic",	name:	"Czech	Republic",	type:	"country",	code:	"CZE"	});

db.v.save({	_key:	"country-denmark",	name:	"Denmark",	type:	"country",	code:	"DNK"	});

db.v.save({	_key:	"country-ecuador",	name:	"Ecuador",	type:	"country",	code:	"ECU"	});

db.v.save({	_key:	"country-egypt",	name:	"Egypt",	type:	"country",	code:	"EGY"	});

db.v.save({	_key:	"country-eritrea",	name:	"Eritrea",	type:	"country",	code:	"ERI"	});

db.v.save({	_key:	"country-finland",	name:	"Finland",	type:	"country",	code:	"FIN"	});

db.v.save({	_key:	"country-france",	name:	"France",	type:	"country",	code:	"FRA"	});

db.v.save({	_key:	"country-germany",	name:	"Germany",	type:	"country",	code:	"DEU"	});

db.v.save({	_key:	"country-people-s-republic-of-china",	name:	"People's	Republic	of	China",	type:	"country",	code:	"CHN"	});

//	vertices:	capitals	

db.v.save({	_key:	"capital-algiers",	name:	"Algiers",	type:	"capital"	});

db.v.save({	_key:	"capital-andorra-la-vella",	name:	"Andorra	la	Vella",	type:	"capital"	});

db.v.save({	_key:	"capital-asmara",	name:	"Asmara",	type:	"capital"	});

db.v.save({	_key:	"capital-bandar-seri-begawan",	name:	"Bandar	Seri	Begawan",	type:	"capital"	});

db.v.save({	_key:	"capital-beijing",	name:	"Beijing",	type:	"capital"	});

db.v.save({	_key:	"capital-berlin",	name:	"Berlin",	type:	"capital"	});

db.v.save({	_key:	"capital-bogota",	name:	"Bogota",	type:	"capital"	});

db.v.save({	_key:	"capital-brasilia",	name:	"Brasilia",	type:	"capital"	});

Example	Data

165

db.v.save({	_key:	"capital-bridgetown",	name:	"Bridgetown",	type:	"capital"	});

db.v.save({	_key:	"capital-brussels",	name:	"Brussels",	type:	"capital"	});

db.v.save({	_key:	"capital-buenos-aires",	name:	"Buenos	Aires",	type:	"capital"	});

db.v.save({	_key:	"capital-bujumbura",	name:	"Bujumbura",	type:	"capital"	});

db.v.save({	_key:	"capital-cairo",	name:	"Cairo",	type:	"capital"	});

db.v.save({	_key:	"capital-canberra",	name:	"Canberra",	type:	"capital"	});

db.v.save({	_key:	"capital-copenhagen",	name:	"Copenhagen",	type:	"capital"	});

db.v.save({	_key:	"capital-dhaka",	name:	"Dhaka",	type:	"capital"	});

db.v.save({	_key:	"capital-gaborone",	name:	"Gaborone",	type:	"capital"	});

db.v.save({	_key:	"capital-helsinki",	name:	"Helsinki",	type:	"capital"	});

db.v.save({	_key:	"capital-kabul",	name:	"Kabul",	type:	"capital"	});

db.v.save({	_key:	"capital-la-paz",	name:	"La	Paz",	type:	"capital"	});

db.v.save({	_key:	"capital-luanda",	name:	"Luanda",	type:	"capital"	});

db.v.save({	_key:	"capital-manama",	name:	"Manama",	type:	"capital"	});

db.v.save({	_key:	"capital-nassau",	name:	"Nassau",	type:	"capital"	});

db.v.save({	_key:	"capital-n-djamena",	name:	"N'Djamena",	type:	"capital"	});

db.v.save({	_key:	"capital-ottawa",	name:	"Ottawa",	type:	"capital"	});

db.v.save({	_key:	"capital-ouagadougou",	name:	"Ouagadougou",	type:	"capital"	});

db.v.save({	_key:	"capital-paris",	name:	"Paris",	type:	"capital"	});

db.v.save({	_key:	"capital-phnom-penh",	name:	"Phnom	Penh",	type:	"capital"	});

db.v.save({	_key:	"capital-prague",	name:	"Prague",	type:	"capital"	});

db.v.save({	_key:	"capital-quito",	name:	"Quito",	type:	"capital"	});

db.v.save({	_key:	"capital-saint-john-s",	name:	"Saint	John's",	type:	"capital"	});

db.v.save({	_key:	"capital-santiago",	name:	"Santiago",	type:	"capital"	});

db.v.save({	_key:	"capital-sarajevo",	name:	"Sarajevo",	type:	"capital"	});

db.v.save({	_key:	"capital-sofia",	name:	"Sofia",	type:	"capital"	});

db.v.save({	_key:	"capital-thimphu",	name:	"Thimphu",	type:	"capital"	});

db.v.save({	_key:	"capital-tirana",	name:	"Tirana",	type:	"capital"	});

db.v.save({	_key:	"capital-vienna",	name:	"Vienna",	type:	"capital"	});

db.v.save({	_key:	"capital-yamoussoukro",	name:	"Yamoussoukro",	type:	"capital"	});

db.v.save({	_key:	"capital-yaounde",	name:	"Yaounde",	type:	"capital"	});

db.v.save({	_key:	"capital-zagreb",	name:	"Zagreb",	type:	"capital"	});

//	edges:	continent	->	world	

db.e.save("v/continent-africa",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-asia",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-australia",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-europe",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-north-america",	"v/world",	{	type:	"is-in"	});

db.e.save("v/continent-south-america",	"v/world",	{	type:	"is-in"	});

//	edges:	country	->	continent	

db.e.save("v/country-afghanistan",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-albania",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-algeria",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-andorra",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-angola",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-antigua-and-barbuda",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-argentina",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-australia",	"v/continent-australia",	{	type:	"is-in"	});

db.e.save("v/country-austria",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-bahamas",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-bahrain",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-bangladesh",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-barbados",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-belgium",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-bhutan",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-bolivia",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-bosnia-and-herzegovina",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-botswana",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-brazil",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-brunei",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-bulgaria",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-burkina-faso",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-burundi",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-cambodia",	"v/continent-asia",	{	type:	"is-in"	});

db.e.save("v/country-cameroon",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-canada",	"v/continent-north-america",	{	type:	"is-in"	});

db.e.save("v/country-chad",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-chile",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-colombia",	"v/continent-south-america",	{	type:	"is-in"	});

db.e.save("v/country-cote-d-ivoire",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-croatia",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-czech-republic",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-denmark",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-ecuador",	"v/continent-south-america",	{	type:	"is-in"	});

Example	Data

166

db.e.save("v/country-egypt",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-eritrea",	"v/continent-africa",	{	type:	"is-in"	});

db.e.save("v/country-finland",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-france",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-germany",	"v/continent-europe",	{	type:	"is-in"	});

db.e.save("v/country-people-s-republic-of-china",	"v/continent-asia",	{	type:	"is-in"	});

//	edges:	capital	->	country	

db.e.save("v/capital-algiers",	"v/country-algeria",	{	type:	"is-in"	});

db.e.save("v/capital-andorra-la-vella",	"v/country-andorra",	{	type:	"is-in"	});

db.e.save("v/capital-asmara",	"v/country-eritrea",	{	type:	"is-in"	});

db.e.save("v/capital-bandar-seri-begawan",	"v/country-brunei",	{	type:	"is-in"	});

db.e.save("v/capital-beijing",	"v/country-people-s-republic-of-china",	{	type:	"is-in"	});

db.e.save("v/capital-berlin",	"v/country-germany",	{	type:	"is-in"	});

db.e.save("v/capital-bogota",	"v/country-colombia",	{	type:	"is-in"	});

db.e.save("v/capital-brasilia",	"v/country-brazil",	{	type:	"is-in"	});

db.e.save("v/capital-bridgetown",	"v/country-barbados",	{	type:	"is-in"	});

db.e.save("v/capital-brussels",	"v/country-belgium",	{	type:	"is-in"	});

db.e.save("v/capital-buenos-aires",	"v/country-argentina",	{	type:	"is-in"	});

db.e.save("v/capital-bujumbura",	"v/country-burundi",	{	type:	"is-in"	});

db.e.save("v/capital-cairo",	"v/country-egypt",	{	type:	"is-in"	});

db.e.save("v/capital-canberra",	"v/country-australia",	{	type:	"is-in"	});

db.e.save("v/capital-copenhagen",	"v/country-denmark",	{	type:	"is-in"	});

db.e.save("v/capital-dhaka",	"v/country-bangladesh",	{	type:	"is-in"	});

db.e.save("v/capital-gaborone",	"v/country-botswana",	{	type:	"is-in"	});

db.e.save("v/capital-helsinki",	"v/country-finland",	{	type:	"is-in"	});

db.e.save("v/capital-kabul",	"v/country-afghanistan",	{	type:	"is-in"	});

db.e.save("v/capital-la-paz",	"v/country-bolivia",	{	type:	"is-in"	});

db.e.save("v/capital-luanda",	"v/country-angola",	{	type:	"is-in"	});

db.e.save("v/capital-manama",	"v/country-bahrain",	{	type:	"is-in"	});

db.e.save("v/capital-nassau",	"v/country-bahamas",	{	type:	"is-in"	});

db.e.save("v/capital-n-djamena",	"v/country-chad",	{	type:	"is-in"	});

db.e.save("v/capital-ottawa",	"v/country-canada",	{	type:	"is-in"	});

db.e.save("v/capital-ouagadougou",	"v/country-burkina-faso",	{	type:	"is-in"	});

db.e.save("v/capital-paris",	"v/country-france",	{	type:	"is-in"	});

db.e.save("v/capital-phnom-penh",	"v/country-cambodia",	{	type:	"is-in"	});

db.e.save("v/capital-prague",	"v/country-czech-republic",	{	type:	"is-in"	});

db.e.save("v/capital-quito",	"v/country-ecuador",	{	type:	"is-in"	});

db.e.save("v/capital-saint-john-s",	"v/country-antigua-and-barbuda",	{	type:	"is-in"	});

db.e.save("v/capital-santiago",	"v/country-chile",	{	type:	"is-in"	});

db.e.save("v/capital-sarajevo",	"v/country-bosnia-and-herzegovina",	{	type:	"is-in"	});

db.e.save("v/capital-sofia",	"v/country-bulgaria",	{	type:	"is-in"	});

db.e.save("v/capital-thimphu",	"v/country-bhutan",	{	type:	"is-in"	});

db.e.save("v/capital-tirana",	"v/country-albania",	{	type:	"is-in"	});

db.e.save("v/capital-vienna",	"v/country-austria",	{	type:	"is-in"	});

db.e.save("v/capital-yamoussoukro",	"v/country-cote-d-ivoire",	{	type:	"is-in"	});

db.e.save("v/capital-yaounde",	"v/country-cameroon",	{	type:	"is-in"	});

db.e.save("v/capital-zagreb",	"v/country-croatia",	{	type:	"is-in"	});

Example	Data

167

Edges,	Identifiers,	Handles
This	is	an	introduction	to	ArangoDB's	interface	for	edges.	Edges	may	be	used	in	graphs.	Here	we	work	with	edges	from	the	JavaScript
shell	arangosh.	For	other	languages	see	the	corresponding	language	API.

A	graph	data	model	always	consists	of	at	least	two	collections:	the	relations	between	the	nodes	in	the	graphs	are	stored	in	an	"edges
collection",	the	nodes	in	the	graph	are	stored	in	documents	in	regular	collections.

Edges	in	ArangoDB	are	special	documents.	In	addition	to	the	system	attributes	_key,	_id	and	_rev,	they	have	the	attributes	_from	and
_to,	which	contain	document	handles,	namely	the	start-point	and	the	end-point	of	the	edge.

Example:

the	"edge"	collection	stores	the	information	that	a	company's	reception	is	sub-unit	to	the	services	unit	and	the	services	unit	is	sub-
unit	to	the	CEO.	You	would	express	this	relationship	with	the	_from	and	_to	attributes
the	"normal"	collection	stores	all	the	properties	about	the	reception,	e.g.	that	20	people	are	working	there	and	the	room	number	etc
_from	is	the	document	handle	of	the	linked	vertex	(incoming	relation)
_to	is	the	document	handle	of	the	linked	vertex	(outgoing	relation)

Edge	collections	are	special	collections	that	store	edge	documents.	Edge	documents	are	connection	documents	that	reference	other
documents.	The	type	of	a	collection	must	be	specified	when	a	collection	is	created	and	cannot	be	changed	afterwards.

To	change	edge	endpoints	you	would	need	to	remove	old	document/edge	and	insert	new	one.	Other	fields	can	be	updated	as	in	default
collection.

Working	with	Edges

Edges	are	normal	documents	that	always	contain	a		_from		and	a		_to		attribute.

Working	with	Edges

168

Distributed	Iterative	Graph	Processing	(Pregel)
Distributed	graph	processing	enables	you	to	do	online	analytical	processing	directly	on	graphs	stored	into	arangodb.	This	is	intended	to
help	you	gain	analytical	insights	on	your	data,	without	having	to	use	external	processing	sytems.	Examples	of	algorithms	to	execute	are
PageRank,	Vertex	Centrality,	Vertex	Closeness,	Connected	Components,	Community	Detection.	This	system	is	not	useful	for	typical
online	queries,	where	you	just	do	work	on	a	small	set	of	vertices.	These	kind	of	tasks	are	better	suited	for	AQL.

The	processing	system	inside	ArangoDB	is	based	on:	Pregel:	A	System	for	Large-Scale	Graph	Processing	–	Malewicz	et	al.	(Google)
2010	This	concept	enables	us	to	perform	distributed	graph	processing,	without	the	need	for	distributed	global	locking.

Prerequisites
If	you	are	running	a	single	ArangoDB	instance	in	single-server	mode,	there	are	no	requirements	regarding	the	modeling	of	your	data.	All
you	need	is	at	least	one	vertex	collection	and	one	edge	collection.	Note	that	the	performance	may	be	better,	if	the	number	of	your	shards	/
collections	matches	the	number	of	CPU	cores.

When	you	use	ArangoDB	Community	edition	in	cluster	mode,	you	might	need	to	model	your	collections	in	a	certain	way	to	ensure
correct	results.	For	more	information	see	the	next	section.

Requirements	for	Collections	in	a	Cluster	(Non	Smart	Graph)
To	enable	iterative	graph	processing	for	your	data,	you	will	need	to	ensure	that	your	vertex	and	edge	collections	are	sharded	in	a	specific
way.

The	pregel	computing	model	requires	all	edges	to	be	present	on	the	DB	Server	where	the	vertex	document	identified	by	the		_from		value
is	located.	This	means	the	vertex	collections	need	to	be	sharded	by	'_key'	and	the	edge	collection	will	need	to	be	sharded	after	an	attribute
which	always	contains	the	'_key'	of	the	vertex.

Our	implementation	currently	requires	every	edge	collection	to	be	sharded	after	a	"vertex"	attributes,	additionally	you	will	need	to
specify	the	key		distributeShardsLike		and	an	equal	number	of	shards	on	every	collection.	Only	if	these	requirements	are	met	can
ArangoDB	place	the	edges	and	vertices	correctly.

For	example	you	might	create	your	collections	like	this:

//	Create	main	vertex	collection:	

db._create("vertices",	{

				shardKeys:['_key'],

				numberOfShards:	8

		});

//	Optionally	create	arbitrary	additional	vertex	collections	

db._create("additonal",	{

				distributeShardsLike:"vertices",	

				numberOfShards:8

		});

//	Create	(one	or	more)	edge-collections:	

db._createEdgeCollection("edges",	{

				shardKeys:['vertex'],

				distributeShardsLike:"vertices",

				numberOfShards:8

		});

You	will	need	to	ensure	that	edge	documents	contain	the	proper	values	in	their	sharding	attribute.	For	a	vertex	document	with	the
following	content		{_key:"A",	value:0}		the	corresponding	edge	documents	would	have	look	like	this:

		{_from:"vertices/A",	_to:	"vertices/B",	vertex:"A"}

		{_from:"vertices/A",	_to:	"vertices/C",	vertex:"A"}

		{_from:"vertices/A",	_to:	"vertices/D",	vertex:"A"}

		...

Pregel

169

http://www.dcs.bbk.ac.uk/~dell/teaching/cc/paper/sigmod10/p135-malewicz.pdf

This	will	ensure	that	outgoing	edge	documents	will	be	placed	on	the	same	DBServer	as	the	vertex.	Without	the	correct	placement	of	the
edges,	the	pregel	graph	processing	system	will	not	work	correctly,	because	edges	will	not	load	correctly.

Arangosh	API

Starting	an	Algorithm	Execution

The	pregel	API	is	accessible	through	the		@arangodb/pregel		package.	To	start	an	execution	you	need	to	specify	the	algorithm	name	and
the	vertex	and	edge	collections.	Alternatively	you	can	specify	a	named	graph.	Additionally	you	can	specify	custom	parameters	which
vary	for	each	algorithm.	The		start		method	will	always	a	unique	ID	which	can	be	used	to	interact	with	the	algorithm	and	later	on.

The	below	version	of	the		start		method	can	be	used	for	named	graphs:

		var	pregel	=	require("@arangodb/pregel");

		var	params	=	{};

		var	execution	=	pregel.start("<algorithm>",	"<yourgraph>",	params);

Params	needs	to	be	an	object,	the	valid	keys	are	mentioned	below	in	the	section	Algorithms

Alternatively	you	might	want	to	specify	the	vertex	and	edge	collections	directly.	The	call-syntax	of	the		start``	method	changes	in	this
case.	The	second	argument	must	be	an	object	with	the	keys	vertexCollections	and	edgeCollections`.

		var	pregel	=	require("@arangodb/pregel");

		var	params	=	{};

		var	execution	=	pregel.start("<algorithm>",	{vertexCollections:["vertices"],	edgeCollections:["edges"]},	{});

The	last	argument	is	still	the	parameter	object.	See	below	for	a	list	of	algorithms	and	parameters.

Status	of	an	Algorithm	Execution

The	code	returned	by	the		pregel.start(...)		method	can	be	used	to	track	the	status	of	your	algorithm.

		var	execution	=	pregel.start("sssp",	"demograph",	{source:	"vertices/V"});

		var	status	=	pregel.status(execution);

The	result	will	tell	you	the	current	status	of	the	algorithm	execution.	It	will	tell	you	the	current		state		of	the	execution,	the	current
global	superstep,	the	runtime,	the	global	aggregator	values	as	well	as	the	number	of	send	and	received	messages.

Valid	values	for	the		state		field	include:

"running"	algorithm	is	still	running
"done":	The	execution	is	done,	the	result	might	not	be	written	back	into	the	collection	yet.
"canceled":	The	execution	was	permanently	canceled,	either	by	the	user	or	by	an	error.
"in	error":	The	exeuction	is	in	an	error	state.	This	can	be	caused	by	primary	DBServers	being	not	reachable	or	being	non	responsive.
The	execution	might	recover	later,	or	switch	to	"canceled"	if	it	was	not	able	to	recover	successfuly
"recovering":	The	execution	is	actively	recovering,	will	switch	back	to	"running"	if	the	recovery	was	successful

The	object	returned	by	the		status		method	might	for	example	look	something	like	this:

		{

				"state"	:	"running",

				"gss"	:	12,

				"totalRuntime"	:	123.23,

				"aggregators"	:	{

						"converged"	:	false,

						"max"	:	true,

						"phase"	:	2

				},

				"sendCount"	:	3240364978,

				"receivedCount"	:	3240364975

		}

Pregel

170

Canceling	an	Execution	/	Discarding	results

To	cancel	an	execution	which	is	still	runnning,	and	discard	any	intermediare	results	you	can	use	the		cancel		method.	This	will
immediatly	free	all	memory	taken	up	by	the	execution,	and	will	make	you	lose	all	intermediary	data.

You	might	get	inconsistent	results	if	you	cancel	an	execution	while	it	is	already	in	it's		done		state.	The	data	is	written	multi-threaded	into
all	collection	shards	at	once,	this	means	there	are	multiple	transactions	simultaniously.	A	transaction	might	already	be	commited	when
you	cancel	the	execution	job,	therefore	you	might	see	the	result	in	your	collection.	This	does	not	apply	if	you	configured	the	execution	to
not	write	data	into	the	collection.

//	start	a	single	source	shortest	path	job

var	execution	=	pregel.start("sssp",	"demograph",	{source:	"vertices/V"});

pregel.cancel(execution);

AQL	integration
ArangoDB	supports	retrieving	temporary	pregel	results	through	the	ArangoDB	query	language	(AQL).	When	our	graph	processing
subsystem	finishes	executing	an	algorithm,	the	result	can	either	be	written	back	into	the	database	or	kept	in	memory.	In	both	cases	the
result	can	be	queried	via	AQL.	If	the	data	was	not	written	to	the	database	store	it	is	only	held	temporarily,	until	the	user	calls	the
	cancel		methodFor	example	a	user	might	want	to	query	only	nodes	with	the	most	rank	from	the	result	set	of	a	PageRank	execution.

FOR	v	IN	PREGEL_RESULT(<handle>)

		FILTER	v.value	>=	0.01

		RETURN	v._key

Available	Algorithms
There	are	a	number	of	general	parameters	which	apply	to	almost	all	algorithms:

	store	:	Is	per	default	true,	the	pregel	engine	will	write	results	back	to	the	database.	if	the	value	is	false	then	you	can	query	the
results	via	AQLk,	see	AQL	integration.
	maxGSS	:	Maximum	number	of	global	iterations	for	this	algorithm
	parallelism	:	Number	of	parellel	threads	to	use	per	worker.	Does	not	influence	the	number	of	threads	used	to	load

											or	store	data	from	the	database	(this	depends	on	the	number	of	shards).

	async	:	Algorithms	wich	support	async	mode,	will	run	without	synchronized	global	iterations,	might	lead	to	performance	increases
if	you	have	load	imbalances.
	resultField	:	Most	algorithms	will	write	the	result	into	this	field

Page	Rank

PageRank	is	a	well	known	algorithm	to	rank	documents	in	a	graph.	The	algorithm	will	run	until	the	execution	converges.	Specify	a	custom
threshold	with	the	parameter		threshold	,	to	run	for	a	fixed	number	of	iterations	use	the		maxGSS		parameter.

var	pregel	=	require("@arangodb/pregel");

pregel.start("pagerank",	"graphname",	{maxGSS:	100,	threshold:0.00000001})

Single-Source	Shortest	Path

Calculates	the	distance	of	each	vertex	to	a	certain	shortest	path.	The	algorithm	will	run	until	it	converges,	the	iterations	are	bound	by	the
diameter	(the	longest	shortest	path)	of	your	graph.

		var	pregel	=	require("@arangodb/pregel");

		pregel.start("sssp",	"graphname",	{source:"vertices/1337"})

Connected	Components

Pregel

171

There	are	two	algorithms	to	find	connected	components	in	a	graph.	To	find	weakly	connected	components	(WCC)	you	can	use	the
algorithm	named	"connectedcomponents",	to	find	strongly	connected	components	(SCC)	you	can	use	the	algorithm	named	"scc".	Both
algorithm	will	assign	a	component	ID	to	each	vertex.

A	weakly	connected	components	means	that	there	exist	a	path	from	every	vertex	pair	in	that	component.	WCC	is	a	very	simple	and	fast
algorithm,	which	will	only	work	correctly	on	undirected	graphs.	Your	results	on	directed	graphs	may	vary,	depending	on	how	connected
your	components	are.

In	the	case	of	SCC	a	component	means	every	vertex	is	reachable	from	any	other	vertex	in	the	same	component.	The	algorithm	is	more
complex	than	the	WCC	algorithm	and	requires	more	RAM,	because	each	vertex	needs	to	store	much	more	state.	Consider	using	WCC	if
you	think	your	data	may	be	suitable	for	it.

		var	pregel	=	require("@arangodb/pregel");

		//	weakly	connected	components

		pregel.start("connectedcomponents",	"graphname")

		//	strongly	connected	components

		pregel.start("scc",	"graphname")

Hyperlink-Induced	Topic	Search	(HITS)

HITS	is	a	link	analysis	algorithm	that	rates	Web	pages,	developed	by	Jon	Kleinberg	(The	algorithm	is	also	known	as	hubs	and
authorities).

The	idea	behind	Hubs	and	Authorities	comes	from	the	typical	structure	of	the	web:	Certain	websites	known	as	hubs,	serve	as	large
directories	that	are	not	actually	authoritative	on	the	information	that	they	hold.	These	hubs	are	used	as	compilations	of	a	broad	catalog	of
information	that	leads	users	direct	to	other	authoritative	webpages.	The	algorithm	assigns	each	vertex	two	scores:	The	authority-score
and	the	hub-score.	The	authority	score	rates	how	many	good	hubs	point	to	a	particular	vertex	(or	webpage),	the	hub	score	rates	how
good	(authoritative)	the	vertices	pointed	to	are.	For	more	see	https://en.wikipedia.org/wiki/HITS_algorithm

Our	version	of	the	algorithm	converges	after	a	certain	amount	of	time.	The	parameter	threshold	can	be	used	to	set	a	limit	for	the
convergence	(measured	as	maximum	absolute	difference	of	the	hub	and	authority	scores	between	the	current	and	last	iteration)	When	you
specify	the	result	field	name,	the	hub	score	will	be	stored	in	"_hub"	and	the	authority	score	in	"_auth".	The	algorithm	can	be	executed	like
this:

				var	pregel	=	require("@arangodb/pregel");

				var	handle	=	pregel.start("hits",	"yourgraph",	{threshold:0.00001,	resultField:	"score"});

Vertex	Centrality

Centrality	measures	help	identify	the	most	important	vertices	in	a	graph.	They	can	be	used	in	a	wide	range	of	applications:	For	example
they	can	be	used	to	identify	influencers	in	social	networks,	or	middle-men	in	terrorist	networks.	There	are	various	definitions	for
centrality,	the	simplest	one	being	the	vertex	degree.	These	definitions	were	not	designed	with	scalability	in	mind.	It	is	probably
impossible	to	discover	an	efficient	algorithm	which	computes	them	in	a	distributed	way.	Fortunately	there	are	scalable	substitutions
available,	which	should	be	equally	usable	for	most	use	cases.

Pregel

172

https://en.wikipedia.org/wiki/HITS_algorithm

Effective	Closeness

A	common	definitions	of	centrality	is	the	closeness	centrality	(or	closeness).	The	closeness	of	a	vertex	in	a	graph	is	the	inverse	average
length	of	the	shortest	path	between	the	vertex	and	all	other	vertices.	For	vertices	x,	y	and	shortest	distance	d(y,x)	it	is	defined	as

Effective	Closeness	approximates	the	closeness	measure.	The	algorithm	works	by	iteratively	estimating	the	number	of	shortest	paths
passing	through	each	vertex.	The	score	will	approximates	the	the	real	closeness	score,	since	it	is	not	possible	to	actually	count	all	shortest
paths	due	to	the	horrendous	O(n^2	d)	memory	requirements.	The	algorithm	is	from	the	paper	Centralities	in	Large	Networks:	Algorithms
and	Observations	(U	Kang	et.al.	2011)*

ArangoDBs	implementation	approximates	the	number	of	shortest	path	in	each	iteration	by	using	a	HyperLogLog	counter	with	64
buckets.	This	should	work	well	on	large	graphs	and	on	smaller	ones	as	well.	The	memory	requirements	should	be	O(n	*	d)	where	n	is	the
number	of	vertices	and	d	the	diameter	of	your	graph.	Each	vertex	will	store	a	counter	for	each	iteration	of	the	algorithm.	The	algorithm	can
be	used	like	this

				const	pregel	=	require("@arangodb/pregel");

				const	handle	=	pregel.start("effectivecloseness",	"yourgraph",	{resultField:	"closeness"});

LineRank

Another	common	measure	is	the	betweenness*	centrality:	It	measures	the	number	of	times	a	vertex	is	part	of	shortest	paths	between	any
pairs	of	vertices.	For	a	vertex	v	betweenness	is	defined	as

Where	the	σ	represents	the	number	of	shortest	paths	between	x	and	y,	and	σ(v)	represents	the	number	of	paths	also	passing	through	a
vertex	v.	By	intuition	a	vertex	with	higher	betweeness	centrality	will	have	more	information	passing	through	it.

LineRank	approximates	the	random	walk	betweenness	of	every	vertex	in	a	graph.	This	is	the	probability	that	someone	starting	on	an
arbitary	vertex,	will	visit	this	node	when	he	randomly	chooses	edges	to	visit.	The	algoruthm	essentially	builds	a	line	graph	out	of	your
graph	(switches	the	vertices	and	edges),	and	then	computes	a	score	similar	to	PageRank.	This	can	be	considered	a	scalable	equivalent	to
vertex	betweeness,	which	can	be	executed	distributedly	in	ArangoDB.	The	algorithm	is	from	the	paper	Centralities	in	Large	Networks:
Algorithms	and	Observations	(U	Kang	et.al.	2011)

Pregel

173

https://en.wikipedia.org/wiki/Betweenness_centrality

				const	pregel	=	require("@arangodb/pregel");

				const	handle	=	pregel.start("linerank",	"yourgraph",	{"resultField":	"rank"});

Community	Detection

Graphs	based	on	real	world	networks	often	have	a	community	structure.	This	means	it	is	possible	to	find	groups	of	vertices	such	that
each	each	vertex	group	is	internally	more	densely	connected	than	outside	the	group.	This	has	many	applications	when	you	want	to
analyze	your	networks,	for	example	Social	networks	include	community	groups	(the	origin	of	the	term,	in	fact)	based	on	common
location,	interests,	occupation,	etc.

Label	Propagation

Label	Propagation	can	be	used	to	implement	community	detection	on	large	graphs.	The	idea	is	that	each	vertex	should	be	in	the
community	that	most	of	his	neighbours	are	in.	We	iteratively	detemine	this	by	first	assigning	random	Community	ID's.	Then	each
itertation,	a	vertex	will	send	it's	current	community	ID	to	all	his	neighbor	vertices.	Then	each	vertex	adopts	the	community	ID	he	received
most	frequently	during	the	iteration.

The	algorithm	runs	until	it	converges,	which	likely	never	really	happens	on	large	graphs.	Therefore	you	need	to	specify	a	maximum
iteration	bound	which	suits	you.	The	default	bound	is	500	iterations,	which	is	likely	too	large	for	your	application.	Should	work	best	on
undirected	graphs,	results	on	directed	graphs	might	vary	depending	on	the	density	of	your	graph.

				const	pregel	=	require("@arangodb/pregel");

				const	handle	=	pregel.start("labelpropagation",	"yourgraph",	{maxGSS:100,	resultField:	"community"});

Speaker-Listener	Label	Propagation

The	Speaker-listener	Label	Propagation	(SLPA)	can	be	used	to	implement	community	detection.	It	works	similar	to	the	label	propagation
algorithm,	but	now	every	node	additionally	accumulates	a	memory	of	observed	labels	(instead	of	forgetting	all	but	one	label).

Before	the	algorithm	run,	every	vertex	is	initialized	with	an	unique	ID	(the	initial	community	label).	During	the	run	three	steps	are
executed	for	each	vertex:

1.	 Current	vertex	is	the	listener	all	other	vertices	are	speakers
2.	 Each	speaker	sends	out	a	label	from	memory,	we	send	out	a	random	label	with	a	probability	proportional	to	the	number	of	times	the

vertex	observed	the	label
3.	 The	listener	remembers	one	of	the	labels,	we	always	choose	the	most	frequently	observed	label

const	pregel	=	require("@arangodb/pregel");

const	handle	=	pregel.start("slpa",	"yourgraph",	{maxGSS:100,	resultField:	"community"});

You	can	also	execute	SLPA	with	the		maxCommunities		parameter	to	limit	the	number	of	ouput	communities.	Internally	the	algorithm	will
still	keep	the	memory	of	all	labels,	but	the	output	is	reduced	to	just	he		n		most	frequently	observed	labels.

const	pregel	=	require("@arangodb/pregel");

const	handle	=	pregel.start("slpa",	"yourgraph",	{maxGSS:100,	resultField:"community",	maxCommunities:1});

//	check	the	status	periodically	for	completion

pregel.status(handle);

Pregel

174

https://arxiv.org/pdf/1109.5720.pdf

Foxx
Traditionally,	server-side	projects	have	been	developed	as	standalone	applications	that	guide	the	communication	between	the	client-side
frontend	and	the	database	backend.	This	has	led	to	applications	that	were	either	developed	as	single	monoliths	or	that	duplicated	data
access	and	domain	logic	across	all	services	that	had	to	access	the	database.	Additionally,	tools	to	abstract	away	the	underlying	database
calls	could	incur	a	lot	of	network	overhead	when	using	remote	databases	without	careful	optimization.

ArangoDB	allows	application	developers	to	write	their	data	access	and	domain	logic	as	microservices	running	directly	within	the	database
with	native	access	to	in-memory	data.	The	Foxx	microservice	framework	makes	it	easy	to	extend	ArangoDB's	own	REST	API	with
custom	HTTP	endpoints	using	modern	JavaScript	running	on	the	same	V8	engine	you	know	from	Node.js	and	the	Google	Chrome	web
browser.

Unlike	traditional	approaches	to	storing	logic	in	the	database	(like	stored	procedures),	these	microservices	can	be	written	as	regular
structured	JavaScript	applications	that	can	be	easily	distributed	and	version	controlled.	Depending	on	your	project's	needs	Foxx	can	be
used	to	build	anything	from	optimized	REST	endpoints	performing	complex	data	access	to	entire	standalone	applications	running
directly	inside	the	database.

Foxx	Microservices

175

Foxx	at	a	glance
Each	Foxx	service	is	defined	by	a	JSON	manifest	specifying	the	entry	point,	any	scripts	defined	by	the	service,	possible	configuration
options	and	Foxx	dependencies,	as	well	as	other	metadata.	Within	a	service,	these	options	are	exposed	as	the	service	context.

At	the	heart	of	the	Foxx	framework	lies	the	Foxx	Router	which	is	used	to	define	HTTP	endpoints.	A	service	can	access	the	database
either	directly	from	its	context	using	prefixed	collections	or	the	ArangoDB	database	API.

While	Foxx	is	primarily	designed	to	be	used	to	access	the	database	itself,	ArangoDB	also	provides	an	API	to	make	HTTP	requests	to
external	services.

Scripts	can	be	used	to	perform	one-off	tasks,	which	can	also	be	scheduled	to	be	performed	asynchronously	using	the	built-in	job	queue.

Finally,	Foxx	services	can	be	installed	and	managed	over	the	Web-UI	or	through	ArangoDBs	HTTP	API.

How	does	it	work
Foxx	services	consist	of	JavaScript	code	running	in	the	V8	JavaScript	runtime	embedded	inside	ArangoDB.	Each	service	is	mounted	in
each	available	V8	context	(the	number	of	contexts	can	be	adjusted	in	the	ArangoDB	configuration).	Incoming	requests	are	distributed
accross	these	contexts	automatically.

If	you're	coming	from	another	JavaScript	environment	like	Node.js	this	is	similar	to	running	multiple	Node.js	processes	behind	a	load
balancer:	you	should	not	rely	on	server-side	state	(other	than	the	database	itself)	between	different	requests	as	there	is	no	way	of	making
sure	consecutive	requests	will	be	handled	in	the	same	context.

Because	the	JavaScript	code	is	running	inside	the	database	another	difference	is	that	all	Foxx	and	ArangoDB	APIs	are	purely	synchronous
and	should	be	considered	blocking.	This	is	especially	important	for	transactions,	which	in	ArangoDB	can	execute	arbitrary	code	but	may
have	to	lock	entire	collections	(effectively	preventing	any	data	to	be	written)	until	the	code	has	completed.

For	information	on	how	this	affects	interoperability	with	third-party	JavaScript	modules	written	for	other	JavaScript	environments	see
the	chapter	on	dependencies.

Development	mode
Development	mode	allows	you	to	make	changes	to	deployed	services	in-place	directly	on	the	database	server's	file	system	without
downloading	and	re-uploading	the	service	bundle.	Additionally	error	messages	will	contain	stacktraces.

You	can	toggle	development	mode	on	and	off	in	the	service	settings	tab	of	the	web	interface	or	using	the	HTTP	API.	Once	activated	the
service's	file	system	path	will	be	shown	in	the	info	tab.

Once	enabled	the	service's	source	files	and	manifest	will	be	re-evaluated,	and	the	setup	script	(if	present)	re-executed,	every	time	a	route
of	the	service	is	accessed,	effectively	re-deploying	the	service	on	every	request.	As	the	name	indicates	this	is	intended	to	be	used	strictly
during	development	and	is	most	definitely	a	bad	idea	on	production	servers.	The	additional	information	exposed	during	development
mode	may	include	file	system	paths	and	parts	of	the	service's	source	code.

Also	note	that	if	you	are	serving	static	files	as	part	of	your	service,	accessing	these	files	from	a	browser	may	also	trigger	a	re-deployment
of	the	service.	Finally,	making	HTTP	requests	to	a	service	running	in	development	mode	from	within	the	service	(i.e.	using	the
	@arangodb/request		module	to	access	the	service	itself)	is	probably	not	a	good	idea	either.

Beware	of	deleting	the	database	the	service	is	deployed	on:	it	will	erase	the	source	files	of	the	service	along	with	the	collections.	You
should	backup	the	code	you	worked	on	in	development	before	doing	that	to	avoid	losing	your	progress.

Foxx	store
The	Foxx	store	provides	access	to	a	number	of	ready-to-use	official	and	community-maintained	Foxx	services	you	can	install	with	a	single
click,	including	example	services	and	wrappers	for	external	SaaS	tools	like	transactional	e-mail	services,	bug	loggers	or	analytics	trackers.

You	can	find	the	Foxx	store	in	the	web	interface	by	using	the	Add	Service	button	in	the	service	list.

At	a	glance

176

Cluster-Foxx

When	running	ArangoDB	in	a	cluster	the	Foxx	services	will	run	on	each	coordinator.	Installing,	upgrading	and	uninstalling	services	on	any
coordinator	will	automatically	distribute	the	service	to	the	other	coordinators,	making	deployments	as	easy	as	in	single-server	mode.
However,	this	means	there	are	some	limitations:

You	should	avoid	any	kind	of	file	system	state	beyond	the	deployed	service	bundle	itself.	Don't	write	data	to	the	file	system	or	encode
any	expectations	of	the	file	system	state	other	than	the	files	in	the	service	folder	that	were	installed	as	part	of	the	service	(e.g.	file	uploads
or	custom	log	files).

Additionally,	the	development	mode	will	lead	to	an	inconsistent	state	of	the	cluster	until	it	is	disabled.	While	a	service	is	running	in
development	mode	you	can	make	changes	to	the	service	on	the	filesystem	of	any	coordinator	and	see	them	reflected	in	real	time	just	like
when	running	ArangoDB	as	a	single	server.	However	the	changes	made	on	one	coordinator	will	not	be	reflected	across	other	coordinators
until	the	development	mode	is	disabled.	When	disabling	the	development	mode	for	a	service,	the	coordinator	will	create	a	new	bundle	and
distribute	it	across	the	service	like	a	manual	upgrade	of	the	service.

For	these	reasons	it	is	strongly	recommended	not	to	use	development	mode	in	a	cluster	with	multiple	coordinators	unless	you	are	sure
that	no	requests	or	changes	will	be	made	to	other	coordinators	while	you	are	modifying	the	service.	Using	development	mode	in	a
production	cluster	is	extremely	unsafe	and	highly	discouraged.

At	a	glance

177

Getting	Started
We're	going	to	start	with	an	empty	folder.	This	will	be	the	root	folder	of	our	services.	You	can	name	it	something	clever	but	for	the	course
of	this	guide	we'll	assume	it's	called	the	name	of	your	service:		getting-started	.

First	we	need	to	create	a	manifest.	Create	a	new	file	called		manifest.json		and	add	the	following	content:

{

		"engines":	{

				"arangodb":	"^3.0.0"

		}

}

This	just	tells	ArangoDB	the	service	is	compatible	with	versions	3.0.0	and	later	(all	the	way	up	to	but	not	including	4.0.0),	allowing	older
versions	of	ArangoDB	to	understand	that	this	service	likely	won't	work	for	them	and	newer	versions	what	behavior	to	emulate	should
they	still	support	it.

The	little	hat	to	the	left	of	the	version	number	is	not	a	typo,	it's	called	a	"caret"	and	indicates	the	version	range.	Foxx	uses	semantic
versioning	(also	called	"semver")	for	most	of	its	version	handling.	You	can	find	out	more	about	how	semver	works	at	the	official	semver
website.

Next	we'll	need	to	specify	an	entry	point	to	our	service.	This	is	the	JavaScript	file	that	will	be	executed	to	define	our	service's	HTTP
endpoints.	We	can	do	this	by	adding	a	"main"	field	to	our	manifest:

{

		"engines":	{

				"arangodb":	"^3.0.0"

		},

		"main":	"index.js"

}

That's	all	we	need	in	our	manifest	for	now,	so	let's	next	create	the		index.js		file:

'use	strict';

const	createRouter	=	require('@arangodb/foxx/router');

const	router	=	createRouter();

module.context.use(router);

The	first	line	causes	our	file	to	be	interpreted	using	strict	mode.	All	examples	in	the	ArangoDB	documentation	assume	strict	mode,	so
you	might	want	to	familiarize	yourself	with	it	if	you	haven't	encountered	it	before.

The	second	line	imports	the		@arangodb/foxx/router		module	which	provides	a	function	for	creating	new	Foxx	routers.	We're	using	this
function	to	create	a	new		router		object	which	we'll	be	using	for	our	service.

The		module.context		is	the	so-called	Foxx	context	or	service	context.	This	variable	is	available	in	all	files	that	are	part	of	your	Foxx
service	and	provides	access	to	Foxx	APIs	specific	to	the	current	service,	like	the		use		method,	which	tells	Foxx	to	mount	the		router		in
this	service	(and	to	expose	its	routes	to	HTTP).

Next	let's	define	a	route	that	prints	a	generic	greeting:

//	continued

router.get('/hello-world',	function	(req,	res)	{

		res.send('Hello	World!');

})

.response(['text/plain'],	'A	generic	greeting.')

.summary('Generic	greeting')

.description('Prints	a	generic	greeting.');

The		router		provides	the	methods		get	,		post	,	etc	corresponding	to	each	HTTP	verb	as	well	as	the	catch-all		all	.	These	methods
indicate	that	the	given	route	should	be	used	to	handle	incoming	requests	with	the	given	HTTP	verb	(or	any	method	when	using		all).

Getting	started

178

http://semver.org
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

These	methods	take	an	optional	path	(if	omitted,	it	defaults	to		"/")	as	well	as	a	request	handler,	which	is	a	function	taking	the		req	
(request)	and		res		(response)	objects	to	handle	the	incoming	request	and	generate	the	outgoing	response.	If	you	have	used	the	express
framework	in	Node.js,	you	may	already	be	familiar	with	how	this	works,	otherwise	check	out	the	chapter	on	routes.

The	object	returned	by	the	router's	methods	provides	additional	methods	to	attach	metadata	and	validation	to	the	route.	We're	using
	summary		and		description		to	document	what	the	route	does	--	these	aren't	strictly	necessary	but	give	us	some	nice	auto-generated
documentation.	The		response		method	lets	us	additionally	document	the	response	content	type	and	what	the	response	body	will
represent.

Try	it	out

At	this	point	you	can	upload	the	service	folder	as	a	zip	archive	from	the	web	interface	using	the	Services	tab.

Click	Add	Service	then	pick	the	Zip	option	in	the	dialog.	You	will	need	to	provide	a	mount	path,	which	is	the	URL	prefix	at	which	the
service	will	be	mounted	(e.g.		/getting-started).

Once	you	have	picked	the	zip	archive	using	the	file	picker,	the	upload	should	begin	immediately	and	your	service	should	be	installed.
Otherwise	press	the	Install	button	and	wait	for	the	dialog	to	disappear	and	the	service	to	show	up	in	the	service	list.

Click	anywhere	on	the	card	with	your	mount	path	on	the	label	to	open	the	service's	details.

In	the	API	documentation	you	should	see	the	route	we	defined	earlier	(/hello-world)	with	the	word		GET		next	to	it	indicating	the
HTTP	method	it	supports	and	the		summary		we	provided	on	the	right.	By	clicking	on	the	route's	path	you	can	open	the	documentation
for	the	route.

Note	that	the		description		we	provided	appears	in	the	generated	documentation	as	well	as	the	description	we	added	to	the		response	
(which	should	correctly	indicate	the	content	type		text/plain	,	i.e.	plain	text).

Click	the	Try	it	out!	button	to	send	a	request	to	the	route	and	you	should	see	an	example	request	with	the	service's	response:	"Hello
World!".

Congratulations!	You	have	just	created,	installed	and	used	your	first	Foxx	service.

Parameter	validation

Let's	add	another	route	that	provides	a	more	personalized	greeting:

//	continued

const	joi	=	require('joi');

router.get('/hello/:name',	function	(req,	res)	{

		res.send(`Hello	${req.pathParams.name}`);

})

.pathParam('name',	joi.string().required(),	'Name	to	greet.')

.response(['text/plain'],	'A	personalized	greeting.')

.summary('Personalized	greeting')

.description('Prints	a	personalized	greeting.');

The	first	line	imports	the		joi		module	from	npm	which	comes	bundled	with	ArangoDB.	Joi	is	a	validation	library	that	is	used
throughout	Foxx	to	define	schemas	and	parameter	types.

Note:	You	can	bundle	your	own	modules	from	npm	by	installing	them	in	your	service	folder	and	making	sure	the		node_modules		folder	is
included	in	your	zip	archive.	For	more	information	see	the	section	on	module	dependencies	in	the	chapter	on	dependencies.

The		pathParam		method	allows	us	to	specify	parameters	we	are	expecting	in	the	path.	The	first	argument	corresponds	to	the	parameter
name	in	the	path,	the	second	argument	is	a	joi	schema	the	parameter	is	expected	to	match	and	the	final	argument	serves	to	describe	the
parameter	in	the	API	documentation.

The	path	parameters	are	accessible	from	the		pathParams		property	of	the	request	object.	We're	using	a	template	string	to	generate	the
server's	response	containing	the	parameter's	value.

Getting	started

179

https://www.npmjs.com/package/joi

Note	that	routes	with	path	parameters	that	fail	to	validate	for	the	request	URL	will	be	skipped	as	if	they	wouldn't	exist.	This	allows	you
to	define	multiple	routes	that	are	only	distinguished	by	the	schemas	of	their	path	parameters	(e.g.	a	route	taking	only	numeric	parameters
and	one	taking	any	string	as	a	fallback).

Let's	take	this	further	and	create	a	route	that	takes	a	JSON	request	body:

//	continued

router.post('/sum',	function	(req,	res)	{

		const	values	=	req.body.values;

		res.send({

				result:	values.reduce(function	(a,	b)	{

						return	a	+	b;

				},	0)

		});

})

.body(joi.object({

		values:	joi.array().items(joi.number().required()).required()

}).required(),	'Values	to	add	together.')

.response(joi.object({

		result:	joi.number().required()

}).required(),	'Sum	of	the	input	values.')

.summary('Add	up	numbers')

.description('Calculates	the	sum	of	an	array	of	number	values.');

Note	that	we	used		post		to	define	this	route	instead	of		get		(which	does	not	support	request	bodies).	Trying	to	send	a	GET	request	to
this	route's	URL	(in	the	absence	of	a		get		route	for	the	same	path)	will	result	in	Foxx	responding	with	an	appropriate	error	response,
indicating	the	supported	HTTP	methods.

As	this	route	not	only	expects	a	JSON	object	as	input	but	also	responds	with	a	JSON	object	as	output	we	need	to	define	two	schemas.
We	don't	strictly	need	a	response	schema	but	it	helps	documenting	what	the	route	should	be	expected	to	respond	with	and	will	show	up
in	the	API	documentation.

Because	we're	passing	a	schema	to	the		response		method	we	don't	need	to	explicitly	tell	Foxx	we	are	sending	a	JSON	response.	The
presence	of	a	schema	in	the	absence	of	a	content	type	always	implies	we	want	JSON.	Though	we	could	just	add		["application/json"]	
as	an	additional	argument	after	the	schema	if	we	wanted	to	make	this	more	explicit.

The		body		method	works	the	same	way	as	the		response		method	except	the	schema	will	be	used	to	validate	the	request	body.	If	the
request	body	can't	be	parsed	as	JSON	or	doesn't	match	the	schema,	Foxx	will	reject	the	request	with	an	appropriate	error	response.

Creating	collections

The	real	power	of	Foxx	comes	from	interacting	with	the	database	itself.	In	order	to	be	able	to	use	a	collection	from	within	our	service,	we
should	first	make	sure	that	the	collection	actually	exists.	The	right	place	to	create	collections	your	service	is	going	to	use	is	in	a	setup
script,	which	Foxx	will	execute	for	you	when	installing	or	updating	the	service.

First	create	a	new	folder	called	"scripts"	in	the	service	folder,	which	will	be	where	our	scripts	are	going	to	live.	For	simplicity's	sake,	our
setup	script	will	live	in	a	file	called		setup.js		inside	that	folder:

//	continued

'use	strict';

const	db	=	require('@arangodb').db;

const	collectionName	=	'myFoxxCollection';

if	(!db._collection(collectionName))	{

		db._createDocumentCollection(collectionName);

}

The	script	uses	the		db		object	from	the		@arangodb		module,	which	lets	us	interact	with	the	database	the	Foxx	service	was	installed	in
and	the	collections	inside	that	database.	Because	the	script	may	be	executed	multiple	times	(i.e.	whenever	we	update	the	service	or	when
the	server	is	restarted)	we	need	to	make	sure	we	don't	accidentally	try	to	create	the	same	collection	twice	(which	would	result	in	an
exception);	we	do	that	by	first	checking	whether	it	already	exists	before	creating	it.

Getting	started

180

The		_collection		method	looks	up	a	collection	by	name	and	returns		null		if	no	collection	with	that	name	was	found.	The
	_createDocumentCollection		method	creates	a	new	document	collection	by	name	(_createEdgeCollection		also	exists	and	works
analogously	for	edge	collections).

Note:	Because	we	have	hardcoded	the	collection	name,	multiple	copies	of	the	service	installed	alongside	each	other	in	the	same	database
will	share	the	same	collection.	Because	this	may	not	always	be	what	you	want,	the	Foxx	context	also	provides	the		collectionName	
method	which	applies	a	mount	point	specific	prefix	to	any	given	collection	name	to	make	it	unique	to	the	service.	It	also	provides	the
	collection		method,	which	behaves	almost	exactly	like		db._collection		except	it	also	applies	the	prefix	before	looking	the	collection
up.

Next	we	need	to	tell	our	service	about	the	script	by	adding	it	to	the	manifest	file:

{

		"engines":	{

				"arangodb":	"^3.0.0"

		},

		"main":	"index.js",

		"scripts":	{

				"setup":	"scripts/setup.js"

		}

}

The	only	thing	that	has	changed	is	that	we	added	a	"scripts"	field	specifying	the	path	of	the	setup	script	we	just	wrote.

Go	back	to	the	web	interface	and	update	the	service	with	our	new	code,	then	check	the	Collections	tab.	If	everything	worked	right,	you
should	see	a	new	collection	called	"myFoxxCollection".

Accessing	collections
Let's	expand	our	service	by	adding	a	few	more	routes	to	our		index.js	:

//	continued

const	db	=	require('@arangodb').db;

const	errors	=	require('@arangodb').errors;

const	foxxColl	=	db._collection('myFoxxCollection');

const	DOC_NOT_FOUND	=	errors.ERROR_ARANGO_DOCUMENT_NOT_FOUND.code;

router.post('/entries',	function	(req,	res)	{

		const	data	=	req.body;

		const	meta	=	foxxColl.save(req.body);

		res.send(Object.assign(data,	meta));

})

.body(joi.object().required(),	'Entry	to	store	in	the	collection.')

.response(joi.object().required(),	'Entry	stored	in	the	collection.')

.summary('Store	an	entry')

.description('Stores	an	entry	in	the	"myFoxxCollection"	collection.');

router.get('/entries/:key',	function	(req,	res)	{

		try	{

				const	data	=	foxxColl.document(req.pathParams.key);

				res.send(data)

		}	catch	(e)	{

				if	(!e.isArangoError	||	e.errorNum	!==	DOC_NOT_FOUND)	{

						throw	e;

				}

				res.throw(404,	'The	entry	does	not	exist',	e);

		}

})

.pathParam('key',	joi.string().required(),	'Key	of	the	entry.')

.response(joi.object().required(),	'Entry	stored	in	the	collection.')

.summary('Retrieve	an	entry')

.description('Retrieves	an	entry	from	the	"myFoxxCollection"	collection	by	key.');

We're	using	the		save		and		document		methods	of	the	collection	object	to	store	and	retrieve	documents	in	the	collection	we	created	in	our
setup	script.	Because	we	don't	care	what	the	documents	look	like	we	allow	any	attributes	on	the	request	body	and	just	accept	an	object.

Getting	started

181

Because	the	key	will	be	automatically	generated	by	ArangoDB	when	one	wasn't	specified	in	the	request	body,	we're	using
	Object.assign		to	apply	the	attributes	of	the	metadata	object	returned	by	the		save		method	to	the	document	before	returning	it	from
our	first	route.

The		document		method	returns	a	document	in	a	collection	by	its		_key		or		_id	.	However	when	no	matching	document	exists	it	throws
an		ArangoError		exception.	Because	we	want	to	provide	a	more	descriptive	error	message	than	ArangoDB	does	out	of	the	box,	we	need
to	handle	that	error	explicitly.

All		ArangoError		exceptions	have	a	truthy	attribute		isArangoError		that	helps	you	recognizing	these	errors	without	having	to	worry
about		instanceof		checks.	They	also	provide	an		errorNum		and	an		errorMessage	.	If	you	want	to	check	for	specific	errors	you	can	just
import	the		errors		object	from	the		@arangodb		module	instead	of	having	to	memorize	numeric	error	codes.

Instead	of	defining	our	own	response	logic	for	the	error	case	we	just	use		res.throw	,	which	makes	the	response	object	throw	an
exception	Foxx	can	recognize	and	convert	to	the	appropriate	server	response.	We	also	pass	along	the	exception	itself	so	Foxx	can	provide
more	diagnostic	information	when	we	want	it	to.

We	could	extend	the	post	route	to	support	arrays	of	objects	as	well,	each	object	following	a	certain	schema:

//	store	schema	in	variable	to	make	it	re-usable,	see	.body()

const	docSchema	=	joi.object().required().keys({

		name:	joi.string().required(),

		age:	joi.number().required()

}).unknown();	//	allow	additional	attributes

router.post('/entries',	function	(req,	res)	{

		const	multiple	=	Array.isArray(req.body);

		const	body	=	multiple	?	req.body	:	[req.body];

		let	data	=	[];

		for	(var	doc	of	body)	{

				const	meta	=	foxxColl.save(doc);

				data.push(Object.assign(doc,	meta));

		}

		res.send(multiple	?	data	:	data[0]);

})

.body(joi.alternatives().try(

		docSchema,

		joi.array().items(docSchema)

),	'Entry	or	entries	to	store	in	the	collection.')

.response(joi.alternatives().try(

		joi.object().required(),

		joi.array().items(joi.object().required())

),	'Entry	or	entries	stored	in	the	collection.')

.summary('Store	entry	or	entries')

.description('Store	a	single	entry	or	multiple	entries	in	the	"myFoxxCollection"	collection.');

Writing	database	queries
Storing	and	retrieving	entries	is	fine,	but	right	now	we	have	to	memorize	each	key	when	we	create	an	entry.	Let's	add	a	route	that	gives	us
a	list	of	the	keys	of	all	entries	so	we	can	use	those	to	look	an	entry	up	in	detail.

The	naïve	approach	would	be	to	use	the		toArray()		method	to	convert	the	entire	collection	to	an	array	and	just	return	that.	But	we're
only	interested	in	the	keys	and	there	might	potentially	be	so	many	entries	that	first	retrieving	every	single	document	might	get	unwieldy.
Let's	write	a	short	AQL	query	to	do	this	instead:

//	continued

const	aql	=	require('@arangodb').aql;

router.get('/entries',	function	(req,	res)	{

		const	keys	=	db._query(aql`

				FOR	entry	IN	${foxxColl}

				RETURN	entry._key

		`);

		res.send(keys);

})

.response(joi.array().items(

		joi.string().required()

Getting	started

182

).required(),	'List	of	entry	keys.')

.summary('List	entry	keys')

.description('Assembles	a	list	of	keys	of	entries	in	the	collection.');

Here	we're	using	two	new	things:

The		_query		method	executes	an	AQL	query	in	the	active	database.

The		aql		template	string	handler	allows	us	to	write	multi-line	AQL	queries	and	also	handles	query	parameters	and	collection	names.
Instead	of	hardcoding	the	name	of	the	collection	we	want	to	use	in	the	query	we	can	simply	reference	the		foxxColl		variable	we	defined
earlier	--	it	recognizes	the	value	as	an	ArangoDB	collection	object	and	knows	we	are	specifying	a	collection	rather	than	a	regular	value
even	though	AQL	distinguishes	between	the	two.

Note:	If	you	aren't	used	to	JavaScript	template	strings	and	template	string	handlers	just	think	of		aql		as	a	function	that	receives	the
multiline	string	split	at	every		${}		expression	as	well	as	an	array	of	the	values	of	those	expressions	--	that's	actually	all	there	is	to	it.

Alternatively,	here's	a	version	without	template	strings	(notice	how	much	cleaner	the		aql		version	will	be	in	comparison	when	you	have
multiple	variables):

const	keys	=	db._query(

		'FOR	entry	IN	@@coll	RETURN	entry._key',

		{'@coll':	foxxColl}

);

Next	steps

You	now	know	how	to	create	a	Foxx	service	from	scratch,	how	to	handle	user	input	and	how	to	access	the	database	from	within	your
Foxx	service	to	store,	retrieve	and	query	data	you	store	inside	ArangoDB.	This	should	allow	you	to	build	meaningful	APIs	for	your	own
applications	but	there	are	many	more	things	you	can	do	with	Foxx:

Need	to	go	faster?	Turn	on	development	mode	and	hack	on	your	code	right	on	the	server.

Concerned	about	security?	You	could	add	authentication	to	your	service	to	protect	access	to	the	data	before	it	even	leaves	the
database.

Writing	a	single	page	app?	You	could	store	some	basic	assets	right	inside	your	Foxx	service.

Need	to	integrate	external	services?	You	can	make	HTTP	requests	from	inside	Foxx	and	use	queued	jobs	to	perform	that	work	in	the
background.

Tired	of	reinventing	the	wheel?	Learn	about	dependencies.

Everything	broken?	You	can	write	tests	to	make	sure	your	logic	remains	sound.

Getting	started

183

Manifest	files
Every	service	comes	with	a		manifest.json		file	providing	metadata.	The	following	fields	are	allowed	in	manifests:

configuration:		Object		(optional)

An	object	defining	the	configuration	options	this	service	requires.

defaultDocument:		string		(optional)

If	specified,	the		/		(root)	route	of	the	service	will	automatically	redirect	to	the	given	relative	path,	e.g.:

"defaultDocument":	"index.html"

This	would	have	the	same	effect	as	creating	the	following	route	in	JavaScript:

const	createRouter	=	require('@arangodb/foxx/router');

const	indexRouter	=	createRouter();

indexRouter.all('/',	function	(req,	res)	{

		res.redirect('index.html');

});

module.context.use(indexRouter);

Note:	As	of	3.0.0	this	field	can	safely	be	omitted;	the	value	no	longer	defaults	to		"index.html"	.

dependencies:		Object		(optional)	and	provides:		Object		(optional)

Objects	specifying	other	services	this	service	has	as	dependencies	and	what	dependencies	it	can	provide	to	other	services.

engines:		Object		(optional)

An	object	indicating	the	semantic	version	ranges	of	ArangoDB	(or	compatible	environments)	the	service	will	be	compatible	with,
e.g.:

"engines":	{

		"arangodb":	"^3.0.0"

}

This	should	correctly	indicate	the	minimum	version	of	ArangoDB	the	service	has	been	tested	against.	Foxx	maintains	a	strict
semantic	versioning	policy	as	of	ArangoDB	3.0.0	so	it	is	generally	safe	to	use	semver	ranges	(e.g.	 	̂ 3.0.0		to	match	any	version
greater	or	equal	to		3.0.0		and	below		4.0.0)	for	maximum	compatibility.

files:		Object		(optional)

An	object	defining	file	assets	served	by	this	service.

lib:		string		(Default:		".")

The	relative	path	to	the	Foxx	JavaScript	files	in	the	service,	e.g.:

"lib":	"lib"

This	would	result	in	the	main	entry	point	(see	below)	and	other	JavaScript	paths	being	resolved	as	relative	to	the		lib		folder	inside
the	service	folder.

main:		string		(optional)

The	relative	path	to	the	main	entry	point	of	this	service	(relative	to	lib,	see	above),	e.g.:

"main":	"index.js"

This	would	result	in	Foxx	loading	and	executing	the	file		index.js		when	the	service	is	mounted	or	started.

Service	manifest

184

http://semver.org

Note:	while	it	is	technically	possible	to	omit	this	field,	you	will	likely	want	to	provide	an	entry	point	to	your	service	as	this	is	the
only	way	to	expose	HTTP	routes	or	export	a	JavaScript	API.

scripts:		Object		(optional)

An	object	defining	named	scripts	provided	by	this	service,	which	can	either	be	used	directly	or	as	queued	jobs	by	other	services.

tests:		string		or		Array<string>		(optional)

A	path	or	list	of	paths	of	JavaScript	tests	provided	for	this	service.

Additionally	manifests	can	provide	the	following	metadata:

author:		string		(optional)

The	full	name	of	the	author	of	the	service	(i.e.	you).	This	will	be	shown	in	the	web	interface.

contributors:		Array<string>		(optional)

A	list	of	names	of	people	that	have	contributed	to	the	development	of	the	service	in	some	way.	This	will	be	shown	in	the	web
interface.

description:		string		(optional)

A	human-readable	description	of	the	service.	This	will	be	shown	in	the	web	interface.

keywords:		Array<string>		(optional)

A	list	of	keywords	that	help	categorize	this	service.	This	is	used	by	the	Foxx	Store	installers	to	organize	services.

license:		string		(optional)

A	string	identifying	the	license	under	which	the	service	is	published,	ideally	in	the	form	of	an	SPDX	license	identifier.	This	will	be
shown	in	the	web	interface.

name:		string		(optional)

The	name	of	the	Foxx	service.	Allowed	characters	are	A-Z,	0-9,	the	ASCII	hyphen	(-)	and	underscore	(_)	characters.	The	name
must	not	start	with	a	number.	This	will	be	shown	in	the	web	interface.

thumbnail:		string		(optional)

The	filename	of	a	thumbnail	that	will	be	used	alongside	the	service	in	the	web	interface.	This	should	be	a	JPEG	or	PNG	image	that
looks	good	at	sizes	50x50	and	160x160.

version:		string		(optional)

The	version	number	of	the	Foxx	service.	The	version	number	must	follow	the	semantic	versioning	format.	This	will	be	shown	in	the
web	interface.

Examples

{

		"name":	"example-foxx-service",

		"version":	"3.0.0-dev",

		"license":	"MIT",

		"description":	"An	example	service	with	a	relatively	full-featured	manifest.",

		"thumbnail":	"foxx-icon.png",

		"keywords":	["demo",	"service"],

		"author":	"ArangoDB	GmbH",

		"contributors":	[

				"Alan	Plum	<alan@arangodb.example>"

],

		"lib":	"dist",

		"main":	"entry.js",

		"defaultDocument":	"welcome.html",

		"engines":	{

				"arangodb":	"^3.0.0"

		},

		"files":	{

Service	manifest

185

https://spdx.org/licenses
http://semver.org

				"welcome.html":	"assets/index.html",

				"hello.jpg":	"assets/hello.jpg"

				"world.jpg":	{

						"path":	"assets/world.jpg",

						"type":	"image/jpeg",

						"gzip":	false

				}

		},

		"tests":	"dist/**.spec.js"

}

Service	manifest

186

Foxx	service	context
The	service	context	provides	access	to	methods	and	attributes	that	are	specific	to	a	given	service.	In	a	Foxx	service	the	context	is	generally
available	as	the		module.context		variable.	Within	a	router's	request	handler	the	request	and	response	objects'		context		attribute	also
provide	access	to	the	context	of	the	service	the	route	was	mounted	in	(which	may	be	different	from	the	one	the	route	handler	was	defined
in).

Examples

//	in	service	/my-foxx-1

const	createRouter	=	require('@arangodb/foxx/router');

const	router	=	createRouter();

//	See	the	chapter	on	dependencies	for	more	info	on

//	how	exports	and	dependencies	work	across	services

module.exports	=	{routes:	router};

router.get(function	(req,	res)	{

		module.context.mount	===	'/my-foxx-1';

		req.context.mount	===	'/my-foxx-2';

		res.write('Hello	from	my-foxx-1');

});

//	in	service	/my-foxx-2

const	createRouter	=	require('@arangodb/foxx/router');

const	router2	=	createRouter();

module.context.use(router2);

router2.post(function	(req,	res)	{

		module.context.mount	===	'/my-foxx-2';

		req.context.mount	===	'/my-foxx-2';

		res.write('Hello	from	my-foxx-2');

});

const	router1	=	module.context.dependencies.myFoxx1.routes;

module.context.use(router1);

The	service	context	specifies	the	following	properties:

argv:		any	

Any	arguments	passed	in	if	the	current	file	was	executed	as	a	script	or	queued	job.

basePath:		string	

The	file	system	path	of	the	service,	i.e.	the	folder	in	which	the	service	was	installed	to	by	ArangoDB.

baseUrl:		string	

The	base	URL	of	the	service,	relative	to	the	ArangoDB	server,	e.g.		/_db/_system/my-foxx	.

collectionPrefix:		string	

The	prefix	that	will	be	used	by	collection	and	collectionName	to	derive	the	names	of	service-specific	collections.	This	is	derived	from
the	service's	mount	point,	e.g.		/my-foxx		becomes		my_foxx	.

configuration:		Object	

Configuration	options	for	the	service.

dependencies:		Object	

Configured	dependencies	for	the	service.

isDevelopment:		boolean	

Indicates	whether	the	service	is	running	in	development	mode.

Service	context

187

isProduction:		boolean	

The	inverse	of	isDevelopment.

manifest:		Object	

The	parsed	manifest	file	of	the	service.

mount:		string	

The	mount	point	of	the	service,	e.g.		/my-foxx	.

apiDocumentation
	module.context.apiDocumentation([options]):	Function	

DEPRECATED

Creates	a	request	handler	that	serves	the	API	documentation.

Note:	This	method	has	been	deprecated	in	ArangoDB	3.1	and	replaced	with	the	more	straightforward		createDocumentationRouter	
method	providing	the	same	functionality.

Arguments

See		createDocumentationRouter		below.

Examples

//	Serve	the	API	docs	for	the	current	service

router.get('/docs/*',	module.context.apiDocumentation());

//	Note	that	the	path	must	end	with	a	wildcard

//	and	the	route	must	use	HTTP	GET.

createDocumentationRouter
	module.context.createDocumentationRouter([options]):	Router	

Creates	a	router	that	serves	the	API	documentation.

Note:	The	router	can	be	mounted	like	any	other	child	router	(see	examples	below).

Arguments

options:		Object		(optional)

An	object	with	any	of	the	following	properties:

mount:		string		(Default:		module.context.mount)

The	mount	path	of	the	service	to	serve	the	documentation	of.

indexFile:		string		(Default:		"index.html")

File	name	of	the	HTML	file	serving	the	API	documentation.

swaggerRoot:		string		(optional)

Full	path	of	the	folder	containing	the	Swagger	assets	and	the	indexFile.	Defaults	to	the	Swagger	assets	used	by	the	web
interface.

before:		Function		(optional)

A	function	that	will	be	executed	before	a	request	is	handled.

If	the	function	returns		false		the	request	will	not	be	processed	any	further.

If	the	function	returns	an	object,	its	attributes	will	be	used	to	override	the	options	for	the	current	request.

Service	context

188

Any	other	return	value	will	be	ignored.

If	options	is	a	function	it	will	be	used	as	the	before	option.

If	options	is	a	string	it	will	be	used	as	the	swaggerRoot	option.

Returns	a	Foxx	router.

Examples

//	Serve	the	API	docs	for	the	current	service

router.use('/docs',	module.context.createDocumentationRouter());

//	--	or	--

//	Serve	the	API	docs	for	the	service	the	router	is	mounted	in

router.use('/docs',	module.context.createDocumentationRouter(function	(req)	{

		return	{mount:	req.context.mount};

}));

//	--	or	--

//	Serve	the	API	docs	only	for	users	authenticated	with	ArangoDB

router.use('/docs',	module.context.createDocumentationRouter(function	(req,	res)	{

		if	(req.suffix	===	'swagger.json'	&&	!req.arangoUser)	{

				res.throw(401,	'Not	authenticated');

		}

}));

collection
	module.context.collection(name):	ArangoCollection	|	null	

Passes	the	given	name	to	collectionName,	then	looks	up	the	collection	with	the	prefixed	name.

Arguments

name:		string	

Unprefixed	name	of	the	service-specific	collection.

Returns	a	collection	or		null		if	no	collection	with	the	prefixed	name	exists.

collectionName
	module.context.collectionName(name):	string	

Prefixes	the	given	name	with	the	collectionPrefix	for	this	service.

Arguments

name:		string	

Unprefixed	name	of	the	service-specific	collection.

Returns	the	prefixed	name.

Examples

module.context.mount	===	'/my-foxx'

module.context.collectionName('doodads')	===	'my_foxx_doodads'

file
	module.context.file(name,	[encoding]):	Buffer	|	string	

Passes	the	given	name	to	fileName,	then	loads	the	file	with	the	resulting	name.

Service	context

189

Arguments

name:		string	

Name	of	the	file	to	load,	relative	to	the	current	service.

encoding:		string		(optional)

Encoding	of	the	file,	e.g.		utf-8	.	If	omitted	the	file	will	be	loaded	as	a	raw	buffer	instead	of	a	string.

Returns	the	file's	contents.

fileName
	module.context.fileName(name):	string	

Resolves	the	given	file	name	relative	to	the	current	service.

Arguments

name:		string	

Name	of	the	file,	relative	to	the	current	service.

Returns	the	absolute	file	path.

use
	module.context.use([path],	router):	Endpoint	

Mounts	a	given	router	on	the	service	to	expose	the	router's	routes	on	the	service's	mount	point.

Arguments

path:		string		(Default:		"/")

Path	to	mount	the	router	at,	relative	to	the	service's	mount	point.

router:		Router	|	Middleware	

A	router	or	middleware	to	mount.

Returns	an	Endpoint	for	the	given	router	or	middleware.

Note:	Mounting	services	at	run	time	(e.g.	within	request	handlers	or	queued	jobs)	is	not	supported.

Service	context

190

Foxx	configuration
Foxx	services	can	define	configuration	parameters	to	make	them	more	re-usable.

The		configuration		object	maps	names	to	configuration	parameters:

The	key	is	the	name	under	which	the	parameter	will	be	available	on	the	service	context's		configuration		property.

The	value	is	a	parameter	definition.

The	parameter	definition	can	have	the	following	properties:

description:		string	

Human	readable	description	of	the	parameter.

type:		string		(Default:		"string")

Type	of	the	configuration	parameter.	Supported	values	are:

	"integer"		or		"int"	:	any	finite	integer	number.

	"boolean"		or		"bool"	:	the	values		true		or		false	.

	"number"	:	any	finite	decimal	or	integer	number.

	"string"	:	any	string	value.

	"json"	:	any	well-formed	JSON	value.

	"password"	:	like	string	but	will	be	displayed	as	a	masked	input	field	in	the	web	frontend.

default:		any	

Default	value	of	the	configuration	parameter.

required:	(Default:		true)

Whether	the	parameter	is	required.

If	the	configuration	has	parameters	that	do	not	specify	a	default	value,	you	need	to	configure	the	service	before	it	becomes	active.	In	the
meantime	a	fallback	servicelication	will	be	mounted	that	responds	to	all	requests	with	a	HTTP	500	status	code	indicating	a	server-side
error.

The	configuration	parameters	of	a	mounted	service	can	be	adjusted	from	the	web	interface	by	clicking	the	Configuration	button	in	the
service	details.

Examples

"configuration":	{

		"currency":	{

				"description":	"Currency	symbol	to	use	for	prices	in	the	shop.",

				"default":	"$",

				"type":	"string"

		},

		"secretKey":	{

				"description":	"Secret	key	to	use	for	signing	session	tokens.",

				"type":	"password"

		}

}

Configuration

191

Dependency	management
There	are	two	things	commonly	called	"dependencies"	in	Foxx:

Module	dependencies,	i.e.	dependencies	on	external	JavaScript	modules	(e.g.	from	the	public	npm	registry)

Foxx	dependencies,	i.e.	dependencies	between	Foxx	services

Let's	look	at	them	in	more	detail:

Module	dependencies

You	can	use	the		node_modules		folder	to	bundle	third-party	Foxx-compatible	npm	and	Node.js	modules	with	your	Foxx	service.
Typically	this	is	achieved	by	adding	a		package.json		file	to	your	project	specifying	npm	dependencies	using	the		dependencies		attribute
and	installing	them	with	the	npm	command-line	tool.

Make	sure	to	include	the	actual		node_modules		folder	in	your	Foxx	service	bundle	as	ArangoDB	will	not	do	anything	special	to	install
these	dependencies.	Also	keep	in	mind	that	bundling	extraneous	modules	like	development	dependencies	may	bloat	the	file	size	of	your
Foxx	service	bundle.

Compatibility	caveats

Unlike	JavaScript	in	browsers	or	Node.js,	the	JavaScript	environment	in	ArangoDB	is	synchronous.	This	means	any	modules	that
depend	on	asynchronous	behaviour	like	promises	or		setTimeout		will	not	behave	correctly	in	ArangoDB	or	Foxx.	Additionally	unlike
Node.js	ArangoDB	does	not	support	native	extensions.	All	modules	have	to	be	implemented	in	pure	JavaScript.

While	ArangoDB	provides	a	lot	of	compatibility	code	to	support	modules	written	for	Node.js,	some	Node.js	built-in	modules	can	not	be
provided	by	ArangoDB.	For	a	closer	look	at	the	Node.js	modules	ArangoDB	does	or	does	not	provide	check	out	the	appendix	on
JavaScript	modules.

Also	note	that	these	restrictions	not	only	apply	on	the	modules	you	wish	to	install	but	also	the	dependencies	of	those	modules.	As	a	rule
of	thumb:	modules	written	to	work	in	Node.js	and	the	browser	that	do	not	rely	on	async	behaviour	should	generally	work;	modules	that
rely	on	network	or	filesystem	I/O	or	make	heavy	use	of	async	behaviour	most	likely	will	not.

Foxx	dependencies

Foxx	dependencies	can	be	declared	in	a	service's	manifest	using	the		provides		and		dependencies		fields:

	provides		lists	the	dependencies	a	given	service	provides,	i.e.	which	APIs	it	claims	to	be	compatible	with

	dependencies		lists	the	dependencies	a	given	service	uses,	i.e.	which	APIs	its	dependencies	need	to	be	compatible	with

A	dependency	name	should	generally	use	the	same	format	as	a	namespaced	(org-scoped)	NPM	module,	e.g.		@foxx/sessions	.

Dependency	names	refer	to	the	external	JavaScript	API	of	a	service	rather	than	specific	services	implementing	those	APIs.	Some
dependency	names	defined	by	officially	maintained	services	are:

	@foxx/auth		(version		1.0.0)
	@foxx/api-keys		(version		1.0.0)
	@foxx/bugsnag		(versions		1.0.0		and		2.0.0)
	@foxx/mailgun		(versions		1.0.0		and		2.0.0)
	@foxx/postageapp		(versions		1.0.0		and		2.0.0)
	@foxx/postmark		(versions		1.0.0		and		2.0.0)
	@foxx/sendgrid		(versions		1.0.0		and		2.0.0)
	@foxx/oauth2		(versions		1.0.0		and		2.0.0)
	@foxx/segment-io		(versions		1.0.0		and		2.0.0)
	@foxx/sessions		(versions		1.0.0		and		2.0.0)
	@foxx/users		(versions		1.0.0	,		2.0.0		and		3.0.0)

Dependencies

192

A		provides		definition	maps	each	provided	dependency's	name	to	the	provided	version:

"provides":	{

		"@foxx/auth":	"1.0.0"

}

A		dependencies		definition	maps	the	local	alias	of	a	given	dependency	against	its	name	and	the	supported	version	range	(either	as	a
JSON	object	or	a	shorthand	string):

"dependencies":	{

		"mySessions":	"@foxx/sessions:^2.0.0",

		"myAuth":	{

				"name":	"@foxx/auth",

				"version":	"^1.0.0",

				"description":	"This	description	is	entirely	optional.",

				"required":	false

		}

}

Dependencies	can	be	configured	from	the	web	interface	in	a	service's	settings	tab	using	the	Dependencies	button.

The	value	for	each	dependency	should	be	the	database-relative	mount	path	of	the	service	(including	the	leading	slash).	In	order	to	be
usable	as	the	dependency	of	another	service	both	services	need	to	be	mounted	in	the	same	database.	A	service	can	be	used	to	provide
multiple	dependencies	for	the	same	service	(as	long	as	the	expected	JavaScript	APIs	don't	conflict).

A	service	that	has	unconfigured	required	dependencies	can	not	be	used	until	all	of	its	dependencies	have	been	configured.

It	is	possible	to	specify	the	mount	path	of	a	service	that	does	not	actually	declare	the	dependency	as	provided.	There	is	currently	no
validation	beyond	the	manifest	formats.

When	a	service	uses	another	mounted	service	as	a	dependency	the	dependency's		main		entry	file's		exports		object	becomes	available	in
the		module.context.dependencies		object	of	the	other	service:

Examples

Service	A	and	Service	B	are	mounted	in	the	same	database.	Service	B	has	a	dependency	with	the	local	alias		"greeter"	.	The	dependency
is	configured	to	use	the	mount	path	of	Service	A.

//	Entry	file	of	Service	A

module.exports	=	{

		sayHi	()	{

				return	'Hello';

		}

};

//	Somewhere	in	Service	B

const	greeter	=	module.context.dependencies.greeter;

res.write(greeter.sayHi());

Dependencies

193

Routers
	const	createRouter	=	require('@arangodb/foxx/router');	

Routers	let	you	define	routes	that	extend	ArangoDB's	HTTP	API	with	custom	endpoints.

Routers	need	to	be	mounted	using	the		use		method	of	a	service	context	to	expose	their	HTTP	routes	at	a	service's	mount	path.

You	can	pass	routers	between	services	mounted	in	the	same	database	as	dependencies.	You	can	even	nest	routers	within	each	other.

Creating	a	router
	createRouter():	Router	

This	returns	a	new,	clean	router	object	that	has	not	yet	been	mounted	in	the	service	and	can	be	exported	like	any	other	object.

Request	handlers
	router.get([path],	[...middleware],	handler,	[name]):	Endpoint	

	router.post([path],	[...middleware],	handler,	[name]):	Endpoint	

	router.put([path],	[...middleware],	handler,	[name]):	Endpoint	

	router.patch([path],	[...middleware],	handler,	[name]):	Endpoint	

	router.delete([path],	[...middleware],	handler,	[name]):	Endpoint	

	router.all([path],	[...middleware],	handler,	[name]):	Endpoint	

These	methods	let	you	specify	routes	on	the	router.	The		all		method	defines	a	route	that	will	match	any	supported	HTTP	verb,	the
other	methods	define	routes	that	only	match	the	HTTP	verb	with	the	same	name.

Arguments

path:		string		(Default:		"/")

The	path	of	the	request	handler	relative	to	the	base	path	the	Router	is	mounted	at.	If	omitted,	the	request	handler	will	handle
requests	to	the	base	path	of	the	Router.	For	information	on	defining	dynamic	routes	see	the	section	on	path	parameters	in	the
chapter	on	router	endpoints.

middleware:		Function		(optional)

Zero	or	more	middleware	functions	that	take	the	following	arguments:

req:		Request	

An	incoming	server	request	object.

res:		Response	

An	outgoing	server	response	object.

next:		Function	

A	callback	that	passes	control	over	to	the	next	middleware	function	and	returns	when	that	function	has	completed.

If	a	truthy	argument	is	passed,	that	argument	will	be	thrown	as	an	error.

If	there	is	no	next	middleware	function,	the		handler		will	be	invoked	instead	(see	below).

handler:		Function	

A	function	that	takes	the	following	arguments:

req:		Request	

An	incoming	server	request	object.

Routers

194

res:		Response	

An	outgoing	server	response.

name:		string		(optional)

A	name	that	can	be	used	to	generate	URLs	for	the	endpoint.	For	more	information	see	the		reverse		method	of	the	request	object.

Returns	an	Endpoint	for	the	route.

Examples

Simple	index	route:

router.get(function	(req,	res)	{

		res.set('content-type',	'text/plain');

		res.write('Hello	World!');

});

Restricting	access	to	authenticated	ArangoDB	users:

router.get('/secrets',	function	(req,	res,	next)	{

		if	(req.arangoUser)	{

				next();

		}	else	{

				res.throw(404,	'Secrets?	What	secrets?');

		}

},	function	(req,	res)	{

		res.download('allOurSecrets.zip');

});

Multiple	middleware	functions:

function	counting	(req,	res,	next)	{

		if	(!req.counter)	req.counter	=	0;

		req.counter++;

		next();

		req.counter--;

}

router.get(counting,	counting,	counting,	function	(req,	res)	{

		res.json({counter:	req.counter});	//	{"counter":	3}

});

Mounting	child	routers	and	middleware
	router.use([path],	middleware,	[name]):	Endpoint	

The		use		method	lets	you	mount	a	child	router	or	middleware	at	a	given	path.

Arguments

path:		string		(optional)

The	path	of	the	middleware	relative	to	the	base	path	the	Router	is	mounted	at.	If	omitted,	the	middleware	will	handle	requests	to	the
base	path	of	the	Router.	For	information	on	defining	dynamic	routes	see	the	section	on	path	parameters	in	the	chapter	on	router
endpoints.

middleware:		Router	|	Middleware	

An	unmounted	router	object	or	a	middleware.

name:		string		(optional)

A	name	that	can	be	used	to	generate	URLs	for	endpoints	of	this	router.	For	more	information	see	the		reverse		method	of	the
request	object.	Has	no	effect	if	handler	is	a	Middleware.

Returns	an	Endpoint	for	the	middleware	or	child	router.

Routers

195

Routers

196

Endpoints
Endpoints	are	returned	by	the		use	,		all		and	HTTP	verb	(e.g.		get	,		post)	methods	of	routers	as	well	as	the		use		method	of	the
service	context.	They	can	be	used	to	attach	metadata	to	mounted	routes,	middleware	and	child	routers	that	affects	how	requests	and
responses	are	processed	or	provides	API	documentation.

Endpoints	should	only	be	used	to	invoke	the	following	methods.	Endpoint	methods	can	be	chained	together	(each	method	returns	the
endpoint	itself).

header
	endpoint.header(name,	[schema],	[description]):	this	

Defines	a	request	header	recognized	by	the	endpoint.	Any	additional	non-defined	headers	will	be	treated	as	optional	string	values.	The
definitions	will	also	be	shown	in	the	route	details	in	the	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	header	definition	unless	overridden.

Arguments

name:		string	

Name	of	the	header.	This	should	be	considered	case	insensitive	as	all	header	names	will	be	converted	to	lowercase.

schema:		Schema		(optional)

A	schema	describing	the	format	of	the	header	value.	This	can	be	a	joi	schema	or	anything	that	has	a	compatible		validate		method.

The	value	of	this	header	will	be	set	to	the		value		property	of	the	validation	result.	A	validation	failure	will	result	in	an	automatic
400	(Bad	Request)	error	response.

description:		string		(optional)

A	human	readable	string	that	will	be	shown	in	the	API	documentation.

Returns	the	endpoint.

Examples

router.get(/*	...	*/)

.header('arangoVersion',	joi.number().min(30000).default(30000));

pathParam
	endpoint.pathParam(name,	[schema],	[description]):	this	

Defines	a	path	parameter	recognized	by	the	endpoint.	Path	parameters	are	expected	to	be	filled	as	part	of	the	endpoint's	mount	path.
Any	additional	non-defined	path	parameters	will	be	treated	as	optional	string	values.	The	definitions	will	also	be	shown	in	the	route
details	in	the	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	parameter	definition	unless	overridden.

Arguments

name:		string	

Name	of	the	parameter.

schema:		Schema		(optional)

A	schema	describing	the	format	of	the	parameter.	This	can	be	a	joi	schema	or	anything	that	has	a	compatible		validate		method.

Endpoints

197

The	value	of	this	parameter	will	be	set	to	the		value		property	of	the	validation	result.	A	validation	failure	will	result	in	the	route
failing	to	match	and	being	ignored	(resulting	in	a	404	(Not	Found)	error	response	if	no	other	routes	match).

description:		string		(optional)

A	human	readable	string	that	will	be	shown	in	the	API	documentation.

Returns	the	endpoint.

Examples

router.get('/some/:num/here',	/*	...	*/)

.pathParam('num',	joi.number().required());

queryParam
	endpoint.queryParam(name,	[schema],	[description]):	this	

Defines	a	query	parameter	recognized	by	the	endpoint.	Any	additional	non-defined	query	parameters	will	be	treated	as	optional	string
values.	The	definitions	will	also	be	shown	in	the	route	details	in	the	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	parameter	definition	unless	overridden.

Arguments

name:		string	

Name	of	the	parameter.

schema:		Schema		(optional)

A	schema	describing	the	format	of	the	parameter.	This	can	be	a	joi	schema	or	anything	that	has	a	compatible		validate		method.

The	value	of	this	parameter	will	be	set	to	the		value		property	of	the	validation	result.	A	validation	failure	will	result	in	an
automatic	400	(Bad	Request)	error	response.

description:		string		(optional)

A	human	readable	string	that	will	be	shown	in	the	API	documentation.

Returns	the	endpoint.

Examples

router.get(/*	...	*/)

.queryParam('num',	joi.number().required());

body
	endpoint.body([model],	[mimes],	[description]):	this	

Defines	the	request	body	recognized	by	the	endpoint.	There	can	only	be	one	request	body	definition	per	endpoint.	The	definition	will
also	be	shown	in	the	route	details	in	the	API	documentation.

In	the	absence	of	a	request	body	definition,	the	request	object's	body	property	will	be	initialized	to	the	unprocessed	rawBody	buffer.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	body	definition	unless	overridden.	If	the	endpoint	is	a	middleware,
the	request	body	will	only	be	parsed	once	(i.e.	the	MIME	types	of	the	route	matching	the	same	request	will	be	ignored	but	the	body	will
still	be	validated	again).

Arguments

model:		Model	|	Schema	|	null		(optional)

A	model	or	joi	schema	describing	the	request	body.	A	validation	failure	will	result	in	an	automatic	400	(Bad	Request)	error	response.

Endpoints

198

If	the	value	is	a	model	with	a		fromClient		method,	that	method	will	be	applied	to	the	parsed	request	body.

If	the	value	is	a	schema	or	a	model	with	a	schema,	the	schema	will	be	used	to	validate	the	request	body	and	the		value		property	of
the	validation	result	of	the	parsed	request	body	will	be	used	instead	of	the	parsed	request	body	itself.

If	the	value	is	a	model	or	a	schema	and	the	MIME	type	has	been	omitted,	the	MIME	type	will	default	to	JSON	instead.

If	the	value	is	explicitly	set	to		null	,	no	request	body	will	be	expected.

If	the	value	is	an	array	containing	exactly	one	model	or	schema,	the	request	body	will	be	treated	as	an	array	of	items	matching	that
model	or	schema.

mimes:		Array<string>		(optional)

An	array	of	MIME	types	the	route	supports.

Common	non-mime	aliases	like	"json"	or	"html"	are	also	supported	and	will	be	expanded	to	the	appropriate	MIME	type	(e.g.
"application/json"	and	"text/html").

If	the	MIME	type	is	recognized	by	Foxx	the	request	body	will	be	parsed	into	the	appropriate	structure	before	being	validated.
Currently	only	JSON,		application/x-www-form-urlencoded		and	multipart	formats	are	supported	in	this	way.

If	the	MIME	type	indicated	in	the	request	headers	does	not	match	any	of	the	supported	MIME	types,	the	first	MIME	type	in	the
list	will	be	used	instead.

Failure	to	parse	the	request	body	will	result	in	an	automatic	400	(Bad	Request)	error	response.

description:		string		(optional)

A	human	readable	string	that	will	be	shown	in	the	API	documentation.

Returns	the	endpoint.

Examples

router.post('/expects/some/json',	/*	...	*/)

.body(

		joi.object().required(),

		'This	implies	JSON.'

);

router.post('/expects/nothing',	/*	...	*/)

.body(null);	//	No	body	allowed

router.post('/expects/some/plaintext',	/*	...	*/)

.body(['text/plain'],	'This	body	will	be	a	string.');

response
	endpoint.response([status],	[model],	[mimes],	[description]):	this	

Defines	a	response	body	for	the	endpoint.	When	using	the	response	object's		send		method	in	the	request	handler	of	this	route,	the
definition	with	the	matching	status	code	will	be	used	to	generate	the	response	body.	The	definitions	will	also	be	shown	in	the	route
details	in	the	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	response	definition	unless	overridden.	If	the	endpoint	is	a
middleware,	this	method	has	no	effect.

Arguments

status:		number	|	string		(Default:		200		or		204)

HTTP	status	code	the	response	applies	to.	If	a	string	is	provided	instead	of	a	numeric	status	code	it	will	be	used	to	look	up	a
numeric	status	code	using	the	statuses	module.

model:		Model	|	Schema	|	null		(optional)

A	model	or	joi	schema	describing	the	response	body.

Endpoints

199

https://github.com/jshttp/statuses

If	the	value	is	a	model	with	a		forClient		method,	that	method	will	be	applied	to	the	data	passed	to		response.send		within	the
route	if	the	response	status	code	matches	(but	also	if	no	status	code	has	been	set).

If	the	value	is	a	schema	or	a	model	with	a	schema,	the	actual	schema	will	not	be	used	to	validate	the	response	body	and	only	serves
to	document	the	response	in	more	detail	in	the	API	documentation.

If	the	value	is	a	model	or	a	schema	and	the	MIME	type	has	been	omitted,	the	MIME	type	will	default	to	JSON	instead.

If	the	value	is	explicitly	set	to		null		and	the	status	code	has	been	omitted,	the	status	code	will	default	to		204		("no	content")
instead	of		200	.

If	the	value	is	an	array	containing	exactly	one	model	or	schema,	the	response	body	will	be	an	array	of	items	matching	that	model	or
schema.

mimes:		Array<string>		(optional)

An	array	of	MIME	types	the	route	might	respond	with	for	this	status	code.

Common	non-mime	aliases	like	"json"	or	"html"	are	also	supported	and	will	be	expanded	to	the	appropriate	MIME	type	(e.g.
"application/json"	and	"text/html").

When	using	the		response.send		method	the	response	body	will	be	converted	to	the	appropriate	MIME	type	if	possible.

description:		string		(optional)

A	human-readable	string	that	briefly	describes	the	response	and	will	be	shown	in	the	endpoint's	detailed	documentation.

Returns	the	endpoint.

Examples

//	This	example	only	provides	documentation

//	and	implies	a	generic	JSON	response	body.

router.get(/*	...	*/)

.response(

		joi.array().items(joi.string()),

		'A	list	of	doodad	identifiers.'

);

//	No	response	body	will	be	expected	here.

router.delete(/*	...	*/)

.response(null,	'The	doodad	no	longer	exists.');

//	An	endpoint	can	define	multiple	response	types

//	for	different	status	codes	--	but	never	more	than

//	one	for	each	status	code.

router.post(/*	...	*/)

.response('found',	'The	doodad	is	located	elsewhere.')

.response(201,	['text/plain'],	'The	doodad	was	created	so	here	is	a	haiku.');

//	Here	the	response	body	will	be	set	to

//	the	querystring-encoded	result	of

//	FormModel.forClient({some:	'data'})

//	because	the	status	code	defaults	to	200.

router.patch(function	(req,	res)	{

		//	...

		res.send({some:	'data'});

})

.response(FormModel,	['application/x-www-form-urlencoded'],	'OMG.');

//	In	this	case	the	response	body	will	be	set	to

//	SomeModel.forClient({some:	'data'})	because

//	the	status	code	has	been	set	to	201	before.

router.put(function	(req,	res)	{

		//	...

		res.status(201);

		res.send({some:	'data'});

})

.response(201,	SomeModel,	'Something	amazing	happened.');

error

Endpoints

200

	endpoint.error(status,	[description]):	this	

Documents	an	error	status	for	the	endpoint.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	error	description	unless	overridden.	If	the	endpoint	is	a	middleware,
this	method	has	no	effect.

This	method	only	affects	the	generated	API	documentation	and	has	not	other	effect	within	the	service	itself.

Arguments

status:		number	|	string	

HTTP	status	code	for	the	error	(e.g.		400		for	"bad	request").	If	a	string	is	provided	instead	of	a	numeric	status	code	it	will	be	used
to	look	up	a	numeric	status	code	using	the	statuses	module.

description:		string		(optional)

A	human-readable	string	that	briefly	describes	the	error	condition	and	will	be	shown	in	the	endpoint's	detailed	documentation.

Returns	the	endpoint.

Examples

router.get(function	(req,	res)	{

		//	...

		res.throw(403,	'Validation	error	at	x.y.z');

})

.error(403,	'Indicates	that	a	validation	has	failed.');

summary
	endpoint.summary(summary):	this	

Adds	a	short	description	to	the	endpoint's	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	summary	unless	overridden.	If	the	endpoint	is	a	middleware,	this
method	has	no	effect.

This	method	only	affects	the	generated	API	documentation	and	has	not	other	effect	within	the	service	itself.

Arguments

summary:		string	

A	human-readable	string	that	briefly	describes	the	endpoint	and	will	appear	next	to	the	endpoint's	path	in	the	documentation.

Returns	the	endpoint.

Examples

router.get(/*	...	*/)

.summary('List	all	discombobulated	doodads')

description
	endpoint.description(description):	this	

Adds	a	long	description	to	the	endpoint's	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	use	this	description	unless	overridden.	If	the	endpoint	is	a	middleware,	this
method	has	no	effect.

This	method	only	affects	the	generated	API	documentation	and	has	not	other	effect	within	the	service	itself.

Arguments

Endpoints

201

https://github.com/jshttp/statuses

description:		string	

A	human-readable	string	that	describes	the	endpoint	in	detail	and	will	be	shown	in	the	endpoint's	detailed	documentation.

Returns	the	endpoint.

Examples

//	The	"dedent"	library	helps	formatting

//	multi-line	strings	by	adjusting	indentation

//	and	removing	leading	and	trailing	blank	lines

const	dd	=	require('dedent');

router.post(/*	...	*/)

.description(dd`

		This	route	discombobulates	the	doodads	by

		frobnicating	the	moxie	of	the	request	body.

`)

deprecated
	endpoint.deprecated([deprecated]):	this	

Marks	the	endpoint	as	deprecated.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	also	be	marked	as	deprecated.	If	the	endpoint	is	a	middleware,	this	method
has	no	effect.

This	method	only	affects	the	generated	API	documentation	and	has	not	other	effect	within	the	service	itself.

Arguments

deprecated:		boolean		(Default:		true)

Whether	the	endpoint	should	be	marked	as	deprecated.	If	set	to		false		the	endpoint	will	be	explicitly	marked	as	not	deprecated.

Returns	the	endpoint.

Examples

router.get(/*	...	*/)

.deprecated();

tag
	endpoint.tag(...tags):	this	

Marks	the	endpoint	with	the	given	tags	that	will	be	used	to	group	related	routes	in	the	generated	API	documentation.

If	the	endpoint	is	a	child	router,	all	routes	of	that	router	will	also	be	marked	with	the	tags.	If	the	endpoint	is	a	middleware,	this	method
has	no	effect.

This	method	only	affects	the	generated	API	documentation	and	has	not	other	effect	within	the	service	itself.

Arguments

tags:		string	

One	or	more	strings	that	will	be	used	to	group	the	endpoint's	routes.

Returns	the	endpoint.

Examples

router.get(/*	...	*/)

.tag('auth',	'restricted');

Endpoints

202

Endpoints

203

Middleware
Middleware	in	Foxx	refers	to	functions	that	can	be	mounted	like	routes	and	can	manipulate	the	request	and	response	objects	before	and
after	the	route	itself	is	invoked.	They	can	also	be	used	to	control	access	or	to	provide	common	logic	like	logging	etc.	Unlike	routes,
middleware	is	mounted	with	the		use		method	like	a	router.

Instead	of	a	function	the		use		method	can	also	accept	an	object	with	a		register		function	that	will	take	a	parameter		endpoint	,	the
middleware	will	be	mounted	at	and	returns	the	actual	middleware	function.	This	allows	manipulating	the	endpoint	before	creating	the
middleware	(e.g.	to	document	headers,	request	bodies,	path	parameters	or	query	parameters).

Examples

Restrict	access	to	ArangoDB-authenticated	users:

module.context.use(function	(req,	res,	next)	{

		if	(!req.arangoUser)	{

				res.throw(401,	'Not	authenticated	with	ArangoDB');

		}

		next();

});

Any	truthy	argument	passed	to	the		next		function	will	be	thrown	as	an	error:

module.context.use(function	(req,	res,	next)	{

		let	err	=	null;

		if	(!req.arangoUser)	{

				err	=	new	Error('This	should	never	happen');

		}

		next(err);	//	throws	if	the	error	was	set

})

Trivial	logging	middleware:

module.context.use(function	(req,	res,	next)	{

		const	start	=	Date.now();

		try	{

				next();

		}	finally	{

				console.log(`Handled	request	in	${Date.now()	-	start}ms`);

		}

});

More	complex	example	for	header-based	sessions:

const	sessions	=	module.context.collection('sessions');

module.context.use({

		register	(endpoint)	{

				endpoint.header('x-session-id',	joi.string().optional(),	'The	session	ID.');

				return	function	(req,	res,	next)	{

						const	sid	=	req.get('x-session-id');

						if	(sid)	{

								try	{

										req.session	=	sessions.document(sid);

								}	catch	(e)	{

										delete	req.headers['x-session-id'];

								}

						}

						next();

						if	(req.session)	{

								if	(req.session._rev)	{

										sessions.replace(req.session,	req.session);

										res.set('x-session-id',	req.session._key);

								}	else	{

										const	meta	=	sessions.save(req.session);

										res.set('x-session-id',	meta._key);

								}

Middleware

204

						}

				};

		}

});

Middleware

205

Request	objects
The	request	object	specifies	the	following	properties:

arangoUser:		string	|	null	

The	authenticated	ArangoDB	username	used	to	make	the	request.	This	value	is	only	set	if	authentication	is	enabled	in	ArangoDB
and	the	request	set	an		authorization		header	ArangoDB	was	able	to	verify.	You	are	strongly	encouraged	to	implement	your	own
authentication	logic	for	your	own	services	but	this	property	can	be	useful	if	you	need	to	integrate	with	ArangoDB's	own
authentication	mechanisms.

arangoVersion:		number	

The	numeric	value	of	the		x-arango-version		header	or	the	numeric	version	of	the	ArangoDB	server	(e.g.		30102		for	version	3.1.2)	if
no	valid	header	was	provided.

baseUrl:		string	

Root-relative	base	URL	of	the	service,	i.e.	the	prefix		"/_db/"		followed	by	the	value	of	database.

body:		any	

The	processed	and	validated	request	body	for	the	current	route.	If	no	body	has	been	defined	for	the	current	route,	the	value	will	be
identical	to	rawBody.

For	details	on	how	request	bodies	can	be	processed	and	validated	by	Foxx	see	the	body	method	of	the	endpoint	object.

context:		Context	

The	service	context	in	which	the	router	was	mounted	(rather	than	the	context	in	which	the	route	was	defined).

database:		string	

The	name	of	the	database	in	which	the	request	is	being	handled,	e.g.		"_system"	.

headers:		object	

The	raw	headers	object.

For	details	on	how	request	headers	can	be	validated	by	Foxx	see	the	header	method	of	the	endpoint	object.

hostname:		string	

The	hostname	(domain	name)	indicated	in	the	request	headers.

Defaults	to	the	hostname	portion	(i.e.	excluding	the	port)	of	the		Host		header	and	falls	back	to	the	listening	address	of	the	server.

method:		string	

The	HTTP	verb	used	to	make	the	request,	e.g.		"GET"	.

originalUrl:		string	

Root-relative	URL	of	the	request,	i.e.	path	followed	by	the	raw	query	parameters,	if	any.

path:		string	

Database-relative	path	of	the	request	URL	(not	including	the	query	parameters).

pathParams:		object	

An	object	mapping	the	names	of	path	parameters	of	the	current	route	to	their	validated	values.

For	details	on	how	path	parameters	can	be	validated	by	Foxx	see	the	pathParam	method	of	the	endpoint	object.

port:		number	

The	port	indicated	in	the	request	headers.

Request

206

Defaults	to	the	port	portion	(i.e.	excluding	the	hostname)	of	the		Host		header	and	falls	back	to	the	listening	port	or	the	appropriate
default	port	(443		for	HTTPS	or		80		for	HTTP,	depending	on	secure)	if	the	header	only	indicates	a	hostname.

If	the	request	was	made	using	a	trusted	proxy	(see	trustProxy),	this	is	set	to	the	port	portion	of	the		X-Forwarded-Host		header	(or
approriate	default	port)	if	present.

protocol:		string	

The	protocol	used	for	the	request.

Defaults	to		"https"		or		"http"		depending	on	whether	ArangoDB	is	configured	to	use	SSL	or	not.

If	the	request	was	made	using	a	trusted	proxy	(see	trustProxy),	this	is	set	to	the	value	of	the		X-Forwarded-Proto		header	if	present.

queryParams:		object	

An	object	mapping	the	names	of	query	parameters	of	the	current	route	to	their	validated	values.

For	details	on	how	query	parameters	can	be	validated	by	Foxx	see	the	queryParam	method	of	the	endpoint	object.

rawBody:		Buffer	

The	raw,	unparsed,	unvalidated	request	body	as	a	buffer.

remoteAddress:		string	

The	IP	of	the	client	that	made	the	request.

If	the	request	was	made	using	a	trusted	proxy	(see	trustProxy),	this	is	set	to	the	first	IP	listed	in	the		X-Forwarded-For		header	if
present.

remoteAddresses:		Array<string>	

A	list	containing	the	IP	addresses	used	to	make	the	request.

Defaults	to	the	value	of	remoteAddress	wrapped	in	an	array.

If	the	request	was	made	using	a	trusted	proxy	(see	trustProxy),	this	is	set	to	the	list	of	IPs	specified	in	the		X-Forwarded-For		header
if	present.

remotePort:		number	

The	listening	port	of	the	client	that	made	the	request.

If	the	request	was	made	using	a	trusted	proxy	(see	trustProxy),	this	is	set	to	the	port	specified	in	the		X-Forwarded-Port		header	if
present.

secure:		boolean	

Whether	the	request	was	made	over	a	secure	connection	(i.e.	HTTPS).

This	is	set	to		false		when	protocol	is		"http"		and		true		when	protocol	is		"https"	.

suffix:		string	

The	trailing	path	relative	to	the	current	route	if	the	current	route	ends	in	a	wildcard	(e.g.		/something/*).

Note:	Starting	with	ArangoDB	3.2	is	passed	into	the	service	as-is,	i.e.	percentage	escape	sequences	like		%2F		will	no	longer	be
unescaped.	Also	note	that	the	suffix	may	contain	path	segments	like		..		which	may	have	special	meaning	if	the	suffix	is	used	to
build	filesystem	paths.

trustProxy:		boolean	

Indicates	whether	the	request	was	made	using	a	trusted	proxy.	If	the	origin	server's	address	was	specified	in	the	ArangoDB
configuration	using		--frontend.trusted-proxy		or	the	service's		trustProxy		setting	is	enabled,	this	will	be		true	,	otherwise	it	will
be		false	.

url:		string	

The	URL	of	the	request.

Request

207

xhr:		boolean	

Whether	the	request	indicates	it	was	made	within	a	browser	using	AJAX.

This	is	set	to		true		if	the		X-Requested-With		header	is	present	and	is	a	case-insensitive	match	for	the	value		"xmlhttprequest"	.

Note	that	this	value	does	not	guarantee	whether	the	request	was	made	from	inside	a	browser	or	whether	AJAX	was	used	and	is
merely	a	convention	established	by	JavaScript	frameworks	like	jQuery.

accepts
	req.accepts(types):	string	|	false	

	req.accepts(...types):	string	|	false	

	req.acceptsCharsets(charsets):	string	|	false	

	req.acceptsCharsets(...charsets):	string	|	false	

	req.acceptsEncodings(encodings):	string	|	false	

	req.acceptsEncodings(...encodings):	string	|	false	

	req.acceptsLanguages(languages):	string	|	false	

	req.acceptsLanguages(...languages):	string	|	false	

These	methods	wrap	the	corresponding	content	negotiation	methods	of	the	accepts	module	for	the	current	request.

Examples

if	(req.accepts(['json',	'html'])	===	'html')	{

		//	Client	explicitly	prefers	HTML	over	JSON

		res.write('<h1>Client	prefers	HTML</h1>');

}	else	{

		//	Otherwise	just	send	JSON

		res.json({success:	true});

}

cookie
	req.cookie(name,	options):	string	|	null	

Gets	the	value	of	a	cookie	by	name.

Arguments

name:		string	

Name	of	the	cookie.

options:		object		(optional)

An	object	with	any	of	the	following	properties:

secret:		string		(optional)

Secret	that	was	used	to	sign	the	cookie.

If	a	secret	is	specified,	the	cookie's	signature	is	expected	to	be	present	in	a	second	cookie	with	the	same	name	and	the	suffix
	.sig	.	Otherwise	the	signature	(if	present)	will	be	ignored.

algorithm:		string		(Default:		"sha256")

Algorithm	that	was	used	to	sign	the	cookie.

If	a	string	is	passed	instead	of	an	options	object	it	will	be	interpreted	as	the	secret	option.

Returns	the	value	of	the	cookie	or		null		if	the	cookie	is	not	set	or	its	signature	is	invalid.

Request

208

https://github.com/jshttp/accepts

get	/	header
	req.get(name):	string	

	req.header(name):	string	

Gets	the	value	of	a	header	by	name.	You	can	validate	request	headers	using	the	header	method	of	the	endpoint.

Arguments

name:		string	

Name	of	the	header.

Returns	the	header	value.

is
	req.is(types):	string	

	req.is(...types):	string	

This	method	wraps	the	(request	body)	content	type	detection	method	of	the	type-is	module	for	the	current	request.

Examples

const	type	=	req.is('html',	'application/xml',	'application/*+xml');

if	(type	===	false)	{	//	no	match

		handleDefault(req.rawBody);

}	else	if	(type	===	'html')	{

		handleHtml(req.rawBody);

}	else	{	//	is	XML

		handleXml(req.rawBody);

}

json
	req.json():	any	

Attempts	to	parse	the	raw	request	body	as	JSON	and	returns	the	result.

It	is	generally	more	useful	to	define	a	request	body	on	the	endpoint	and	use	the		req.body		property	instead.

Returns		undefined		if	the	request	body	is	empty.	May	throw	a		SyntaxError		if	the	body	could	not	be	parsed.

makeAbsolute
	req.makeAbsolute(path,	[query]):	string	

Resolves	the	given	path	relative	to	the		req.context.service	's	mount	path	to	a	full	URL.

Arguments

path:		string	

The	path	to	resovle.

query:		string	|	object	

A	string	or	object	with	query	parameters	to	add	to	the	URL.

Returns	the	formatted	absolute	URL.

params
	req.param(name):	any	

Request

209

https://github.com/jshttp/type-is

Arguments

Looks	up	a	parameter	by	name,	preferring		pathParams		over		queryParams	.

It's	probably	better	style	to	use	the		req.pathParams		or		req.queryParams		objects	directly.

name:		string	

Name	of	the	parameter.

Returns	the	(validated)	value	of	the	parameter.

range
	req.range([size]):	Ranges	|	number	

This	method	wraps	the	range	header	parsing	method	of	the	range-parser	module	for	the	current	request.

Arguments

size:		number		(Default:		Infinity)

Length	of	the	satisfiable	range	(e.g.	number	of	bytes	in	the	full	response).	If	present,	ranges	exceeding	the	size	will	be	considered
unsatisfiable.

Returns		undefined		if	the		Range		header	is	absent,		-2		if	the	header	is	present	but	malformed,		-1		if	the	range	is	invalid	(e.g.	start
offset	is	larger	than	end	offset)	or	unsatisfiable	for	the	given	size.

Otherwise	returns	an	array	of	objects	with	the	properties	start	and	end	values	for	each	range.	The	array	has	an	additional	property	type
indicating	the	request	range	type.

Examples

console.log(req.headers.range);	//	"bytes=40-80"

const	ranges	=	req.range(100);

console.log(ranges);	//	[{start:	40,	end:	80}]

console.log(ranges.type);	//	"bytes"

reverse
	req.reverse(name,	[params]):	string	

Looks	up	the	URL	of	a	named	route	for	the	given	parameters.

Arguments

name:		string	

Name	of	the	route	to	look	up.

params:		object		(optional)

An	object	containing	values	for	the	(path	or	query)	parameters	of	the	route.

Returns	the	URL	of	the	route	for	the	given	parameters.

Examples

router.get('/items/:id',	function	(req,	res)	{

		/*	...	*/

},	'getItemById');

router.post('/items',	function	(req,	res)	{

		//	...

		const	url	=	req.reverse('getItemById',	{id:	createdItem._key});

		res.set('location',	req.makeAbsolute(url));

});

Request

210

https://github.com/jshttp/range-parser

Request

211

Response	objects
The	response	object	specifies	the	following	properties:

body:		Buffer	|	string	

Response	body	as	a	string	or	buffer.	Can	be	set	directly	or	using	some	of	the	response	methods.

context:		Context	

The	service	context	in	which	the	router	was	mounted	(rather	than	the	context	in	which	the	route	was	defined).

headers:		object	

The	raw	headers	object.

statusCode:		number	

Status	code	of	the	response.	Defaults	to		200		(body	set	and	not	an	empty	string	or	buffer)	or		204		(otherwise)	if	not	changed	from
	undefined	.

attachment
	res.attachment([filename]):	this	

Sets	the		content-disposition		header	to	indicate	the	response	is	a	downloadable	file	with	the	given	name.

Note:	This	does	not	actually	modify	the	response	body	or	access	the	file	system.	To	send	a	file	from	the	file	system	see	the		download	
or		sendFile		methods.

Arguments

filename:		string		(optional)

Name	of	the	downloadable	file	in	the	response	body.

If	present,	the	extension	of	the	filename	will	be	used	to	set	the	response		content-type		if	it	has	not	yet	been	set.

Returns	the	response	object.

cookie
	res.cookie(name,	value,	[options]):	this	

Sets	a	cookie	with	the	given	name.

Arguments

name:		string	

Name	of	the	cookie.

value:		string	

Value	of	the	cookie.

options:		object		(optional)

An	object	with	any	of	the	following	properties:

ttl:		number		(optional)

Time	to	live	of	the	cookie	in	seconds.

algorithm:		string		(Default:		"sha256")

Algorithm	that	will	be	used	to	sign	the	cookie.

Response

212

secret:		string		(optional)

Secret	that	will	be	used	to	sign	the	cookie.

If	a	secret	is	specified,	the	cookie's	signature	will	be	stored	in	a	second	cookie	with	the	same	options,	the	same	name	and	the
suffix		.sig	.	Otherwise	no	signature	will	be	added.

path:		string		(optional)

Path	for	which	the	cookie	should	be	issued.

domain:		string		(optional)

Domain	for	which	the	cookie	should	be	issued.

secure:		boolean		(Default:		false)

Whether	the	cookie	should	be	marked	as	secure	(i.e.	HTTPS/SSL-only).

httpOnly:		boolean		(Default:		false)

Whether	the	cookie	should	be	marked	as	HTTP-only	(rather	than	also	exposing	it	to	client-side	code).

If	a	string	is	passed	instead	of	an	options	object	it	will	be	interpreted	as	the	secret	option.

If	a	number	is	passed	instead	of	an	options	object	it	will	be	interpreted	as	the	ttl	option.

Returns	the	response	object.

download
	res.download(path,	[filename]):	this	

The	equivalent	of	calling		res.attachment(filename).sendFile(path)	.

Arguments

path:		string	

Path	to	the	file	on	the	local	filesystem	to	be	sent	as	the	response	body.

filename:		string		(optional)

Filename	to	indicate	in	the		content-disposition		header.

If	omitted	the	path	will	be	used	instead.

Returns	the	response	object.

getHeader
	res.getHeader(name):	string	

Gets	the	value	of	the	header	with	the	given	name.

Arguments

name:		string	

Name	of	the	header	to	get.

Returns	the	value	of	the	header	or		undefined	.

json
	res.json(data):	this	

Sets	the	response	body	to	the	JSON	string	value	of	the	given	data.

Response

213

Arguments

data:		any	

The	data	to	be	used	as	the	response	body.

Returns	the	response	object.

redirect
	res.redirect([status],	path):	this	

Redirects	the	response	by	setting	the	response		location		header	and	status	code.

Arguments

status:		number	|	string		(optional)

Response	status	code	to	set.

If	the	status	code	is	the	string	value		"permanent"		it	will	be	treated	as	the	value		301	.

If	the	status	code	is	a	string	it	will	be	converted	to	a	numeric	status	code	using	the	statuses	module	first.

If	the	status	code	is	omitted	but	the	response	status	has	not	already	been	set,	the	response	status	will	be	set	to		302	.

path:		string	

URL	to	set	the		location		header	to.

Returns	the	response	object.

removeHeader
	res.removeHeader(name):	this	

Removes	the	header	with	the	given	name	from	the	response.

Arguments

name:		string	

Name	of	the	header	to	remove.

Returns	the	response	object.

send
	res.send(data,	[type]):	this	

Sets	the	response	body	to	the	given	data	with	respect	to	the	response	definition	for	the	response's	current	status	code.

Arguments

data:		any	

The	data	to	be	used	as	the	response	body.	Will	be	converted	according	the	response	definition	for	the	response's	current	status	code
(or		200)	in	the	following	way:

If	the	data	is	an	ArangoDB	result	set,	it	will	be	converted	to	an	array	first.

If	the	response	definition	specifies	a	model	with	a		forClient		method,	that	method	will	be	applied	to	the	data	first.	If	the	data	is	an
array	and	the	response	definition	has	the		multiple		flag	set,	the	method	will	be	applied	to	each	entry	individually	instead.

Finally	the	data	will	be	processed	by	the	response	type	handler	to	conver	the	response	body	to	a	string	or	buffer.

type:		string		(Default:		"auto")

Response

214

https://github.com/jshttp/statuses

Content-type	of	the	response	body.

If	set	to		"auto"		the	first	MIME	type	specified	in	the	response	definition	for	the	response's	current	status	code	(or		200)	will	be
used	instead.

If	set	to		"auto"		and	no	response	definition	exists,	the	MIME	type	will	be	determined	the	following	way:

If	the	data	is	a	buffer	the	MIME	type	will	be	set	to	binary	(application/octet-stream).

If	the	data	is	an	object	the	MIME	type	will	be	set	to	JSON	and	the	data	will	be	converted	to	a	JSON	string.

Otherwise	the	MIME	type	will	be	set	to	HTML	and	the	data	will	be	converted	to	a	string.

Returns	the	response	object.

sendFile
	res.sendFile(path,	[options]):	this	

Sends	a	file	from	the	local	filesystem	as	the	response	body.

Arguments

path:		string	

Path	to	the	file	on	the	local	filesystem	to	be	sent	as	the	response	body.

If	no		content-type		header	has	been	set	yet,	the	extension	of	the	filename	will	be	used	to	set	the	value	of	that	header.

options:		object		(optional)

An	object	with	any	of	the	following	properties:

lastModified:		boolean		(optional)

If	set	to		true		or	if	no		last-modified		header	has	been	set	yet	and	the	value	is	not	set	to		false		the		last-modified		header
will	be	set	to	the	modification	date	of	the	file	in	milliseconds.

Returns	the	response	object.

Examples

//	Send	the	file	"favicon.ico"	from	this	service's	folder

res.sendFile(module.context.fileName('favicon.ico'));

sendStatus
	res.sendStatus(status):	this	

Sends	a	plaintext	response	for	the	given	status	code.	The	response	status	will	be	set	to	the	given	status	code,	the	response	body	will	be
set	to	the	status	message	corresponding	to	that	status	code.

Arguments

status:		number	|	string	

Response	status	code	to	set.

If	the	status	code	is	a	string	it	will	be	converted	to	a	numeric	status	code	using	the	statuses	module	first.

Returns	the	response	object.

setHeader	/	set
	res.setHeader(name,	value):	this	

	res.set(name,	value):	this	

Response

215

https://github.com/jshttp/statuses

	res.set(headers):	this	

Sets	the	value	of	the	header	with	the	given	name.

Arguments

name:		string	

Name	of	the	header	to	set.

value:		string	

Value	to	set	the	header	to.

headers:		object	

Header	object	mapping	header	names	to	values.

Returns	the	response	object.

status
	res.status(status):	this	

Sets	the	response	status	to	the	given	status	code.

Arguments

status:		number	|	string	

Response	status	code	to	set.

If	the	status	code	is	a	string	it	will	be	converted	to	a	numeric	status	code	using	the	statuses	module	first.

Returns	the	response	object.

throw
	res.throw(status,	[reason],	[options]):	void	

Throws	an	HTTP	exception	for	the	given	status,	which	will	be	handled	by	Foxx	to	serve	the	appropriate	JSON	error	response.

Arguments

status:		number	|	string	

Response	status	code	to	set.

If	the	status	code	is	a	string	it	will	be	converted	to	a	numeric	status	code	using	the	statuses	module	first.

If	the	status	code	is	in	the	500-range	(500-599),	its	stacktrace	will	always	be	logged	as	if	it	were	an	unhandled	exception.

If	development	mode	is	enabled,	the	error's	stacktrace	will	be	logged	as	a	warning	if	the	status	code	is	in	the	400-range	(400-499)	or
as	a	regular	message	otherwise.

reason:		string		(optional)

Message	for	the	exception.

If	omitted,	the	status	message	corresponding	to	the	status	code	will	be	used	instead.

options:		object		(optional)

An	object	with	any	of	the	following	properties:

cause:		Error		(optional)

Cause	of	the	exception	that	will	be	logged	as	part	of	the	error's	stacktrace	(recursively,	if	the	exception	also	has	a		cause	
property	and	so	on).

Response

216

https://github.com/jshttp/statuses
https://github.com/jshttp/statuses

extra:		object		(optional)

Additional	properties	that	will	be	added	to	the	error	response	body	generated	by	Foxx.

If	development	mode	is	enabled,	an		exception		property	will	be	added	to	this	value	containing	the	error	message	and	a
	stacktrace		property	will	be	added	containing	an	array	with	each	line	of	the	error's	stacktrace.

If	an	error	is	passed	instead	of	an	options	object	it	will	be	interpreted	as	the	cause	option.	If	no	reason	was	provided	the	error's		message	
will	be	used	as	the	reason	instead.

Returns	nothing.

type
	res.type([type]):	string	

Sets	the	response	content-type	to	the	given	type	if	provided	or	returns	the	previously	set	content-type.

Arguments

type:		string		(optional)

Content-type	of	the	response	body.

Unlike		res.set('content-type',	type)		file	extensions	can	be	provided	as	values	and	will	be	translated	to	the	corresponding	MIME
type	(e.g.		json		becomes		application/json).

Returns	the	content-type	of	the	response	body.

vary
	res.vary(names):	this	

	res.vary(...names):	this	

This	method	wraps	the		vary		header	manipulation	method	of	the	vary	module	for	the	current	response.

The	given	names	will	be	added	to	the	response's		vary		header	if	not	already	present.

Returns	the	response	object.

Examples

res.vary('user-agent');

res.vary('cookie');

res.vary('cookie');	//	duplicates	will	be	ignored

//	--	or	--

res.vary('user-agent',	'cookie');

//	--	or	--

res.vary(['user-agent',	'cookie']);

write
	res.write(data):	this	

Appends	the	given	data	to	the	response	body.

Arguments

data:		string	|	Buffer	

Data	to	append.

Response

217

https://github.com/jshttp/vary

If	the	data	is	a	buffer	the	response	body	will	be	converted	to	a	buffer	first.

If	the	response	body	is	a	buffer	the	data	will	be	converted	to	a	buffer	first.

If	the	data	is	an	object	it	will	be	converted	to	a	JSON	string	first.

If	the	data	is	any	other	non-string	value	it	will	be	converted	to	a	string	first.

Returns	the	response	object.

Response

218

Using	GraphQL	in	Foxx
	const	createGraphQLRouter	=	require('@arangodb/foxx/graphql');	

Foxx	bundles	the		graphql-sync		module,	which	is	a	synchronous	wrapper	for	the	official	JavaScript	GraphQL	reference	implementation,
to	allow	writing	GraphQL	schemas	directly	inside	Foxx.

Additionally	the		@arangodb/foxx/graphql		lets	you	create	routers	for	serving	GraphQL	requests,	which	closely	mimicks	the	behaviour	of
the		express-graphql		module.

For	more	information	on		graphql-sync		see	the		graphql-js		API	reference	(note	that		graphql-sync		always	uses	raw	values	instead	of
wrapping	them	in	promises).

For	an	example	of	a	GraphQL	schema	in	Foxx	that	resolves	fields	using	the	database	see	the	GraphQL	example	service	(also	available
from	the	Foxx	store).

Examples

const	graphql	=	require('graphql-sync');

const	graphqlSchema	=	new	graphql.GraphQLSchema({

		//	...

});

//	Mounting	a	graphql	endpoint	directly	in	a	service:

module.context.use('/graphql',	createGraphQLRouter({

		schema:	graphqlSchema,

		graphiql:	true

}));

//	Or	at	the	service's	root	URL:

module.context.use(createGraphQLRouter({

		schema:	graphqlSchema,

		graphiql:	true

}));

//	Or	inside	an	existing	router:

router.get('/hello',	function	(req,	res)	{

		res.write('Hello	world!');

});

router.use('/graphql',	createGraphQLRouter({

		schema:	graphqlSchema,

		graphiql:	true

}));

Note:	ArangoDB	aims	for	stability	which	means	bundled	dependencies	will	generally	not	be	updated	as	quickly	as	their	maintainers	make
updates	available	on	GitHub	or	NPM.	Starting	with	ArangoDB	3.2,	if	you	want	to	use	a	newer	release	of		graphql-sync		than	the	one
bundled	with	your	target	version	of	ArangoDB,	you	can	provide	your	own	version	of	the	library	by	passing	it	via	the		graphql		option:

const	graphql	=	require('graphql-sync');

const	graphqlSchema	=	new	graphql.Schema({

		//...

});

module.context.use(createGraphQLRouter({

		schema:	graphqlSchema,

		graphiql:	true,

		graphql:	graphql

}))

This	makes	sure	Foxx	uses	the		graphql-sync		module	bundled	in	your	service's		node_modules		folder	(if	available)	instead	of	the	built-in
version.	If	you	find		graphql-sync		itself	lagging	behind	the	official		graphql		module,	consider	opening	an	issue	on	its	GitHub
repository.

Creating	a	router
	createGraphQLRouter(options):	Router	

Using	GraphQL

219

https://github.com/arangodb/graphql-sync
https://github.com/graphql/express-graphql
http://graphql.org/docs/api-reference-graphql/
https://github.com/arangodb-foxx/demo-graphql
https://github.com/arangodb/graphql-sync/issues

This	returns	a	new	router	object	with	POST	and	GET	routes	for	serving	GraphQL	requests.

Arguments

options:		object	

An	object	with	any	of	the	following	properties:

schema:		GraphQLSchema	

A	GraphQL	Schema	object	from		graphql-sync	.

context:		any		(optional)

The	GraphQL	context	that	will	be	passed	to	the		graphql()		function	from		graphql-sync		to	handle	GraphQL	queries.

rootValue:		object		(optional)

The	GraphQL	root	value	that	will	be	passed	to	the		graphql()		function	from		graphql-sync		to	handle	GraphQL	queries.

pretty:		boolean		(Default:		false)

If		true	,	JSON	responses	will	be	pretty-printed.

formatError:		Function		(optional)

A	function	that	will	be	used	to	format	errors	produced	by		graphql-sync	.	If	omitted,	the		formatError		function	from
	graphql-sync		will	be	used	instead.

validationRules:		Array<any>		(optional)

Additional	validation	rules	queries	must	satisfy	in	addition	to	those	defined	in	the	GraphQL	spec.

graphiql:		boolean		(Default:		false)

If		true	,	the	GraphiQL	explorer	will	be	served	when	loaded	directly	from	a	browser.

graphql:		object		(optional)

If	you	need	to	use	your	own	copy	of	the		graphql-sync		module	instead	of	the	one	bundled	with	ArangoDB,	here	you	can	pass
it	in	directly.

If	a	GraphQL	Schema	object	is	passed	instead	of	an	options	object	it	will	be	interpreted	as	the	schema	option.

Generated	routes

The	router	handles	GET	and	POST	requests	to	its	root	path	and	accepts	the	following	parameters,	which	can	be	provided	either	as	query
parameters	or	as	the	POST	request	body:

query:		string	

A	GraphQL	query	that	will	be	executed.

variables:		object	|	string		(optional)

An	object	or	a	string	containing	a	JSON	object	with	runtime	values	to	use	for	any	GraphQL	query	variables.

operationName:		string		(optional)

If	the	provided		query		contains	multiple	named	operations,	this	specifies	which	operation	should	be	executed.

raw:		boolean		(Default:		false)

Forces	a	JSON	response	even	if	graphiql	is	enabled	and	the	request	was	made	using	a	browser.

The	POST	request	body	can	be	provided	as	JSON	or	as	query	string	using		application/x-www-form-urlencoded	.	A	request	body	passed
as		application/graphql		will	be	interpreted	as	the		query		parameter.

Using	GraphQL

220

https://github.com/graphql/graphiql

Session	Middleware
	const	sessionMiddleware	=	require('@arangodb/foxx/sessions');	

The	session	middleware	adds	the		session		and		sessionStorage		properties	to	the	request	object	and	deals	with	serializing	and
deserializing	the	session	as	well	as	extracting	session	identifiers	from	incoming	requests	and	injecting	them	into	outgoing	responses.

Examples

//	Create	a	session	middleware

const	sessions	=	sessionsMiddleware({

		storage:	module.context.collection('sessions'),

		transport:	['header',	'cookie']

});

//	First	enable	the	middleware	for	this	service

module.context.use(sessions);

//	Now	mount	the	routers	that	use	the	session

const	router	=	createRouter();

module.context.use(router);

router.get('/',	function	(req,	res)	{

		res.send(`Hello	${req.session.uid	||	'anonymous'}!`);

},	'hello');

router.post('/login',	function	(req,	res)	{

		req.session.uid	=	req.body;

		req.sessionStorage.save(req.session);

		res.redirect(req.reverse('hello'));

});

.body(['text/plain'],	'Username');

Creating	a	session	middleware
	sessionMiddleware(options):	Middleware	

Creates	a	session	middleware.

Arguments

options:		Object	

An	object	with	the	following	properties:

storage:		Storage	

Storage	that	will	be	used	to	persist	the	sessions.

The	storage	is	also	exposed	as	the		sessionStorage		on	all	request	objects	and	as	the		storage		property	of	the	middleware.

If	a	string	or	collection	is	passed	instead	of	a	Storage,	it	will	be	used	to	create	a	Collection	Storage.

transport:		Transport	|	Array<Transport>	

Transport	or	array	of	transports	that	will	be	used	to	extract	the	session	identifiers	from	incoming	requests	and	inject	them	into
outgoing	responses.	When	attempting	to	extract	a	session	identifier,	the	transports	will	be	used	in	the	order	specified	until	a
match	is	found.	When	injecting	(or	clearing)	session	identifiers,	all	transports	will	be	invoked.

The	transports	are	also	exposed	as	the		transport		property	of	the	middleware.

If	the	string		"cookie"		is	passed	instead	of	a	Transport,	the	Cookie	Transport	will	be	used	with	the	default	settings	instead.

If	the	string		"header"		is	passed	instead	of	a	Transport,	the	Header	Transport	will	be	used	with	the	default	settings	instead.

autoCreate:		boolean		(Default:		true)

If	enabled	the	session	storage's		new		method	will	be	invoked	to	create	an	empty	session	whenever	the	transport	failed	to	return
a	session	for	the	incoming	request.	Otherwise	the	session	will	be	initialized	as		null	.

Sessions	middleware

221

Returns	the	session	middleware.

Sessions	middleware

222

Session	Storages
Session	storages	are	used	by	the	sessions	middleware	to	persist	sessions	across	requests.	Session	storages	must	implement	the
	fromClient		and		forClient		methods	and	can	optionally	implement	the		new		method.

The	built-in	session	storages	generally	provide	the	following	attributes:

uid:		string		(Default:		null)

A	unique	identifier	indicating	the	active	user.

created:		number		(Default:		Date.now())

The	numeric	timestamp	of	when	the	session	was	created.

data:		any		(Default:		null)

Arbitrary	data	to	persisted	in	the	session.

new
	storage.new():	Session	

Generates	a	new	session	object	representing	an	empty	session.	The	empty	session	object	should	not	be	persisted	unless	necessary.	The
return	value	will	be	exposed	by	the	middleware	as	the		session		property	of	the	request	object	if	no	session	identifier	was	returned	by
the	session	transports	and	auto-creation	is	not	explicitly	disabled	in	the	session	middleware.

Examples

new()	{

		return	{

				uid:	null,

				created:	Date.now(),

				data:	null

		};

}

fromClient
	storage.fromClient(sid):	Session	|	null	

Resolves	or	deserializes	a	session	identifier	to	a	session	object.

Arguments

sid:		string	

Session	identifier	to	resolve	or	deserialize.

Returns	a	session	object	representing	the	session	with	the	given	session	identifier	that	will	be	exposed	by	the	middleware	as	the
	session		property	of	the	request	object.	This	method	will	only	be	called	if	any	of	the	session	transports	returned	a	session	identifier.	If
the	session	identifier	is	invalid	or	expired,	the	method	should	return	a		null		value	to	indicate	no	matching	session.

Examples

fromClient(sid)	{

		return	db._collection('sessions').firstExample({_key:	sid});

}

forClient
	storage.forClient(session):	string	|	null	

Session	storages

223

Derives	a	session	identifier	from	the	given	session	object.

Arguments

session:		Session	

Session	to	derive	a	session	identifier	from.

Returns	a	session	identifier	for	the	session	represented	by	the	given	session	object.	This	method	will	be	called	with	the		session	
property	of	the	request	object	unless	that	property	is	empty	(e.g.		null).

Examples

forClient(session)	{

		if	(!session._key)	{

				const	meta	=	db._collection('sessions').save(session);

				return	meta._key;

		}

		db._collection('sessions').replace(session._key,	session);

		return	session._key;

}

Session	storages

224

Collection	Session	Storage
	const	collectionStorage	=	require('@arangodb/foxx/sessions/storages/collection');	

The	collection	session	storage	persists	sessions	to	a	collection	in	the	database.

Creating	a	storage
	collectionStorage(options):	Storage	

Creates	a	Storage	that	can	be	used	in	the	sessions	middleware.

Arguments

options:		Object	

An	object	with	the	following	properties:

collection:		ArangoCollection	

The	collection	that	should	be	used	to	persist	the	sessions.	If	a	string	is	passed	instead	of	a	collection	it	is	assumed	to	be	the
fully	qualified	name	of	a	collection	in	the	current	database.

ttl:		number		(Default:		60	*	60)

The	time	in	seconds	since	the	last	update	until	a	session	will	be	considered	expired.

pruneExpired:		boolean		(Default:		false)

Whether	expired	sessions	should	be	removed	from	the	collection	when	they	are	accessed	instead	of	simply	being	ignored.

autoUpdate:		boolean		(Default:		true)

Whether	sessions	should	be	updated	in	the	collection	every	time	they	are	accessed	to	keep	them	from	expiring.	Disabling	this
option	will	improve	performance	but	means	you	will	have	to	take	care	of	keeping	your	sessions	alive	yourself.

If	a	string	or	collection	is	passed	instead	of	an	options	object,	it	will	be	interpreted	as	the	collection	option.

prune
	storage.prune():	Array<string>	

Removes	all	expired	sessions	from	the	collection.	This	method	should	be	called	even	if	the	pruneExpired	option	is	enabled	to	clean	up
abandoned	sessions.

Returns	an	array	of	the	keys	of	all	sessions	that	were	removed.

save
	storage.save(session):	Session	

Saves	(replaces)	the	given	session	object	in	the	collection.	This	method	needs	to	be	invoked	explicitly	after	making	changes	to	the	session
or	the	changes	will	not	be	persisted.	Assigns	a	new		_key		to	the	session	if	it	previously	did	not	have	one.

Arguments

session:		Session	

A	session	object.

Returns	the	modified	session.

clear

Session	storages

225

	storage.clear(session):	boolean	

Removes	the	session	from	the	collection.	Has	no	effect	if	the	session	was	already	removed	or	has	not	yet	been	saved	to	the	collection	(i.e.
has	no		_key).

Arguments

session:		Session	

A	session	object.

Returns		true		if	the	session	was	removed	or		false		if	it	had	no	effect.

Session	storages

226

JWT	Session	Storage
	const	jwtStorage	=	require('@arangodb/foxx/sessions/storages/jwt');	

The	JWT	session	storage	converts	sessions	to	and	from	JSON	Web	Tokens.

Examples

//	Pass	in	a	secure	secret	from	the	Foxx	configuration

const	secret	=	module.context.configuration.jwtSecret;

const	sessions	=	sessionsMiddleware({

		storage:	jwtStorage(secret),

		transport:	'header'

});

module.context.use(sessions);

Creating	a	storage
	jwtStorage(options):	Storage	

Creates	a	Storage	that	can	be	used	in	the	sessions	middleware.

Note:	while	the	"none"	algorithm	(i.e.	no	signature)	is	supported	this	dummy	algorithm	provides	no	security	and	allows	clients	to	make
arbitrary	modifications	to	the	payload	and	should	not	be	used	unless	you	are	certain	you	specifically	need	it.

Arguments

options:		Object	

An	object	with	the	following	properties:

algorithm:		string		(Default:		"HS512")

The	algorithm	to	use	for	signing	the	token.

Supported	values:

	"HS256"		(HMAC-SHA256)
	"HS384"		(HMAC-SHA384)
	"HS512"		(HMAC-SHA512)
	"none"		(no	signature)

secret:		string	

The	secret	to	use	for	signing	the	token.

This	field	is	forbidden	when	using	the	"none"	algorithm	but	required	otherwise.

ttl:		number		(Default:		3600)

The	maximum	lifetime	of	the	token	in	seconds.	You	may	want	to	keep	this	short	as	a	new	token	is	generated	on	every	request
allowing	clients	to	refresh	tokens	automatically.

verify:		boolean		(Default:		true)

If	set	to		false		the	signature	will	not	be	verified	but	still	generated	(unless	using	the	"none"	algorithm).

maxExp:		number		(Default:		Infinity)

Largest	value	that	will	be	accepted	in	an	incoming	JWT		exp		(expiration)	field.

If	a	string	is	passed	instead	of	an	options	object	it	will	be	interpreted	as	the	secret	option.

Session	storages

227

https://jwt.io/

Session	Transports
Session	transports	are	used	by	the	sessions	middleware	to	store	and	retrieve	session	identifiers	in	requests	and	responses.	Session
transports	must	implement	the		get		and/or		set		methods	and	can	optionally	implement	the		clear		method.

get
	transport.get(request):	string	|	null	

Retrieves	a	session	identifier	from	a	request	object.

If	present	this	method	will	automatically	be	invoked	for	each	transport	until	a	transport	returns	a	session	identifier.

Arguments

request:		Request	

Request	object	to	extract	a	session	identifier	from.

Returns	the	session	identifier	or		null		if	the	transport	can	not	find	a	session	identifier	in	the	request.

Examples

get(req)	{

		return	req.get('x-session-id')	||	null;

}

set
	transport.set(response,	sid):	void	

Attaches	a	session	identifier	to	a	response	object.

If	present	this	method	will	automatically	be	invoked	at	the	end	of	a	request	regardless	of	whether	the	session	was	modified	or	not.

Arguments

response:		Response	

Response	object	to	attach	a	session	identifier	to.

sid:		string	

Session	identifier	to	attach	to	the	response.

Returns	nothing.

Examples

set(res)	{

		res.set('x-session-id',	value);

}

clear
	transport.clear(response):	void	

Attaches	a	payload	indicating	that	the	session	has	been	cleared	to	the	response	object.	This	can	be	used	to	clear	a	session	cookie	when	the
session	has	been	destroyed	(e.g.	during	logout).

If	present	this	method	will	automatically	be	invoked	instead	of		set		when	the		req.session		attribute	was	removed	by	the	route	handler.

Arguments

Session	transports

228

response:		Response	

Response	object	to	remove	the	session	identifier	from.

Returns	nothing.

Session	transports

229

Cookie	Session	Transport
	const	cookieTransport	=	require('@arangodb/foxx/sessions/transports/cookie');	

The	cookie	transport	stores	session	identifiers	in	cookies	on	the	request	and	response	object.

Examples

//	Pass	in	a	secure	secret	from	the	Foxx	configuration

const	secret	=	module.context.configuration.cookieSecret;

const	sessions	=	sessionsMiddleware({

		storage:	module.context.collection('sessions'),

		transport:	cookieTransport({

				name:	'FOXXSESSID',

				ttl:	60	*	60	*	24	*	7,	//	one	week	in	seconds

				algorithm:	'sha256',

				secret:	secret

		})

});

module.context.use(sessions);

Creating	a	transport
	cookieTransport([options]):	Transport	

Creates	a	Transport	that	can	be	used	in	the	sessions	middleware.

Arguments

options:		Object		(optional)

An	object	with	the	following	properties:

name:		string		(Default:		"sid")

The	name	of	the	cookie.

ttl:		number		(optional)

Cookie	lifetime	in	seconds.	Note	that	this	does	not	affect	the	storage	TTL	(i.e.	how	long	the	session	itself	is	considered	valid),
just	how	long	the	cookie	should	be	stored	by	the	client.

algorithm:		string		(optional)

The	algorithm	used	to	sign	and	verify	the	cookie.	If	no	algorithm	is	specified,	the	cookie	will	not	be	signed	or	verified.	See	the
cookie	method	on	the	response	object.

secret:		string		(optional)

Secret	to	use	for	the	signed	cookie.	Will	be	ignored	if	no	algorithm	is	provided.

path:		string		(optional)

Path	for	which	the	cookie	should	be	issued.

domain:		string		(optional)

Domain	for	which	the	cookie	should	be	issued.

secure:		boolean		(Default:		false)

Whether	the	cookie	should	be	marked	as	secure	(i.e.	HTTPS/SSL-only).

httpOnly:		boolean		(Default:		false)

Whether	the	cookie	should	be	marked	as	HTTP-only	(rather	than	also	exposing	it	to	client-side	code).

If	a	string	is	passed	instead	of	an	options	object,	it	will	be	interpreted	as	the	name	option.

Session	transports

230

Session	transports

231

Header	Session	Transport
	const	headerTransport	=	require('@arangodb/foxx/sessions/transports/header');	

The	header	transport	stores	session	identifiers	in	headers	on	the	request	and	response	objects.

Examples

const	sessions	=	sessionsMiddleware({

		storage:	module.context.collection('sessions'),

		transport:	headerTransport('X-FOXXSESSID')

});

module.context.use(sessions);

Creating	a	transport
	headerTransport([options]):	Transport	

Creates	a	Transport	that	can	be	used	in	the	sessions	middleware.

Arguments

options:		Object		(optional)

An	object	with	the	following	properties:

name:		string		(Default:		X-Session-Id)

Name	of	the	header	that	contains	the	session	identifier	(not	case	sensitive).

If	a	string	is	passed	instead	of	an	options	object,	it	will	be	interpreted	as	the	name	option.

Session	transports

232

Static	file	assets
The	most	flexible	way	to	serve	files	in	your	Foxx	service	is	to	simply	pass	them	through	in	your	router	using	the	context	object's
	fileName		method	and	the	response	object's		sendFile		method:

router.get('/some/filename.png',	function	(req,	res)	{

		const	filePath	=	module.context.fileName('some-local-filename.png');

		res.sendFile(filePath);

});

While	allowing	for	greater	control	of	how	the	file	should	be	sent	to	the	client	and	who	should	be	able	to	access	it,	doing	this	for	all	your
static	assets	can	get	tedious.

Alternatively	you	can	specify	file	assets	that	should	be	served	by	your	Foxx	service	directly	in	the	service	manifest	using	the		files	
attribute:

"files":	{

		"/some/filename.png":	{

				"path":	"some-local-filename.png",

				"type":	"image/png",

				"gzip":	false

		},

		"/favicon.ico":	"bookmark.ico",

		"/static":	"my-assets-folder"

}

Each	entry	in	the		files		attribute	can	represent	either	a	single	file	or	a	directory.	When	serving	entire	directories,	the	key	acts	as	a	prefix
and	requests	to	that	prefix	will	be	resolved	within	the	given	directory.

Options

path:		string	

The	relative	path	of	the	file	or	folder	within	the	service.

type:		string		(optional)

The	MIME	content	type	of	the	file.	Defaults	to	an	intelligent	guess	based	on	the	filename's	extension.

gzip:		boolean		(Default:		false)

If	set	to		true		the	file	will	be	served	with	gzip-encoding	if	supported	by	the	client.	This	can	be	useful	when	serving	text	files	like
client-side	JavaScript,	CSS	or	HTML.

If	a	string	is	provided	instead	of	an	object,	it	will	be	interpreted	as	the	path	option.

Serving	files

233

Writing	tests
Foxx	provides	out	of	the	box	support	for	running	tests	against	an	installed	service	using	the	Mocha	test	runner.

Test	files	have	full	access	to	the	service	context	and	all	ArangoDB	APIs	but	like	scripts	can	not	define	Foxx	routes.

Running	tests

An	installed	service's	tests	can	be	executed	from	the	administrative	web	interface:

1.	 Open	the	"Services"	tab	of	the	web	interface
2.	 Click	on	the	installed	service	to	be	tested
3.	 Click	on	the	"Settings"	tab
4.	 Click	on	the	flask	icon	in	the	top	right
5.	 Accept	the	confirmation	dialog

Note	that	running	tests	in	a	production	database	is	not	recommended	and	may	result	in	data	loss	if	the	tests	access	the	database.

When	running	a	service	in	development	mode	special	care	needs	to	be	taken	as	performing	requests	to	the	service's	own	routes	as	part	of
the	test	suites	may	result	in	tests	being	executed	while	the	database	is	in	an	inconsistent	state,	leading	to	unexpected	behaviour.

Test	file	paths
In	order	to	tell	Foxx	about	files	containing	test	suites,	one	or	more	patterns	need	to	be	specified	in	the		tests		option	of	the	service
manifest:

{

		"tests":	[

				"**/test_*.js",

				"**/*_test.js"

]

}

These	patterns	can	be	either	relative	file	paths	or	"globstar"	patterns	where

	*		matches	zero	or	more	characters	in	a	filename
	**		matches	zero	or	more	nested	directories

For	example,	given	the	following	directory	structure:

++	test/

|++	a/

||+-	a1.js

||+-	a2.js

||+-	test.js

|+-	b.js

|+-	c.js

|+-	d_test.js

+-	e_test.js

+-	test.js

The	following	patterns	would	match	the	following	files:

test.js:

		test.js

test/*.js:

		/test/b.js

		/test/c.js

		/test/d_test.js

Writing	tests

234

https://mochajs.org

test/**/*.js:

		/test/a/a1.js

		/test/a/a2.js

		/test/a/test.js

		/test/b.js

		/test/c.js

		/test/d_test.js

**/test.js:

		/test/a/test.js

**/*test.js:

		/test/a/test.js

		/test/d_test.js

		/e_test.js

		/test.js

Even	if	multiple	patterns	match	the	same	file	the	tests	in	that	file	will	only	be	run	once.

The	order	of	tests	is	always	determined	by	the	file	paths,	not	the	order	in	which	they	are	matched	or	specified	in	the	manifest.

Test	structure
Mocha	test	suites	can	be	defined	using	one	of	three	interfaces:	BDD,	TDD	or	Exports.

The	QUnit	interface	of	Mocha	is	not	supported	in	ArangoDB.

Like	all	ArangoDB	code,	test	code	is	always	synchronous.

BDD	interface

The	BDD	interface	defines	test	suites	using	the		describe		function	and	each	test	case	is	defined	using	the		it		function:

'use	strict';

const	assert	=	require('assert');

const	trueThing	=	true;

describe('True	things',	()	=>	{

		it('are	true',	()	=>	{

				assert.equal(trueThing,	true);

		});

});

The	BDD	interface	also	offers	the	alias		context		for		describe		and		specify		for		it	.

Test	fixtures	can	be	handled	using		before		and		after		for	suite-wide	fixtures	and		beforeEach		and		afterEach		for	per-test	fixtures:

describe('False	things',	()	=>	{

		let	falseThing;

		before(()	=>	{

				falseThing	=	!true;

		});

		it('are	false',	()	=>	{

				assert.equal(falseThing,	false);

		});

});

TDD	interface

The	TDD	interface	defines	test	suites	using	the		suite		function	and	each	test	case	is	defined	using	the		test		function:

'use	strict';

const	assert	=	require('assert');

const	trueThing	=	true;

suite('True	things',	()	=>	{

		test('are	true',	()	=>	{

Writing	tests

235

				assert.equal(trueThing,	true);

		});

});

Test	fixtures	can	be	handled	using		suiteSetup		and		suiteTeardown		for	suite-wide	fixtures	and		setup		and		teardown		for	per-test
fixtures:

suite('False	things',	()	=>	{

		let	falseThing;

		suiteSetup(()	=>	{

				falseThing	=	!true;

		});

		test('are	false',	()	=>	{

				assert.equal(falseThing,	false);

		});

});

Exports	interface

The	Exports	interface	defines	test	cases	as	methods	of	plain	object	properties	of	the		module.exports		object:

'use	strict';

const	assert	=	require('assert');

const	trueThing	=	true;

exports['True	things']	=	{

		'are	true':	function()	{

				assert.equal(trueThing,	true);

		}

};

The	keys		before	,		after	,		beforeEach		and		afterEach		are	special-cased	and	behave	like	the	corresponding	functions	in	the	BDD
interface:

let	falseThing;

exports['False	things']	=	{

		before	()	{

				falseThing	=	false;

		},

		'are	false':	function()	{

				assert.equal(falseThing,	false);

		}

};

Assertions

ArangoDB	provides	two	bundled	modules	to	define	assertions:

	assert		corresponds	to	the	Node.js		assert		module,	providing	low-level	assertions	that	can	optionally	specify	an	error	message.

	chai		is	the	popular	Chai	Assertion	Library,	providing	both	BDD	and	TDD	style	assertions	using	a	familiar	syntax.

Writing	tests

236

http://nodejs.org/api/assert.html
http://chaijs.com

Cross-Origin	Resource	Sharing	(CORS)
To	use	CORS	in	your	Foxx	services	you	first	need	to	configure	ArangoDB	for	CORS.	As	of	3.2	Foxx	will	then	automatically	whitelist	all
response	headers	as	they	are	used.

If	you	want	more	control	over	the	whitelist	or	are	using	an	older	version	of	ArangoDB	you	can	set	the	following	response	headers	in	your
request	handler:

	access-control-expose-headers	:	a	comma-separated	list	of	response	headers.	This	defaults	to	a	list	of	all	headers	the	response	is
actually	using	(but	not	including	any		access-control		headers).

	access-control-allow-credentials	:	can	be	set	to		"false"		to	forbid	exposing	cookies.	The	default	value	depends	on	whether
ArangoDB	trusts	the	origin.	See	the	notes	on		http.trusted-origin	.

Note	that	it	is	not	possible	to	override	these	headers	for	the	CORS	preflight	response.	It	is	therefore	not	possible	to	accept	credentials	or
cookies	only	for	individual	routes,	services	or	databases.	The	origin	needs	to	be	trusted	according	to	the	general	ArangoDB	configuration
(see	above).

Cross	Origin

237

Foxx	scripts	and	queued	jobs
Foxx	lets	you	define	scripts	that	can	be	executed	as	part	of	the	installation	and	removal	process,	invoked	manually	or	scheduled	to	run	at
a	later	time	using	the	job	queue.

To	register	your	script,	just	add	a		scripts		section	to	your	service	manifest:

{

		...

		"scripts":	{

				"setup":	"scripts/setup.js",

				"send-mail":	"scripts/send-mail.js"

		}

		...

}

The	scripts	you	define	in	your	service	manifest	can	be	invoked	from	the	web	interface	in	the	service's	settings	page	with	the	Scripts
dropdown.

You	can	also	use	the	scripts	as	queued	jobs:

'use	strict';

const	queues	=	require('@arangodb/foxx/queues');

queues.get('default').push(

		{mount:	'/my-service-mount-point',	name:	'send-mail'},

		{to:	'user@example.com',	body:	'Hello'}

);

Script	arguments	and	return	values
If	the	script	was	invoked	with	any	arguments,	you	can	access	them	using	the		module.context.argv		array.

To	return	data	from	your	script,	you	can	assign	the	data	to		module.exports		as	usual.	Please	note	that	this	data	will	be	converted	to
JSON.

Any	errors	raised	by	the	script	will	be	handled	depending	on	how	the	script	was	invoked:

if	the	script	was	invoked	from	the	HTTP	API	(e.g.	using	the	web	interface),	it	will	return	an	error	response	using	the	exception's
	statusCode		property	if	specified	or	500.
if	the	script	was	invoked	from	a	Foxx	job	queue,	the	job's	failure	counter	will	be	incremented	and	the	job	will	be	rescheduled	or
marked	as	failed	if	no	attempts	remain.

Examples

Let's	say	you	want	to	define	a	script	that	takes	two	numeric	values	and	returns	the	result	of	multiplying	them:

'use	strict';

const	assert	=	require('assert');

const	argv	=	module.context.argv;

assert.equal(argv.length,	2,	'Expected	exactly	two	arguments');

assert.equal(typeof	argv[0],	'number',	'Expected	first	argument	to	be	a	number');

assert.equal(typeof	argv[1],	'number',	'Expected	second	argument	to	be	a	number');

module.exports	=	argv[0]	*	argv[1];

Lifecycle	Scripts
Foxx	recognizes	lifecycle	scripts	if	they	are	defined	and	will	invoke	them	during	the	installation,	update	and	removal	process	of	the
service	if	you	want.

Scripts	and	queued	jobs

238

The	following	scripts	are	currently	recognized	as	lifecycle	scripts	by	their	name:		"setup"		and		"teardown"	.

Setup	Script

The	setup	script	will	be	executed	without	arguments	during	the	installation	of	your	Foxx	service.

The	setup	script	may	be	executed	more	than	once	and	should	therefore	be	treated	as	reentrant.	Running	the	same	setup	script	again
should	not	result	in	any	errors	or	duplicate	data.

The	setup	script	is	typically	used	to	create	collections	your	service	needs	or	insert	seed	data	like	initial	administrative	user	accounts	and
so	on.

Examples

'use	strict';

const	db	=	require('@arangodb').db;

const	textsCollectionName	=	module.context.collectionName('texts');

//	`textsCollectionName`	is	now	the	prefixed	name	of	this	service's	"texts"	collection.

//	e.g.	"example_texts"	if	the	service	has	been	mounted	at	`/example`

if	(db._collection(textsCollectionName)	===	null)	{

		const	collection	=	db._create(textsCollectionName);

		collection.save({text:	'entry	1	from	collection	texts'});

		collection.save({text:	'entry	2	from	collection	texts'});

		collection.save({text:	'entry	3	from	collection	texts'});

}	else	{

		console.debug(`collection	${texts}	already	exists.	Leaving	it	untouched.`);

}

Teardown	Script

The	teardown	script	will	be	executed	without	arguments	during	the	removal	of	your	Foxx	service.

It	can	also	optionally	be	executed	before	upgrading	an	service.

This	script	typically	removes	the	collections	and/or	documents	created	by	your	service's	setup	script.

Examples

'use	strict';

const	db	=	require('@arangodb').db;

const	textsCollection	=	module.context.collection('texts');

if	(textsCollection)	{

		textsCollection.drop();

}

Queues
	const	queues	=	require('@arangodb/foxx/queues')	

Foxx	allows	defining	job	queues	that	let	you	perform	slow	or	expensive	actions	asynchronously.	These	queues	can	be	used	to	send	e-
mails,	call	external	APIs	or	perform	other	actions	that	you	do	not	want	to	perform	directly	or	want	to	retry	on	failure.

enable	or	disable	the	Foxx	queues	feature		--foxx.queues	flag	

If	true,	the	Foxx	queues	will	be	available	and	jobs	in	the	queues	will	be	executed	asynchronously.

The	default	is	true.	When	set	to		false		the	queue	manager	will	be	disabled	and	any	jobs	are	prevented	from	being	processed,	which	may
reduce	CPU	load	a	bit.	Please	note	that	Foxx	job	queues	are	database-specific.	Queues	and	jobs	are	always	relative	to	the	database	in
which	they	are	created	or	accessed.

poll	interval	for	Foxx	queues		--foxx.queues-poll-interval	value	

Scripts	and	queued	jobs

239

The	poll	interval	for	the	Foxx	queues	manager.	The	value	is	specified	in	seconds.	Lower	values	will	mean	more	immediate	and	more
frequent	Foxx	queue	job	execution,	but	will	make	the	queue	thread	wake	up	and	query	the	queues	more	often.	When	set	to	a	low	value,
the	queue	thread	might	cause	CPU	load.

The	default	is	1	second.	If	Foxx	queues	are	not	used	much,	then	this	value	may	be	increased	to	make	the	queues	thread	wake	up	less.	For
the	low-level	functionality	see	the	chapter	on	the	task	management	module.

Creating	or	updating	a	queue

	queues.create(name,	[maxWorkers]):	Queue	

Returns	the	queue	for	the	given	name.	If	the	queue	does	not	exist,	a	new	queue	with	the	given	name	will	be	created.	If	a	queue	with	the
given	name	already	exists	and	maxWorkers	is	set,	the	queue's	maximum	number	of	workers	will	be	updated.	The	queue	will	be	created	in
the	current	database.

Arguments

name:		string	

Name	of	the	queue	to	create.

maxWorkers:		number		(Default:		1)

The	maximum	number	of	workers.

Examples

//	Create	a	queue	with	the	default	number	of	workers	(i.e.	one)

const	queue1	=	queues.create("my-queue");

//	Create	a	queue	with	a	given	number	of	workers

const	queue2	=	queues.create("another-queue",	2);

//	Update	the	number	of	workers	of	an	existing	queue

const	queue3	=	queues.create("my-queue",	10);

//	queue1	and	queue3	refer	to	the	same	queue

assertEqual(queue1,	queue3);

Fetching	an	existing	queue

	queues.get(name):	Queue	

Returns	the	queue	for	the	given	name.	If	the	queue	does	not	exist	an	exception	is	thrown	instead.

The	queue	will	be	looked	up	in	the	current	database.

Arguments

name:		string	

Name	of	the	queue	to	fetch.

Examples

If	the	queue	does	not	yet	exist	an	exception	is	thrown:

queues.get("some-queue");

//	Error:	Queue	does	not	exist:	some-queue

//					at	...

Otherwise	the	queue	will	be	returned:

const	queue1	=	queues.create("some-queue");

const	queue2	=	queues.get("some-queue");

assertEqual(queue1,	queue2);

Deleting	a	queue
	queues.delete(name):	boolean	

Scripts	and	queued	jobs

240

Returns		true		if	the	queue	was	deleted	successfully.	If	the	queue	did	not	exist,	it	returns		false		instead.	The	queue	will	be	looked	up
and	deleted	in	the	current	database.

When	a	queue	is	deleted,	jobs	on	that	queue	will	no	longer	be	executed.

Deleting	a	queue	will	not	delete	any	jobs	on	that	queue.

Arguments

name:		string	

Name	of	the	queue	to	delete.

Examples

const	queue	=	queues.create("my-queue");

queues.delete("my-queue");	//	true

queues.delete("my-queue");	//	false

Adding	a	job	to	a	queue

	queue.push(script,	data,	[opts]):	string	

The	job	will	be	added	to	the	specified	queue	in	the	current	database.

Returns	the	job	id.

Arguments

script:		object	

A	job	type	definition,	consisting	of	an	object	with	the	following	properties:

name:		string	

Name	of	the	script	that	will	be	invoked.

mount:		string	

Mount	path	of	the	service	that	defines	the	script.

backOff:		Function	|	number		(Default:		1000)

Either	a	function	that	takes	the	number	of	times	the	job	has	failed	before	as	input	and	returns	the	number	of	milliseconds	to
wait	before	trying	the	job	again,	or	the	delay	to	be	used	to	calculate	an	exponential	back-off,	or		0		for	no	delay.

maxFailures:		number	|	Infinity		(Default:		0):

Number	of	times	a	single	run	of	a	job	will	be	re-tried	before	it	is	marked	as		"failed"	.	A	negative	value	or		Infinity		means
that	the	job	will	be	re-tried	on	failure	indefinitely.

schema:		Schema		(optional)

Schema	to	validate	a	job's	data	against	before	enqueuing	the	job.

preprocess:		Function		(optional)

Function	to	pre-process	a	job's	(validated)	data	before	serializing	it	in	the	queue.

data:		any	

Job	data	of	the	job;	must	be	serializable	to	JSON.

opts:		object		(optional)

Object	with	any	of	the	following	properties:

success:		Function		(optional)

Function	to	be	called	after	the	job	has	been	completed	successfully.

Scripts	and	queued	jobs

241

https://en.wikipedia.org/wiki/Exponential_backoff

failure:		Function		(optional)

Function	to	be	called	after	the	job	has	failed	too	many	times.

delayUntil:		number	|	Date		(Default:		Date.now())

Timestamp	in	milliseconds	(or		Date		instance)	until	which	the	execution	of	the	job	should	be	delayed.

backOff:		Function	|	number		(Default:		1000)

See	script.backOff.

maxFailures:		number	|	Infinity		(Default:		0):

See	script.maxFailures.

repeatTimes:		number	|	Function		(Default:		0)

If	set	to	a	positive	number,	the	job	will	be	repeated	this	many	times	(not	counting	recovery	when	using	maxFailures).	If	set	to
a	negative	number	or		Infinity	,	the	job	will	be	repeated	indefinitely.	If	set	to		0		the	job	will	not	be	repeated.

repeatUntil:		number	|	Date		(optional)

If	the	job	is	set	to	automatically	repeat,	this	can	be	set	to	a	timestamp	in	milliseconds	(or		Date		instance)	after	which	the	job
will	no	longer	repeat.	Setting	this	value	to	zero,	a	negative	value	or		Infinity		has	no	effect.

repeatDelay:		number		(Default:		0)

If	the	job	is	set	to	automatically	repeat,	this	can	be	set	to	a	non-negative	value	to	set	the	number	of	milliseconds	for	which	the
job	will	be	delayed	before	it	is	started	again.

Note	that	if	you	pass	a	function	for	the	backOff	calculation,	success	callback	or	failure	callback	options	the	function	will	be	serialized	to
the	database	as	a	string	and	therefore	must	not	rely	on	any	external	scope	or	external	variables.

When	the	job	is	set	to	automatically	repeat,	the	failure	callback	will	only	be	executed	when	a	run	of	the	job	has	failed	more	than
maxFailures	times.	Note	that	if	the	job	fails	and	maxFailures	is	set,	it	will	be	rescheduled	according	to	the	backOff	until	it	has	either
failed	too	many	times	or	completed	successfully	before	being	scheduled	according	to	the	repeatDelay	again.	Recovery	attempts	by
maxFailures	do	not	count	towards	repeatTimes.

The	success	and	failure	callbacks	receive	the	following	arguments:

result:		any	

The	return	value	of	the	script	for	the	current	run	of	the	job.

jobData:		any	

The	data	passed	to	this	method.

job:		object	

ArangoDB	document	representing	the	job's	current	state.

Examples

Let's	say	we	have	an	service	mounted	at		/mailer		that	provides	a	script	called		send-mail	:

'use	strict';

const	queues	=	require('@arangodb/foxx/queues');

const	queue	=	queues.create('my-queue');

queue.push(

		{mount:	'/mailer',	name:	'send-mail'},

		{to:	'hello@example.com',	body:	'Hello	world'}

);

This	will	not	work,	because		log		was	defined	outside	the	callback	function	(the	callback	must	be	serializable	to	a	string):

//	WARNING:	THIS	DOES	NOT	WORK!

'use	strict';

const	queues	=	require('@arangodb/foxx/queues');

Scripts	and	queued	jobs

242

const	queue	=	queues.create('my-queue');

const	log	=	require('console').log;	//	outside	the	callback's	function	scope

queue.push(

		{mount:	'/mailer',	name:	'send-mail'},

		{to:	'hello@example.com',	body:	'Hello	world'},

		{success:	function	()	{

				log('Yay!');	//	throws	'log	is	not	defined'

		}}

);

Here's	an	example	of	a	job	that	will	be	executed	every	5	seconds	until	tomorrow:

'use	strict';

const	queues	=	require('@arangodb/foxx').queues;

const	queue	=	queues.create('my-queue');

queue.push(

		{mount:	'/mailer',	name:	'send-mail'},

		{to:	'hello@example.com',	body:	'Hello	world'},

		{

				repeatTimes:	Infinity,

				repeatUntil:	Date.now()	+	(24	*	60	*	60	*	1000),

				repeatDelay:	5	*	1000

		}

);

Fetching	a	job	from	the	queue

	queue.get(jobId):	Job	

Creates	a	proxy	object	representing	a	job	with	the	given	job	id.

The	job	will	be	looked	up	in	the	specified	queue	in	the	current	database.

Returns	the	job	for	the	given	jobId.	Properties	of	the	job	object	will	be	fetched	whenever	they	are	referenced	and	can	not	be	modified.

Arguments

jobId:		string	

The	id	of	the	job	to	create	a	proxy	object	for.

Examples

const	jobId	=	queue.push({mount:	'/logger',	name:	'log'},	'Hello	World!');

const	job	=	queue.get(jobId);

assertEqual(job.id,	jobId);

Deleting	a	job	from	the	queue

	queue.delete(jobId):	boolean	

Deletes	a	job	with	the	given	job	id.	The	job	will	be	looked	up	and	deleted	in	the	specified	queue	in	the	current	database.

Arguments

jobId:		string	

The	id	of	the	job	to	delete.

Returns		true		if	the	job	was	deleted	successfully.	If	the	job	did	not	exist	it	returns		false		instead.

Fetching	an	array	of	jobs	in	a	queue

Examples

const	logScript	=	{mount:	'/logger',	name:	'log'};

queue.push(logScript,	'Hello	World!',	{delayUntil:	Date.now()	+	50});

assertEqual(queue.pending(logScript).length,	1);

//	50	ms	later...

Scripts	and	queued	jobs

243

assertEqual(queue.pending(logScript).length,	0);

assertEqual(queue.progress(logScript).length,	1);

//	even	later...

assertEqual(queue.progress(logScript).length,	0);

assertEqual(queue.complete(logScript).length,	1);

Fetching	an	array	of	pending	jobs	in	a	queue
	queue.pending([script]):	Array<string>	

Returns	an	array	of	job	ids	of	jobs	in	the	given	queue	with	the	status		"pending"	,	optionally	filtered	by	the	given	job	type.	The	jobs	will
be	looked	up	in	the	specified	queue	in	the	current	database.

Arguments

script:		object		(optional)

An	object	with	the	following	properties:

name:		string	
Name	of	the	script.

mount:		string	
Mount	path	of	the	service	defining	the	script.

Fetching	an	array	of	jobs	that	are	currently	in	progress

	queue.progress([script])	

Returns	an	array	of	job	ids	of	jobs	in	the	given	queue	with	the	status		"progress"	,	optionally	filtered	by	the	given	job	type.	The	jobs
will	be	looked	up	in	the	specified	queue	in	the	current	database.

Arguments

script:		object		(optional)

An	object	with	the	following	properties:

name:		string	
Name	of	the	script.

mount:		string	
Mount	path	of	the	service	defining	the	script.

Fetching	an	array	of	completed	jobs	in	a	queue
	queue.complete([script]):	Array<string>	

Returns	an	array	of	job	ids	of	jobs	in	the	given	queue	with	the	status		"complete"	,	optionally	filtered	by	the	given	job	type.	The	jobs
will	be	looked	up	in	the	specified	queue	in	the	current	database.

Arguments

script:		object		(optional)

An	object	with	the	following	properties:

name:		string	
Name	of	the	script.

mount:		string	
Mount	path	of	the	service	defining	the	script.

Fetching	an	array	of	failed	jobs	in	a	queue

	queue.failed([script]):	Array<string>	

Scripts	and	queued	jobs

244

Returns	an	array	of	job	ids	of	jobs	in	the	given	queue	with	the	status		"failed"	,	optionally	filtered	by	the	given	job	type.	The	jobs	will
be	looked	up	in	the	specified	queue	in	the	current	database.

Arguments

script:		object		(optional)

An	object	with	the	following	properties:

name:		string	
Name	of	the	script.

mount:		string	
Mount	path	of	the	service	defining	the	script.

Fetching	an	array	of	all	jobs	in	a	queue

	queue.all([script]):	Array<string>	

Returns	an	array	of	job	ids	of	all	jobs	in	the	given	queue,	optionally	filtered	by	the	given	job	type.	The	jobs	will	be	looked	up	in	the
specified	queue	in	the	current	database.

Arguments

script:		object		(optional)

An	object	with	the	following	properties:

name:		string	
Name	of	the	script.

mount:		string	
Mount	path	of	the	service	defining	the	script.

Aborting	a	job

	job.abort():	void	

Aborts	a	non-completed	job.

Sets	a	job's	status	to		"failed"		if	it	is	not	already		"complete"	,	without	calling	the	job's	onFailure	callback.

Scripts	and	queued	jobs

245

Migrating	2.x	services	to	3.0
When	migrating	services	from	older	versions	of	ArangoDB	it	is	generally	recommended	you	make	sure	they	work	in	legacy	compatibility
mode,	which	can	also	serve	as	a	stop-gap	solution.

This	chapter	outlines	the	major	differences	in	the	Foxx	API	between	ArangoDB	2.8	and	ArangoDB	3.0.

General	changes

The		console		object	in	later	versions	of	ArangoDB	2.x	implemented	a	special	Foxx	console	API	and	would	optionally	log	messages	to	a
collection.	ArangoDB	3.0	restores	the	original	behaviour	where		console		is	the	same	object	available	from	the	console	module.

Migrating	2.x	services

246

Migrating	from	pre-2.8
When	migrating	from	a	version	older	than	ArangoDB	2.8	please	note	that	starting	with	ArangoDB	2.8	the	behaviour	of	the		require	
function	more	closely	mimics	the	behaviour	observed	in	Node.js	and	module	bundlers	for	browsers,	e.g.:

In	a	file		/routes/examples.js		(relative	to	the	root	folder	of	the	service):

	require('./my-module')		will	be	attempted	to	be	resolved	in	the	following	order:

1.	 	/routes/my-module		(relative	to	service	root)
2.	 	/routes/my-module.js		(relative	to	service	root)
3.	 	/routes/my-module.json		(relative	to	service	root)
4.	 	/routes/my-module/index.js		(relative	to	service	root)
5.	 	/routes/my-module/index.json		(relative	to	service	root)

	require('lodash')		will	be	attempted	to	be	resolved	in	the	following	order:

1.	 	/routes/node_modules/lodash		(relative	to	service	root)
2.	 	/node_modules/lodash		(relative	to	service	root)
3.	 ArangoDB	module		lodash	
4.	 Node	compatibility	module		lodash	
5.	 Bundled	NPM	module		lodash	

	require('/abs/path')		will	be	attempted	to	be	resolved	in	the	following	order:

1.	 	/abs/path		(relative	to	file	system	root)
2.	 	/abs/path.js		(relative	to	file	system	root)
3.	 	/abs/path.json		(relative	to	file	system	root)
4.	 	/abs/path/index.js		(relative	to	file	system	root)
5.	 	/abs/path/index.json		(relative	to	file	system	root)

This	behaviour	is	incompatible	with	the	source	code	generated	by	the	Foxx	generator	in	the	web	interface	before	ArangoDB	2.8.

Note:	The		org/arangodb		module	is	aliased	to	the	new	name		@arangodb		in	ArangoDB	3.0.0	and	the		@arangodb		module	was	aliased	to
the	old	name		org/arangodb		in	ArangoDB	2.8.0.	Either	one	will	work	in	2.8	and	3.0	but	outside	of	legacy	services	you	should	use
	@arangodb		going	forward.

Foxx	queue
In	ArangoDB	2.6	Foxx	introduced	a	new	way	to	define	queued	jobs	using	Foxx	scripts	to	replace	the	function-based	job	type	definitions
which	were	causing	problems	when	restarting	the	server.	The	function-based	jobs	have	been	removed	in	2.7	and	are	no	longer	supported
at	all.

CoffeeScript
ArangoDB	3.0	no	longer	provides	built-in	support	for	CoffeeScript	source	files,	even	in	legacy	compatibility	mode.	If	you	want	to	use	an
alternative	language	like	CoffeeScript,	make	sure	to	pre-compile	the	raw	source	files	to	JavaScript	and	use	the	compiled	JavaScript	files	in
the	service.

The	request	module
The		@arangodb/request		module	when	used	with	the		json		option	previously	overwrote	the	string	in	the		body		property	of	the
response	object	of	the	response	with	the	parsed	JSON	body.	In	2.8	this	was	changed	so	the	parsed	JSON	body	is	added	as	the		json	
property	of	the	response	object	in	addition	to	overwriting	the		body		property.	In	3.0	and	later	(including	legacy	compatibility	mode)	the
	body		property	is	no	longer	overwritten	and	must	use	the		json		property	instead.	Note	that	this	only	affects	code	using	the		json	
option	when	making	the	request.

Migrating	from	pre-2.8

247

Bundled	NPM	modules

The	bundled	NPM	modules	have	been	upgraded	and	may	include	backwards-incompatible	changes,	especially	the	API	of		joi		has
changed	several	times.	If	in	doubt	you	should	bundle	your	own	versions	of	these	modules	to	ensure	specific	versions	will	be	used.

The	utility	module		lodash		is	now	available	and	should	be	used	instead	of		underscore	,	but	both	modules	will	continue	to	be	provided.

Migrating	from	pre-2.8

248

Manifest
Many	of	the	fields	that	were	required	in	ArangoDB	2.x	are	now	optional	and	can	be	safely	omitted.

To	avoid	compatibility	problems	with	future	versions	of	ArangoDB	you	should	always	specify	the		engines		field,	e.g.:

{

		"engines":	{

				"arangodb":	"^3.0.0"

		}

}

Controllers	&	exports

Previously	Foxx	distinguished	between		exports		and		controllers	,	each	of	which	could	be	specified	as	an	object.	In	ArangoDB	3.0
these	have	been	merged	into	a	single		main		field	specifying	an	entry	file.

The	easiest	way	to	migrate	services	using	multiple	exports	and/or	controllers	is	to	create	a	separate	entry	file	that	imports	these	files:

Old	(manifest.json):

{

		"exports":	{

				"doodads":	"doodads.js",

				"dingbats":	"dingbats.js"

		},

		"controllers":	{

				"/doodads":	"routes/doodads.js",

				"/dingbats":	"routes/dingbats.js",

				"/":	"routes/root.js"

		}

}

New	(manifest.json):

{

		"main":	"index.js"

}

New	(index.js):

'use	strict';

module.context.use('/doodads',	require('./routes/doodads'));

module.context.use('/dingbats',	require('./routes/dingbats'));

module.context.use('/',	require('./routes/root'));

module.exports	=	{

		doodads:	require('./doodads'),

		dingbats:	require('./dingbats')

};

Index	redirect
If	you	previously	did	not	define	the		defaultDocument		field,	please	note	that	in	ArangoDB	3.0	the	field	will	no	longer	default	to	the	value
	index.html		when	omitted:

Old:

{

		//	no	defaultDocument

}

manifest.json

249

New:

{

		"defaultDocument":	"index.html"

}

This	also	means	it	is	no	longer	necessary	to	specify	the		defaultDocument		field	with	an	empty	value	to	prevent	the	redirect	and	be	able	to
serve	requests	at	the		/		(root)	path	of	the	mount	point:

Old:

{

		"defaultDocument":	""

}

New:

{

		//	no	defaultDocument

}

Assets
The		assets		field	is	no	longer	supported	in	ArangoDB	3.0	outside	of	legacy	compatibility	mode.

If	you	previously	used	the	field	to	serve	individual	files	as-is	you	can	simply	use	the		files		field	instead:

Old:

{

		"assets":	{

				"client.js":	{

						"files":	["assets/client.js"],

						"contentType":	"application/javascript"

				}

		}

}

New:

{

		"files":	{

				"client.js":	{

						"path":	"assets/client.js",

						"type":	"application/javascript"

				}

		}

}

If	you	relied	on	being	able	to	specify	multiple	files	that	should	be	concatenated,	you	will	have	to	use	build	tools	outside	of	ArangoDB	to
prepare	these	files	accordingly.

Root	element
The		rootElement		field	is	no	longer	supported	and	has	been	removed	entirely.

If	your	controllers	relied	on	this	field	being	available	you	need	to	adjust	your	schemas	and	routes	to	be	able	to	handle	the	full	JSON
structure	of	incoming	documents.

System	services

manifest.json

250

The		isSystem		field	is	no	longer	supported.	The	presence	or	absence	of	the	field	had	no	effect	in	most	recent	versions	of	ArangoDB	2.x
and	has	now	been	removed	entirely.

manifest.json

251

The	application	context
The	global		applicationContext		variable	available	in	Foxx	modules	has	been	replaced	with	the		context		attribute	of	the		module	
variable.	For	consistency	it	is	now	referred	to	as	the	service	context	throughout	this	documentation.

Some	methods	of	the	service	context	have	changed	in	ArangoDB	3.0:

	fileName()		now	behaves	like		path()		did	in	ArangoDB	2.x
	path()		has	been	removed	(use		fileName()		instead)
	foxxFileName()		has	been	removed	(use		fileName()		instead)

Additionally	the		version		and		name		attributes	have	been	removed	and	can	now	only	be	accessed	via	the		manifest		attribute	(as
	manifest.version		and		manifest.name).	Note	that	the	corresponding	manifest	fields	are	now	optional	and	may	be	omitted.

The		options		attribute	has	also	been	removed	as	it	should	be	considered	an	implementation	detail.	You	should	instead	access	the
	dependencies		and		configuration		attributes	directly.

The	internal		_prefix		attribute	(which	was	an	alias	for		basePath)	and	the	internal		comment		and		clearComments		methods	(which	were
used	by	the	magical	documentation	comments	in	ArangoDB	2.x)	have	also	been	removed.

The	internal		_service		attribute	(which	provides	access	to	the	service	itself)	has	been	renamed	to		service	.

applicationContext

252

Repositories	and	models
Previously	Foxx	was	heavily	built	around	the	concept	of	repositories	and	models,	which	provided	complex	but	rarely	necessary
abstractions	on	top	of	ArangoDB	collections	and	documents.	In	ArangoDB	3.0	these	have	been	removed	entirely.

Repositories	vs	collections

Repositories	mostly	wrapped	methods	that	already	existed	on	ArangoDB	collection	objects	and	primarily	dealt	with	converting	between
plain	ArangoDB	documents	and	Foxx	model	instances.	In	ArangoDB	3.0	you	can	simply	use	these	collections	directly	and	treat
documents	as	plain	JavaScript	objects.

Old:

'use	strict';

const	Foxx	=	require('org/arangodb/foxx');

const	myRepo	=	new	Foxx.Repository(

		applicationContext.collection('myCollection'),

		{model:	Foxx.Model}

);

//	...

const	models	=	myRepo.byExample({color:	'green'});

res.json(models.map(function	(model)	{

		return	model.forClient();

}));

New:

'use	strict';

const	myDocs	=	module.context.collection('myCollection');

//	...

const	docs	=	myDocs.byExample({color:	'green'});

res.json(docs);

Schema	validation

The	main	purpose	of	models	in	ArangoDB	2.x	was	to	validate	incoming	data	using	joi	schemas.	In	more	recent	versions	of	ArangoDB	2.x
it	was	already	possible	to	pass	these	schemas	directly	in	most	places	where	a	model	was	expected	as	an	argument.	The	only	difference	is
that	schemas	should	now	be	considered	the	default.

If	you	previously	relied	on	the	automatic	validation	of	Foxx	model	instances	when	setting	attributes	or	instantiating	models	from
untrusted	data,	you	can	simply	use	the	schema's		validate		method	directly.

Old:

'use	strict';

const	joi	=	require('joi');

const	mySchema	=	{

		name:	joi.string().required(),

		size:	joi.number().required()

};

const	Foxx	=	require('org/arangodb/foxx');

const	MyModel	=	Foxx.Model.extend({schema:	mySchema});

//	...

const	model	=	new	MyModel(req.json());

if	(!model.isValid)	{

		res.status(400);

Repositories	and	Models

253

		res.write('Bad	request');

		return;

}

New:

'use	strict';

const	joi	=	require('joi');

//	Note	this	is	now	wrapped	in	a	joi.object()

const	mySchema	=	joi.object({

		name:	joi.string().required(),

		size:	joi.number().required()

}).required();

//	...

const	result	=	mySchema.validate(req.body);

if	(result.errors)	{

		res.status(400);

		res.write('Bad	request');

		return;

}

Migrating	models

While	most	use	cases	for	models	can	now	be	replaced	with	plain	joi	schemas,	there	is	still	the	concept	of	a	"model"	in	Foxx	in	ArangoDB
3.0	although	it	is	quite	different	from	Foxx	models	in	ArangoDB	2.x.

A	model	in	Foxx	now	refers	to	a	plain	JavaScript	object	with	an	optional		schema		attribute	and	the	optional	methods		forClient		and
	fromClient	.	Models	can	be	used	instead	of	plain	joi	schemas	to	define	request	and	response	bodies	but	there	are	no	model	"instances"	in
ArangoDB	3.0.

Old:

'use	strict';

const	_	=	require('underscore');

const	joi	=	require('joi');

const	Foxx	=	require('org/arangodb/foxx');

const	MyModel	=	Foxx.Model.extend({

		schema:	{

				name:	joi.string().required(),

				size:	joi.number().required()

		},

		forClient	()	{

				return	_.omit(this.attributes,	['_key',	'_id',	'_rev']);

		}

});

//	...

ctrl.get(/*	...	*/)

.bodyParam('body',	{type:	MyModel});

New:

'use	strict';

const	_	=	require('lodash');

const	joi	=	require('joi');

const	MyModel	=	{

		schema:	joi.object({

				name:	joi.string().required(),

				size:	joi.number().required()

		}).required(),

		forClient	(data)	{

				return	_.omit(data,	['_key',	'_id',	'_rev']);

		}

};

Repositories	and	Models

254

//	...

router.get(/*	...	*/)

.body(MyModel);

Triggers
When	saving,	updating,	replacing	or	deleting	models	in	ArangoDB	2.x	using	the	repository	methods	the	repository	and	model	would	fire
events	that	could	be	subscribed	to	in	order	to	perform	side-effects.

Note	that	even	in	2.x	these	events	would	not	fire	when	using	queries	or	manipulating	documents	in	any	other	way	than	using	the	specific
repository	methods	that	operated	on	individual	documents.

This	behaviour	is	no	longer	available	in	ArangoDB	3.0	but	can	be	emulated	by	using	an		EventEmitter		directly	if	it	is	not	possible	to
solve	the	problem	differently:

Old:

'use	strict';

const	Foxx	=	require('org/arangodb/foxx');

const	MyModel	=	Foxx.Model.extend({

		//	...

},	{

		afterRemove	()	{

				console.log(this.get('name'),	'was	removed');

		}

});

//	...

const	model	=	myRepo.firstExample({name:	'myName'});

myRepo.remove(model);

//	->	"myName	was	removed	successfully"

New:

'use	strict';

const	EventEmitter	=	require('events');

const	emitter	=	new	EventEmitter();

emitter.on('afterRemove',	function	(doc)	{

		console.log(doc.name,	'was	removed');

});

//	...

const	doc	=	myDocs.firstExample({name:	'myName'});

myDocs.remove(doc);

emitter.emit('afterRemove',	doc);

//	->	"myName	was	removed	successfully"

Or	simply:

'use	strict';

function	afterRemove(doc)	{

		console.log(doc.name,	'was	removed');

}

//	...

const	doc	=	myDocs.firstExample({name:	'myName'});

myDocs.remove(doc);

afterRemove(doc);

//	->	"myName	was	removed	successfully"

Repositories	and	Models

255

Controllers	vs	routers
Foxx	Controllers	have	been	replaced	with	routers.	This	is	more	than	a	cosmetic	change	as	there	are	significant	differences	in	behaviour:

Controllers	were	automatically	mounted	when	the	file	defining	them	was	executed.	Routers	need	to	be	explicitly	mounted	using	the
	module.context.use		method.	Routers	can	also	be	exported,	imported	and	even	nested.	This	makes	it	easier	to	split	up	complex	routing
trees	across	multiple	files.

Old:

'use	strict';

const	Foxx	=	require('org/arangodb/foxx');

const	ctrl	=	new	Foxx.Controller(applicationContext);

ctrl.get('/hello',	function	(req,	res)	{

		//	...

});

New:

'use	strict';

const	createRouter	=	require('org/arangodb/foxx/router');

const	router	=	createRouter();

//	If	you	are	importing	this	file	from	your	entry	file	("main"):

module.exports	=	router;

//	Otherwise:	module.context.use(router);

router.get('/hello',	function	(req,	res)	{

		//	...

});

Some	general	changes	in	behaviour	that	might	trip	you	up:

When	specifying	path	parameters	with	schemas	Foxx	will	now	ignore	the	route	if	the	schema	does	not	match	(i.e.		/hello/foxx		will
no	longer	match		/hello/:num		if		num		specifies	a	schema	that	doesn't	match	the	value		"foxx").	With	controllers	this	could
previously	result	in	users	seeing	a	400	(bad	request)	error	when	they	should	instead	be	served	a	404	(not	found)	response.

When	a	request	is	made	with	an	HTTP	verb	not	supported	by	an	endpoint,	Foxx	will	now	respond	with	a	405	(method	not	allowed)
error	with	an	appropriate		Allowed		header	listing	the	supported	HTTP	verbs	for	that	endpoint.

Foxx	will	no	longer	parse	your	JSDoc	comments	to	generate	route	documentation	(use	the		summary		and		description		methods	of
the	endpoint	instead).

The		apiDocumentation		method	now	lives	on	the	service	context	and	behaves	slightly	differently.

There	is	no	router	equivalent	for	the		activateAuthentication		and		activateSessions		methods.	Instead	you	should	use	the	session
middleware	(see	the	section	on	sessions	below).

There	is	no		del		alias	for	the		delete		method	on	routers.	It	has	always	been	safe	to	use	keywords	as	method	names	in	Foxx,	so
the	use	of	this	alias	was	already	discouraged	before.

The		allRoutes		proxy	is	no	lot	available	on	routers	but	can	easily	be	replaced	with	middleware	or	child	routers.

Controllers

256

The	request	context
When	defining	a	route	on	a	controller	the	controller	would	return	an	object	called	request	context.	Routers	return	a	similar	object	called
endpoint.	Routers	also	return	endpoints	when	mounting	child	routers	or	middleware,	as	does	the		use		method	of	the	service	context.

The	main	differences	between	the	new	endpoints	and	the	objects	returned	by	controllers	in	previous	versions	of	ArangoDB	are:

	bodyParam		is	now	simply	called		body	;	it	is	no	longer	neccessary	or	possible	to	give	the	body	a	name	and	the	request	body	will
not	show	up	in	the	request	parameters.	It's	also	possible	to	specify	a	MIME	type

	body	,		queryParam		and		pathParam		now	take	position	arguments	instead	of	an	object.	For	specifics	see	the	endpoint
documentation.

	notes		is	now	called		description		and	takes	a	single	string	argument.

	onlyIf		and		onlyIfAuthenticated		are	no	longer	available;	they	can	be	emulated	with	middleware	if	necessary:

Old:

ctrl.get(/*	...	*/)

.onlyIf(function	(req)	{

		if	(!req.user)	{

				throw	new	Error('Not	authenticated!');

		}

});

New:

router.use(function	(req,	res,	next)	{

		if	(!req.arangoUser)	{

				res.throw(403,	'Not	authenticated!');

		}

		next();

});

router.get(/*	...	*/);

Controllers

257

Error	handling
The		errorResponse		method	provided	by	controller	request	contexts	has	no	equivalent	in	router	endpoints.	If	you	want	to	handle
specific	error	types	with	specific	status	codes	you	need	to	catch	them	explicitly,	either	in	the	route	or	in	a	middleware:

Old:

ctrl.get('/puppies',	function	(req,	res)	{

		//	Exception	is	thrown	here

})

.errorResponse(TooManyPuppiesError,	400,	'Something	went	wrong!');

New:

ctrl.get('/puppies',	function	(req,	res)	{

		try	{

				//	Exception	is	thrown	here

		}	catch	(e)	{

				if	(!(e	instanceof	TooManyPuppiesError))	{

						throw	e;

				}

				res.throw(400,	'Something	went	wrong!');

		}

})

//	The	"error"	method	merely	documents	the	meaning

//	of	the	status	code	and	has	no	other	effect.

.error(400,	'Thrown	if	there	are	too	many	puppies.');

Note	that	errors	created	with		http-errors		are	still	handled	by	Foxx	intelligently.	In	fact		res.throw		is	just	a	helper	method	for	creating
and	throwing	these	errors.

Controllers

258

Before,	after	and	around
The		before	,		after		and		around		methods	can	easily	be	replaced	by	middleware:

Old:

let	start;

ctrl.before(function	(req,	res)	{

		start	=	Date.now();

});

ctrl.after(function	(req,	res)	{

		console.log('Request	handled	in	',	(Date.now()	-	start),	'ms');

});

New:

router.use(function	(req,	res,	next)	{

		let	start	=	Date.now();

		next();

		console.log('Request	handled	in	',	(Date.now()	-	start),	'ms');

});

Note	that	unlike		around		middleware	receives	the		next		function	as	the	third	argument	(the	"opts"	argument	has	no	equivalent).

Controllers

259

Request	objects
The	names	of	some	attributes	of	the	request	object	have	been	adjusted	to	more	closely	align	with	those	of	the	corresponding	methods	on
the	endpoint	objects	and	established	conventions	in	other	JavaScript	frameworks:

	req.urlParameters		is	now	called		req.pathParams	

	req.parameters		is	now	called		req.queryParams	

	req.params()		is	now	called		req.param()	

	req.requestType		is	now	called		req.method	

	req.compatibility		is	now	called		req.arangoVersion	

	req.user		is	now	called		req.arangoUser	

Some	attributes	have	been	removed	or	changed:

	req.cookies		has	been	removed	entirely	(use		req.cookie(name))

	req.requestBody		has	been	removed	entirely	(see	below)

	req.suffix		is	now	a	string	rather	than	an	array

Additionally	the		req.server		and		req.client		attributes	are	no	longer	available.	The	information	is	now	exposed	in	a	way	that	can
(optionally)	transparently	handle	proxy	forwarding	headers:

	req.hostname		defaults	to		req.server.address	

	req.port		defaults	to		req.server.port	

	req.remoteAddress		defaults	to		client.address	

	req.remotePort		defaults	to		client.port	

Finally,	the		req.cookie		method	now	takes	the		signed		options	directly.

Old:

const	sid	=	req.cookie('sid',	{

		signed:	{

				secret:	'keyboardcat',

				algorithm:	'sha256'

		}

});

New:

const	sid	=	req.cookie('sid',	{

		secret:	'keyboardcat',

		algorithm:	'sha256'

});

Request	bodies
The		req.body		is	no	longer	a	method	and	no	longer	automatically	parses	JSON	request	bodies	unless	a	request	body	was	defined.	The
	req.rawBody		now	corresponds	to	the		req.rawBodyBuffer		of	ArangoDB	2.x	and	is	also	no	longer	a	method.

Old:

ctrl.post('/',	function	(req,	res)	{

		const	data	=	req.body();

		//	...

});

Controllers

260

New:

router.post('/',	function	(req,	res)	{

		const	data	=	req.body;

		//	...

})

.body(['json']);

Or	simply:

const	joi	=	require('joi');

router.post('/',	function	(req,	res)	{

		const	data	=	req.body;

		//	...

})

.body(joi.object().optional());

Multipart	requests

The		req.requestParts		method	has	been	removed	entirely.	If	you	need	to	accept	multipart	request	bodies,	you	can	simply	define	the
request	body	using	a	multipart	MIME	type	like		multipart/form-data	:

Old:

ctrl.post('/',	function	(req,	res)	{

		const	parts	=	req.requestParts();

		//	...

});

New:

router.post('/',	function	(req,	res)	{

		const	parts	=	req.body;

		//	...

})

.body(['multipart/form-data']);

Controllers

261

Response	objects
The	response	object	has	a	lot	of	new	methods	in	ArangoDB	3.0	but	otherwise	remains	similar	to	the	response	object	of	previous
versions:

The		res.send		method	behaves	very	differently	from	how	the	method	with	the	same	name	behaved	in	ArangoDB	2.x:	the	conversion
now	takes	the	response	body	definition	of	the	route	into	account.	There	is	a	new	method		res.write		that	implements	the	old	behaviour.

Note	that	consecutive	calls	to		res.write		will	append	to	the	response	body	rather	than	replacing	it	like		res.send	.

The		res.contentType		property	is	also	no	longer	available.	If	you	want	to	set	the	MIME	type	of	the	response	body	to	an	explicit	value
you	should	set	the		content-type		header	instead:

Old:

res.contentType	=	'application/json';

res.body	=	JSON.stringify(results);

New:

res.set('content-type',	'application/json');

res.body	=	JSON.stringify(results);

Or	simply:

//	sets	the	content	type	to	JSON

//	if	it	has	not	already	been	set

res.json(results);

The		res.cookie		method	now	takes	the		signed		options	as	part	of	the	regular	options	object.

Old:

res.cookie('sid',	'abcdef',	{

		ttl:	60	*	60,

		signed:	{

				secret:	'keyboardcat',

				algorithm:	'sha256'

		}

});

New:

res.cookie('sid',	'abcdef',	{

		ttl:	60	*	60,

		secret:	'keyboardcat',

		algorithm:	'sha256'

});

Controllers

262

Dependency	injection
There	is	no	equivalent	of	the		addInjector		method	available	in	ArangoDB	2.x	controllers.	Most	use	cases	can	be	solved	by	simply	using
plain	variables	but	if	you	need	something	more	flexible	you	can	also	use	middleware:

Old:

ctrl.addInjector('magicNumber',	function	()	{

		return	Math.random();

});

ctrl.get('/',	function	(req,	res,	injected)	{

		res.json(injected.magicNumber);

});

New:

function	magicMiddleware(name)	{

		return	{

				register	()	{

						let	magic;

						return	function	(req,	res,	next)	{

								if	(!magic)	{

										magic	=	Math.random();

								}

								req[name]	=	magic;

								next();

						};

				}

		};

}

router.use(magicMiddleware('magicNumber'));

router.get('/',	function	(req,	res)	{

		res.json(req.magicNumber);

});

Or	simply:

const	magicNumber	=	Math.random();

router.get('/',	function	(req,	res)	{

		res.json(magicNumber);

});

Controllers

263

Sessions
The		ctrl.activateSessions		method	and	the	related		util-sessions-local		Foxx	service	have	been	replaced	with	the	Foxx	sessions
middleware.	It	is	no	longer	possible	to	use	the	built-in	session	storage	but	you	can	simply	pass	in	any	document	collection	directly.

Old:

const	localSessions	=	applicationContext.dependencies.localSessions;

const	sessionStorage	=	localSessions.sessionStorage;

ctrl.activateSessions({

		sessionStorage:	sessionStorage,

		cookie:	{secret:	'keyboardcat'}

});

ctrl.destroySession('/logout',	function	(req,	res)	{

		res.json({message:	'Goodbye!'});

});

New:

const	sessionMiddleware	=	require('@arangodb/foxx/sessions');

const	cookieTransport	=	require('@arangodb/foxx/sessions/transports/cookie');

router.use(sessionMiddleware({

		storage:	module.context.collection('sessions'),

		transport:	cookieTransport('keyboardcat')

}));

router.post('/logout',	function	(req,	res)	{

		req.sessionStorage.clear(req.session);

		res.json({message:	'Goodbye!'});

});

Sessions

264

Auth	and	OAuth2
The		util-simple-auth		and		util-oauth2		Foxx	services	have	been	replaced	with	the	Foxx	auth	and	Foxx	OAuth2	modules.	It	is	no
longer	necessary	to	install	these	services	as	dependencies	in	order	to	use	the	functionality.

Old:

'use	strict';

const	auth	=	applicationContext.dependencies.simpleAuth;

//	...

const	valid	=	auth.verifyPassword(authData,	password);

New:

'use	strict';

const	createAuth	=	require('@arangodb/foxx/auth');

const	auth	=	createAuth();	//	Use	default	configuration

//	...

const	valid	=	auth.verifyPassword(authData,	password);

Auth	and	OAuth2

265

Foxx	queries
The		createQuery		method	has	been	removed.	It	can	be	trivially	replaced	with	plain	JavaScript	functions	and	direct	calls	to	the
	db._query		method:

Old:

'use	strict';

const	Foxx	=	require('org/arangodb/foxx');

const	query	=	Foxx.createQuery({

				query:	'FOR	u	IN	_users	SORT	u.user	ASC	RETURN	u[@propName]',

				params:	['propName'],

				transform:	function	(results,	uppercase)	{

								return	(

										uppercase

										?	results[0].toUpperCase()

										:	results[0].toLowerCase()

);

				}

});

query('user',	true);

New:

'use	strict';

const	db	=	require('@arangodb').db;

const	aql	=	require('@arangodb').aql;

function	query(propName,	uppercase)	{

		const	results	=	db._query(aql`

				FOR	u	IN	_users

				SORT	u.user	ASC

				RETURN	u[${propName}]

		`);

		return	(

				uppercase

				?	results[0].toUpperCase()

				:	results[0].toLowerCase()

);

}

query('user',	true);

Foxx	Queries

266

Legacy	compatibility	mode	for	2.8	services
ArangoDB	3	continues	to	support	Foxx	services	written	for	ArangoDB	2.8	by	running	them	in	a	special	legacy	compatibility	mode	that
provides	access	to	some	of	the	modules	and	APIs	no	longer	provided	in	3.0	and	beyond.

Note:	Legacy	compatibility	mode	is	strictly	intended	as	a	temporary	stop	gap	solution	for	supporting	existing	services	while	upgrading
to	ArangoDB	3.0	and	should	not	be	considered	a	permanent	feature	of	ArangoDB	or	Foxx.

In	order	to	mark	an	existing	service	as	a	legacy	service,	just	make	sure	the	following	attribute	is	defined	in	the	service	manifest:

"engines":	{

		"arangodb":	"^2.8.0"

}

This	semantic	version	range	denotes	that	the	service	is	known	to	work	with	ArangoDB	2.8.0	and	supports	all	newer	versions	of
ArangoDB	up	to	but	not	including	3.0.0	(nor	any	development	version	of	3.0.0	and	greater).

Any	similar	version	range	the	does	not	include	3.0.0	or	greater	will	have	the	same	effect	(e.g.	 	̂ 2.5.0		will	also	trigger	the	legacy
compatibility	mode,	as	will		1.2.3	,	but		>=2.8.0		will	not	as	it	indicates	compatibility	with	all	versions	greater	or	equal	2.8.0,	not	just
those	within	the	2.x	version	range).

Features	supported	in	legacy	compatibility	mode
Legacy	compatibility	mode	supports	the	old	manifest	format,	specifically:

	main		is	ignored
	controllers		will	be	mounted	as	in	2.8
	exports		will	be	executed	as	in	2.8

Additionally	the		isSystem		attribute	will	be	ignored	if	present	but	does	not	result	in	a	warning	in	legacy	compatibility	mode.

The	Foxx	console	is	available	as	the		console		pseudo-global	variable	(shadowing	the	global	console	object).

The	service	context	is	available	as	the		applicationContext		pseudo-global	variable	in	the		controllers	,		exports	,		scripts		and		tests	
as	in	2.8.	The	following	additional	properties	are	available	on	the	service	context	in	legacy	compatibility	mode:

	path()		is	an	alias	for	3.x		fileName()		(using		path.join		to	build	file	paths)
	fileName()		behaves	as	in	2.x	(using		fs.safeJoin		to	build	file	paths)
	foxxFileName()		is	an	alias	for	2.x		fileName	
	version		exposes	the	service	manifest's		version		attribute
	name		exposes	the	service	manifest's		name		attribute
	options		exposes	the	service's	raw	options

The	following	methods	are	removed	on	the	service	context	in	legacy	compatibility	mode:

	use()		--	use		@arangodb/foxx/controller		instead
	apiDocumentation()		--	use		controller.apiDocumentation()		instead
	registerType()		--	not	supported	in	legacy	compatibility	mode

The	following	modules	that	have	been	removed	or	replaced	in	3.0.0	are	available	in	legacy	compatibility	mode:

	@arangodb/foxx/authentication	

	@arangodb/foxx/console	

	@arangodb/foxx/controller	

	@arangodb/foxx/model	

	@arangodb/foxx/query	

	@arangodb/foxx/repository	

	@arangodb/foxx/schema	

	@arangodb/foxx/sessions	

	@arangodb/foxx/template_middleware	

Legacy	compatibility	mode

267

http://semver.org

The		@arangodb/foxx		module	also	provides	the	same	exports	as	in	2.8,	namely:

	Controller		from		@arangodb/foxx/controller	
	createQuery		from		@arangodb/foxx/query	
	Model		from		@arangodb/foxx/model	
	Repository		from		@arangodb/foxx/repository	
	toJSONSchema		from		@arangodb/foxx/schema	
	getExports		and		requireApp		from		@arangodb/foxx/manager	
	queues		from		@arangodb/foxx/queues	

Any	feature	not	supported	in	2.8	will	also	not	work	in	legacy	compatibility	mode.	When	migrating	from	an	older	version	of	ArangoDB	it
is	a	good	idea	to	migrate	to	ArangoDB	2.8	first	for	an	easier	upgrade	path.

Additionally	please	note	the	differences	laid	out	in	the	chapter	Migrating	from	pre-2.8	in	the	migration	guide.

Legacy	compatibility	mode

268

User	management
Foxx	does	not	provide	any	user	management	out	of	the	box	but	it	is	very	easy	to	roll	your	own	solution:

The	session	middleware	provides	mechanisms	for	adding	session	logic	to	your	service,	using	e.g.	a	collection	or	JSON	Web	Tokens	to
store	the	sessions	between	requests.

The	auth	module	provides	utilities	for	basic	password	verification	and	hashing.

The	following	example	service	demonstrates	how	user	management	can	be	implemented	using	these	basic	building	blocks.

Setting	up	the	collections

Let's	say	we	want	to	store	sessions	and	users	in	collections.	We	can	use	the	setup	script	to	make	sure	these	collections	are	created	before
the	service	is	mounted.

First	add	a	setup	script	to	your	manifest	if	it	isn't	already	defined:

"scripts":	{

		"setup":	"scripts/setup.js"

}

Then	create	the	setup	script	with	the	following	content:

'use	strict';

const	db	=	require('@arangodb').db;

const	sessions	=	module.context.collectionName('sessions');

const	users	=	module.context.collectionName('users');

if	(!db._collection(sessions))	{

		db._createDocumentCollection(sessions);

}

if	(!db._collection(users))	{

		db._createDocumentCollection(users);

}

db._collection(users).ensureIndex({

		type:	'hash',

		fields:	['username'],

		unique:	true

});

Creating	the	router

The	following	main	file	demonstrates	basic	user	management:

'use	strict';

const	joi	=	require('joi');

const	createAuth	=	require('@arangodb/foxx/auth');

const	createRouter	=	require('@arangodb/foxx/router');

const	sessionsMiddleware	=	require('@arangodb/foxx/sessions');

const	auth	=	createAuth();

const	router	=	createRouter();

const	users	=	module.context.collection('users');

const	sessions	=	sessionsMiddleware({

		storage:	module.context.collection('sessions'),

		transport:	'cookie'

});

module.context.use(sessions);

module.context.use(router);

router.get('/whoami',	function	(req,	res)	{

User	management

269

		try	{

				const	user	=	users.document(req.session.uid);

				res.send({username:	user.username});

		}	catch	(e)	{

				res.send({username:	null});

		}

})

.description('Returns	the	currently	active	username.');

router.post('/login',	function	(req,	res)	{

		//	This	may	return	a	user	object	or	null

		const	user	=	users.firstExample({

				username:	req.body.username

		});

		const	valid	=	auth.verify(

				//	Pretend	to	validate	even	if	no	user	was	found

				user	?	user.authData	:	{},

				req.body.password

);

		if	(!valid)	res.throw('unauthorized');

		//	Log	the	user	in

		req.session.uid	=	user._key;

		req.sessionStorage.save(req.session);

		res.send({sucess:	true});

})

.body(joi.object({

		username:	joi.string().required(),

		password:	joi.string().required()

}).required(),	'Credentials')

.description('Logs	a	registered	user	in.');

router.post('/logout',	function	(req,	res)	{

		if	(req.session.uid)	{

				req.session.uid	=	null;

				req.sessionStorage.save(req.session);

		}

		res.send({success:	true});

})

.description('Logs	the	current	user	out.');

router.post('/signup',	function	(req,	res)	{

		const	user	=	req.body;

		try	{

				//	Create	an	authentication	hash

				user.authData	=	auth.create(user.password);

				delete	user.password;

				const	meta	=	users.save(user);

				Object.assign(user,	meta);

		}	catch	(e)	{

				//	Failed	to	save	the	user

				//	We'll	assume	the	UniqueConstraint	has	been	violated

				res.throw('bad	request',	'Username	already	taken',	e);

		}

		//	Log	the	user	in

		req.session.uid	=	user._key;

		req.sessionStorage.save(req.session);

		res.send({success:	true});

})

.body(joi.object({

		username:	joi.string().required(),

		password:	joi.string().required()

}).required(),	'Credentials')

.description('Creates	a	new	user	and	logs	them	in.');

User	management

270

Related	modules
These	are	some	of	the	modules	outside	of	Foxx	you	will	find	useful	when	writing	Foxx	services.

Additionally	there	are	modules	providing	some	level	of	compatibility	with	Node.js	as	well	as	a	number	of	bundled	NPM	modules	(like
lodash	and	joi).	For	more	information	on	these	modules	see	the	JavaScript	modules	appendix.

The	 	@arangodb		module
	require('@arangodb')	

This	module	provides	access	to	various	ArangoDB	internals	as	well	as	three	of	the	most	important	exports	necessary	to	work	with	the
database	in	Foxx:		db	,		aql		and		errors	.

You	can	find	a	full	description	of	this	module	in	the	ArangoDB	module	appendix.

The	 	@arangodb/request		module
	require('@arangodb/request')	

This	module	provides	a	function	for	making	HTTP	requests	to	external	services.	Note	that	while	this	allows	communicating	with	third-
party	services	it	may	affect	database	performance	by	blocking	Foxx	requests	as	ArangoDB	waits	for	the	remote	service	to	respond.	If
you	routinely	make	requests	to	slow	external	services	and	are	not	directly	interested	in	the	response	it	is	probably	a	better	idea	to
delegate	the	actual	request/response	cycle	to	a	gateway	service	running	outside	ArangoDB.

You	can	find	a	full	description	of	this	module	in	the	request	module	appendix.

The	 	@arangodb/general-graph		module
	require('@arangodb/general-graph')	

This	module	provides	access	to	ArangoDB	graph	definitions	and	various	low-level	graph	operations	in	JavaScript.	For	more	complex
queries	it	is	probably	better	to	use	AQL	but	this	module	can	be	useful	in	your	setup	and	teardown	scripts	to	create	and	destroy	graph
definitions.

For	more	information	see	the	chapter	on	the	general	graph	module.

Related	modules

271

Authentication
	const	createAuth	=	require('@arangodb/foxx/auth');	

Authenticators	allow	implementing	basic	password	mechanism	using	simple	built-in	hashing	functions.

For	a	full	example	of	sessions	with	authentication	and	registration	see	the	example	in	the	chapter	on	User	Management.

Creating	an	authenticator
	createAuth([options]):	Authenticator	

Creates	an	authenticator.

Arguments

options:		Object		(optional)

An	object	with	the	following	properties:

method:		string		(Default:		"sha256")

The	hashing	algorithm	to	use	to	create	password	hashes.	The	authenticator	will	be	able	to	verify	passwords	against	hashes
using	any	supported	hashing	algorithm.	This	only	affects	new	hashes	created	by	the	authenticator.

Supported	values:

	"md5"	

	"sha1"	

	"sha224"	

	"sha256"	

	"sha384"	

	"sha512"	

saltLength:		number		(Default:		16)

Length	of	the	salts	that	will	be	generated	for	password	hashes.

Returns	an	authenticator.

Creating	authentication	data	objects
	auth.create(password):	AuthData	

Creates	an	authentication	data	object	for	the	given	password	with	the	following	properties:

method:		string	

The	method	used	to	generate	the	hash.

salt:		string	

A	random	salt	used	to	generate	this	hash.

hash:		string	

The	hash	string	itself.

Arguments

password:		string	

A	password	to	hash.

Returns	the	authentication	data	object.

Authentication

272

Validating	passwords	against	authentication	data	objects
	auth.verify([hash,	[password]]):	boolean	

Verifies	the	given	password	against	the	given	hash	using	a	constant	time	string	comparison.

Arguments

hash:		AuthData		(optional)

A	authentication	data	object	generated	with	the	create	method.

password:		string		(optional)

A	password	to	verify	against	the	hash.

Returns		true		if	the	hash	matches	the	given	password.	Returns		false		otherwise.

Authentication

273

OAuth	1.0a
	const	createOAuth1Client	=	require('@arangodb/foxx/oauth1');	

The	OAuth1	module	provides	abstractions	over	OAuth	1.0a	providers	like	Twitter,	XING	and	Tumblr.

Examples

The	following	extends	the	user	management	example:

const	router	=	createRouter();

const	oauth1	=	createOAuth1Client({

		//	We'll	use	Twitter	for	this	example

		requestTokenEndpoint:	'https://api.twitter.com/oauth/request_token',

		authEndpoint:	'https://api.twitter.com/oauth/authorize',

		accessTokenEndpoint:	'https://api.twitter.com/oauth/access_token',

		activeUserEndpoint:	'https://api.twitter.com/1.1/account/verify_credentials.json',

		clientId:	'keyboardcat',

		clientSecret:	'keyboardcat'

});

module.context.use('/oauth1',	router);

//	See	the	user	management	example	for	setting	up	the

//	sessions	and	users	objects	used	in	this	example

router.use(sessions);

router.post('/auth',	function	(req,	res)	{

		const	url	=	req.reverse('oauth1_callback');

		const	oauth_callback	=	req.makeAbsolute(url);

		const	requestToken	=	oauth1.fetchRequestToken(oauth_callback);

		if	(requestToken.oauth_callback_confirmed	!==	'true')	{

				res.throw(500,	'Could	not	fetch	OAuth	request	token');

		}

		//	Set	request	token	cookie	for	five	minutes

		res.cookie('oauth1_request_token',	requestToken.oauth_token,	{ttl:	60	*	5});

		//	Redirect	to	the	provider's	authorization	URL

		res.redirect(303,	oauth1.getAuthUrl(requestToken.oauth_token));

});

router.get('/auth',	function	(req,	res)	{

		//	Make	sure	CSRF	cookie	matches	the	URL

		const	expectedToken	=	req.cookie('oauth1_request_token');

		if	(!expectedToken	||	req.queryParams.oauth_token	!==	expectedToken)	{

				res.throw(400,	'CSRF	mismatch.');

		}

		const	authData	=	oauth1.exchangeRequestToken(

				req.queryParams.oauth_token,

				req.queryParams.oauth_verifier

);

		const	twitterToken	=	authData.oauth_token;

		const	twitterSecret	=	authData.oauth_token_secret;

		//	Fetch	the	active	user's	profile	info

		const	profile	=	oauth1.fetchActiveUser(twitterToken,	twitterSecret);

		const	twitterId	=	profile.screen_name;

		//	Try	to	find	an	existing	user	with	the	user	ID

		//	(this	requires	the	users	collection)

		let	user	=	users.firstExample({twitterId});

		if	(user)	{

				//	Update	the	twitterToken	if	it	has	changed

				if	(

						user.twitterToken	!==	twitterToken	||

						user.twitterSecret	!==	twitterSecret

)	{

						users.update(user,	{twitterToken,	twitterSecret});

				}

		}	else	{

				//	Create	a	new	user	document

				user	=	{

						username:	`twitter:${twitterId}`,

						twitterId,

						twitterToken

OAuth	1.0a

274

				}

				const	meta	=	users.save(user);

				Object.assign(user,	meta);

		}

		//	Log	the	user	in	(this	requires	the	session	middleware)

		req.session.uid	=	user._key;

		req.session.twitterToken	=	authData.twitterToken;

		req.session.twitterSecret	=	authData.twitterSecret;

		req.sessionStorage.save(req.session);

		//	Redirect	to	the	default	route

		res.redirect(303,	req.makeAbsolute('/'));

},	'oauth1_callback')

.queryParam('oauth_token',	joi.string().optional())

.queryParam('oauth_verifier',	joi.string().optional());

Creating	an	OAuth1.0a	client
	createOAuth1Client(options):	OAuth1Client	

Creates	an	OAuth1.0a	client.

Arguments

options:		Object	

An	object	with	the	following	properties:

requestTokenEndpoint:		string	

The	fully-qualified	URL	of	the	provider's	Temporary	Credentials	Request	endpoint.	This	URL	is	used	to	fetch	the
unauthenticated	temporary	credentials	that	will	be	used	to	generate	the	authorization	redirect	for	the	user.

authEndpoint:		string	

The	fully-qualified	URL	of	the	provider's	Resource	Owner	Authorization	endpoint.	This	is	the	URL	the	user	will	be	redirected
to	in	order	to	authorize	the	OAuth	consumer	(i.e.	your	service).

accessTokenEndpoint:		string	

The	fully-qualified	URL	of	the	provider's	Token	Request	endpoint.	This	URL	is	used	to	exchange	the	authenticated	temporary
credentials	received	from	the	authorization	redirect	for	the	actual	token	credentials	that	can	be	used	to	make	requests	to	the	API
server.

activeUserEndpoint:		string		(optional)

The	fully-qualified	URL	of	the	provider's	endpoint	for	fetching	details	about	the	current	user.

clientId:		string	

The	application's	Client	ID	(or	Consumer	Key)	for	the	provider.

clientSecret:		string	

The	application's	Client	Secret	(or	Consumer	Secret)	for	the	provider.

signatureMethod:		string		(Default:		"HMAC-SHA1")

The	cryptographic	method	that	will	be	used	to	sign	OAuth	1.0a	requests.	Only		"HMAC-SHA1-"		and		"PLAINTEXT"		are
supported	at	this	time.

Note	that	many	providers	may	not	implement		"PLAINTEXT"		as	it	exposes	the	Client	Secret	and		oauth_token_secret		instead	of
generating	a	signature.

Returns	an	OAuth	1.0a	client	for	the	given	provider.

Setting	up	OAuth	1.0a	for	Twitter

If	you	want	to	use	Twitter	as	the	OAuth	1.0a	provider,	use	the	following	options:

OAuth	1.0a

275

https://tools.ietf.org/html/rfc5849#section-2.1
https://tools.ietf.org/html/rfc5849#section-2.2
https://tools.ietf.org/html/rfc5849#section-2.3

requestTokenEndpoint:		https://api.twitter.com/oauth/request_token	
authEndpoint:		https://api.twitter.com/oauth/authorize	
accessTokenEndpoint:		https://api.twitter.com/oauth/access_token	
activeUserEndpoint:		https://api.twitter.com/1.1/account/verify_credentials.json	

You	also	need	to	obtain	a	client	ID	and	client	secret	from	Twitter:

1.	 Create	a	regular	account	at	Twitter	or	use	an	existing	account	you	own.
2.	 Visit	the	Twitter	Application	Management	dashboard	and	sign	in	with	your	Twitter	account.
3.	 Click	on	Create	New	App	and	follow	the	instructions	provided.	The	Callback	URL	should	match	your	oauth_callback	later.	You

may	be	prompted	to	add	a	mobile	phone	number	to	your	account	and	verify	it.
4.	 Open	the	Keys	and	Access	Tones	tab,	then	note	down	the	Consumer	Key	and	Consumer	Secret.
5.	 Set	the	option	clientId	to	the	Consumer	Key	and	the	option	clientSecret	to	the	Consumer	Secret.

Note	that	if	you	only	need	read-only	access	to	public	information,	you	can	also	use	the	clientId	and	clientSecret	directly	without	OAuth
1.0a.

See	Twitter	REST	API	Reference	Documentation.

Setting	up	OAuth	1.0a	for	XING

If	you	want	to	use	XING	as	the	OAuth	1.0a	provider,	use	the	following	options:

requestTokenEndpoint:		https://api.xing.com/v1/request_token	
authEndpoint:		https://api.xing.com/v1/authorize	
accessTokenEndpoint:		https://api.xing.com/v1/access_token	
activeUserEndpoint:		https://api.xing.com/v1/users/me	

You	also	need	to	obtain	a	client	ID	and	client	secret	from	XING:

1.	 Create	a	regular	account	at	XING	or	use	an	existing	account	you	own.
2.	 Visit	the	XING	Developer	page	and	sign	in	with	your	XING	account.
3.	 Click	on	Create	app	and	note	down	the	Consumer	key	and	Consumer	secret.
4.	 Set	the	option	clientId	to	the	Consumer	key	and	the	option	clientSecret	to	the	Consumer	secret.

See	XING	Developer	Documentation.

Setting	up	OAuth	1.0a	for	Tumblr

If	you	want	to	use	Tumblr	as	the	OAuth	1.0a	provider,	use	the	following	options:

requestTokenEndpoint:		https://www.tumblr.com/oauth/request_token	
authEndpoint:		https://www.tumblr.com/oauth/authorize	
accessTokenEndpoint:		https://www.tumblr.com/oauth/access_token	
activeUserEndpoint:		https://api.tumblr.com/v2/user/info	

You	also	need	to	obtain	a	client	ID	and	client	secret	from	Tumblr:

1.	 Create	a	regular	account	at	Tumblr	or	use	an	existing	account	you	own.
2.	 Visit	the	Tumblr	Applications	dashboard.
3.	 Click	on	Register	application,	then	follow	the	instructions	provided.	The	Default	callback	URL	should	match	your	oauth_callback

later.
4.	 Note	down	the	OAuth	Consumer	Key	and	Secret	Key.	The	secret	may	be	hidden	by	default.
5.	 Set	the	option	clientId	to	the	OAuth	Consumer	Key	and	the	option	clientSecret	to	the	Secret	Key.

See	Tumblr	API	Documentation.

Fetch	an	unauthenticated	request	token
	oauth1.fetchRequestToken(oauth_callback,	opts)	

Fetches	an		oauth_token		that	can	be	used	to	create	an	authorization	URL	that	redirects	to	the	given		oauth_callback		on	confirmation.

OAuth	1.0a

276

https://www.twitter.com
https://apps.twitter.com
https://dev.twitter.com/oauth/application-only
https://dev.twitter.com/rest/reference
https://xing.com
https://dev.xing.com
https://dev.xing.com/docs
https://www.tumblr.com
https://www.tumblr.com/oauth/apps
https://www.tumblr.com/docs/en/api/v2

Performs	a	POST	response	to	the	requestTokenEndpoint.

Throws	an	exception	if	the	remote	server	responds	with	an	empty	response	body.

Arguments

oauth_callback:		string	

The	fully-qualified	URL	of	your	application's	OAuth	1.0a	callback.

opts:		Object		(optional)

An	object	with	additional	query	parameters	to	include	in	the	request.

See	RFC	5849.

Returns	the	parsed	response	object.

Get	the	authorization	URL
	oauth1.getAuthUrl(oauth_token,	opts):	string	

Generates	the	authorization	URL	for	the	authorization	endpoint.

Arguments

oauth_token:		string	

The		oauth_token		previously	returned	by		fetchRequestToken	.

opts:	(optional)

An	object	with	additional	query	parameters	to	add	to	the	URL.

See	RFC	5849.

Returns	a	fully-qualified	URL	for	the	authorization	endpoint	of	the	provider	by	appending	the		oauth_token		and	any	additional
arguments	from	opts	to	the	authEndpoint.

Examples

const	requestToken	=	oauth1.fetchRequestToken(oauth_callback);

if	(requestToken.oauth_callback_confirmed	!==	'true')	{

		throw	new	Error('Provider	could	not	confirm	OAuth	1.0	callback');

}

const	authUrl	=	oauth1.getAuthUrl(requestToken.oauth_token);

Exchange	an	authenticated	request	token	for	an	access	token
	oauth1.exchangeRequestToken(oauth_token,	oauth_verifier,	opts)	

Takes	a	pair	of	authenticated	temporary	credentials	passed	to	the	callback	URL	by	the	provider	and	exchanges	it	for	an		oauth_token		and
	oauth_token_secret		than	can	be	used	to	perform	authenticated	requests	to	the	OAuth	1.0a	provider.

Performs	a	POST	response	to	the	accessTokenEndpoint.

Throws	an	exception	if	the	remote	server	responds	with	an	empty	response	body.

Arguments

oauth_token:		string	

The		oauth_token		passed	to	the	callback	URL	by	the	provider.

oauth_verifier:		string	

The		oauth_verifier		passed	to	the	callback	URL	by	the	provider.

opts:		Object		(optional)

OAuth	1.0a

277

https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849

An	object	with	additional	query	parameters	to	include	in	the	request.

See	RFC	5849.

Returns	the	parsed	response	object.

Fetch	the	active	user
	oauth1.fetchActiveUser(oauth_token,	oauth_token_secret,	opts):	Object	

Fetches	details	of	the	active	user.

Performs	a	GET	response	to	the	activeUserEndpoint.

Throws	an	exception	if	the	remote	server	responds	with	an	empty	response	body.

Returns		null		if	the	activeUserEndpoint	is	not	configured.

Arguments

oauth_token:		string	

An	OAuth	1.0a	access	token	as	returned	by	exchangeRequestToken.

oauth_token_secret:		string	

An	OAuth	1.0a	access	token	secret	as	returned	by	exchangeRequestToken.

opts:		Object		(optional)

An	object	with	additional	query	parameters	to	include	in	the	request.

See	RFC	5849.

Returns	the	parsed	response	object.

Examples

const	authData	=	oauth1.exchangeRequestToken(oauth_token,	oauth_verifier);

const	userData	=	oauth1.fetchActiveUser(authData.oauth_token,	authData.oauth_token_secret);

Create	an	authenticated	request	object
	oauth1.createSignedRequest(method,	url,	parameters,	oauth_token,	oauth_token_secret)	

Creates	a	request	object	that	can	be	used	to	perform	a	request	to	the	OAuth	1.0a	provider	with	the	provided	token	credentials.

Arguments

method:		string	

HTTP	method	the	request	will	use,	e.g.		"POST"	.

url:		string	

The	fully-qualified	URL	of	the	provider	the	request	will	be	performed	against.

The	URL	may	optionally	contain	any	number	of	query	parameters.

parameters:		string	|	Object	|	null	

An	additional	object	or	query	string	containing	query	parameters	or	body	parameters	that	will	be	part	of	the	signed	request.

oauth_token:		string	

An	OAuth	1.0a	access	token	as	returned	by	exchangeRequestToken.

oauth_token_secret:		string	

OAuth	1.0a

278

https://tools.ietf.org/html/rfc5849
https://tools.ietf.org/html/rfc5849

An	OAuth	1.0a	access	token	secret	as	returned	by	exchangeRequestToken.

Returns	an	object	with	three	properties:

url:	The	normalized	URL	without	any	query	parameters.

qs:	A	normalized	query	string	containing	all	parameters	and	query	parameters.

headers:	An	object	containing	the	following	properties:

accept:	The	string		"application/json"	.

authorization:	An	OAuth	authorization	header	containing	all	OAuth	parameters	and	the	request	signature.

Examples

Fetch	a	list	of	tweets	mentioning		@arangodb	:

const	request	=	require('@arangodb/request');

const	req	=	oauth1.createSignedRequest(

		'GET',

		'https://api.twitter.com/1.1/search/tweets.json',

		{q:	'@arangodb'},

		authData.oauth_token,

		authData.oauth_token_secret

);

const	res	=	request(req);

console.log(res.json.statuses);

Signing	a	more	complex	request:

const	url	=	'https://api.example.com/v1/timeline?visible=public';

const	params	=	{hello:	'world',	longcat:	'is	long'};

const	req	=	oauth1.createSignedRequest(

		'POST',

		url,	//	URL	includes	a	query	parameter	that	will	be	signed

		params,	//	Request	body	needs	to	be	signed	too

		authData.oauth_token,

		authData.oauth_token_secret

);

const	res	=	request.post(url,	{

		form:	params,

		headers:	{

				accept:	'application/x-www-form-urlencoded',

				//	Authorization	header	includes	the	signature

				authorization:	req.headers.authorization

		}

});

console.log(res.json);

OAuth	1.0a

279

OAuth	2.0
	const	createOAuth2Client	=	require('@arangodb/foxx/oauth2');	

The	OAuth2	module	provides	abstractions	over	OAuth	2.0	providers	like	Facebook,	GitHub	and	Google.

Examples

The	following	extends	the	user	management	example:

const	crypto	=	require('@arangodb/crypto');

const	router	=	createRouter();

const	oauth2	=	createOAuth2Client({

		//	We'll	use	Facebook	for	this	example

		authEndpoint:	'https://www.facebook.com/dialog/oauth',

		tokenEndpoint:	'https://graph.facebook.com/oauth/access_token',

		activeUserEndpoint:	'https://graph.facebook.com/v2.0/me',

		clientId:	'keyboardcat',

		clientSecret:	'keyboardcat'

});

module.context.use('/oauth2',	router);

//	See	the	user	management	example	for	setting	up	the

//	sessions	and	users	objects	used	in	this	example

router.use(sessions);

router.post('/auth',	function	(req,	res)	{

		const	csrfToken	=	crypto.genRandomAlphaNumbers(32);

		const	url	=	req.reverse('oauth2_callback',	{csrfToken});

		const	redirect_uri	=	req.makeAbsolute(url);

		//	Set	CSRF	cookie	for	five	minutes

		res.cookie('oauth2_csrf_token',	csrfToken,	{ttl:	60	*	5});

		//	Redirect	to	the	provider's	authorization	URL

		res.redirect(303,	oauth2.getAuthUrl(redirect_uri));

});

router.get('/auth',	function	(req,	res)	{

		//	Some	providers	pass	errors	as	query	parameter

		if	(req.queryParams.error)	{

				res.throw(500,	`Provider	error:	${req.queryParams.error}`)

		}

		//	Make	sure	CSRF	cookie	matches	the	URL

		const	expectedToken	=	req.cookie('oauth2_csrf_token');

		if	(!expectedToken	||	req.queryParams.csrfToken	!==	expectedToken)	{

				res.throw(400,	'CSRF	mismatch.');

		}

		//	Make	sure	the	URL	contains	a	grant	token

		if	(!req.queryParams.code)	{

				res.throw(400,	'Provider	did	not	pass	grant	token.');

		}

		//	Reconstruct	the	redirect_uri	used	for	the	grant	token

		const	url	=	req.reverse('oauth2_callback');

		const	redirect_uri	=	req.makeAbsolute(url);

		//	Fetch	an	access	token	from	the	provider

		const	authData	=	oauth2.exchangeGrantToken(

				req.queryParams.code,

				redirect_uri

);

		const	facebookToken	=	authData.access_token;

		//	Fetch	the	active	user's	profile	info

		const	profile	=	oauth2.fetchActiveUser(facebookToken);

		const	facebookId	=	profile.id;

		//	Try	to	find	an	existing	user	with	the	user	ID

		//	(this	requires	the	users	collection)

		let	user	=	users.firstExample({facebookId});

		if	(user)	{

				//	Update	the	facebookToken	if	it	has	changed

				if	(user.facebookToken	!==	facebookToken)	{

						users.update(user,	{facebookToken});

				}

		}	else	{

OAuth	2.0

280

				//	Create	a	new	user	document

				user	=	{

						username:	`fb:${facebookId}`,

						facebookId,

						facebookToken

				}

				const	meta	=	users.save(user);

				Object.assign(user,	meta);

		}

		//	Log	the	user	in	(this	requires	the	session	middleware)

		req.session.uid	=	user._key;

		req.session.facebookToken	=	authData.facebookToken;

		req.sessionStorage.save(req.session);

		//	Redirect	to	the	default	route

		res.redirect(303,	req.makeAbsolute('/'));

},	'oauth2_callback')

.queryParam('error',	joi.string().optional())

.queryParam('csrfToken',	joi.string().optional())

.queryParam('code',	joi.string().optional());

Creating	an	OAuth	2.0	client
	createOAuth2Client(options):	OAuth2Client	

Creates	an	OAuth	2.0	client.

Arguments

options:		Object	

An	object	with	the	following	properties:

authEndpoint:		string	

The	fully-qualified	URL	of	the	provider's	authorization	endpoint.

tokenEndpoint:		string	

The	fully-qualified	URL	of	the	provider's	token	endpoint.

refreshEndpoint:		string		(optional)

The	fully-qualified	URL	of	the	provider's	refresh	token	endpoint.

activeUserEndpoint:		string		(optional)

The	fully-qualified	URL	of	the	provider's	endpoint	for	fetching	details	about	the	current	user.

clientId:		string	

The	application's	Client	ID	(or	App	ID)	for	the	provider.

clientSecret:		string	

The	application's	Client	Secret	(or	App	Secret)	for	the	provider.

Returns	an	OAuth	2.0	client	for	the	given	provider.

Setting	up	OAuth	2.0	for	Facebook

If	you	want	to	use	Facebook	as	the	OAuth	2.0	provider,	use	the	following	options:

authEndpoint:		https://www.facebook.com/dialog/oauth	
tokenEndpoint:		https://graph.facebook.com/oauth/access_token	
activeUserEndpoint:		https://graph.facebook.com/v2.0/me	

You	also	need	to	obtain	a	client	ID	and	client	secret	from	Facebook:

1.	 Create	a	regular	account	at	Facebook	or	use	an	existing	account	you	own.
2.	 Visit	the	Facebook	Developers	page.

OAuth	2.0

281

http://tools.ietf.org/html/rfc6749#section-3.1
http://tools.ietf.org/html/rfc6749#section-3.2
http://tools.ietf.org/html/rfc6749#section-6
https://www.facebook.com
https://developers.facebook.com

3.	 Click	on	Apps	in	the	menu,	then	select	Register	as	a	Developer	(the	only	option)	and	follow	the	instructions	provided.	You	may
need	to	verify	your	account	by	phone.

4.	 Click	on	Apps	in	the	menu,	then	select	Create	a	New	App	and	follow	the	instructions	provided.
5.	 Open	the	app	dashboard,	then	note	down	the	App	ID	and	App	Secret.	The	secret	may	be	hidden	by	default.
6.	 Click	on	Settings,	then	Advanced	and	enter	one	or	more	Valid	OAuth	redirect	URIs.	At	least	one	of	them	must	match	your
redirect_uri	later.	Don't	forget	to	save	your	changes.

7.	 Set	the	option	clientId	to	the	App	ID	and	the	option	clientSecret	to	the	App	Secret.

Setting	up	OAuth	2.0	for	GitHub

If	you	want	to	use	GitHub	as	the	OAuth	2.0	provider,	use	the	following	options:

authEndpoint:		https://github.com/login/oauth/authorize?scope=user	
tokenEndpoint:		https://github.com/login/oauth/access_token	
activeUserEndpoint:		https://api.github.com/user	

You	also	need	to	obtain	a	client	ID	and	client	secret	from	GitHub:

1.	 Create	a	regular	account	at	GitHub	or	use	an	existing	account	you	own.
2.	 Go	to	Account	Settings	>	Applications	>	Register	new	application.
3.	 Provide	an	authorization	callback	URL.	This	must	match	your	redirect_uri	later.
4.	 Fill	in	the	other	required	details	and	follow	the	instructions	provided.
5.	 Open	the	application	page,	then	note	down	the	Client	ID	and	Client	Secret.
6.	 Set	the	option	clientId	to	the	Client	ID	and	the	option	clientSecret	to	the	Client	Secret.

Setting	up	OAuth	2.0	for	Google

If	you	want	to	use	Google	as	the	OAuth	2.0	provider,	use	the	following	options:

authEndpoint:		https://accounts.google.com/o/oauth2/auth?access_type=offline&scope=profile	
tokenEndpoint:		https://accounts.google.com/o/oauth2/token	
activeUserEndpoint:		https://www.googleapis.com/plus/v1/people/me	

You	also	need	to	obtain	a	client	ID	and	client	secret	from	Google:

1.	 Create	a	regular	account	at	Google	or	use	an	existing	account	you	own.
2.	 Visit	the	Google	Developers	Console.
3.	 Click	on	Create	Project,	then	follow	the	instructions	provided.
4.	 When	your	project	is	ready,	open	the	project	dashboard,	then	click	on	Enable	an	API.
5.	 Enable	the	Google+	API	to	allow	your	app	to	distinguish	between	different	users.
6.	 Open	the	Credentials	page	and	click	Create	new	Client	ID,	then	follow	the	instructions	provided.	At	least	one	Authorized	Redirect
URI	must	match	your	redirect_uri	later.	At	least	one	Authorized	JavaScript	Origin	must	match	your	app's	fully-qualified	domain.

7.	 When	the	Client	ID	is	ready,	note	down	the	Client	ID	and	Client	secret.
8.	 Set	the	option	clientId	to	the	Client	ID	and	the	option	clientSecret	to	the	Client	secret.

Get	the	authorization	URL
	oauth2.getAuthUrl(redirect_uri,	args):	string	

Generates	the	authorization	URL	for	the	authorization	endpoint.

Arguments

redirect_uri:		string	

The	fully-qualified	URL	of	your	application's	OAuth	2.0	callback.

args:	(optional)

An	object	with	any	of	the	following	properties:

response_type:		string		(Default:		"code")

OAuth	2.0

282

https://github.com
https://github.com/settings/applications/new
https://www.google.com
https://console.developers.google.com

See	RFC	6749.

Returns	a	fully-qualified	URL	for	the	authorization	endpoint	of	the	provider	by	appending	the	client	ID	and	any	additional	arguments
from	args	to	the	authEndpoint.

Exchange	a	grant	code	for	an	access	token
	oauth2.exchangeGrantToken(code,	redirect_uri)	

Exchanges	a	grant	code	for	an	access	token.

Performs	a	POST	response	to	the	tokenEndpoint.

Throws	an	exception	if	the	remote	server	responds	with	an	empty	response	body.

Arguments

code:		string	

A	grant	code	returned	by	the	provider's	authorization	endpoint.

redirect_uri:		string	

The	original	callback	URL	with	which	the	code	was	requested.

args:		Object		(optional)

An	object	with	any	of	the	following	properties:

grant_type:		string		(Default:		"authorization_code")

See	RFC	6749.

Returns	the	parsed	response	object.

Fetch	the	active	user
	oauth2.fetchActiveUser(access_token):	Object	

Fetches	details	of	the	active	user.

Performs	a	GET	response	to	the	activeUserEndpoint.

Throws	an	exception	if	the	remote	server	responds	with	an	empty	response	body.

Returns		null		if	the	activeUserEndpoint	is	not	configured.

Arguments

access_token:		string	

An	OAuth	2.0	access	token	as	returned	by	exchangeGrantToken.

Returns	the	parsed	response	object.

Examples

const	authData	=	oauth2.exchangeGrantToken(code,	redirect_uri);

const	userData	=	oauth2.fetchActiveUser(authData.access_token);

OAuth	2.0

283

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Transactions
Starting	with	version	1.3,	ArangoDB	provides	support	for	user-definable	transactions.

Transactions	in	ArangoDB	are	atomic,	consistent,	isolated,	and	durable	(ACID).

These	ACID	properties	provide	the	following	guarantees:

The	atomicity	principle	makes	transactions	either	complete	in	their	entirety	or	have	no	effect	at	all.
The	consistency	principle	ensures	that	no	constraints	or	other	invariants	will	be	violated	during	or	after	any	transaction.
The	isolation	property	will	hide	the	modifications	of	a	transaction	from	other	transactions	until	the	transaction	commits.
Finally,	the	durability	proposition	makes	sure	that	operations	from	transactions	that	have	committed	will	be	made	persistent.	The
amount	of	transaction	durability	is	configurable	in	ArangoDB,	as	is	the	durability	on	collection	level.

Transactions

284

Transaction	invocation
ArangoDB	transactions	are	different	from	transactions	in	SQL.

In	SQL,	transactions	are	started	with	explicit	BEGIN	or	START	TRANSACTION	command.	Following	any	series	of	data	retrieval	or
modification	operations,	an	SQL	transaction	is	finished	with	a	COMMIT	command,	or	rolled	back	with	a	ROLLBACK	command.	There
may	be	client/server	communication	between	the	start	and	the	commit/rollback	of	an	SQL	transaction.

In	ArangoDB,	a	transaction	is	always	a	server-side	operation,	and	is	executed	on	the	server	in	one	go,	without	any	client	interaction.	All
operations	to	be	executed	inside	a	transaction	need	to	be	known	by	the	server	when	the	transaction	is	started.

There	are	no	individual	BEGIN,	COMMIT	or	ROLLBACK	transaction	commands	in	ArangoDB.	Instead,	a	transaction	in	ArangoDB	is
started	by	providing	a	description	of	the	transaction	to	the	db._executeTransaction	JavaScript	function:

db._executeTransaction(description);

This	function	will	then	automatically	start	a	transaction,	execute	all	required	data	retrieval	and/or	modification	operations,	and	at	the	end
automatically	commit	the	transaction.	If	an	error	occurs	during	transaction	execution,	the	transaction	is	automatically	aborted,	and	all
changes	are	rolled	back.

Execute	transaction

executes	a	transaction		db._executeTransaction(object)	

Executes	a	server-side	transaction,	as	specified	by	object.

object	must	have	the	following	attributes:

collections:	a	sub-object	that	defines	which	collections	will	be	used	in	the	transaction.	collections	can	have	these	attributes:
read:	a	single	collection	or	a	list	of	collections	that	will	be	used	in	the	transaction	in	read-only	mode
write:	a	single	collection	or	a	list	of	collections	that	will	be	used	in	the	transaction	in	write	or	read	mode.

action:	a	Javascript	function	or	a	string	with	Javascript	code	containing	all	the	instructions	to	be	executed	inside	the	transaction.	If
the	code	runs	through	successfully,	the	transaction	will	be	committed	at	the	end.	If	the	code	throws	an	exception,	the	transaction	will
be	rolled	back	and	all	database	operations	will	be	rolled	back.

Additionally,	object	can	have	the	following	optional	attributes:

waitForSync:	boolean	flag	indicating	whether	the	transaction	is	forced	to	be	synchronous.
lockTimeout:	a	numeric	value	that	can	be	used	to	set	a	timeout	for	waiting	on	collection	locks.	If	not	specified,	a	default	value	will	be
used.	Setting	lockTimeout	to	0	will	make	ArangoDB	not	time	out	waiting	for	a	lock.
params:	optional	arguments	passed	to	the	function	specified	in	action.

The	following	attributes	can	be	used	for	transactions	in	the	RocksDB	storage	engine:

maxTransactionSize:	transaction	size	limit	in	bytes
intermediateCommitSize:	maximum	total	size	of	operations	after	which	an	intermediate	commit	is	performed	automatically
intermediateCommitCount:	maximum	number	of	operations	after	which	an	intermediate	commit	is	performed	automatically

Declaration	of	collections

All	collections	which	are	to	participate	in	a	transaction	need	to	be	declared	beforehand.	This	is	a	necessity	to	ensure	proper	locking	and
isolation.

Collections	can	be	used	in	a	transaction	in	write	mode	or	in	read-only	mode.

If	any	data	modification	operations	are	to	be	executed,	the	collection	must	be	declared	for	use	in	write	mode.	The	write	mode	allows
modifying	and	reading	data	from	the	collection	during	the	transaction	(i.e.	the	write	mode	includes	the	read	mode).

Contrary,	using	a	collection	in	read-only	mode	will	only	allow	performing	read	operations	on	a	collection.	Any	attempt	to	write	into	a
collection	used	in	read-only	mode	will	make	the	transaction	fail.

Transaction	invocation

285

Collections	for	a	transaction	are	declared	by	providing	them	in	the	collections	attribute	of	the	object	passed	to	the	_executeTransaction
function.	The	collections	attribute	has	the	sub-attributes	read	and	write:

db._executeTransaction({

		collections:	{

				write:	["users",	"logins"],

				read:	["recommendations"]

		}

});

read	and	write	are	optional	attributes,	and	only	need	to	be	specified	if	the	operations	inside	the	transactions	demand	for	it.

The	contents	of	read	or	write	can	each	be	lists	arrays	collection	names	or	a	single	collection	name	(as	a	string):

db._executeTransaction({

		collections:	{

				write:	"users",

				read:	"recommendations"

		}

});

Note:	It	is	currently	optional	to	specify	collections	for	read-only	access.	Even	without	specifying	them,	it	is	still	possible	to	read	from
such	collections	from	within	a	transaction,	but	with	relaxed	isolation.	Please	refer	to	Transactions	Locking	for	more	details.

In	order	to	make	a	transaction	fail	when	a	non-declared	collection	is	used	inside	for	reading,	the	optional	allowImplicit	sub-attribute	of
collections	can	be	set	to	false:

db._executeTransaction({

		collections:	{

				read:	"recommendations",

				allowImplicit:	false		/*	this	disallows	read	access	to	other	collections

																													than	specified	*/

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				return	db.foobar.toArray();	/*	will	fail	because	db.foobar	must	not	be	accessed

																																			for	reading	inside	this	transaction	*/

		}

});

The	default	value	for	allowImplicit	is	true.	Write-accessing	collections	that	have	not	been	declared	in	the	collections	array	is	never
possible,	regardless	of	the	value	of	allowImplicit.

Declaration	of	data	modification	and	retrieval	operations

All	data	modification	and	retrieval	operations	that	are	to	be	executed	inside	the	transaction	need	to	be	specified	in	a	Javascript	function,
using	the	action	attribute:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				//	all	operations	go	here

		}

});

Any	valid	Javascript	code	is	allowed	inside	action	but	the	code	may	only	access	the	collections	declared	in	collections.	action	may	be	a
Javascript	function	as	shown	above,	or	a	string	representation	of	a	Javascript	function:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	"function	()	{	doSomething();	}"

});

Transaction	invocation

286

Please	note	that	any	operations	specified	in	action	will	be	executed	on	the	server,	in	a	separate	scope.	Variables	will	be	bound	late.
Accessing	any	JavaScript	variables	defined	on	the	client-side	or	in	some	other	server	context	from	inside	a	transaction	may	not	work.
Instead,	any	variables	used	inside	action	should	be	defined	inside	action	itself:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				var	db	=	require(...).db;

				db.users.save({	...	});

		}

});

When	the	code	inside	the	action	attribute	is	executed,	the	transaction	is	already	started	and	all	required	locks	have	been	acquired.	When
the	code	inside	the	action	attribute	finishes,	the	transaction	will	automatically	commit.	There	is	no	explicit	commit	command.

To	make	a	transaction	abort	and	roll	back	all	changes,	an	exception	needs	to	be	thrown	and	not	caught	inside	the	transaction:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				db.users.save({	_key:	"hello"	});

				//	will	abort	and	roll	back	the	transaction

				throw	"doh!";

		}

});

There	is	no	explicit	abort	or	roll	back	command.

As	mentioned	earlier,	a	transaction	will	commit	automatically	when	the	end	of	the	action	function	is	reached	and	no	exception	has	been
thrown.	In	this	case,	the	user	can	return	any	legal	JavaScript	value	from	the	function:

db._executeTransaction({

		collections:	{

				write:	"users"

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				db.users.save({	_key:	"hello"	});

				//	will	commit	the	transaction	and	return	the	value	"hello"

				return	"hello";

		}

});

Custom	exceptions

One	may	wish	to	define	custom	exceptions	inside	of	a	transaction.	To	have	the	exception	propagate	upwards	properly,	please	throw	an
an	instance	of	base	JavaScript		Error		class	or	a	derivative.	To	specify	an	error	number,	include	it	as	the		errorNumber		field.	As	an
example:

db._executeTransaction({

		collections:	{},

		action:	function	()	{

				var	err	=	new	Error('My	error	context');

				err.errorNumber	=	1234;

				throw	err;

		}

});

Transaction	invocation

287

Note:	In	previous	versions,	custom	exceptions	which	did	not	have	an		Error	-like	form	were	simply	converted	to	strings	and	exposed	in
the		exception		field	of	the	returned	error.	This	is	no	longer	the	case,	as	it	had	the	potential	to	leak	unwanted	information	if	improperly
used.

Examples

The	first	example	will	write	3	documents	into	a	collection	named	c1.	The	c1	collection	needs	to	be	declared	in	the	write	attribute	of	the
collections	attribute	passed	to	the	executeTransaction	function.

The	action	attribute	contains	the	actual	transaction	code	to	be	executed.	This	code	contains	all	data	modification	operations	(3	in	this
example).

//	setup

db._create("c1");

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				db.c1.save({	_key:	"key1"	});

				db.c1.save({	_key:	"key2"	});

				db.c1.save({	_key:	"key3"	});

		}

});

				db.c1.count();	//	3

Aborting	the	transaction	by	throwing	an	exception	in	the	action	function	will	revert	all	changes,	so	as	if	the	transaction	never	happened:

//	setup

db._create("c1");

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				db.c1.save({	_key:	"key1"	});

				db.c1.count();	//	1

				db.c1.save({	_key:	"key2"	});

				db.c1.count();	//	2

				throw	"doh!";

		}

});

db.c1.count();	//	0

The	automatic	rollback	is	also	executed	when	an	internal	exception	is	thrown	at	some	point	during	transaction	execution:

//	setup

db._create("c1");

db._executeTransaction({

		collections:	{

				write:	["c1"]

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				db.c1.save({	_key:	"key1"	});

				//	will	throw	duplicate	a	key	error,	not	explicitly	requested	by	the	user

				db.c1.save({	_key:	"key1"	});		

				//	we'll	never	get	here...

		}

});

db.c1.count();	//	0

Transaction	invocation

288

As	required	by	the	consistency	principle,	aborting	or	rolling	back	a	transaction	will	also	restore	secondary	indexes	to	the	state	at
transaction	start.

Cross-collection	transactions

There's	also	the	possibility	to	run	a	transaction	across	multiple	collections.	In	this	case,	multiple	collections	need	to	be	declared	in	the
collections	attribute,	e.g.:

//	setup

db._create("c1");

db._create("c2");

db._executeTransaction({

		collections:	{

				write:	["c1",	"c2"]

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				db.c1.save({	_key:	"key1"	});

				db.c2.save({	_key:	"key2"	});

		}

});

db.c1.count();	//	1

db.c2.count();	//	1

Again,	throwing	an	exception	from	inside	the	action	function	will	make	the	transaction	abort	and	roll	back	all	changes	in	all	collections:

//	setup

db._create("c1");

db._create("c2");

db._executeTransaction({

		collections:	{

				write:	["c1",	"c2"]

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				for	(var	i	=	0;	i	<	100;	++i)	{

						db.c1.save({	_key:	"key"	+	i	});

						db.c2.save({	_key:	"key"	+	i	});

				}

				db.c1.count();	//	100

				db.c2.count();	//	100

				//	abort

				throw	"doh!"

		}

});

db.c1.count();	//	0

db.c2.count();	//	0

Transaction	invocation

289

Passing	parameters	to	transactions
Arbitrary	parameters	can	be	passed	to	transactions	by	setting	the	params	attribute	when	declaring	the	transaction.	This	feature	is	handy
to	re-use	the	same	transaction	code	for	multiple	calls	but	with	different	parameters.

A	basic	example:

db._executeTransaction({

		collections:	{	},

		action:	function	(params)	{

				return	params[1];

		},

		params:	[1,	2,	3]

});

The	above	example	will	return	2.

Some	example	that	uses	collections:

db._executeTransaction({

		collections:	{	

				write:	"users",

				read:	["c1",	"c2"]

		},

		action:	function	(params)	{

				var	db	=	require('@arangodb').db;

				var	doc	=	db.c1.document(params['c1Key']);

				db.users.save(doc);

				doc	=	db.c2.document(params['c2Key']);

				db.users.save(doc);

		},

		params:	{	

				c1Key:	"foo",	

				c2Key:	"bar"	

		}

});

Passing	parameters

290

Locking	and	Isolation
Transactions	need	to	specify	from	which	collections	they	will	read	data	and	which	collections	they	intend	do	modify.	This	can	be	done
by	setting	the	read,	write,	or	exclusive	attributes	in	the	collections	attribute	of	the	transaction:

db._executeTransaction({

		collections:	{	

				read:	"users",

				write:	["test",	"log"]

		},

		action:	function	()	{

				const	db	=	require("@arangodb").db;

				db.users.toArray().forEach(function(doc)	{

						db.log.insert({	value:	"removed	user:	"	+	doc.name	});

						db.test.remove(doc._key);

				});

		}

});

write	here	means	write	access	to	the	collection,	and	also	includes	any	read	accesses.	exclusive	is	a	synonym	for	write	in	the	MMFiles
engine,	because	both	exclusive	and	write	will	acquire	collection-level	locks	in	this	engine.	In	the	RocksDB	engine,	exclusive	means
exclusive	write	access	to	the	collection,	and	write	means	(shared)	write	access	to	the	collection,	which	can	be	interleaved	with	write
accesses	by	other	concurrent	transactions.

MMFiles	engine

The	MMFiles	engine	uses	the	following	locking	mechanisms	to	serialize	transactions	on	the	same	data:

All	collections	specified	in	the	collections	attribute	are	locked	in	the	requested	mode	(read	or	write)	at	transaction	start.	Locking	of
multiple	collections	is	performed	in	alphabetical	order.	When	a	transaction	commits	or	rolls	back,	all	locks	are	released	in	reverse	order.
The	locking	order	is	deterministic	to	avoid	deadlocks.

While	locks	are	held,	modifications	by	other	transactions	to	the	collections	participating	in	the	transaction	are	prevented.	A	transaction
will	thus	see	a	consistent	view	of	the	participating	collections'	data.

Additionally,	a	transaction	will	not	be	interrupted	or	interleaved	with	any	other	ongoing	operations	on	the	same	collection.	This	means
each	transaction	will	run	in	isolation.	A	transaction	should	never	see	uncommitted	or	rolled	back	modifications	by	other	transactions.
Additionally,	reads	inside	a	transaction	are	repeatable.

Note	that	the	above	is	true	only	for	all	collections	that	are	declared	in	the	collections	attribute	of	the	transaction.

RocksDB	engine

The	RocksDB	engine	does	not	lock	any	collections	participating	in	a	transaction	for	read.	Read	operations	can	run	in	parallel	to	other	read
or	write	operations	on	the	same	collections.

For	all	collections	that	are	used	in	write	mode,	the	RocksDB	engine	will	internally	acquire	a	(shared)	read	lock.	This	means	that	many
writers	can	modify	data	in	the	same	collection	in	parallel	(and	also	run	in	parallel	to	ongoing	reads).	However,	if	two	concurrent
transactions	attempt	to	modify	the	same	document	or	index	entry,	there	will	be	a	write-write	conflict,	and	one	of	the	transactions	will
abort	with	error	1200	("conflict").	It	is	then	up	to	client	applications	to	retry	the	failed	transaction	or	accept	the	failure.

In	order	to	guard	long-running	or	complex	transactions	against	concurrent	operations	on	the	same	data,	the	RocksDB	engine	allows	to
access	collections	in	exclusive	mode.	Exclusive	accesses	will	internally	acquire	a	write-lock	on	the	collections,	so	they	are	not	executed	in
parallel	with	any	other	write	operations.	Read	operations	can	still	be	carried	out	by	other	concurrent	transactions.

Lazily	adding	collections

There	might	be	situations	when	declaring	all	collections	a	priori	is	not	possible,	for	example,	because	further	collections	are	determined	by
a	dynamic	AQL	query	inside	the	transaction,	for	example	a	query	using	AQL	graph	traversal.

Locking	and	isolation

291

In	this	case,	it	would	be	impossible	to	know	beforehand	which	collection	to	lock,	and	thus	it	is	legal	to	not	declare	collections	that	will	be
accessed	in	the	transaction	in	read-only	mode.	Accessing	a	non-declared	collection	in	read-only	mode	during	a	transaction	will	add	the
collection	to	the	transaction	lazily,	and	fetch	data	from	the	collection	as	usual.	However,	as	the	collection	is	added	lazily,	there	is	no
isolation	from	other	concurrent	operations	or	transactions.	Reads	from	such	collections	are	potentially	non-repeatable.

Examples:

db._executeTransaction({

		collections:	{	

				read:	"users"

		},

		action:	function	()	{

				const	db	=	require("@arangodb").db;

				/*	Execute	an	AQL	query	that	traverses	a	graph	starting	at	a	"users"	vertex.

							It	is	yet	unknown	into	which	other	collections	the	query	might	traverse	*/

				db._createStatement({	

						query:	`FOR	v	IN	ANY	"users/1234"	connections	RETURN	v`

				}).execute().toArray().forEach(function	(d)	{

						/*	...	*/

				});

		}

});

This	automatic	lazy	addition	of	collections	to	a	transaction	also	introduces	the	possibility	of	deadlocks.	Deadlocks	may	occur	if	there	are
concurrent	transactions	that	try	to	acquire	locks	on	the	same	collections	lazily.

In	order	to	make	a	transaction	fail	when	a	non-declared	collection	is	used	inside	a	transaction	for	reading,	the	optional	allowImplicit	sub-
attribute	of	collections	can	be	set	to	false:

db._executeTransaction({

		collections:	{	

				read:	"users",

				allowImplicit:	false

		},

		action:	function	()	{

				/*	The	below	query	will	now	fail	because	the	collection	"connections"	has	not

							been	specified	in	the	list	of	collections	used	by	the	transaction	*/

				const	db	=	require("@arangodb").db;

				db._createStatement({	

						query:	`FOR	v	IN	ANY	"users/1234"	connections	RETURN	v`

				}).execute().toArray().forEach(function	(d)	{

						/*	...	*/

				});

		}

});

The	default	value	for	allowImplicit	is	true.	Write-accessing	collections	that	have	not	been	declared	in	the	collections	array	is	never
possible,	regardless	of	the	value	of	allowImplicit.

If	users/1234	has	an	edge	in	connections,	linking	it	to	another	document	in	the	users	collection,	then	the	following	explicit	declaration	will
work:

db._executeTransaction({

		collections:	{	

				read:	["users",	"connections"],

				allowImplicit:	false

		},

		/*	...	*/

If	the	edge	points	to	a	document	in	another	collection	however,	then	the	query	will	fail,	unless	that	other	collection	is	added	to	the
declaration	as	well.

Note	that	if	a	document	handle	is	used	as	starting	point	for	a	traversal,	e.g.		FOR	v	IN	ANY	"users/not_linked"	...		or		FOR	v	IN	ANY	{_id:
"users/not_linked"}	...	,	then	no	error	is	raised	in	the	case	of	the	start	vertex	not	having	any	edges	to	follow,	with		allowImplicit:
false		and	users	not	being	declared	for	read	access.	AQL	only	sees	a	string	and	does	not	consider	it	a	read	access,	unless	there	are	edges
connected	to	it.		FOR	v	IN	ANY	DOCUMENT("users/not_linked")	...		will	fail	even	without	edges,	as	it	is	always	considered	to	be	a	read
access	to	the	users	collection.

Locking	and	isolation

292

Deadlocks	and	Deadlock	detection

A	deadlock	is	a	situation	in	which	two	or	more	concurrent	operations	(user	transactions	or	AQL	queries)	try	to	access	the	same	resources
(collections,	documents)	and	need	to	wait	for	the	others	to	finish,	but	none	of	them	can	make	any	progress.

A	good	example	for	a	deadlock	is	two	concurrently	executing	transactions	T1	and	T2	that	try	to	access	the	same	collections	but	that	need
to	wait	for	each	other.	In	this	example,	transaction	T1	will	write	to	collection		c1	,	but	will	also	read	documents	from	collection		c2	
without	announcing	it:

db._executeTransaction({

		collections:	{	

				write:	"c1"

		},

		action:	function	()	{

				const	db	=	require("@arangodb").db;

				/*	write	into	c1	(announced)	*/

				db.c1.insert({	foo:	"bar"	});

				/*	some	operation	here	that	takes	long	to	execute...	*/

				/*	read	from	c2	(unannounced)	*/

				db.c2.toArray();

		}

});

Transaction	T2	announces	to	write	into	collection		c2	,	but	will	also	read	documents	from	collection		c1		without	announcing	it:

db._executeTransaction({

		collections:	{	

				write:	"c2"

		},

		action:	function	()	{

				var	db	=	require("@arangodb").db;

				/*	write	into	c2	(announced)	*/

				db.c2.insert({	bar:	"baz"	});

				/*	some	operation	here	that	takes	long	to	execute...	*/

				/*	read	from	c1	(unannounced)	*/

				db.c1.toArray();

		}

});

In	the	above	example,	a	deadlock	will	occur	if	transaction	T1	and	T2	have	both	acquired	their	write	locks	(T1	for	collection		c1		and	T2
for	collection		c2)	and	are	then	trying	to	read	from	the	other	other	(T1	will	read	from		c2	,	T2	will	read	from		c1).	T1	will	then	try	to
acquire	the	read	lock	on	collection		c2	,	which	is	prevented	by	transaction	T2.	T2	however	will	wait	for	the	read	lock	on	collection		c1	,
which	is	prevented	by	transaction	T1.

In	case	of	such	deadlock,	there	would	be	no	progress	for	any	of	the	involved	transactions,	and	none	of	the	involved	transactions	could
ever	complete.	This	is	completely	undesirable,	so	the	automatic	deadlock	detection	mechanism	in	ArangoDB	will	automatically	abort	one
of	the	transactions	involved	in	such	deadlock.	Aborting	means	that	all	changes	done	by	the	transaction	will	be	rolled	back	and	error	29
(deadlock	detected)	will	be	thrown.

Client	code	(AQL	queries,	user	transactions)	that	accesses	more	than	one	collection	should	be	aware	of	the	potential	of	deadlocks	and
should	handle	the	error	29	(deadlock	detected)	properly,	either	by	passing	the	exception	to	the	caller	or	retrying	the	operation.

To	avoid	both	deadlocks	and	non-repeatable	reads,	all	collections	used	in	a	transaction	should	be	specified	in	the		collections		attribute
when	known	in	advance.	In	case	this	is	not	possible	because	collections	are	added	dynamically	inside	the	transaction,	deadlocks	may
occur	and	the	deadlock	detection	may	kick	in	and	abort	the	transaction.

The	RocksDB	engine	uses	document-level	locks	and	therefore	will	not	have	a	deadlock	problem	on	collection	level.	If	two	concurrent
transactions	however	modify	the	same	documents	or	index	entries,	the	RocksDB	engine	will	signal	a	write-write	conflict	and	abort	one	of
the	transactions	with	error	1200	("conflict")	automatically.

Locking	and	isolation

293

Locking	and	isolation

294

Durability
Transactions	are	executed	in	main	memory	first	until	there	is	either	a	rollback	or	a	commit.	On	rollback,	no	data	will	be	written	to	disk,
but	the	operations	from	the	transaction	will	be	reversed	in	memory.

On	commit,	all	modifications	done	in	the	transaction	will	be	written	to	the	collection	datafiles.	These	writes	will	be	synchronized	to	disk
if	any	of	the	modified	collections	has	the	waitForSync	property	set	to	true,	or	if	any	individual	operation	in	the	transaction	was	executed
with	the	waitForSync	attribute.	Additionally,	transactions	that	modify	data	in	more	than	one	collection	are	automatically	synchronized	to
disk.	This	synchronization	is	done	to	not	only	ensure	durability,	but	to	also	ensure	consistency	in	case	of	a	server	crash.

That	means	if	you	only	modify	data	in	a	single	collection,	and	that	collection	has	its	waitForSync	property	set	to	false,	the	whole
transaction	will	not	be	synchronized	to	disk	instantly,	but	with	a	small	delay.

There	is	thus	the	potential	risk	of	losing	data	between	the	commit	of	the	transaction	and	the	actual	(delayed)	disk	synchronization.	This
is	the	same	as	writing	into	collections	that	have	the	waitForSync	property	set	to	false	outside	of	a	transaction.	In	case	of	a	crash	with
waitForSync	set	to	false,	the	operations	performed	in	the	transaction	will	either	be	visible	completely	or	not	at	all,	depending	on	whether
the	delayed	synchronization	had	kicked	in	or	not.

To	ensure	durability	of	transactions	on	a	collection	that	have	the	waitForSync	property	set	to	false,	you	can	set	the	waitForSync	attribute
of	the	object	that	is	passed	to	executeTransaction.	This	will	force	a	synchronization	of	the	transaction	to	disk	even	for	collections	that
have	waitForSync	set	to	false:

db._executeTransaction({

		collections:	{	

				write:	"users"

		},

		waitForSync:	true,

		action:	function	()	{	...	}

});

An	alternative	is	to	perform	an	operation	with	an	explicit	sync	request	in	a	transaction,	e.g.

db.users.save({	_key:	"1234"	},	true);	

In	this	case,	the	true	value	will	make	the	whole	transaction	be	synchronized	to	disk	at	the	commit.

In	any	case,	ArangoDB	will	give	users	the	choice	of	whether	or	not	they	want	full	durability	for	single	collection	transactions.	Using	the
delayed	synchronization	(i.e.	waitForSync	with	a	value	of	false)	will	potentially	increase	throughput	and	performance	of	transactions,	but
will	introduce	the	risk	of	losing	the	last	committed	transactions	in	the	case	of	a	crash.

In	contrast,	transactions	that	modify	data	in	more	than	one	collection	are	automatically	synchronized	to	disk.	This	comes	at	the	cost	of
several	disk	sync.	For	a	multi-collection	transaction,	the	call	to	the	_executeTransaction	function	will	only	return	after	the	data	of	all
modified	collections	has	been	synchronized	to	disk	and	the	transaction	has	been	made	fully	durable.	This	not	only	reduces	the	risk	of
losing	data	in	case	of	a	crash	but	also	ensures	consistency	after	a	restart.

In	case	of	a	server	crash,	any	multi-collection	transactions	that	were	not	yet	committed	or	in	preparation	to	be	committed	will	be	rolled
back	on	server	restart.

For	multi-collection	transactions,	there	will	be	at	least	one	disk	sync	operation	per	modified	collection.	Multi-collection	transactions	thus
have	a	potentially	higher	cost	than	single	collection	transactions.	There	is	no	configuration	to	turn	off	disk	synchronization	for	multi-
collection	transactions	in	ArangoDB.	The	disk	sync	speed	of	the	system	will	thus	be	the	most	important	factor	for	the	performance	of
multi-collection	transactions.

Durability

295

Limitations

In	General

Transactions	in	ArangoDB	have	been	designed	with	particular	use	cases	in	mind.	They	will	be	mainly	useful	for	short	and	small	data
retrieval	and/or	modification	operations.

The	implementation	is	not	optimized	for	very	long-running	or	very	voluminous	operations,	and	may	not	be	usable	for	these	cases.

One	limitation	is	that	a	transaction	operation	information	must	fit	into	main	memory.	The	transaction	information	consists	of	record
pointers,	revision	numbers	and	rollback	information.	The	actual	data	modification	operations	of	a	transaction	are	written	to	the	write-
ahead	log	and	do	not	need	to	fit	entirely	into	main	memory.

Ongoing	transactions	will	also	prevent	the	write-ahead	logs	from	being	fully	garbage-collected.	Information	in	the	write-ahead	log	files
cannot	be	written	to	collection	data	files	or	be	discarded	while	transactions	are	ongoing.

To	ensure	progress	of	the	write-ahead	log	garbage	collection,	transactions	should	be	kept	as	small	as	possible,	and	big	transactions	should
be	split	into	multiple	smaller	transactions.

Transactions	in	ArangoDB	cannot	be	nested,	i.e.	a	transaction	must	not	start	another	transaction.	If	an	attempt	is	made	to	call	a
transaction	from	inside	a	running	transaction,	the	server	will	throw	error	1651	(nested	transactions	detected).

It	is	also	disallowed	to	execute	user	transaction	on	some	of	ArangoDB's	own	system	collections.	This	shouldn't	be	a	problem	for	regular
usage	as	system	collections	will	not	contain	user	data	and	there	is	no	need	to	access	them	from	within	a	user	transaction.

Some	operations	are	not	allowed	inside	transactions	in	general:

creation	and	deletion	of	databases	(db._createDatabase()	,		db._dropDatabase())
creation	and	deletion	of	collections	(db._create()	,		db._drop()	,		db.<collection>.rename())
creation	and	deletion	of	indexes	(db.<collection>.ensureIndex()	,		db.<collection>.dropIndex())

If	an	attempt	is	made	to	carry	out	any	of	these	operations	during	a	transaction,	ArangoDB	will	abort	the	transaction	with	error	code	1653
(disallowed	operation	inside	transaction).

Finally,	all	collections	that	may	be	modified	during	a	transaction	must	be	declared	beforehand,	i.e.	using	the	collections	attribute	of	the
object	passed	to	the	_executeTransaction	function.	If	any	attempt	is	made	to	carry	out	a	data	modification	operation	on	a	collection	that
was	not	declared	in	the	collections	attribute,	the	transaction	will	be	aborted	and	ArangoDB	will	throw	error	1652	unregistered	collection
used	in	transaction.	It	is	legal	to	not	declare	read-only	collections,	but	this	should	be	avoided	if	possible	to	reduce	the	probability	of
deadlocks	and	non-repeatable	reads.

Please	refer	to	Locking	and	Isolation	for	more	details.

In	Clusters
Using	a	single	instance	of	ArangoDB,	multi-document	/	multi-collection	queries	are	guaranteed	to	be	fully	ACID.	This	is	more	than	many
other	NoSQL	database	systems	support.	In	cluster	mode,	single-document	operations	are	also	fully	ACID.	Multi-document	/	multi-
collection	queries	in	a	cluster	are	not	ACID,	which	is	equally	the	case	with	competing	database	systems.	Transactions	in	a	cluster	will	be
supported	in	a	future	version	of	ArangoDB	and	make	these	operations	fully	ACID	as	well.	Note	that	for	non-sharded	collections	in	a
cluster,	the	transactional	properties	of	a	single	server	apply	(fully	ACID).

Transactions	in	the	RocksDB	storage	engine
Data	of	ongoing	transactions	is	stored	in	RAM.	Transactions	that	get	too	big	(in	terms	of	number	of	operations	involved	or	the	total	size
of	data	created	or	modified	by	the	transaction)	will	be	committed	automatically.	Effectively	this	means	that	big	user	transactions	are	split
into	multiple	smaller	RocksDB	transactions	that	are	committed	individually.	The	entire	user	transaction	will	not	necessarily	have	ACID
properties	in	this	case.

The	following	global	options	can	be	used	to	control	the	RAM	usage	and	automatic	intermediate	commits	for	the	RocksDB	engine:

Limitations

296

	--rocksdb.max-transaction-size	

Transaction	size	limit	(in	bytes).	Transactions	store	all	keys	and	values	in	RAM,	so	large	transactions	run	the	risk	of	causing	out-of-
memory	sitations.	This	setting	allows	you	to	ensure	that	does	not	happen	by	limiting	the	size	of	any	individual	transaction.	Transactions
whose	operations	would	consume	more	RAM	than	this	threshold	value	will	abort	automatically	with	error	32	("resource	limit	exceeded").

	--rocksdb.intermediate-commit-size	

If	the	size	of	all	operations	in	a	transaction	reaches	this	threshold,	the	transaction	is	committed	automatically	and	a	new	transaction	is
started.	The	value	is	specified	in	bytes.

	--rocksdb.intermediate-commit-count	

If	the	number	of	operations	in	a	transaction	reaches	this	value,	the	transaction	is	committed	automatically	and	a	new	transaction	is
started.

The	above	values	can	also	be	adjusted	per	transaction,	by	setting	the	following	attributes	in	the	call	to	db._executeTransaction():

maxTransactionSize:	transaction	size	limit	in	bytes
intermediateCommitSize:	maximum	total	size	of	operations	after	which	an	intermediate	commit	is	performed	automatically
intermediateCommitCount:	maximum	number	of	operations	after	which	an	intermediate	commit	is	performed	automatically

Limitations

297

Deployment
In	this	chapter	we	describe	various	possibilities	to	deploy	ArangoDB.	In	particular	for	the	cluster	mode,	there	are	different	ways	and	we
want	to	highlight	their	advantages	and	disadvantages.	We	even	document	in	detail,	how	to	set	up	a	cluster	by	simply	starting	various
ArangoDB	processes	on	different	machines,	either	directly	or	using	Docker	containers.

Single	instance
Cluster

DC/OS,	Apache	Mesos	and	Marathon
Generic	&	Docker
Advanced	Topics

Standalone	Agency
Test	setup	on	a	local	machine
Starting	processes	on	different	machines
Launching	an	ArangoDB	cluster	using	Docker	containers

Multiple	Datacenters

Deployment

298

Single	instance	deployment

The	latest	official	builds	of	ArangoDB	for	all	supported	operating	systems	may	be	obtained	from	https://www.arangodb.com/download/.

Linux	remarks

Besides	the	official	images	which	are	provided	for	the	most	popular	linux	distributions	there	are	also	a	variety	of	unofficial	images
provided	by	the	community.	We	are	tracking	most	of	the	community	contributions	(including	new	or	updated	images)	in	our	newsletter:

https://www.arangodb.com/category/newsletter/

Windows	remarks

Please	note	that	ArangoDB	will	only	work	on	64bit.

Docker

The	simplest	way	to	deploy	ArangoDB	is	using	Docker.	To	get	a	general	understanding	of	Docker	have	a	look	at	their	excellent
documentation.

Authentication

To	start	the	official	Docker	container	you	will	have	to	decide	on	an	authentication	method.	Otherwise	the	container	won't	start.

Provide	one	of	the	arguments	to	Docker	as	an	environment	variable.

There	are	three	options:

1.	 ARANGO_NO_AUTH=1

Disable	authentication	completely.	Useful	for	local	testing	or	for	operating	in	a	trusted	network	(without	a	public	interface).

2.	 ARANGO_ROOT_PASSWORD=password

Start	ArangoDB	with	the	given	password	for	root

3.	 ARANGO_RANDOM_ROOT_PASSWORD=1

Let	ArangoDB	generate	a	random	root	password

To	get	going	quickly:

	docker	run	-e	ARANGO_RANDOM_ROOT_PASSWORD=1	arangodb/arangodb	

For	an	in	depth	guide	about	Docker	and	ArangoDB	please	check	the	official	documentation:	https://hub.docker.com/r/arangodb/arangodb/	.
Note	that	we	are	using	the	image		arangodb/arangodb		here	which	is	always	the	most	current	one.	There	is	also	the	"official"	one	called
	arangodb		whose	documentation	is	here:	https://hub.docker.com/_/arangodb/

Single	instance

299

https://www.arangodb.com/download/
https://www.arangodb.com/category/newsletter/
https://docker.io/
https://docs.docker.com/
https://hub.docker.com/r/arangodb/arangodb/
https://hub.docker.com/_/arangodb/

Cluster
Mesos,	DC/OS:	Distributed	deployment	using	Apache	Mesos

Generic	&	Docker:	Automatic	native	clusters	with	ArangoDB	Starter

Advanced	Topics:	Standalone	Agency,	local	/	distributed	/	Docker	clusters

Cluster

300

Distributed	deployment	using	Apache	Mesos

ArangoDB	has	a	sophisticated	and	yet	easy	way	to	use	cluster	mode.	To	leverage	the	full	cluster	feature	set	(monitoring,	scaling,
automatic	failover	and	automatic	replacement	of	failed	nodes)	you	have	to	run	ArangoDB	on	some	kind	of	cluster	management	system.
Currently	ArangoDB	relies	on	Apache	Mesos	in	that	matter.	Mesos	is	a	cluster	operating	system	which	powers	some	of	the	worlds
biggest	datacenters	running	several	thousands	of	nodes.

DC/OS

DC/OS	is	the	recommended	way	to	install	a	cluster	as	it	eases	much	of	the	process	to	install	a	Mesos	cluster.	You	can	deploy	it	very
quickly	on	a	variety	of	cloud	hosters	or	setup	your	own	DC/OS	locally.	DC/OS	is	a	set	of	tools	built	on	top	of	Apache	Mesos.	Apache
Mesos	is	a	so	called	"Distributed	Cluster	Operation	System"	and	the	core	of	DC/OS.	Apache	Mesos	has	the	concept	of	so	called
persistent	volumes	which	make	it	perfectly	suitable	for	a	database.

Installing

First	prepare	a	DC/OS	cluster	by	going	to	https://dcos.io	and	following	the	instructions	there.

DC/OS	comes	with	its	own	package	management.	Packages	can	be	installed	from	the	so	called	"Universe".	As	an	official	DC/OS	partner
ArangoDB	can	be	installed	from	there	straight	away.

1.	 Installing	via	DC/OS	UI

i.	 Open	your	browser	and	go	to	the	DC/OS	admin	interface
ii.	 Open	the	"Universe"	tab
iii.	 Locate	arangodb	and	hit	"Install	Package"
iv.	 Press	"Install	Package"

2.	 Installing	via	the	DC/OS	command	line

i.	 Install	the	dcos	cli
ii.	 Open	a	terminal	and	issue		dcos	install	arangodb	

Both	options	are	essentially	doing	the	same	in	the	background.	Both	are	starting	ArangoDB	with	its	default	options	set.

To	review	the	default	options	using	the	web	interface	simply	click	"Advanced	Installation"	in	the	web	interface.	There	you	will	find	a	list
of	options	including	some	explanation.

To	review	the	default	options	using	the	CLI	first	type		dcos	package	describe	--config	arangodb	.	This	will	give	you	a	flat	list	of	default
settings.

To	get	an	explanation	of	the	various	command	line	options	please	check	the	latest	options	here	(choose	the	most	recent	number	and	have
a	look	at		config.json):

https://github.com/mesosphere/universe/tree/version-3.x/repo/packages/A/arangodb

After	installation	DC/OS	will	start	deploying	the	ArangoDB	cluster	on	the	DC/OS	cluster.	You	can	watch	ArangoDB	starting	on	the
"Services"	tab	in	the	web	interface.	Once	it	is	listed	as	healthy	click	the	link	next	to	it	and	you	should	see	the	ArangoDB	web	interface.

ArangoDB	Mesos	framework

As	soon	as	ArangoDB	was	deployed	Mesos	will	keep	your	cluster	running.	The	web	interface	has	many	monitoring	facilities	so	be	sure
to	make	yourself	familiar	with	the	DC/OS	web	interface.	As	a	fault	tolerant	system	Mesos	will	take	care	of	most	failure	scenarios
automatically.	Mesos	does	that	by	running	ArangoDB	as	a	so	called	"framework".	This	framework	has	been	specifically	built	to	keep
ArangoDB	running	in	a	healthy	condition	on	the	Mesos	cluster.	From	time	to	time	a	task	might	fail.	The	ArangoDB	framework	will	then
take	care	of	rescheduling	the	failed	task.	As	it	knows	about	the	very	specifics	of	each	cluster	task	and	its	role	it	will	automatically	take
care	of	most	failure	scenarios.

To	inspect	what	the	framework	is	doing	go	to		http://web-interface-url/mesos		in	your	browser.	Locate	the	task	"arangodb"	and	inspect
stderr	in	the	"Sandbox".	This	can	be	of	interest	for	example	when	a	slave	got	lost	and	the	framework	is	rescheduling	the	task.

Mesos,	DC/OS

301

http://mesos.apache.org/documentation/latest/persistent-volume/
https://dcos.io
https://docs.mesosphere.com/usage/cli/
https://github.com/mesosphere/universe/tree/version-3.x/repo/packages/A/arangodb

Using	ArangoDB

To	use	ArangoDB	as	a	datastore	in	your	DC/OS	cluster	you	can	facilitate	the	service	discovery	of	DC/OS.	Assuming	you	deployed	a
standard	ArangoDB	cluster	the	mesos	dns	will	know	about		arangodb.mesos	.	By	doing	a	SRV	DNS	request	(check	the	documentation	of
mesos	dns)	you	can	find	out	the	port	where	the	internal	HAProxy	of	ArangoDB	is	running.	This	will	offer	a	round	robin	load	balancer	to
access	all	ArangoDB	coordinators.

Scaling	ArangoDB

To	change	the	settings	of	your	ArangoDB	Cluster	access	the	ArangoDB	UI	and	hit	"Nodes".	On	the	scale	tab	you	will	have	the	ability	to
scale	your	cluster	up	and	down.

After	changing	the	settings	the	ArangoDB	framework	will	take	care	of	the	rest.	Scaling	your	cluster	up	is	generally	a	straightforward
operation	as	Mesos	will	simply	launch	another	task	and	be	done	with	it.	Scaling	down	is	a	bit	more	complicated	as	the	data	first	has	to	be
moved	to	some	other	place	so	that	will	naturally	take	somewhat	longer.

Please	note	that	scaling	operations	might	not	always	work.	For	example	if	the	underlying	Mesos	cluster	is	completely	saturated	with	its
running	tasks	scaling	up	will	not	be	possible.	Scaling	down	might	also	fail	due	to	the	cluster	not	being	able	to	move	all	shards	of	a
DBServer	to	a	new	destination	because	of	size	limitations.	Be	sure	to	check	the	output	of	the	ArangoDB	framework.

Deinstallation

Deinstalling	ArangoDB	is	a	bit	more	difficult	as	there	is	much	state	being	kept	in	the	Mesos	cluster	which	is	not	automatically	cleaned
up.	To	deinstall	from	the	command	line	use	the	following	one	liner:

	dcos	arangodb	uninstall	;	dcos	package	uninstall	arangodb	

This	will	first	cleanup	the	state	in	the	cluster	and	then	uninstall	arangodb.

arangodb-cleanup-framework

Should	you	forget	to	cleanup	the	state	you	can	do	so	later	by	using	the	arangodb-cleanup-framework	container.	Otherwise	you	might	not
be	able	to	deploy	a	new	arangodb	installation.

The	cleanup	framework	will	announce	itself	as	a	normal	ArangoDB.	Mesos	will	recognize	this	and	offer	all	persistent	volumes	it	still	has
for	ArangoDB	to	this	framework.	The	cleanup	framework	will	then	properly	free	the	persistent	volumes.	Finally	it	will	clean	up	any
state	left	in	zookeeper	(the	central	configuration	manager	in	a	Mesos	cluster).

To	deploy	the	cleanup	framework,	follow	the	instructions	in	the	github	repository.	After	deployment	watch	the	output	in	the	sandbox	of
the	Mesos	web	interface.	After	a	while	there	shouldn't	be	any	persistent	resource	offers	anymore	as	everything	was	cleaned	up.	After
that	you	can	delete	the	cleanup	framework	again	via	Marathon.

Apache	Mesos	and	Marathon

You	can	also	install	ArangoDB	on	a	bare	Apache	Mesos	cluster	provided	that	Marathon	is	running	on	it.

Doing	so	has	the	following	downsides:

1.	 Manual	Mesos	cluster	setup
2.	 You	need	to	implement	your	own	service	discovery
3.	 You	are	missing	the	dcos	cli
4.	 Installation	and	deinstallation	are	tedious
5.	 You	need	to	setup	some	kind	of	proxy	tunnel	to	access	ArangoDB	from	the	outside
6.	 Sparse	monitoring	capabilities

However	these	are	things	which	do	not	influence	ArangoDB	itself	and	operating	your	cluster	like	this	is	fully	supported.

Installing	via	Marathon

To	install	ArangoDB	via	marathon	you	need	a	proper	config	file:

{

Mesos,	DC/OS

302

https://github.com/mesosphere/mesos-dns
https://github.com/arangodb/arangodb-cleanup-framework/

		"id":	"arangodb",

		"cpus":	0.25,

		"mem":	256.0,

		"ports":	[0,	0,	0],

		"instances":	1,

		"args":	[

				"framework",

				"--framework_name=arangodb",

				"--master=zk://172.17.0.2:2181/mesos",

				"--zk=zk://172.17.0.2:2181/arangodb",

				"--user=",

				"--principal=pri",

				"--role=arangodb",

				"--mode=cluster",

				"--async_replication=true",

				"--minimal_resources_agent=mem(*):512;cpus(*):0.25;disk(*):512",

				"--minimal_resources_dbserver=mem(*):512;cpus(*):0.25;disk(*):1024",

				"--minimal_resources_secondary=mem(*):512;cpus(*):0.25;disk(*):1024",

				"--minimal_resources_coordinator=mem(*):512;cpus(*):0.25;disk(*):1024",

				"--nr_agents=1",

				"--nr_dbservers=2",

				"--nr_coordinators=2",

				"--failover_timeout=86400",

				"--arangodb_image=arangodb/arangodb-mesos:3.1",

				"--secondaries_with_dbservers=false",

				"--coordinators_with_dbservers=false"

],

		"container":	{

				"type":	"DOCKER",

				"docker":	{

						"image":	"arangodb/arangodb-mesos-framework:3.1",

						"network":	"HOST"

				}

		},

		"healthChecks":	[

				{

						"protocol":	"HTTP",

						"path":	"/framework/v1/health.json",

						"gracePeriodSeconds":	3,

						"intervalSeconds":	10,

						"portIndex":	0,

						"timeoutSeconds":	10,

						"maxConsecutiveFailures":	0

				}

]

}

Carefully	review	the	settings	(especially	the	IPs	and	the	resources).	Then	you	can	deploy	to	Marathon:

curl	-X	POST	-H	"Content-Type:	application/json"	http://url-of-marathon/v2/apps	-d	@arangodb3.json

Alternatively	use	the	web	interface	of	Marathon	to	deploy	ArangoDB.	It	has	a	JSON	mode	and	you	can	use	the	above	configuration	file.

Deinstallation	via	Marathon

As	with	DC/OS	you	first	need	to	properly	cleanup	any	state	leftovers.

The	easiest	is	to	simply	delete	ArangoDB	and	then	deploy	the	cleanup-framework	(see	section	arangodb-cleanup-framework).

Configuration	options

The	Arangodb	Mesos	framework	has	a	ton	of	different	options	which	are	listed	and	described	here:
https://github.com/arangodb/arangodb-mesos-framework/tree/3.1

Mesos,	DC/OS

303

https://github.com/arangodb/arangodb-mesos-framework/tree/3.1

Automatic	native	Clusters

Similarly	to	how	the	Mesos	framework	aranges	an	ArangoDB	cluster	in	a	DC/OS	environment	for	you,		arangodb		can	do	this	for	you	in
a	plain	environment.

By	invoking	the	first		arangodb		you	launch	a	primary	node.	It	will	bind	a	network	port,	and	output	the	commands	you	need	to
cut'n'paste	into	the	other	nodes.	Let's	review	the	process	of	such	a	startup	on	three	hosts	named		h01	,		h02	,	and		h03	:

arangodb@h01	~>	arangodb	--ownAddress	h01:4000

2017/06/12	14:59:38	Starting	arangodb	version	0.5.0+git,	build	5f97368

2017/06/12	14:59:38	Serving	as	master	with	ID	'52698769'	on	h01:4000...

2017/06/12	14:59:38	Waiting	for	3	servers	to	show	up.

2017/06/12	14:59:38	Use	the	following	commands	to	start	other	servers:

arangodb	--dataDir=./db2	--join	h01:4000

arangodb	--dataDir=./db3	--join	h01:4000

2017/06/12	14:59:38	Listening	on	0.0.0.0:4000	(h01:4000)

So	you	cut	the	lines		arangodb	--data.dir=./db2	--starter.join	127.0.0.1		and	execute	them	for	the	other	nodes.	If	you	run	it	on	another
node	on	your	network,	replace	the		--starter.join	127.0.0.1		by	the	public	IP	of	the	first	host.

arangodbh02	~>	arangodb	--dataDir=./db2	--join	h01:4000

2017/06/12	14:48:50	Starting	arangodb	version	0.5.0+git,	build	5f97368

2017/06/12	14:48:50	Contacting	master	h01:4000...

2017/06/12	14:48:50	Waiting	for	3	servers	to	show	up...

2017/06/12	14:48:50	Listening	on	0.0.0.0:4000	(:4000)

arangodbh03	~>	arangodb	--dataDir=./db3	--join	h01:4000

2017/06/12	14:48:50	Starting	arangodb	version	0.5.0+git,	build	5f97368

2017/06/12	14:48:50	Contacting	master	h01:4000...

2017/06/12	14:48:50	Waiting	for	3	servers	to	show	up...

2017/06/12	14:48:50	Listening	on	0.0.0.0:4000	(:4000)

Once	the	two	other	processes	joined	the	cluster,	and	started	their	ArangoDB	server	processes	(this	may	take	a	while	depending	on	your
system),	it	will	inform	you	where	to	connect	the	Cluster	from	a	Browser,	shell	or	your	programm:

...

2017/06/12	14:55:21	coordinator	up	and	running.

At	this	point	you	may	access	your	cluster	at	either	coordinator	endpoint,	http://h01:4002/,	http://h02:4002/	or	http://h03:4002/.

Automatic	native	local	test	Clusters

If	you	only	want	a	local	test	cluster,	you	can	run	a	single	starter	with	the		--starter.local		argument.	It	will	start	a	3	"machine"	cluster
on	your	local	PC.

arangodb	--starter.local

Note.	A	local	cluster	is	intended	only	for	test	purposes	since	a	failure	of	a	single	PC	will	bring	down	the	entire	cluster.

Automatic	Docker	Clusters

ArangoDBStarter	can	also	be	used	to	launch	clusters	based	on	docker	containers.	Its	a	bit	more	complicated,	since	you	need	to	provide
information	about	your	environment	that	can't	be	autodetected.

In	the	Docker	world	you	need	to	take	care	about	where	persistant	data	is	stored,	since	containers	are	intended	to	be	volatile.	We	use	a
volume	named		arangodb1		here:

Generic	&	Docker

304

http://h01:4002/
http://h02:4002/
http://h03:4002/
https://github.com/arangodb-helper/arangodb#running-in-docker

docker	volume	create	arangodb1

(You	can	use	any	type	of	docker	volume	that	fits	your	setup	instead.)

We	then	need	to	determine	the	the	IP	of	the	docker	host	where	you	intend	to	run	ArangoDB	starter	on.	Depending	on	your	operating
system	execute		ip	addr,	ifconfig	or	ipconfig		to	determine	your	local	ip	address.

192.168.1.0/24	dev	eth0	proto	kernel	scope	link	src	192.168.1.32

So	this	example	uses	the	IP		192.168.1.32	:

docker	run	-it	--name=adb1	--rm	-p	8528:8528	\

				-v	arangodb1:/data	\

				-v	/var/run/docker.sock:/var/run/docker.sock	\

				arangodb/arangodb-starter	\

				--starter.address=192.168.1.32

It	will	start	the	master	instance,	and	command	you	to	start	the	slave	instances:

Unable	to	find	image	'arangodb/arangodb-starter:latest'	locally

latest:	Pulling	from	arangodb/arangodb-starter

Digest:	sha256:b87d20c0b4757b7daa4cb7a9f55cb130c90a09ddfd0366a91970bcf31a7fd5a4

Status:	Downloaded	newer	image	for	arangodb/arangodb-starter:latest

2017/06/12	13:26:14	Starting	arangodb	version	0.7.1,	build	f128884

2017/06/12	13:26:14	Serving	as	master	with	ID	'46a2b40d'	on	192.168.1.32:8528...

2017/06/12	13:26:14	Waiting	for	3	servers	to	show	up.

2017/06/12	13:26:14	Use	the	following	commands	to	start	other	servers:

docker	volume	create	arangodb2	&&	\

		docker	run	-it	--name=adb2	--rm	-p	8533:8528	-v	arangodb2:/data	\

		-v	/var/run/docker.sock:/var/run/docker.sock	arangodb/arangodb-starter:0.7	\

		--starter.address=192.168.1.32	--starter.join=192.168.1.32

docker	volume	create	arangodb3	&&	\

		docker	run	-it	--name=adb3	--rm	-p	8538:8528	-v	arangodb3:/data	\

		-v	/var/run/docker.sock:/var/run/docker.sock	arangodb/arangodb-starter:0.7	\

		--starter.address=192.168.1.32	--starter.join=192.168.1.32

Once	you	start	the	other	instances,	it	will	continue	like	this:

2017/05/11	09:05:45	Added	master	'fc673b3b':	192.168.1.32,	portOffset:	0

2017/05/11	09:05:45	Added	new	peer	'e98ea757':	192.168.1.32,	portOffset:	5

2017/05/11	09:05:50	Added	new	peer	'eb01d0ef':	192.168.1.32,	portOffset:	10

2017/05/11	09:05:51	Starting	service...

2017/05/11	09:05:51	Looking	for	a	running	instance	of	agent	on	port	8531

2017/05/11	09:05:51	Starting	agent	on	port	8531

2017/05/11	09:05:52	Looking	for	a	running	instance	of	dbserver	on	port	8530

2017/05/11	09:05:52	Starting	dbserver	on	port	8530

2017/05/11	09:05:53	Looking	for	a	running	instance	of	coordinator	on	port	8529

2017/05/11	09:05:53	Starting	coordinator	on	port	8529

2017/05/11	09:05:58	agent	up	and	running	(version	3.2.devel).

2017/05/11	09:06:15	dbserver	up	and	running	(version	3.2.devel).

2017/05/11	09:06:31	coordinator	up	and	running	(version	3.2.devel).

And	at	least	it	tells	you	where	you	can	work	with	your	cluster:

2017/05/11	09:06:31	Your	cluster	can	now	be	accessed	with	a	browser	at	`http://192.168.1.32:8529`	or

2017/05/11	09:06:31	using	`arangosh	--server.endpoint	tcp://192.168.1.32:8529`.

Under	the	hood

The	first		arangodb		you	ran	(as	shown	above)	will	become	the	master	in	your	setup,	the		--starter.join		will	be	the	slaves.

Generic	&	Docker

305

The	master	determines	which	ArangoDB	server	processes	to	launch	on	which	slave,	and	how	they	should	communicate.	It	will	then
launch	the	server	processes	and	monitor	them.	Once	it	has	detected	that	the	setup	is	complete	you	will	get	the	prompt.	The	master	will
save	the	setup	for	subsequent	starts.

More	complicated	setup	options	can	be	found	in	ArangoDBStarters	Readme.

Generic	&	Docker

306

https://github.com/arangodb-helper/arangodb#starting-an-arangodb-cluster-the-easy-way

Advanced	Topics

In	contrast	to	the	other	topics	in	this	chapter	that	strive	to	get	you	simply	set	up	in	prepared	environments,	The	following	chapters
describe	whats	going	on	under	the	hood	in	details,	the	components	of	ArangoDB	Clusters,	and	how	they're	put	together:

Standalone	Agency
Test	setup	on	a	local	machine
Starting	processes	on	different	machines
Launching	an	ArangoDB	cluster	using	Docker	containers

Advanced	Topics

307

Launching	ArangoDB's	standalone	"agency"

Multiple	ArangoDB	instances	can	be	deployed	as	a	fault-tolerant	distributed	state
machine.

What	is	a	fault-tolerant	state	machine	in	the	first	place?

In	many	service	deployments	consisting	of	arbitrary	components	distributed	over	multiple	machines	one	is	faced	with	the	challenge	of
creating	a	dependable	centralised	knowledge	base	or	configuration.	Implementation	of	such	a	service	turns	out	to	be	one	of	the	most
fundamental	problems	in	information	engineering.	While	it	may	seem	as	if	the	realisation	of	such	a	service	is	easily	conceivable,
dependablity	formulates	a	paradoxon	on	computer	networks	per	se.	On	the	one	hand,	one	needs	a	distributed	system	to	avoid	a	single
point	of	failure.	On	the	other	hand,	one	has	to	establish	consensus	among	the	computers	involved.

Consensus	is	the	keyword	here	and	its	realisation	on	a	network	proves	to	be	far	from	trivial.	Many	papers	and	conference	proceedings
have	discussed	and	evaluated	this	key	challenge.	Two	algorithms,	historically	far	apart,	have	become	widely	popular,	namely	Paxos	and
its	derivatives	and	Raft.	Discussing	them	and	their	differences,	although	highly	enjoyable,	must	remain	far	beyond	the	scope	of	this
document.	Find	the	references	to	the	main	publications	at	the	bottom	of	this	page.

At	ArangoDB,	we	decided	to	implement	Raft	as	it	is	arguably	the	easier	to	understand	and	thus	implement.	In	simple	terms,	Raft
guarantees	that	a	linear	stream	of	transactions,	is	replicated	in	realtime	among	a	group	of	machines	through	an	elected	leader,	who	in	turn
must	have	access	to	and	project	leadership	upon	an	overall	majority	of	participating	instances.	In	ArangoDB	we	like	to	call	the	entirety
of	the	components	of	the	replicated	transaction	log,	that	is	the	machines	and	the	ArangoDB	instances,	which	constitute	the	replicated	log,
the	agency.

Startup

The	agency	must	consists	of	an	odd	number	of	agents	in	order	to	be	able	to	establish	an	overall	majority	and	some	means	for	the	agents	to
be	able	to	find	one	another	at	startup.

The	most	obvious	way	would	be	to	inform	all	agents	of	the	addresses	and	ports	of	the	rest.	This	however,	is	more	information	than
needed.	For	example,	it	would	suffice,	if	all	agents	would	know	the	address	and	port	of	the	next	agent	in	a	cyclic	fashion.	Another
straitforward	solution	would	be	to	inform	all	agents	of	the	address	and	port	of	say	the	first	agent.

Clearly	all	cases,	which	would	form	disjunct	subsets	of	agents	would	break	or	in	the	least	impair	the	functionality	of	the	agency.	From
there	on	the	agents	will	gossip	the	missing	information	about	their	peers.

Typically,	one	achieves	fairly	high	fault-tolerance	with	low,	odd	number	of	agents	while	keeping	the	necessary	network	traffic	at	a
minimum.	It	seems	that	the	typical	agency	size	will	be	in	range	of	3	to	7	agents.

The	below	commands	start	up	a	3-host	agency	on	one	physical/logical	box	with	ports	8529,	8530	and	8531	for	demonstration	purposes.
The	adress	of	the	first	instance,	port	8529,	is	known	to	the	other	two.	After	atmost	2	rounds	of	gossipping,	the	last	2	agents	will	have	a
complete	picture	of	their	surrounding	and	persist	it	for	the	next	restart.

./build/bin/arangod	--agency.activate	true	--agency.size	3	--agency.my-address	tcp://localhost:8529	--server.authentication	fal

se	--server.endpoint	tcp://0.0.0.0:8529	agency-8529

./build/bin/arangod	--agency.activate	true	--agency.size	3	--agency.endpoint	tcp://localhost:8529	--agency.my-address	tcp://loc

alhost:8530	--server.authentication	false	--server.endpoint	tcp://0.0.0.0:8530	agency-8530

./build/bin/arangod	--agency.activate	true	--agency.size	3	--agency.endpoint	tcp://localhost:8529	--agency.my-address	tcp://loc

alhost:8531	--server.authentication	false	--server.endpoint	tcp://0.0.0.0:8531	agency-8531

The	parameter		agency.endpoint		is	the	key	ingredient	for	the	second	and	third	instances	to	find	the	first	instance	and	thus	form	a
complete	agency.	Please	refer	to	the	the	shell-script		scripts/startStandaloneAgency.sh		on	github	or	in	the	source	directory.

Key-value-store	API

The	agency	should	be	up	and	running	within	a	couple	of	seconds,	during	which	the	instances	have	gossiped	their	way	into	knowing	the
other	agents	and	elected	a	leader.	The	public	API	can	be	checked	for	the	state	of	the	configuration:

curl	-s	localhost:8529/_api/agency/config

Advanced	Topics

308

{

		"term":	1,

		"leaderId":	"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",

		"lastCommitted":	1,

		"lastAcked":	{

				"ac129027-b440-4c4f-84e9-75c042942171":	0.21,

				"c54dbb8a-723d-4c82-98de-8c841a14a112":	0.21,

				"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98":	0

		},

		"configuration":	{

				"pool":	{

						"ac129027-b440-4c4f-84e9-75c042942171":	"tcp://localhost:8531",

						"c54dbb8a-723d-4c82-98de-8c841a14a112":	"tcp://localhost:8530",

						"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98":	"tcp://localhost:8529"

				},

				"active":	[

						"ac129027-b440-4c4f-84e9-75c042942171",

						"c54dbb8a-723d-4c82-98de-8c841a14a112",

						"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98"

],

				"id":	"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",

				"agency	size":	3,

				"pool	size":	3,

				"endpoint":	"tcp://localhost:8529",

				"min	ping":	0.5,

				"max	ping":	2.5,

				"supervision":	false,

				"supervision	frequency":	5,

				"compaction	step	size":	1000,

				"supervision	grace	period":	120

		}

}

To	highlight	some	details	in	the	above	output	look	for		"term"		and		"leaderId"	.	Both	are	key	information	about	the	current	state	of	the
Raft	algorithm.	You	may	have	noted	that	the	first	election	term	has	established	a	random	leader	for	the	agency,	who	is	in	charge	of
replication	of	the	state	machine	and	for	all	external	read	and	write	requests	until	such	time	that	the	process	gets	isolated	from	the	other
two	subsequenctly	losing	its	leadership.

Read	and	Write	APIs

Generally,	all	read	and	write	accesses	are	transactions	moreover	any	read	and	write	access	may	consist	of	multiple	such	transactions
formulated	as	arrays	of	arrays	in	JSON	documents.

Read	transaction

An	agency	started	from	scratch	will	deal	with	the	simplest	query	as	follows:

curl	-L	localhost:8529/_api/agency/read	-d	'[["/"]]'

[{}]

The	above	request	for	an	empty	key	value	store	will	return	with	an	empty	document.	The	inner	array	brackets	will	aggregate	a	result
from	multiple	sources	in	the	key-value-store	while	the	outer	array	will	deliver	multiple	such	aggregated	results.	Also	note	the		-L		curl
flag,	which	allows	the	request	to	follow	redirects	to	the	current	leader.

Consider	the	following	key-value-store:

{

		"baz":	12,

		"corge":	{

				"e":	2.718281828459045,

				"pi":	3.14159265359

		},

		"foo":	{

				"bar":	"Hello	World"

		},

Advanced	Topics

309

		"qux":	{

				"quux":	"Hello	World"

		}

}

The	following	array	of	read	transactions	will	yield:

curl	-L	localhost:8529/_api/agency/read	-d	'[["/foo",	"/foo/bar",	"/baz"],["/qux"]]'

[

		{

				"baz":	12,

				"foo":	{

						"bar":	"Hello	World"

				}

		},

		{

				"qux":	{

						"quux":	"Hello	World"

				}

		}

]

Note	that	the	result	is	an	array	of	two	results	for	the	first	and	second	read	transactions	from	above	accordingly.	Also	note	that	the	results
from	the	first	read	transaction	are	aggregated	into

{

		"baz":	12,

		"foo":	{

				"bar":	"Hello	World"

		}

}

The	aggregation	is	performed	on	2	levels:

1.	 	/foo/bar		is	eliminated	as	a	subset	of		/foo	
2.	 The	results	from		/foo		and		/bar		are	joined

The	word	transaction	means	here	that	it	is	guaranteed	that	all	aggregations	happen	in	quasi-realtime	and	that	no	write	access	could	have
happened	in	between.

Btw,	the	same	transaction	on	the	virgin	key-value	store	would	produce		[{},{}]	

Write	API:

The	write	API	must	unfortunately	be	a	little	more	complex.	Multiple	roads	lead	to	Rome:

curl	-L	localhost:8529/_api/agency/write	-d	'[[{"/foo":{"op":"push","new":"bar"}}]]'

curl	-L	localhost:8529/_api/agency/write	-d	'[[{"/foo":{"op":"push","new":"baz"}}]]'

curl	-L	localhost:8529/_api/agency/write	-d	'[[{"/foo":{"op":"push","new":"qux"}}]]'

and

curl	-L	localhost:8529/_api/agency/write	-d	'[[{"foo":["bar","baz","qux"]}]]'

are	equivalent	for	example	and	will	create	and	fill	an	array	at		/foo	.	Here,	again,	the	outermost	array	is	the	container	for	the	transaction
arrays.

We	documentent	a	complete	guide	of	the	API	in	the	API	section.

Advanced	Topics

310

Launching	an	ArangoDB	cluster	for	testing

An	ArangoDB	cluster	consists	of	several	running	tasks	(or	server	processes)	which	form	the	cluster.	ArangoDB	itself	won't	start	or
monitor	any	of	these	tasks.	So	it	will	need	some	kind	of	supervisor	which	is	monitoring	and	starting	these	tasks.	For	production	usage	we
recommend	using	Apache	Mesos	as	the	cluster	supervisor.

However	starting	a	cluster	manually	is	possible	and	is	a	very	easy	method	to	get	a	first	impression	of	what	an	ArangoDB	cluster	looks
like.

The	easiest	way	to	start	a	local	cluster	for	testing	purposes	is	to	run		scripts/startLocalCluster.sh		from	a	clone	of	the	source
repository	after	compiling	ArangoDB	from	source	(see	instructions	in	the	file		README_maintainers.md		in	the	repository.	This	will	start	1
Agency,	2	DBServers	and	1	Coordinator.	To	stop	the	cluster	issue		scripts/stopLocalCluster.sh	.

This	section	will	discuss	the	required	parameters	for	every	role	in	an	ArangoDB	cluster.	Be	sure	to	read	the	Architecture	documentation
to	get	a	basic	understanding	of	the	underlying	architecture	and	the	involved	roles	in	an	ArangoDB	cluster.

In	the	following	sections	we	will	go	through	the	relevant	options	per	role.

Agency

To	start	up	an	agency	you	first	have	to	activate	it.	This	is	done	by	providing		--agency.activate	true	.

To	start	up	the	agency	in	its	fault	tolerant	mode	set	the		--agency.size		to		3	.	You	will	then	have	to	provide	at	least	3	agents	before	the
agency	will	start	operation.

During	initialization	the	agents	have	to	find	each	other.	To	do	so	provide	at	least	one	common		--agency.endpoint	.	The	agents	will	then
coordinate	startup	themselves.	They	will	announce	themselves	with	their	external	address	which	may	be	specified	using		--agency.my-
address	.	This	is	required	in	bridged	docker	setups	or	NATed	environments.

So	in	summary	this	is	what	your	startup	might	look	like:

Advanced	Topics

311

https://github.com/ArangoDB/ArangoDB

arangod	--server.endpoint	tcp://0.0.0.0:5001	--agency.my-address=tcp://127.0.0.1:5001	--server.authentication	false	--agency.ac

tivate	true	--agency.size	3	--agency.endpoint	tcp://127.0.0.1:5001	--agency.supervision	true	--database.directory	agency1	&

arangod	--server.endpoint	tcp://0.0.0.0:5002	--agency.my-address=tcp://127.0.0.1:5002	--server.authentication	false	--agency.ac

tivate	true	--agency.size	3	--agency.endpoint	tcp://127.0.0.1:5001	--agency.supervision	true	--database.directory	agency2	&

arangod	--server.endpoint	tcp://0.0.0.0:5003	--agency.my-address=tcp://127.0.0.1:5003	--server.authentication	false	--agency.ac

tivate	true	--agency.size	3	--agency.endpoint	tcp://127.0.0.1:5001	--agency.supervision	true	--database.directory	agency3	&

If	you	are	happy	with	a	single	agent,	then	simply	use	a	single	command	like	this:

arangod	--server.endpoint	tcp://0.0.0.0:5001	--server.authentication	false	--agency.activate	true	--agency.size	1	--agency.endp

oint	tcp://127.0.0.1:5001	--agency.supervision	true	--database-directory	agency1	&

Furthermore,	in	the	following	sections	when		--cluster.agency-address		is	used	multiple	times	to	specify	all	three	agent	addresses,	just
use	a	single	option		--cluster.agency.address	tcp://127.0.0.1:5001		instead.

Coordinators	and	DBServers

These	two	roles	share	a	common	set	of	relevant	options.	First	you	should	specify	the	role	using		--cluster.my-role	.	This	can	either	be
	PRIMARY		(a	database	server)	or		COORDINATOR	.	Furthermore	provide	the	external	endpoint	(IP	and	port)	of	the	task	via		--cluster.my-
address	.

The	following	is	a	full-example	of	what	it	might	look	like:

arangod	--server.authentication=false	--server.endpoint	tcp://0.0.0.0:8529	--cluster.my-address	tcp://127.0.0.1:8529	--cluster.

my-role	PRIMARY	--cluster.agency-endpoint	tcp://127.0.0.1:5001	--cluster.agency-endpoint	tcp://127.0.0.1:5002	--cluster.agency-

endpoint	tcp://127.0.0.1:5003	--database.directory	primary1	&

arangod	--server.authentication=false	--server.endpoint	tcp://0.0.0.0:8530	--cluster.my-address	tcp://127.0.0.1:8530	--cluster.

my-role	PRIMARY	--cluster.agency-endpoint	tcp://127.0.0.1:5001	--cluster.agency-endpoint	tcp://127.0.0.1:5002	--cluster.agency-

endpoint	tcp://127.0.0.1:5003	--database.directory	primary2	&

arangod	--server.authentication=false	--server.endpoint	tcp://0.0.0.0:8531	--cluster.my-address	tcp://127.0.0.1:8531	--cluster.

my-role	COORDINATOR	--cluster.agency-endpoint	tcp://127.0.0.1:5001	--cluster.agency-endpoint	tcp://127.0.0.1:5002	--cluster.age

ncy-endpoint	tcp://127.0.0.1:5003	--database.directory	coordinator	&

Note	in	particular	that	the	endpoint	descriptions	given	under		--cluster.my-address		and		--cluster.agency-endpoint		must	not	use	the
IP	address		0.0.0.0		because	they	must	contain	an	actual	address	that	can	be	routed	to	the	corresponding	server.	The		0.0.0.0		in		--
server.endpoint		simply	means	that	the	server	binds	itself	to	all	available	network	devices	with	all	available	IP	addresses.

Upon	registering	with	the	agency	during	startup	the	cluster	will	assign	an	ID	to	every	server.	The	generated	ID	will	be	printed	out	to	the
log	or	can	be	accessed	via	the	http	API	by	calling		http://server-address/_admin/server/id	.

You	have	now	launched	a	complete	ArangoDB	cluster	and	can	contact	its	coordinator	at	the	endpoint		tcp://127.0.0.1:8531	,	which
means	that	you	can	reach	the	web	UI	under		http://127.0.0.1:8531	.

Advanced	Topics

312

Launching	an	ArangoDB	cluster	on	multiple	machines

Essentially,	one	can	use	the	method	from	the	previous	section	to	start	an	ArangoDB	cluster	on	multiple	machines	as	well.	The	only
changes	are	that	one	has	to	replace	all	local	addresses		127.0.0.1		by	the	actual	IP	address	of	the	corresponding	server.

If	we	assume	that	you	want	to	start	you	ArangoDB	cluster	on	three	different	machines	with	IP	addresses

192.168.1.1

192.168.1.2

192.168.1.3

then	the	commands	you	have	to	use	are	(you	can	use	host	names	if	they	can	be	resolved	to	IP	addresses	on	all	machines):

On	192.168.1.1:

sudo	arangod	--server.endpoint	tcp://0.0.0.0:5001	--agency.my-address	tcp://192.168.1.1:5001	--server.authentication	false	--ag

ency.activate	true	--agency.size	3	--agency.supervision	true	--database.directory	agency

On	192.168.1.2:

sudo	arangod	--server.endpoint	tcp://0.0.0.0:5001	--agency.my-address	tcp://192.168.1.2:5001	--server.authentication	false	--ag

ency.activate	true	--agency.size	3	--agency.supervision	true	--database.directory	agency

On	192.168.1.3:

sudo	arangod	--server.endpoint	tcp://0.0.0.0:5001	--agency.my-address	tcp://192.168.1.3:5001	--server.authentication	false	--ag

ency.activate	true	--agency.size	3	--agency.endpoint	tcp://192.168.1.1:5001	--agency.endpoint	tcp://192.168.1.2:5001	--agency.e

ndpoint	tcp://192.168.1.3:5001	--agency.supervision	true	--database.directory	agency

On	192.168.1.1:

sudo	arangod	--server.authentication=false	--server.endpoint	tcp://0.0.0.0:8529	--cluster.my-address	tcp://192.168.1.1:8529	--c

luster.my-role	PRIMARY	--cluster.agency-endpoint	tcp://192.168.1.1:5001	--cluster.agency-endpoint	tcp://192.168.1.2:5001	--clus

ter.agency-endpoint	tcp://192.168.1.3:5001	--database.directory	primary1	&

On	192.168.1.2:

sudo	arangod	--server.authentication=false	--server.endpoint	tcp://0.0.0.0:8530	--cluster.my-address	tcp://192.168.1.2:8530	--c

luster.my-role	PRIMARY	--cluster.agency-endpoint	tcp://192.168.1.1:5001	--cluster.agency-endpoint	tcp://192.168.1.2:5001	--clus

ter.agency-endpoint	tcp://192.168.1.3:5001	--database.directory	primary2	&

On	192.168.1.3:

arangod	--server.authentication=false	--server.endpoint	tcp://0.0.0.0:8531	--cluster.my-address	tcp://192.168.1.3:8531	--cluste

r.my-role	COORDINATOR	--cluster.agency-endpoint	tcp://192.168.1.1:5001	--cluster.agency-endpoint	tcp://192.168.1.2:5001	--clust

er.agency-endpoint	tcp://192.168.1.3:5001	--database.directory	coordinator	&

Obviously,	it	would	no	longer	be	necessary	to	use	different	port	numbers	on	different	servers.	We	have	chosen	to	keep	all	port	numbers
in	comparison	to	the	local	setup	to	minimize	the	necessary	changes.

After	having	swallowed	these	longish	commands,	we	hope	that	you	appreciate	the	simplicity	of	the	setup	with	Apache	Mesos	and
DC/OS.

Advanced	Topics

313

ArangoDB	Cluster	and	Docker

Networking

A	bit	of	extra	care	has	to	be	invested	due	to	the	way	in	which	Docker	isolates	its	network.	By	default	it	fully	isolates	the	network	and	by
doing	so	an	endpoint	like		--server.endpoint	tcp://0.0.0.0:8529		will	only	bind	to	all	interfaces	inside	the	Docker	container	which	does
not	include	any	external	interface	on	the	host	machine.	This	may	be	sufficient	if	you	just	want	to	access	it	locally	but	in	case	you	want	to
expose	it	to	the	outside	you	must	facilitate	Dockers	port	forwarding	using	the		-p		command	line	option.	Be	sure	to	check	the	official
Docker	documentation.

To	simply	make	arangodb	available	on	all	host	interfaces	on	port	8529:

	docker	run	-p	8529:8529	-e	ARANGO_NO_AUTH=1	arangodb	

Another	possibility	is	to	start	Docker	via	network	mode		host	.	This	is	possible	but	generally	not	recommended.	To	do	it	anyway	check
the	Docker	documentation	for	details.

Docker	and	Cluster	tasks

To	start	the	cluster	via	Docker	is	basically	the	same	as	starting	locally	or	on	multiple	machines.	However	just	like	with	the	single
networking	image	we	will	face	networking	issues.	You	can	simply	use	the		-p		flag	to	make	the	individual	task	available	on	the	host
machine	or	you	could	use	Docker's	links	to	enable	task	intercommunication.

Please	note	that	there	are	some	flags	that	specify	how	ArangoDB	can	reach	a	task	from	the	outside.	These	are	very	important	and	built
for	this	exact	usecase.	An	example	configuration	might	look	like	this:

docker	run	-e	ARANGO_NO_AUTH=1	-p	192.168.1.1:10000:8529	arangodb/arangodb	arangod	--server.endpoint	tcp://0.0.0.0:8529	--clust

er.my-address	tcp://192.168.1.1:10000	--cluster.my-role	PRIMARY	--cluster.agency-endpoint	tcp://192.168.1.1:5001	--cluster.agen

cy-endpoint	tcp://192.168.1.2:5002	--cluster.agency-endpoint	tcp://192.168.1.3:5003

This	will	start	a	primary	DB	server	within	a	Docker	container	with	an	isolated	network.	Within	the	Docker	container	it	will	bind	to	all
interfaces	(this	will	be	127.0.0.1:8529	and	some	internal	Docker	ip	on	port	8529).	By	supplying		-p	192.168.1.1:10000:8529		we	are
establishing	a	port	forwarding	from	our	local	IP	(192.168.1.1	port	10000	in	this	example)	to	port	8529	inside	the	container.	Within	the
command	we	are	telling	arangod	how	it	can	be	reached	from	the	outside		--cluster.my-address	tcp://192.168.1.1:10000	.	This
information	will	be	forwarded	to	the	agency	so	that	the	other	tasks	in	your	cluster	can	see	how	this	particular	DBServer	may	be	reached.

Advanced	Topics

314

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

Datacenter	to	datacenter	replication.

About

At	some	point	in	the	grows	of	a	database,	there	comes	a	need	for	replicating	it	across	multiple	datacenters.

Reasons	for	that	can	be:

Fallback	in	case	of	a	disaster	in	one	datacenter.
Regional	availability
Separation	of	concerns

And	many	more.

This	tutorial	describes	what	the	ArangoSync	datacenter	to	datacenter	replication	solution	(ArangoSync	from	now	on)	offers,	when	to	use
it,	when	not	to	use	it	and	how	to	configure,	operate,	troubleshoot	it	&	keep	it	safe.

What	is	it

ArangoSync	is	a	solution	that	enables	you	to	asynchronously	replicate	the	entire	structure	and	content	in	an	ArangoDB	cluster	in	one
place	to	a	cluster	in	another	place.	Typically	it	is	used	from	one	datacenter	to	another.	
It	is	not	a	solution	for	replicating	single	server	instances.

The	replication	done	by	ArangoSync	in	asynchronous.	That	means	that	when	a	client	is	writing	data	into	the	source	datacenter,	it	will
consider	the	request	finished	before	the	data	has	been	replicated	to	the	other	datacenter.	The	time	needed	to	completely	replicate	changes
to	the	other	datacenter	is	typically	in	the	order	of	seconds,	but	this	can	vary	significantly	depending	on	load,	network	&	computer
capacity.

ArangoSync	performs	replication	in	a	single	direction	only.	That	means	that	you	can	replicate	data	from	cluster	A	to	cluster	B	or	from
cluster	B	to	cluster	A,	but	never	at	the	same	time.	
Data	modified	in	the	destination	cluster	will	be	lost!

Replication	is	a	completely	autonomous	process.	Once	it	is	configured	it	is	designed	to	run	24/7	without	frequent	manual	intervention.	
This	does	not	mean	that	it	requires	no	maintenance	or	attention	at	all.	
As	with	any	distributed	system	some	attention	is	needed	to	monitor	its	operation	and	keep	it	secure	(e.g.	certificate	&	password
rotation).

Once	configured,	ArangoSync	will	replicate	both	structure	and	data	of	an	entire	cluster.	This	means	that	there	is	no	need	to	make
additional	configuration	changes	when	adding/removing	databases	or	collections.	
Also	meta	data	such	as	users,	foxx	application	&	jobs	are	automatically	replicated.

When	to	use	it...	and	when	not

ArangoSync	is	a	good	solution	in	all	cases	where	you	want	to	replicate	data	from	one	cluster	to	another	without	the	requirement	that	the
data	is	available	immediately	in	the	other	cluster.

ArangoSync	is	not	a	good	solution	when	one	of	the	following	applies:

You	want	to	replicate	data	from	cluster	A	to	cluster	B	and	from	cluster	B	to	cluster	A	at	the	same	time.
You	need	synchronous	replication	between	2	clusters.
There	is	no	network	connection	betwee	cluster	A	and	B.
You	want	complete	control	over	which	database,	collection	&	documents	are	replicate	and	which	not.

Requirements

To	use	ArangoSync	you	need	the	following:

Two	datacenters,	each	running	an	ArangoDB	Enterprise	cluster,	version	3.3	or	higher.

Multiple	Datacenters

315

A	network	connection	between	both	datacenters	with	accessible	endpoints	for	several	components	(see	individual	components	for
details).
TLS	certificates	for	ArangoSync	master	instances	(can	be	self-signed).
TLS	certificates	for	Kafka	brokers	(can	be	self-signed).
Optional	(but	recommended)	TLS	certificates	for	ArangoDB	clusters	(can	be	self-signed).
Client	certificates	CA	for	ArangoSync	masters	(typically	self-signed).
Client	certificates	for	ArangoSync	masters	(typically	self-signed).
At	least	2	instances	of	the	ArangoSync	master	in	each	datacenter.
One	instances	of	the	ArangoSync	worker	on	every	machine	in	each	datacenter.

Note:	In	several	places	you	will	need	a	(x509)	certificate.	
The	certificates	section	below	provides	more	guidance	for	creating	and	renewing	these	certificates.

Besides	the	above	list,	you	probably	want	to	use	the	following:

An	orchestrator	to	keep	all	components	running.	In	this	tutorial	we	will	use		systemd		as	an	example.
A	log	file	collector	for	centralized	collection	&	access	to	the	logs	of	all	components.
A	metrics	collector	&	viewing	solution	such	as	Prometheus	+	Grafana.

Deployment

In	the	following	paragraphs	you'll	learn	how	to	deploy	all	the	components	needed	for	datacenter	to	datacenter	replication.

ArangoDB	cluster

There	are	several	ways	to	start	an	ArangoDB	cluster.	In	this	tutorial	we	will	focus	on	our	recommended	way	to	start	ArangoDB:	the
ArangoDB	starter.

Datacenter	to	datacenter	replication	requires	the		rocksdb		storage	engine.	In	this	tutorial	the	example	setup	will	have		rocksdb		enabled.
If	you	choose	to	deploy	with	a	different	strategy	keep	in	mind	to	set	the	storage	engine.

Also	see	other	possibilities	to	deploy	an	ArangoDB	cluster.

The	starter	simplifies	things	for	the	operator	and	will	coordinate	a	distributed	cluster	startup	across	several	machines	and	assign	cluster
roles	automatically.

When	started	on	several	machines	and	enough	machines	have	joined,	the	starters	will	start	agents,	coordinators	and	dbservers	on	these
machines.

When	running	the	starter	will	supervise	its	child	tasks	(namely	coordinators,	dbservers	and	agents)	and	restart	them	in	case	of	failure.

To	start	the	cluster	using	a	systemd	unit	file	use	the	following:

[Unit]

Description=Run	the	ArangoDB	Starter	

After=network.target

[Service]

Restart=on-failure

EnvironmentFile=/etc/arangodb.env

EnvironmentFile=/etc/arangodb.env.local

Environment=DATADIR=/var/lib/arangodb/cluster

ExecStartPre=/usr/bin/sh	-c	"mkdir	-p	${DATADIR}"

ExecStart=/usr/bin/arangodb	\

				--starter.address=${PRIVATEIP}	\

				--starter.data-dir=${DATADIR}	\

				--starter.join=${STARTERENDPOINTS}	\

				--server.storage-engine=rocksdb	\

				--auth.jwt-secret=${CLUSTERSECRETPATH}

TimeoutStopSec=60

[Install]

WantedBy=multi-user.target

Note	that	we	set		rocksdb		in	the	unit	service	file.

Multiple	Datacenters

316

Cluster	authentication

The	communication	between	the	cluster	nodes	use	a	token	(JWT)	to	authenticate.	This	must	be	shared	between	cluster	nodes.

Sharing	secrets	is	obviously	a	very	delicate	topic.	The	above	workflow	assumes	that	the	operator	will	put	a	secret	in	a	file	named
	${CLUSTERSECRETPATH}	.

We	recommend	to	use	a	dedicated	system	for	managing	secrets	like	HashiCorps'		Vault		or	the	secret	management	of		DC/OS	.

Required	ports

As	soon	as	enough	machines	have	joined,	the	starter	will	begin	starting	agents,	coordinators	and	dbservers.

Each	of	these	tasks	needs	a	port	to	communicate.	Please	make	sure	that	the	following	ports	are	available	on	all	machines:

	8529		for	coordinators
	8530		for	dbservers
	8531		for	agents

The	starter	itself	will	use	port		8528	.

Kafka	&	Zookeeper

How	to	deploy	zookeeper
How	to	deploy	kafka
Accessible	ports

Sync	Master

The	Sync	Master	is	responsible	for	managing	all	synchronization,	creating	tasks	and	assigning	those	to	workers.	
At	least	2	instances	muts	be	deployed	in	each	datacenter.	One	instance	will	be	the	"leader",	the	other	will	be	an	inactive	slave.	When	the
leader	is	gone	for	a	short	while,	one	of	the	other	instances	will	take	over.

With	clusters	of	a	significant	size,	the	sync	master	will	require	a	significant	set	of	resources.	Therefore	it	is	recommended	to	deploy	sync
masters	on	their	own	servers,	equiped	with	sufficient	CPU	power	and	memory	capacity.

To	start	a	sync	master	using	a		systemd		service,	use	a	unit	like	this:

[Unit]

Description=Run	ArangoSync	in	master	mode	

After=network.target

[Service]

Restart=on-failure

EnvironmentFile=/etc/arangodb.env	

EnvironmentFile=/etc/arangodb.env.local

ExecStart=/usr/sbin/arangosync	run	master	\

				--log.level=debug	\

				--cluster.endpoint=${CLUSTERENDPOINTS}	\

				--cluster.jwtSecret=${CLUSTERSECRET}	\

				--server.keyfile=${CERTIFICATEDIR}/tls.keyfile	\

				--server.client-cafile=${CERTIFICATEDIR}/client-auth-ca.crt	\

				--server.endpoint=https://${PUBLICIP}:${MASTERPORT}	\

				--server.port=${MASTERPORT}	\

				--master.jwtSecret=${MASTERSECRET}	\

				--mq.type=kafka	\

				--mq.kafka-addr=${KAFKAENDPOINTS}	\

				--mq.kafka-client-keyfile=${CERTIFICATEDIR}/kafka-client.key	\

				--mq.kafka-cacert=${CERTIFICATEDIR}/tls-ca.crt	\

TimeoutStopSec=60

[Install]

WantedBy=multi-user.target

The	sync	master	needs	a	TLS	server	certificate	and	a	If	you	want	the	service	to	create	a	TLS	certificate	&	client	authentication	certificate,
for	authenticating	with	sync	masters	in	another	datacenter,	for	every	start,	add	this	to	the		Service		section.

Multiple	Datacenters

317

ExecStartPre=/usr/bin/sh	-c	"mkdir	-p	${CERTIFICATEDIR}"

ExecStartPre=/usr/sbin/arangosync	create	tls	keyfile	\

				--cacert=${CERTIFICATEDIR}/tls-ca.crt	\

				--cakey=${CERTIFICATEDIR}/tls-ca.key	\

				--keyfile=${CERTIFICATEDIR}/tls.keyfile	\

				--host=${PUBLICIP}	\

				--host=${PRIVATEIP}	\

				--host=${HOST}

ExecStartPre=/usr/sbin/arangosync	create	client-auth	keyfile	\

				--cacert=${CERTIFICATEDIR}/tls-ca.crt	\

				--cakey=${CERTIFICATEDIR}/tls-ca.key	\

				--keyfile=${CERTIFICATEDIR}/kafka-client.key	\

				--host=${PUBLICIP}	\

				--host=${PRIVATEIP}	\

				--host=${HOST}

The	sync	master	must	be	reachable	on	a	TCP	port		${MASTERPORT}		(used	with		--server.port		option).	This	port	must	be	reachable	from
inside	the	datacenter	(by	sync	workers	and	operations)	and	from	inside	of	the	other	datacenter	(by	sync	masters	in	the	other	datacenter).

Sync	Workers

The	Sync	Worker	is	responsible	for	executing	synchronization	tasks.	
For	optimal	performance	at	least	1	worker	instance	must	be	placed	on	every	machine	that	has	an	ArangoDB		dbserver		running.	This
ensures	that	tasks	can	be	executed	with	minimal	network	traffic	outside	of	the	machine.

Since	sync	workers	will	automatically	stop	once	their	TLS	server	certificate	expires	(which	is	set	to	2	years	by	default),	it	is
recommended	to	run	at	least	2	instances	of	a	worker	on	every	machine	in	the	datacenter.	That	way,	tasks	can	still	be	assigned	in	the	most
optimal	way,	even	when	a	worker	in	temporarily	down	for	a	restart.

To	start	a	sync	worker	using	a		systemd		service,	use	a	unit	like	this:

[Unit]

Description=Run	ArangoSync	in	worker	mode	

After=network.target

[Service]

Restart=on-failure

EnvironmentFile=/etc/arangodb.env	

EnvironmentFile=/etc/arangodb.env.local

Environment=PORT=8729

ExecStart=/usr/sbin/arangosync	run	worker	\

				--log.level=debug	\

				--server.port=${PORT}	\

				--server.endpoint=https://${PRIVATEIP}:${PORT}	\

				--master.endpoint=${MASTERENDPOINTS}	\

				--master.jwtSecret=${MASTERSECRET}

TimeoutStopSec=60

[Install]

WantedBy=multi-user.target

The	sync	worker	must	be	reachable	on	a	TCP	port		${PORT}		(used	with		--server.port		option).	This	port	must	be	reachable	from
inside	the	datacenter	(by	sync	masters).

Prometheus	&	Grafana	(optional)

ArangoSync	provides	metrics	in	a	format	supported	by	Prometheus.	We	also	provide	a	standard	set	of	dashboards	for	viewing	those
metrics	in	Grafana.

If	you	want	to	use	these	tools,	go	to	their	websites	for	instructions	on	how	to	deploy	them.

After	deployment,	you	must	configure	prometheus	using	a	configuration	file	that	instructs	it	about	which	targets	to	scrape.	For
ArangoSync	you	should	configure	scrape	targets	for	all	sync	masters	and	all	sync	workers.	To	do	so,	you	can	use	a	configuration	such	as
this:

global:

		scrape_interval:					10s	#	scrape	targets	every	10	seconds.

Multiple	Datacenters

318

https://prometheus.io
https://grafana.org

scrape_configs:

		#	Scrap	sync	masters

		-	job_name:	'sync_master'

				scheme:	'https'

				bearer_token:	"${MONITORINGTOKEN}"

				tls_config:

						insecure_skip_verify:	true

				static_configs:

						-	targets:

								-	"${IPMASTERA1}:8629"

								-	"${IPMASTERA2}:8629"

								-	"${IPMASTERB1}:8629"

								-	"${IPMASTERB2}:8629"

								labels:

										type:	"master"

				relabel_configs:

						-	source_labels:	[__address__]

								regex:									${IPMASTERA1}\:8629|${IPMASTERA2}\:8629

								target_label:		dc

								replacement:			A

						-	source_labels:	[__address__]

								regex:									${IPMASTERB1}\:8629|${IPMASTERB2}\:8629

								target_label:		dc

								replacement:			B

						-	source_labels:	[__address__]

								regex:									${IPMASTERA1}\:8629|${IPMASTERB1}\:8629

								target_label:		instance

								replacement:			1

						-	source_labels:	[__address__]

								regex:									${IPMASTERA2}\:8629|${IPMASTERB2}\:8629

								target_label:		instance

								replacement:			2

		#	Scrap	sync	workers

		-	job_name:	'sync_worker'

				scheme:	'https'

				bearer_token:	"${MONITORINGTOKEN}"

				tls_config:

						insecure_skip_verify:	true

				static_configs:

						-	targets:	

								-	"${IPWORKERA1}:8729"

								-	"${IPWORKERA2}:8729"

								-	"${IPWORKERB1}:8729"

								-	"${IPWORKERB2}:8729"

								labels:

										type:	"worker"

				relabel_configs:

						-	source_labels:	[__address__]

								regex:									${IPWORKERA1}\:8729|${IPWORKERA2}\:8729

								target_label:		dc

								replacement:			A

						-	source_labels:	[__address__]

								regex:									${IPWORKERB1}\:8729|${IPWORKERB2}\:8729

								target_label:		dc

								replacement:			B

						-	source_labels:	[__address__]

								regex:									${IPWORKERA1}\:8729|${IPWORKERB1}\:8729

								target_label:		instance

								replacement:			1

						-	source_labels:	[__address__]

								regex:									${IPWORKERA2}\:8729|${IPWORKERB2}\:8729

								target_label:		instance

								replacement:			2

Note:	The	above	example	assumes	2	datacenters,	with	2	sync	masters	&	2	sync	workers	per	datacenter.	You	have	to	replace	all		${...}	
variables	in	the	above	configuration	with	applicable	values	from	your	environment.

Configuration

Multiple	Datacenters

319

Once	all	components	of	the	ArangoSync	solution	have	been	deployed	and	are	running	properly,	ArangoSync	will	not	automatically
replicate	database	structure	and	content.	For	that,	it	is	is	needed	to	configure	synchronization.

To	configure	synchronization,	you	need	the	following:

The	endpoint	of	the	sync	master	in	the	target	datacenter.
The	endpoint	of	the	sync	master	in	the	source	datacenter.
A	certificate	(in	keyfile	format)	used	for	client	authentication	of	the	sync	master	(with	the	sync	master	in	the	source	datacenter).
A	CA	certificate	(public	key	only)	for	verifying	the	integrity	of	the	sync	masters.
A	username+password	pair	(or	client	certificate)	for	authenticating	the	configure	require	with	the	sync	master	(in	the	target
datacenter)

With	that	information,	run:

arangosync	configure	sync	\

		--master.endpoint=<endpoints	of	sync	masters	in	target	datacenter>	\

		--master.keyfile=<keyfile	of	of	sync	masters	in	target	datacenter>	\

		--source.endpoint=<endpoints	of	sync	masters	in	source	datacenter>	\

		--source.cacert=<public	key	of	CA	certificate	used	to	verify	sync	master	in	source	datacenter>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>

The	command	will	finish	quickly.	Afterwards	it	will	take	some	time	until	the	clusters	in	both	datacenters	are	in	sync.

Use	the	following	command	to	inspect	the	status	of	the	synchronization	of	a	datacenter:

arangosync	get	status	\

		--master.endpoint=<endpoints	of	sync	masters	in	datacenter	of	interest>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>	\

		-v

Note:	Invoking	this	command	on	the	target	datacenter	will	return	different	results	from	invoking	it	on	the	source	datacenter.	You	need
insight	in	both	results	to	get	a	"complete	picture".

Where	the		get	status		command	gives	insight	in	the	status	of	synchronization,	there	are	more	detailed	commands	to	give	insight	in	tasks
&	registered	workers.

Use	the	following	command	to	get	a	list	of	all	synchronization	tasks	in	a	datacenter:

arangosync	get	tasks	\

		--master.endpoint=<endpoints	of	sync	masters	in	datacenter	of	interest>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>	\

		-v

Use	the	following	command	to	get	a	list	of	all	masters	in	a	datacenter	and	know	which	master	is	the	current	leader:

arangosync	get	masters	\

		--master.endpoint=<endpoints	of	sync	masters	in	datacenter	of	interest>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>	\

		-v

Use	the	following	command	to	get	a	list	of	all	workers	in	a	datacenter:

arangosync	get	workers	\

		--master.endpoint=<endpoints	of	sync	masters	in	datacenter	of	interest>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>	\

		-v

Stop	synchronization

Multiple	Datacenters

320

If	you	no	longer	want	to	synchronize	data	from	a	source	to	a	target	datacenter	you	must	stop	it.	To	do	so,	run	the	following	command:

arangosync	stop	sync	\

		--master.endpoint=<endpoints	of	sync	masters	in	target	datacenter>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>

The	command	will	wait	until	synchronization	has	completely	stopped	before	returning.	If	the	synchronization	is	not	completely	stopped
within	a	reasonable	period	(2	minutes	by	default)	the	command	will	fail.

If	the	source	datacenter	is	no	longer	available	it	is	not	possible	to	stop	synchronization	in	a	graceful	manner.	If	that	happens	abort	the
synchronization	with	the	following	command:

arangosync	abort	sync	\

		--master.endpoint=<endpoints	of	sync	masters	in	target	datacenter>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>

If	the	source	datacenter	recovers	after	an		abort	sync		has	been	executed,	it	is	needed	to	"cleanup"	ArangoSync	in	the	source	datacenter.
To	do	so,	execute	the	following	command:

arangosync	abort	outgoing	sync	\

		--master.endpoint=<endpoints	of	sync	masters	in	source	datacenter>	\

		--auth.user=<username	used	for	authentication	of	this	command>	\

		--auth.password=<password	of	auth.user>

Reversing	synchronization	direction

If	you	want	to	reverse	the	direction	of	synchronization	(e.g.	after	a	failure	in	datacenter	A	and	you	switched	to	the	datacenter	B	for
fallback),	you	must	first	stop	(or	abort)	the	original	synchronization.

Once	that	is	finished	(and	cleanup	has	been	applied	in	case	of	abort),	you	must	now	configure	the	synchronization	again,	but	with
swapped	source	&	target	settings.

Operations	&	Maintenance

ArangoSync	is	a	distributed	system	with	a	lot	different	components.	As	with	any	such	system,	it	requires	some,	but	not	a	lot,	of
operational	support.

What	means	are	available	to	monitor	status

All	of	the	components	of	ArangoSync	provide	means	to	monitor	their	status.	Below	you'll	find	an	overview	per	component.

Sync	master	&	workers:	The		arangosync		servers	running	as	either	master	or	worker,	provide:

A	status	API,	see		arangosync	get	status	.	Make	sure	that	all	statuses	report		running	.	
For	even	more	detail	the	following	commands	are	also	available:		arangosync	get	tasks	,		arangosync	get	masters		&
	arangosync	get	workers	.
A	log	on	the	standard	output.	Log	levels	can	be	configured	using		--log.level		settings.
A	metrics	API		GET	/metrics	.	This	API	is	compatible	with	Prometheus.	Sample	Grafana	dashboards	for	inspecting	these
metrics	are	available.

ArangoDB	cluster:	The		arangod		servers	that	make	up	the	ArangoDB	cluster	provide:

A	log	file.	This	is	configurable	with	settings	with	a		log.		prefix.	E.g.		--log.output=file://myLogFile		or		--log.level=info	.
A	statistics	API		GET	/_admin/statistics	

Kafka	cluster:	The	kafka	brokers	provide:

A	log	file,	see	settings	with		log.		prefix	in	its		server.properties		configuration	file.
Zookeeper:	The	zookeeper	agents	provide:

A	log	on	standard	output.

Multiple	Datacenters

321

What	to	look	for	while	monitoring	status

The	very	first	thing	to	do	when	monitoring	the	status	of	ArangoSync	is	to	look	into	the	status	provided	by		arangosync	get	status	...	-
v	.	When	not	everything	is	in	the		running		state	(on	both	datacenters),	this	is	an	indication	that	something	may	be	wrong.	In	case	that
happens,	give	it	some	time	(incremental	synchronization	may	take	quite	some	time	for	large	collections)	and	look	at	the	status	again.	If
the	statuses	do	not	change	(or	change,	but	not	reach		running)	it	is	time	to	inspects	the	metrics	&	log	files.	
When	the	metrics	or	logs	seem	to	indicate	a	problem	in	a	sync	master	or	worker,	it	is	safe	to	restart	it,	as	long	as	only	1	instance	is
restarted	at	a	time.	Give	restarted	instances	some	time	to	"catch	up".

What	to	do	when	problems	remain

When	a	problem	remains	and	restarting	masters/workers	does	not	solve	the	problem,	contact	support.	Make	sure	to	include	provide
support	with	the	following	information:

Output	of		arangosync	get	version	...		on	both	datacenters.
Output	of		arangosync	get	status	...	-v		on	both	datacenters.
Output	of		arangosync	get	tasks	...	-v		on	both	datacenters.
Output	of		arangosync	get	masters	...	-v		on	both	datacenters.
Output	of		arangosync	get	workers	...	-v		on	both	datacenters.
Log	files	of	all	components
A	complete	description	of	the	problem	you	observed	and	what	you	did	to	resolve	it.

How	to	monitor	status	of	ArangoSync

How	to	keep	it	alive
What	to	do	in	case	of	failures	or	bugs

What	to	do	when	a	source	datacenter	is	down

When	you	use	ArangoSync	for	backup	of	your	cluster	from	one	datacenter	to	another	and	the	source	datacenter	has	a	complete	outage,
you	may	consider	switching	your	applications	to	the	target	(backup)	datacenter.

This	is	what	you	must	do	in	that	case.

1.	 Stop	configuration	using		arangosync	stop	sync	
When	the	source	datacenter	is	completely	unresponsive	this	will	not	succeed.	In	that	case	use		arangosync	abort	sync	
See	Configuration	for	how	to	cleanup	the	source	datacenter	when	it	becomes	available	again.

2.	 Verify	that	configuration	has	completely	stopped	using		arangosync	get	status	...	-v	.
3.	 Reconfigure	your	applications	to	use	the	target	(backup)	datacenter.

When	the	original	source	datacenter	is	restored,	you	may	switch	roles	and	make	it	the	target	datacenter.	To	do	so,	use		arangosync
configure	sync	...		as	described	in	Configuration.

What	to	do	in	case	of	a	planned	network	outage.

All	ArangoSync	tasks	send	out	heartbeat	messages	out	to	the	other	datacenter	to	indicate	"it	is	still	alive".	The	other	datacenter	assumes
the	connection	is	"out	of	sync"	when	it	does	not	receive	any	messages	for	a	certain	period	of	time.

If	you're	planning	some	sort	of	maintenance	where	you	know	the	connectivity	will	be	lost	for	some	time	(e.g.	3	hours),	you	can	prepare
ArangoSync	for	that	such	that	it	will	hold	of	re-synchronization	for	a	given	period	of	time.

To	do	so,	on	both	datacenters,	run:

arangosync	set	message	timeout	\

				--master.endpoint=<endpoints	of	sync	masters	in	the	datacenter>	\

				--auth.user=<username	used	for	authentication	of	this	command>	\

				--auth.password=<password	of	auth.user>	\

				3h

The	last	argument	is	the	period	that	ArangoSync	should	hold-of	resynchronization	for.	This	can	be	minutes	(e.g.		15m)	or	hours	(e.g.
	3h).

Multiple	Datacenters

322

If	maintenance	is	taking	longer	than	expected,	you	can	use	the	same	command	the	extend	the	hold	of	period	(e.g.	to		4h).

After	the	maintenance,	use	the	same	command	restore	the	hold	of	period	to	its	default	of		1h	.

What	to	do	in	case	of	a	document	that	exceeds	the	message	queue	limits.

If	you	insert/update	a	document	in	a	collection	and	the	size	of	that	document	is	larger	than	the	maximum	message	size	of	your	message
queue,	the	collection	will	no	longer	be	able	to	synchronize.	It	will	go	into	a		failed		state.

To	recover	from	that,	first	remove	the	document	from	the	ArangoDB	cluster	in	the	source	datacenter.	After	that,	for	each	failed	shard,
run:

arangosync	reset	failed	shard	\

				--master.endpoint=<endpoints	of	sync	masters	in	the	datacenter>	\

				--auth.user=<username	used	for	authentication	of	this	command>	\

				--auth.password=<password	of	auth.user>	\

				--database=<name	of	the	database>	\

				--collection=<name	of	the	collection>	\

				--shard=<index	of	the	shard	(starting	at	0)>

After	this	command,	a	new	set	of	tasks	will	be	started	to	synchronize	the	shard.	It	can	take	some	time	for	the	shard	to	reach		running	
state.

Metrics

ArangoSync	(master	&	worker)	provide	metrics	that	can	be	used	for	monitoring	the	ArangoSync	solution.	These	metrics	are	available
using	the	following	HTTPS	endpoints:

GET		/metrics	:	Provides	metrics	in	a	format	supported	by	Prometheus.
GET		/metrics.json	:	Provides	the	same	metrics	in	JSON	format.

Both	endpoints	include	help	information	per	metrics.

Note:	Both	endpoints	require	authentication.	Besides	the	usual	authentication	methods	these	endpoints	are	also	accessible	using	a	special
bearer	token	specified	using	the		--monitoring.token		command	line	option.

The	Prometheus	output	(/metrics)	looks	like	this:

...

#	HELP	arangosync_master_worker_registrations	Total	number	of	registrations

#	TYPE	arangosync_master_worker_registrations	counter

arangosync_master_worker_registrations	2

#	HELP	arangosync_master_worker_storage	Number	of	times	worker	info	is	stored,	loaded

#	TYPE	arangosync_master_worker_storage	counter

arangosync_master_worker_storage{kind="",op="save",result="success"}	20

arangosync_master_worker_storage{kind="empty",op="load",result="success"}	1

...

The	JSON	output	(/metrics.json)	looks	like	this:

{

		...

		"arangosync_master_worker_registrations":	{

				"help":	"Total	number	of	registrations",

				"type":	"counter",

				"samples":	[

						{

								"value":	2

						}

]

		},

		"arangosync_master_worker_storage":	{

				"help":	"Number	of	times	worker	info	is	stored,	loaded",

				"type":	"counter",

				"samples":	[

						{

								"value":	8,

Multiple	Datacenters

323

								"labels":	{

										"kind":	"",

										"op":	"save",

										"result":	"success"

								}

						},

						{

								"value":	1,

								"labels":	{

										"kind":	"empty",

										"op":	"load",

										"result":	"success"

								}

						}

]

		}

		...

}

Hint:	To	get	a	list	of	a	metrics	and	their	help	information,	run:

alias	jq='docker	run	--rm	-i	realguess/jq	jq'

curl	-sk	-u	"<user>:<password>"	https://<syncmaster-IP>:8629/metrics.json	|	\

		jq	'with_entries({key:	.key,	value:.value.help})'

Security

Firewall	settings

The	components	of	ArangoSync	use	(TCP)	network	connections	to	communicate	with	each	other.	Below	you'll	find	an	overview	of	these
connections	and	the	TCP	ports	that	should	be	accessible.

1.	 The	sync	masters	must	be	allowed	to	connect	to	the	following	components	within	the	same	datacenter:

ArangoDB	agents	and	coordinators	(default	ports:		8531		and		8529)
Kafka	brokers	(default	port		9092)
Sync	workers	(default	port		8729)

Additionally	the	sync	masters	must	be	allowed	to	connect	to	the	sync	masters	in	the	other	datacenter.

By	default	the	sync	masters	will	operate	on	port		8629	.

2.	 The	sync	workers	must	be	allowed	to	connect	to	the	following	components	within	the	same	datacenter:

ArangoDB	coordinators	(default	port		8529)
Kafka	brokers	(default	port		9092)
Sync	masters	(default	port		8629)

By	default	the	sync	workers	will	operate	on	port		8729	.

Additionally	the	sync	workers	must	be	allowed	to	connect	to	the	Kafka	brokers	in	the	other	datacenter.

3.	 Kafka

The	kafka	brokers	must	be	allowed	to	connect	to	the	following	components	within	the	same	datacenter:

Other	kafka	brokers	(default	port		9092)
Zookeeper	(default	ports		2181	,		2888		and		3888)

The	default	port	for	kafka	is		9092	.	The	default	kafka	installation	will	also	expose	some	prometheus	metrics	on	port		7071	.	To
gain	more	insight	into	kafka	open	this	port	for	your	prometheus	installation.

4.	 Zookeeper

The	zookeeper	agents	must	be	allowed	to	connect	to	the	following	components	within	the	same	datacenter:

Other	zookeeper	agents
The	setup	here	is	a	bit	special	as	zookeeper	uses	3	ports	for	different	operations.	All	agents	need	to	be	able	to	connect	to	all	of	these
ports.

Multiple	Datacenters

324

By	default	Zookeeper	uses:

port		2181		for	client	communication
port		2888		for	follower	communication
port		3888		for	leader	elections

Certificates

Digital	certificates	are	used	in	many	places	in	ArangoSync	for	both	encryption	and	authentication.

In	ArangoSync	all	network	connections	are	using	Transport	Layer	Security	(TLS),	a	set	of	protocols	that	ensure	that	all	network	traffic	is
encrypted.	For	this	TLS	certificates	are	used.	The	server	side	of	the	network	connection	offers	a	TLS	certificate.	This	certificate	is	(often)
verified	by	the	client	side	of	the	network	connection,	to	ensure	that	the	certificate	is	signed	by	a	trusted	Certificate	Authority	(CA).	This
ensures	the	integrity	of	the	server.	
In	several	places	additional	certificates	are	used	for	authentication.	In	those	cases	the	client	side	of	the	connection	offers	a	client	certificate
(on	top	of	an	existing	TLS	connection).	The	server	side	of	the	connection	uses	the	client	certificate	to	authenticate	the	client	and
(optionally)	decides	which	rights	should	be	assigned	to	the	client.

Note:	ArangoSync	does	allow	the	use	of	certificates	signed	by	a	well	know	CA	(eg.	verisign)	however	it	is	more	convenient	(and	common)
to	use	your	own	CA.

Formats

All	certificates	are	x509	certificates	with	a	public	key,	a	private	key	and	an	optional	chain	of	certificates	used	to	sign	the	certificate	(this
chain	is	typically	provided	by	the	Certificate	Authority	(CA)).	
Depending	on	their	use,	certificates	stored	in	a	different	format.

The	following	formats	are	used:

Public	key	only	(.crt):	A	file	that	contains	only	the	public	key	of	a	certificate	with	an	optional	chain	of	parent	certificates	(public
keys	of	certificates	used	to	signed	the	certificate).	
Since	this	format	contains	only	public	keys,	it	is	not	a	problem	if	its	contents	are	exposed.	It	must	still	be	store	it	in	a	safe	place	to
avoid	losing	it.
Private	key	only	(.key):	A	file	that	contains	only	the	private	key	of	a	certificate.	
It	is	vital	to	protect	these	files	and	store	them	in	a	safe	place.
Keyfile	with	public	&	private	key	(.keyfile):	A	file	that	contains	the	public	key	of	a	certificate,	an	optional	chain	of	parent
certificates	and	a	private	key.	
Since	this	format	also	contains	a	private	key,	it	is	vital	to	protect	these	files	and	store	them	in	a	safe	place.
Java	keystore	(.jks):	A	file	containing	a	set	of	public	and	private	keys.	
It	is	possible	to	protect	access	to	the	content	of	this	file	using	a	keystore	password.	
Since	this	format	can	contain	private	keys,	it	is	vital	to	protect	these	files	and	store	them	in	a	safe	place	(even	when	its	content	is
protected	with	a	keystore	password).

Creating	certificates

ArangoSync	provides	commands	to	create	all	certificates	needed.

TLS	server	certificates

To	create	a	certificate	used	for	TLS	servers	in	the	keyfile	format,	you	need	the	public	key	of	the	CA	(--cacert),	the	private	key	of	the
CA	(--cakey)	and	one	or	more	hostnames	(or	IP	addresses).	Then	run:

arangosync	create	tls	keyfile	\

				--cacert=my-tls-ca.crt	--cakey=my-tls-ca.key	\

				--host=<hostname>	\

				--keyfile=my-tls-cert.keyfile

Make	sure	to	store	the	generated	keyfile	(my-tls-cert.keyfile)	in	a	safe	place.

Multiple	Datacenters

325

To	create	a	certificate	used	for	TLS	servers	in	the	crt	&	key	format,	you	need	the	public	key	of	the	CA	(--cacert),	the	private	key	of
the	CA	(--cakey)	and	one	or	more	hostnames	(or	IP	addresses).	Then	run:

arangosync	create	tls	certificate	\

				--cacert=my-tls-ca.crt	--cakey=my-tls-ca.key	\

				--host=<hostname>	\

				--cert=my-tls-cert.crt	\

				--key=my-tls-cert.key	\

Make	sure	to	protect	and	store	the	generated	files	(my-tls-cert.crt		&		my-tls-cert.key)	in	a	safe	place.

Client	authentication	certificates

To	create	a	certificate	used	for	client	authentication	in	the	keyfile	format,	you	need	the	public	key	of	the	CA	(--cacert),	the	private
key	of	the	CA	(--cakey)	and	one	or	more	hostnames	(or	IP	addresses)	or	email	addresses.	Then	run:

arangosync	create	client-auth	keyfile	\

				--cacert=my-client-auth-ca.crt	--cakey=my-client-auth-ca.key	\

				[--host=<hostname>	|	--email=<emailaddress>]	\

				--keyfile=my-client-auth-cert.keyfile

Make	sure	to	protect	and	store	the	generated	keyfile	(my-client-auth-cert.keyfile)	in	a	safe	place.

CA	certificates

To	create	a	CA	certificate	used	to	sign	TLS	certificates,	run:

arangosync	create	tls	ca	\

				--cert=my-tls-ca.crt	--key=my-tls-ca.key

Make	sure	to	protect	and	store	both	generated	files	(my-tls-ca.crt		&		my-tls-ca.key)	in	a	safe	place.	
Note:	CA	certificates	have	a	much	longer	lifetime	than	normal	certificates.	Therefore	even	more	care	is	needed	to	store	them	safely.

To	create	a	CA	certificate	used	to	sign	client	authentication	certificates,	run:

arangosync	create	client-auth	ca	\

				--cert=my-client-auth-ca.crt	--key=my-client-auth-ca.key

Make	sure	to	protect	and	store	both	generated	files	(my-client-auth-ca.crt		&		my-client-auth-ca.key)	in	a	safe	place.	
Note:	CA	certificates	have	a	much	longer	lifetime	than	normal	certificates.	Therefore	even	more	care	is	needed	to	store	them	safely.

Renewing	certificates

All	certificates	have	meta	information	in	them	the	limit	their	use	in	function,	target	&	lifetime.	
A	certificate	created	for	client	authentication	(function)	cannot	be	used	as	a	TLS	server	certificate	(same	is	true	for	the	reverse).	
A	certificate	for	host		myserver		(target)	cannot	be	used	for	host		anotherserver	.	
A	certficiate	that	is	valid	until	October	2017	(limetime)	cannot	be	used	after	October	2017.

If	anything	changes	in	function,	target	or	lifetime	you	need	a	new	certificate.

The	procedure	for	creating	a	renewed	certificate	is	the	same	as	for	creating	a	"first"	certificate.	
After	creating	the	renewed	certificate	the	process(es)	using	them	have	to	be	updated.	This	mean	restarting	them.	All	ArangoSync
components	are	designed	to	support	stopping	and	starting	single	instances,	but	do	not	restart	more	than	1	instance	at	the	same	time.	As
soon	as	1	instance	has	been	restarted,	give	it	some	time	to	"catch	up"	before	restarting	the	next	instance.

Multiple	Datacenters

326

Administration
Most	administration	can	be	managed	using	the	arangosh.

Filesystems
As	one	would	expect	for	a	database,	we	recommend	a	locally	mounted	filesystems.

NFS	or	similar	network	filesystems	will	not	work.

On	Linux	we	recommend	the	use	of	ext4fs,	on	Windows	NTFS	and	on	MacOS	HFS+.

We	recommend	to	not	use	BTRFS	on	Linux.	It	is	known	to	not	work	well	in	conjunction	with	ArangoDB.	We	experienced	that
ArangoDB	faces	latency	issues	on	accessing	its	database	files	on	BTRFS	partitions.	In	conjunction	with	BTRFS	and	AUFS	we	also	saw
data	loss	on	restart.

Administration

327

Web	Interface
ArangoDB	comes	with	a	built-in	web	interface	for	administration.	The	interface	differs	for	standalone	instances	and	cluster	setups.

Standalone:

Cluster:

Web	Interface

328

Web	Interface

329

Dashboard
The	Dashboard	tab	provides	statistics	which	are	polled	regularly	from	the	ArangoDB	server.

Requests	Statistics:

Requests	per	second
Request	types
Number	of	client	connections
Transfer	size
Transfer	size	(distribution)
Average	request	time
Average	request	time	(distribution)

System	Resources:

Number	of	threads
Memory
Virtual	size
Major	page	faults
Used	CPU	time

Replication:

Replication	state
Totals
Ticks
Progress

Dashboard

330

Cluster
The	cluster	section	displays	statistics	about	the	general	cluster	performance.

Statistics:

Available	and	missing	coordinators
Available	and	missing	database	servers
Memory	usage	(percent)
Current	connections
Data	(bytes)
HTTP	(bytes)
Average	request	time	(seconds)

Nodes

Overview

The	overview	shows	available	and	missing	coordinators	and	database	servers.

Cluster

331

Functions:

Coordinator	Dashboard:	Click	on	a	Coordinator	will	open	a	statistics	dashboard.

Information	(Coordinator	/	Database	servers):

Name
Endpoint
Last	Heartbeat
Status
Health

Shards

The	shard	section	displays	all	available	sharded	collections.

Cluster

332

Functions:

Move	Shard	Leader:	Click	on	a	leader	database	of	a	shard	server	will	open	a	move	shard	dialog.	Shards	can	be	transferred	to	all
available	databas	servers,	except	the	leading	database	server	or	an	available	follower.
Move	Shard	Follower:	Click	on	a	follower	database	of	a	shard	will	open	a	move	shard	dialog.	Shards	can	be	transferred	to	all
available	databas	servers,	except	the	leading	database	server	or	an	available	follower.
Rebalance	Shards:	A	new	database	server	will	not	have	any	shards.	With	the	rebalance	functionality	the	cluster	will	start	to	rebalance
shards	including	empty	database	servers.

Information	(collection):

Shard
Leader	(green	state:	sync	is	complete)
Followers

Cluster

333

Collections
The	collections	section	displays	all	available	collections.	From	here	you	can	create	new	collections	and	jump	into	a	collection	for	details
(click	on	a	collection	tile).

Functions:

A:	Toggle	filter	properties
B:	Search	collection	by	name
D:	Create	collection
C:	Filter	properties
H:	Show	collection	details	(click	tile)

Information:

E:	Collection	type
F:	Collection	state(unloaded,	loaded,	...)
G:	Collection	name

Collection

Collections

334

There	are	four	view	categories:

1.	 Content:

Create	a	document
Delete	a	document
Filter	documents
Download	documents
Upload	documents

2.	 Indices:

Create	indices
Delete	indices

3.	 Info:

Detailed	collection	information	and	statistics
4.	 Settings:

Configure	name,	journal	size,	index	buckets,	wait	for	sync
Delete	collection
Truncate	collection
Unload/Load	collection
Save	modifed	properties	(name,	journal	size,	index	buckets,	wait	for	sync)

Additional	information:

Upload	format:

I.	Line-wise

{	"_key":	"key1",	...	}

{	"_key":	"key2",	...	}

II.	JSON	documents	in	a	list

[

		{	"_key":	"key1",	...	},

		{	"_key":	"key2",	...	}

Collections

335

]

Collections

336

Document
The	document	section	offers	a	editor	which	let	you	edit	documents	and	edges	of	a	collection.

Functions:

Edit	document
Save	document
Delete	docment
Switch	between	Tree/Code	-	Mode
Create	a	new	document

Information:

Displays:	_id,	_rev,	_key	properties

Document

337

Query	View
The	query	view	offers	you	three	different	subviews:

Editor
Running	Queries
Slow	Query	History

AQL	Query	Editor

The	web	interface	offers	a	AQL	Query	Editor:

The	editor	is	split	into	two	parts,	the	query	editor	pane	and	the	bind	parameter	pane.

The	left	pane	is	your	regular	query	input	field,	where	you	can	edit	and	then	execute	or	explain	your	queries.	By	default,	the	entered	bind
parameter	will	automatically	be	recognized	and	shown	in	the	bind	parameter	table	in	the	right	pane,	where	you	can	easily	edit	them.

The	input	fields	are	equipped	with	type	detection.	This	means	you	don't	have	to	use	quote	marks	around	string,	just	write	them	as-is.
Numbers	will	be	treated	as	numbers,	true	and	false	as	booleans,	null	as	null-type	value.	Square	brackets	can	be	used	to	define	arrays,	and
curly	braces	for	objects	(keys	and	values	have	to	be	surrounded	by	double	quotes).	This	will	mostly	be	what	you	want.	But	if	you	want
to	force	something	to	be	treated	as	string,	use	quotation	marks	for	the	value:

123			//	interpreted	as	number

"123"	//	interpreted	as	string

["foo",	"bar",	123,	true]	//	interpreted	as	array

['foo',	'bar',	123,	true]	//	interpreted	as	string

Queries

338

If	you	are	used	to	work	with	JSON,	you	may	want	to	switch	the	bind	parameter	editor	to	JSON	mode	by	clicking	on	the	upper	right
toggle	button.	You	can	then	edit	the	bind	parameters	in	raw	JSON	format.

Custom	Queries

To	save	the	current	query	use	the	Save	button	in	the	top	left	corner	of	the	editor	or	use	the	shortcut	(see	below).

By	pressing	the	Queries	button	in	the	top	left	corner	of	the	editor	you	activate	the	custom	queries	view.	Here	you	can	select	a	previously
stored	custom	query	or	one	of	our	query	examples.

Click	on	a	query	title	to	get	a	code	preview.	In	addition,	there	are	action	buttons	to:

Copy	to	editor
Explain	query
Run	query
Delete	query

For	the	built-in	example	queries,	there	is	only	Copy	to	editor	available.

To	export	or	import	queries	to	and	from	JSON	you	can	use	the	buttons	on	the	right-hand	side.

Result

Queries

339

Each	query	you	execute	or	explain	opens	up	a	new	result	box,	so	you	are	able	to	fire	up	multiple	queries	and	view	their	results	at	the
same	time.	Every	query	result	box	gives	you	detailed	query	information	and	of	course	the	query	result	itself.	The	result	boxes	can	be
dismissed	individually,	or	altogether	using	the	Remove	results	button.	The	toggle	button	in	the	top	right	corner	of	each	box	switches	back
and	forth	between	the	Result	and	AQL	query	with	bind	parameters.

Spotlight

The	spotlight	feature	opens	up	a	modal	view.	There	you	can	find	all	AQL	keywords,	AQL	functions	and	collections	(filtered	by	their
type)	to	help	you	to	be	more	productive	in	writing	your	queries.	Spotlight	can	be	opened	by	the	magic	wand	icon	in	the	toolbar	or	via
shortcut	(see	below).

AQL	Editor	Shortcuts

Queries

340

Ctrl	/	Cmd	+	Return	to	execute	a	query
Ctrl	/	Cmd	+	Shift	+	Return	to	explain	a	query
Ctrl	/	Cmd	+	Shift	+	S	to	save	the	current	query
Ctrl	/	Cmd	+	Shift	+	C	to	toggle	comments
Ctrl	+	Space	to	open	up	the	spotlight	search
Ctrl	+	Cmd	+	Z	to	undo	last	change
Ctrl	+	Cmd	+	Shift	+	Z	to	redo	last	change

Running	Queries

The	Running	Queries	tab	gives	you	a	compact	overview	of	all	running	queries.	By	clicking	the	red	minus	button,	you	can	abort	the
execution	of	a	running	query.

Slow	Query	History

Queries

341

The	Slow	Query	History	tab	gives	you	a	compact	overview	of	all	past	slow	queries.

Queries

342

Graphs
The	Graphs	tab	provides	a	viewer	facility	for	graph	data	stored	in	ArangoDB.	It	allows	browsing	ArangoDB	graphs	stored	in	the
_graphs	system	collection	or	a	graph	consisting	of	an	arbitrary	vertex	and	edge	collection.

Please	note	that	the	graph	viewer	requires	canvas	(optional:	webgl)	support	in	your	browser.	Especially	Internet	Explorer	browsers	older
than	version	9	are	likely	to	not	support	this.

Graph	Viewer

Graphs

343

Top	Toolbar	Functions:

Load	full	graph	(Also	nodes	without	connections	will	be	drawn.	Useful	during	graph	modeling	setup)
Take	a	graph	screenshot
Start	full	screen	mode
Open	graph	options	menu

Default	Context	Menu	(mouse-click	background):

Add	a	new	node
Close	visible	context	menu(s)

Node	Context	Menu	(mouse-click	node):

Delete	node
Edit	node
Expand	node	(Show	all	bound	edges)
Draw	edge	(Connect	with	another	node)
Set	as	startnode	(The	Graph	will	rerender	starting	the	selected	node	and	given	options	(graph	options	menu))

Edge	Context	Menu	(mouse-click	edge):

Edit	edge
Delete	edge

Edge	Highlighting	(right-mouse-click	node):

Highlight	all	edges	connected	to	the	node	(right-click	at	the	background	will	remove	highlighting)

Graphs

344

Graph	Viewer	Options
Graph	Options	Menu:

Startnode	(string	-	valid	node	id	or	space	seperated	list	of	id's):	Heart	of	your	graph.	Rendering	and	traversing	will	start	from	here.
Empty	value	means:	a	random	starting	point	will	be	used.
Layout:	Different	graph	layouting	algoritms.	No	overlap	(optimal:	big	graph),	force	layout	(optimal:	medium	graph),	fruchtermann
(optimal:	little	to	medium	graph).
Renderer:	Canvas	mode	allows	editing.	WebGL	currently	offers	only	display	mode	(a	lot	faster	with	much	nodes/edges).
Search	depth	(number):	Search	depth	which	is	starting	from	your	start	node.
Limit	(number):	Limit	nodes	count.	If	empty	or	zero,	no	limit	is	set.

Nodes	Options	Menu:

Label	(string):	Nodes	will	be	labeled	by	this	attribute.	If	node	attribute	is	not	found,	no	label	will	be	displayed.
Add	Collection	Name:	This	appends	the	collection	name	to	the	label,	if	it	exists.
Color	By	Collections:	Should	nodes	be	colorized	by	their	collection?	If	enabled,	node	color	and	node	color	attribute	will	be	ignored.
Color:	Default	node	color.
Color	Attribute	(string):	If	an	attribute	is	given,	nodes	will	then	be	colorized	by	the	attribute.	This	setting	ignores	default	node	color
if	set.
Size	By	Connections:	Should	nodes	be	sized	by	their	edges	count?	If	enabled,	node	sizing	attribute	will	be	ignored.
Sizing	Attribute	(number):	Default	node	size.	Numeric	value	>	0.

Edges	Options	Menu:

Label	(string):	Edges	will	be	labeled	by	this	attribute.	If	edge	attribute	is	not	found,	no	label	will	be	displayed.
Add	Collection	Name:	This	appends	the	collection	name	to	the	label,	if	it	exists.
Color	By	Collections:	Should	edges	be	colorized	by	their	collection?	If	enabled,	edge	color	and	edge	color	attribute	will	be	ignored.
Color:	Default	edge	color.
Color	Attribute	(string):	If	an	attribute	is	given,	edges	will	then	be	colorized	by	the	attribute.	This	setting	ignores	default	node	color
if	set.
Type:	The	renderer	offers	multiple	types	of	rendering.	They	only	differ	in	their	display	style,	except	for	the	type	'curved'.	The
curved	type	allows	to	display	more	than	one	edges	between	two	nodes.

Graphs

345

Graphs

346

Services
The	services	section	displays	all	installed	foxx	applications.	You	can	create	new	services	or	go	into	a	detailed	view	of	a	choosen	service.

Create	Service

There	are	four	different	possibilities	to	create	a	new	service:

1.	 Create	service	via	zip	file
2.	 Create	service	via	github	repository
3.	 Create	service	via	official	ArangoDB	store
4.	 Create	a	blank	service	from	scratch

Services

347

Service	View

This	section	offers	several	information	about	a	specific	service.

There	are	four	view	categories:

1.	 Info:

Displays	name,	short	description,	license,	version,	mode	(production,	development)
Offers	a	button	to	go	to	the	services	interface	(if	available)

Services

348

2.	 Api:

Display	API	as	SwaggerUI
Display	API	as	RAW	JSON

3.	 Readme:

Displays	the	services	manual	(if	available)
4.	 Settings:

Download	service	as	zip	file
Run	service	tests	(if	available)
Run	service	scripts	(if	available)
Configure	dependencies	(if	available)
Change	service	parameters	(if	available)
Change	mode	(production,	development)
Replace	the	service
Delete	the	service

Services

349

Managing	Users	in	the	Web	Interface
ArangoDB	users	are	globally	stored	in	the	_system	database	and	can	only	be	mananged	while	logged	on	to	this	database.	There	you	can
find	the	Users	section:

General

Select	a	user	to	bring	up	the	General	tab	with	the	username,	name	and	active	status,	as	well	as	options	to	delete	the	user	or	change	the
password.

Users

350

Permissions

Select	a	user	and	go	to	the	Permissions	tab.	You	will	see	a	list	of	databases	and	their	corresponding	database	access	level	for	that	user.

Users

351

Please	note	that	server	access	level	follows	from	the	access	level	on	the	database	_system.	Furthermore,	the	default	database	access	level
for	this	user	appear	in	the	artificial	row	with	the	database	name		*	.

Below	this	table	is	another	one	for	the	collection	category	access	levels.	At	first,	it	shows	the	list	of	databases,	too.	If	you	click	on	a
database,	the	list	of	collections	in	that	database	will	be	open	and	you	can	see	the	defined	collection	access	levels	for	each	collection	of	that
database	(which	can	be	all	unselected	which	means	that	nothing	is	explicitly	set).	The	default	access	levels	for	this	user	and	database
appear	in	the	artificial	row	with	the	collection	name		*	.

Also	see	Managing	Users	about	access	levels.

Users

352

Logs
The	logs	section	displays	all	available	log	entries.	Log	entries	are	filterable	by	their	log	level	types.

Functions:

Filter	log	entries	by	log	level	(all,	info,	error,	warning,	debug)

Information:

Loglevel
Date
Message

Logs

353

ArangoDB	Shell	Introduction
The	ArangoDB	shell	(arangosh)	is	a	command-line	tool	that	can	be	used	for	administration	of	ArangoDB,	including	running	ad-hoc
queries.

The	arangosh	binary	is	shipped	with	ArangoDB.	It	offers	a	JavaScript	shell	environment	providing	access	to	the	ArangoDB	server.
Arangosh	can	be	invoked	like	this:

unix>	arangosh

By	default	arangosh	will	try	to	connect	to	an	ArangoDB	server	running	on	server	localhost	on	port	8529.	It	will	use	the	username	root
and	an	empty	password	by	default.	Additionally	it	will	connect	to	the	default	database	(_system).	All	these	defaults	can	be	changed	using
the	following	command-line	options:

--server.database	:	name	of	the	database	to	connect	to
--server.endpoint	:	endpoint	to	connect	to
--server.username	:	database	username
--server.password	:	password	to	use	when	connecting
--server.authentication	:	whether	or	not	to	use	authentication

For	example,	to	connect	to	an	ArangoDB	server	on	IP	192.168.173.13	on	port	8530	with	the	user	foo	and	using	the	database	test,	use:

unix>	arangosh		\

		--server.endpoint	tcp://192.168.173.13:8530		\

		--server.username	foo		\

		--server.database	test		\

		--server.authentication	true

arangosh	will	then	display	a	password	prompt	and	try	to	connect	to	the	server	after	the	password	was	entered.

To	change	the	current	database	after	the	connection	has	been	made,	you	can	use	the		db._useDatabase()		command	in	arangosh:

arangosh>	db._createDatabase("myapp");

true

arangosh>	db._useDatabase("myapp");

true

arangosh>	db._useDatabase("_system");

true

arangosh>	db._dropDatabase("myapp");

true

To	get	a	list	of	available	commands,	arangosh	provides	a	help()	function.	Calling	it	will	display	helpful	information.

arangosh	also	provides	auto-completion.	Additional	information	on	available	commands	and	methods	is	thus	provided	by	typing	the
first	few	letters	of	a	variable	and	then	pressing	the	tab	key.	It	is	recommend	to	try	this	with	entering	db.	(without	pressing	return)	and
then	pressing	tab.

By	the	way,	arangosh	provides	the	db	object	by	default,	and	this	object	can	be	used	for	switching	to	a	different	database	and	managing
collections	inside	the	current	database.

For	a	list	of	available	methods	for	the	db	object,	type

arangosh>	db._help();	

show	execution	results
you	can	paste	multiple	lines	into	arangosh,	given	the	first	line	ends	with	an	opening	brace:

arangosh>	for	(var	i	=	0;	i	<	10;	i	++)	{

ArangoDB	Shell

354

........>									require("@arangodb").print("Hello	world	"	+	i	+	"!\n");

........>	}

show	execution	results
To	load	your	own	JavaScript	code	into	the	current	JavaScript	interpreter	context,	use	the	load	command:

require("internal").load("/tmp/test.js")					//	<-	Linux	/	MacOS

require("internal").load("c:\\tmp\\test.js")	//	<-	Windows

Exiting	arangosh	can	be	done	using	the	key	combination		<CTRL>	+	D		or	by	typing		quit<CR>	

Escaping

In	AQL,	escaping	is	done	traditionally	with	the	backslash	character:		\	.	As	seen	above,	this	leads	to	double	backslashes	when	specifying
Windows	paths.	Arangosh	requires	another	level	of	escaping,	also	with	the	backslash	character.	It	adds	up	to	four	backslashes	that	need
to	be	written	in	Arangosh	for	a	single	literal	backslash	(c:\tmp\test.js):

db._query('RETURN	"c:\\\\tmp\\\\test.js"')

You	can	use	bind	variables	to	mitigate	this:

var	somepath	=	"c:\\tmp\\test.js"

db._query(aql`RETURN	${somepath}`)

ArangoDB	Shell

355

ArangoDB	Shell	Output
The	ArangoDB	shell	will	print	the	output	of	the	last	evaluated	expression	by	default:

arangosh>	42	*	23

966

In	order	to	prevent	printing	the	result	of	the	last	evaluated	expression,	the	expression	result	can	be	captured	in	a	variable,	e.g.

arangosh>	var	calculationResult	=	42	*	23

There	is	also	the		print		function	to	explicitly	print	out	values	in	the	ArangoDB	shell:

arangosh>	print({	a:	"123",	b:	[1,2,3],	c:	"test"	});

show	execution	results
By	default,	the	ArangoDB	shell	uses	a	pretty	printer	when	JSON	documents	are	printed.	This	ensures	documents	are	printed	in	a
human-readable	way:

arangosh>	db._create("five")

arangosh>	for	(i	=	0;	i	<	5;	i++)	db.five.save({value:i})

arangosh>	db.five.toArray()

show	execution	results
While	the	pretty-printer	produces	nice	looking	results,	it	will	need	a	lot	of	screen	space	for	each	document.	Sometimes	a	more	dense
output	might	be	better.	In	this	case,	the	pretty	printer	can	be	turned	off	using	the	command	stop_pretty_print().

To	turn	on	pretty	printing	again,	use	the	start_pretty_print()	command.

Shell	Output

356

ArangoDB	Shell	Configuration
arangosh	will	look	for	a	user-defined	startup	script	named	.arangosh.rc	in	the	user's	home	directory	on	startup.	The	home	directory	will
likely	be		/home/<username>/		on	Unix/Linux,	and	is	determined	on	Windows	by	peeking	into	the	environment	variables		%HOMEDRIVE%		and
	%HOMEPATH%	.

If	the	file	.arangosh.rc	is	present	in	the	home	directory,	arangosh	will	execute	the	contents	of	this	file	inside	the	global	scope.

You	can	use	this	to	define	your	own	extra	variables	and	functions	that	you	need	often.	For	example,	you	could	put	the	following	into	the
.arangosh.rc	file	in	your	home	directory:

//	"var"	keyword	avoided	intentionally...

//	otherwise	"timed"	would	not	survive	the	scope	of	this	script

global.timed	=	function	(cb)	{

		console.time("callback");

		cb();

		console.timeEnd("callback");

};

This	will	make	a	function	named	timed	available	in	arangosh	in	the	global	scope.

You	can	now	start	arangosh	and	invoke	the	function	like	this:

timed(function	()	{	

		for	(var	i	=	0;	i	<	1000;	++i)	{

				db.test.save({	value:	i	});	

		}

});

Please	keep	in	mind	that,	if	present,	the	.arangosh.rc	file	needs	to	contain	valid	JavaScript	code.	If	you	want	any	variables	in	the	global
scope	to	survive	you	need	to	omit	the	var	keyword	for	them.	Otherwise	the	variables	will	only	be	visible	inside	the	script	itself,	but	not
outside.

Configuration

357

Details	about	the	ArangoDB	Shell
After	the	server	has	been	started,	you	can	use	the	ArangoDB	shell	(arangosh)	to	administrate	the	server.	Without	any	arguments,	the
ArangoDB	shell	will	try	to	contact	the	server	on	port	8529	on	the	localhost.	For	more	information	see	the	ArangoDB	Shell
documentation.	You	might	need	to	set	additional	options	(endpoint,	username	and	password)	when	connecting:

unix>	./arangosh	--server.endpoint	tcp://127.0.0.1:8529	--server.username	root

The	shell	will	print	its	own	version	number	and	if	successfully	connected	to	a	server	the	version	number	of	the	ArangoDB	server.

Command-Line	Options
Use		--help		to	get	a	list	of	command-line	options:

unix>	./arangosh	--help

STANDARD	options:

		--audit-log	<string>										audit	log	file	to	save	commands	and	results	to

		--configuration	<string>						read	configuration	file

		--help																								help	message

		--max-upload-size	<uint64>				maximum	size	of	import	chunks	(in	bytes)	(default:	500000)

		--no-auto-complete												disable	auto	completion

		--no-colors																			deactivate	color	support

		--pager	<string>														output	pager	(default:	"less	-X	-R	-F	-L")

		--pretty-print																pretty	print	values

		--quiet																							no	banner

		--temp.path	<string>										path	for	temporary	files	(default:	"/tmp/arangodb")

		--use-pager																			use	pager

JAVASCRIPT	options:

		--javascript.check	<string>																syntax	check	code	JavaScript	code	from	file

		--javascript.execute	<string>														execute	JavaScript	code	from	file

		--javascript.execute-string	<string>							execute	JavaScript	code	from	string

		--javascript.startup-directory	<string>				startup	paths	containing	the	JavaScript	files

		--javascript.unit-tests	<string>											do	not	start	as	shell,	run	unit	tests	instead

		--jslint	<string>																										do	not	start	as	shell,	run	jslint	instead

LOGGING	options:

		--log.level	<string>				log	level	(default:	"info")

CLIENT	options:

		--server.connect-timeout	<double>									connect	timeout	in	seconds	(default:	3)

		--server.authentication	<bool>												whether	or	not	to	use	authentication	(default:	true)

		--server.endpoint	<string>																endpoint	to	connect	to,	use	'none'	to	start	without	a	server	(default:	"tcp://127.0

.0.1:8529")

		--server.password	<string>																password	to	use	when	connecting	(leave	empty	for	prompt)

		--server.request-timeout	<double>									request	timeout	in	seconds	(default:	300)

		--server.username	<string>																username	to	use	when	connecting	(default:	"root")

Database	Wrappers
The		db		object	is	available	in	arangosh	as	well	as	on	arangod	i.e.	if	you're	using	Foxx.	While	its	interface	is	persistant	between	the
arangosh	and	the	arangod	implementations,	its	underpinning	is	not.	The	arangod	implementation	are	JavaScript	wrappers	around
ArangoDB's	native	C++	implementation,	whereas	the	arangosh	implementation	wraps	HTTP	accesses	to	ArangoDB's	RESTfull	API.

So	while	this	code	may	produce	similar	results	when	executed	in	arangosh	and	arangod,	the	cpu	usage	and	time	required	will	be	really
different:

for	(i	=	0;	i	<	100000;	i++)	{

				db.test.save({	name:	{	first:	"Jan"	},	count:	i});

}

Since	the	arangosh	version	will	be	doing	around	100k	HTTP	requests,	and	the	arangod	version	will	directly	write	to	the	database.

Details

358

Using	 	arangosh		via	unix	shebang	mechanisms

In	unix	operating	systems	you	can	start	scripts	by	specifying	the	interpreter	in	the	first	line	of	the	script.	This	is	commonly	called
	shebang		or		hash	bang	.	You	can	also	do	that	with		arangosh	,	i.e.	create		~/test.js	:

#!/usr/bin/arangosh	--javascript.execute	

require("internal").print("hello	world")

db._query("FOR	x	IN	test	RETURN	x").toArray()

Note	that	the	first	line	has	to	end	with	a	blank	in	order	to	make	it	work.	Mark	it	executable	to	the	OS:

#>	chmod	a+x	~/test.js

and	finaly	try	it	out:

#>	~/test.js

Details

359

Arangoimp
This	manual	describes	the	ArangoDB	importer	arangoimp,	which	can	be	used	for	bulk	imports.

The	most	convenient	method	to	import	a	lot	of	data	into	ArangoDB	is	to	use	the	arangoimp	command-line	tool.	It	allows	you	to	import
data	records	from	a	file	into	an	existing	database	collection.

It	is	possible	to	import	document	keys	with	the	documents	using	the	_key	attribute.	When	importing	into	an	edge	collection,	it	is
mandatory	that	all	imported	documents	have	the	_from	and	_to	attributes,	and	that	they	contain	valid	references.

Let's	assume	for	the	following	examples	you	want	to	import	user	data	into	an	existing	collection	named	"users"	on	the	server.

Importing	Data	into	an	ArangoDB	Database

Importing	JSON-encoded	Data

Let's	further	assume	the	import	at	hand	is	encoded	in	JSON.	We'll	be	using	these	example	user	records	to	import:

{	"name"	:	{	"first"	:	"John",	"last"	:	"Connor"	},	"active"	:	true,	"age"	:	25,	"likes"	:	["swimming"]	}

{	"name"	:	{	"first"	:	"Jim",	"last"	:	"O'Brady"	},	"age"	:	19,	"likes"	:	["hiking",	"singing"]	}

{	"name"	:	{	"first"	:	"Lisa",	"last"	:	"Jones"	},	"dob"	:	"1981-04-09",	"likes"	:	["running"]	}

To	import	these	records,	all	you	need	to	do	is	to	put	them	into	a	file	(with	one	line	for	each	record	to	import)	and	run	the	following
command:

>	arangoimp	--file	"data.json"	--type	jsonl	--collection	"users"

This	will	transfer	the	data	to	the	server,	import	the	records,	and	print	a	status	summary.	To	show	the	intermediate	progress	during	the
import	process,	the	option	--progress	can	be	added.	This	option	will	show	the	percentage	of	the	input	file	that	has	been	sent	to	the
server.	This	will	only	be	useful	for	big	import	files.

>	arangoimp	--file	"data.json"	--type	json	--collection	users	--progress	true

It	is	also	possible	to	use	the	output	of	another	command	as	an	input	for	arangoimp.	For	example,	the	following	shell	command	can	be
used	to	pipe	data	from	the		cat		process	to	arangoimp:

>	cat	data.json	|	arangoimp	--file	-	--type	json	--collection	users

Note	that	you	have	to	use		--file	-		if	you	want	to	use	another	command	as	input	for	arangoimp.	No	progress	can	be	reported	for	such
imports	as	the	size	of	the	input	will	be	unknown	to	arangoimp.

By	default,	the	endpoint	tcp://127.0.0.1:8529	will	be	used.	If	you	want	to	specify	a	different	endpoint,	you	can	use	the	--server.endpoint
option.	You	probably	want	to	specify	a	database	user	and	password	as	well.	You	can	do	so	by	using	the	options	--server.username	and	-
-server.password.	If	you	do	not	specify	a	password,	you	will	be	prompted	for	one.

>	arangoimp	--server.endpoint	tcp://127.0.0.1:8529	--server.username	root	--file	"data.json"	--type	json	--collection	"users"

Note	that	the	collection	(users	in	this	case)	must	already	exist	or	the	import	will	fail.	If	you	want	to	create	a	new	collection	with	the
import	data,	you	need	to	specify	the	--create-collection	option.	Note	that	by	default	it	will	create	a	document	collection	and	no	ede
collection.

>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--create-collection	true

To	create	an	edge	collection	instead,	use	the	--create-collection-type	option	and	set	it	to	edge:

>	arangoimp	--file	"data.json"	--collection	"myedges"	--create-collection	true	--create-collection-type	edge

Arangoimp

360

When	importing	data	into	an	existing	collection	it	is	often	convenient	to	first	remove	all	data	from	the	collection	and	then	start	the	import.
This	can	be	achieved	by	passing	the	--overwrite	parameter	to	arangoimp.	If	it	is	set	to	true,	any	existing	data	in	the	collection	will	be
removed	prior	to	the	import.	Note	that	any	existing	index	definitions	for	the	collection	will	be	preserved	even	if	--overwrite	is	set	to	true.

>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--overwrite	true

As	the	import	file	already	contains	the	data	in	JSON	format,	attribute	names	and	data	types	are	fully	preserved.	As	can	be	seen	in	the
example	data,	there	is	no	need	for	all	data	records	to	have	the	same	attribute	names	or	types.	Records	can	be	inhomogeneous.

Please	note	that	by	default,	arangoimp	will	import	data	into	the	specified	collection	in	the	default	database	(_system).	To	specify	a
different	database,	use	the	--server.database	option	when	invoking	arangoimp.

The	tool	also	supports	parallel	imports,	with	multiple	threads.	Using	multiple	threads	may	provide	a	speedup,	especially	when	using	the
RocksDB	storage	engine.	To	specify	the	number	of	parallel	threads	use	the		--threads		option:

>	arangoimp	--threads	4	--file	"data.json"	--type	json	--collection	"users"

Note	that	using	multiple	threads	may	lead	to	a	non-sequential	import	of	the	input	data.	Data	that	appears	later	in	the	input	file	may	be
imported	earlier	than	data	that	appears	earlier	in	the	input	file.	This	is	normally	not	a	problem	but	may	cause	issues	when	when	there	are
data	dependencies	or	duplicates	in	the	import	data.	In	this	case,	the	number	of	threads	should	be	set	to	1.

JSON	input	file	formats

Note:	arangoimp	supports	two	formats	when	importing	JSON	data	from	a	file.	The	first	format	that	we	also	used	above	is	commonly
known	as	jsonl).	However,	in	contrast	to	the	JSONL	specification	it	requires	the	input	file	to	contain	one	complete	JSON	document	in
each	line,	e.g.

{	"_key":	"one",	"value":	1	}

{	"_key":	"two",	"value":	2	}

{	"_key":	"foo",	"value":	"bar"	}

...

So	one	could	argue	that	this	is	only	a	subset	of	JSONL.

The	above	format	can	be	imported	sequentially	by	arangoimp.	It	will	read	data	from	the	input	file	in	chunks	and	send	it	in	batches	to	the
server.	Each	batch	will	be	about	as	big	as	specified	in	the	command-line	parameter	--batch-size.

An	alternative	is	to	put	one	big	JSON	document	into	the	input	file	like	this:

[

		{	"_key":	"one",	"value":	1	},

		{	"_key":	"two",	"value":	2	},

		{	"_key":	"foo",	"value":	"bar"	},

		...

]

This	format	allows	line	breaks	within	the	input	file	as	required.	The	downside	is	that	the	whole	input	file	will	need	to	be	read	by
arangoimp	before	it	can	send	the	first	batch.	This	might	be	a	problem	if	the	input	file	is	big.	By	default,	arangoimp	will	allow	importing
such	files	up	to	a	size	of	about	16	MB.

If	you	want	to	allow	your	arangoimp	instance	to	use	more	memory,	you	may	want	to	increase	the	maximum	file	size	by	specifying	the
command-line	option	--batch-size.	For	example,	to	set	the	batch	size	to	32	MB,	use	the	following	command:

>	arangoimp	--file	"data.json"	--type	json	--collection	"users"	--batch-size	33554432

Please	also	note	that	you	may	need	to	increase	the	value	of	--batch-size	if	a	single	document	inside	the	input	file	is	bigger	than	the	value	of
--batch-size.

Importing	CSV	Data

Arangoimp

361

http://jsonlines.org

arangoimp	also	offers	the	possibility	to	import	data	from	CSV	files.	This	comes	handy	when	the	data	at	hand	is	in	CSV	format	already
and	you	don't	want	to	spend	time	converting	them	to	JSON	for	the	import.

To	import	data	from	a	CSV	file,	make	sure	your	file	contains	the	attribute	names	in	the	first	row.	All	the	following	lines	in	the	file	will	be
interpreted	as	data	records	and	will	be	imported.

The	CSV	import	requires	the	data	to	have	a	homogeneous	structure.	All	records	must	have	exactly	the	same	amount	of	columns	as	there
are	headers.	By	default,	lines	with	a	different	number	of	values	will	not	be	imported	and	there	will	be	warnings	for	them.	To	still	import
lines	with	less	values	than	in	the	header,	there	is	the	--ignore-missing	option.	If	set	to	true,	lines	that	have	a	different	amount	of	fields
will	be	imported.	In	this	case	only	those	attributes	will	be	populated	for	which	there	are	values.	Attributes	for	which	there	are	no	values
present	will	silently	be	discarded.

Example:

"first","last","age","active","dob"

"John","Connor",25,true

"Jim","O'Brady"

With	--ignore-missing	this	will	produce	the	following	documents:

{	"first"	:	"John",	"last"	:	"Connor",	"active"	:	true,	"age"	:	25	}

{	"first"	:	"Jim",	"last"	:	"O'Brady"	}

The	cell	values	can	have	different	data	types	though.	If	a	cell	does	not	have	any	value,	it	can	be	left	empty	in	the	file.	These	values	will
not	be	imported	so	the	attributes	will	not	"be	there"	in	document	created.	Values	enclosed	in	quotes	will	be	imported	as	strings,	so	to
import	numeric	values,	boolean	values	or	the	null	value,	don't	enclose	the	value	in	quotes	in	your	file.

We'll	be	using	the	following	import	for	the	CSV	import:

"first","last","age","active","dob"

"John","Connor",25,true,

"Jim","O'Brady",19,,

"Lisa","Jones",,,"1981-04-09"

Hans,dos	Santos,0123,,

Wayne,Brewer,,false,

The	command	line	to	execute	the	import	is:

>	arangoimp	--file	"data.csv"	--type	csv	--collection	"users"

The	above	data	will	be	imported	into	5	documents	which	will	look	as	follows:

{	"first"	:	"John",	"last"	:	"Connor",	"active"	:	true,	"age"	:	25	}	

{	"first"	:	"Jim",	"last"	:	"O'Brady",	"age"	:	19	}

{	"first"	:	"Lisa",	"last"	:	"Jones",	"dob"	:	"1981-04-09"	}	

{	"first"	:	"Hans",	"last"	:	"dos	Santos",	"age"	:	123	}	

{	"first"	:	"Wayne",	"last"	:	"Brewer",	"active"	:	false	}

As	can	be	seen,	values	left	completely	empty	in	the	input	file	will	be	treated	as	absent.	Numeric	values	not	enclosed	in	quotes	will	be
treated	as	numbers.	Note	that	leading	zeros	in	numeric	values	will	be	removed.	To	import	numbers	with	leading	zeros,	please	use	strings.
The	literals	true	and	false	will	be	treated	as	booleans	if	they	are	not	enclosed	in	quotes.	Other	values	not	enclosed	in	quotes	will	be	treated
as	strings.	Any	values	enclosed	in	quotes	will	be	treated	as	strings,	too.

String	values	containing	the	quote	character	or	the	separator	must	be	enclosed	with	quote	characters.	Within	a	string,	the	quote	character
itself	must	be	escaped	with	another	quote	character	(or	with	a	backslash	if	the	--backslash-escape	option	is	used).

Note	that	the	quote	and	separator	characters	can	be	adjusted	via	the	--quote	and	--separator	arguments	when	invoking	arangoimp.	The
quote	character	defaults	to	the	double	quote	(").	To	use	a	literal	quote	in	a	string,	you	can	use	two	quote	characters.	To	use	backslash	for
escaping	quote	characters,	please	set	the	option	--backslash-escape	to	true.

The	importer	supports	Windows	(CRLF)	and	Unix	(LF)	line	breaks.	Line	breaks	might	also	occur	inside	values	that	are	enclosed	with	the
quote	character.

Arangoimp

362

Here's	an	example	for	using	literal	quotes	and	newlines	inside	values:

"name","password"

"Foo","r4ndom""123!"

"Bar","wow!

this	is	a

multine	password!"

"Bartholomew	""Bart""	Simpson","Milhouse"

Extra	whitespace	at	the	end	of	each	line	will	be	ignored.	Whitespace	at	the	start	of	lines	or	between	field	values	will	not	be	ignored,	so
please	make	sure	that	there	is	no	extra	whitespace	in	front	of	values	or	between	them.

Importing	TSV	Data

You	may	also	import	tab-separated	values	(TSV)	from	a	file.	This	format	is	very	simple:	every	line	in	the	file	represents	a	data	record.
There	is	no	quoting	or	escaping.	That	also	means	that	the	separator	character	(which	defaults	to	the	tabstop	symbol)	must	not	be	used
anywhere	in	the	actual	data.

As	with	CSV,	the	first	line	in	the	TSV	file	must	contain	the	attribute	names,	and	all	lines	must	have	an	identical	number	of	values.

If	a	different	separator	character	or	string	should	be	used,	it	can	be	specified	with	the	--separator	argument.

An	example	command	line	to	execute	the	TSV	import	is:

>	arangoimp	--file	"data.tsv"	--type	tsv	--collection	"users"	

Attribute	Name	Translation

For	the	CSV	and	TSV	input	formats,	attribute	names	can	be	translated	automatically.	This	is	useful	in	case	the	import	file	has	different
attribute	names	than	those	that	should	be	used	in	ArangoDB.

A	common	use	case	is	to	rename	an	"id"	column	from	the	input	file	into	"_key"	as	it	is	expected	by	ArangoDB.	To	do	this,	specify	the
following	translation	when	invoking	arangoimp:

>	arangoimp	--file	"data.csv"	--type	csv	--translate	"id=_key"

Other	common	cases	are	to	rename	columns	in	the	input	file	to	_from	and	_to:

>	arangoimp	--file	"data.csv"	--type	csv	--translate	"from=_from"	--translate	"to=_to"

The	translate	option	can	be	specified	multiple	types.	The	source	attribute	name	and	the	target	attribute	must	be	separated	with	a	=.

Ignoring	Attributes

For	the	CSV	and	TSV	input	formats,	certain	attribute	names	can	be	ignored	on	imports.	In	an	ArangoDB	cluster	there	are	cases	where
this	can	come	in	handy,	when	your	documents	already	contain	a		_key		attribute	and	your	collection	has	a	sharding	attribute	other	than
	_key	:	In	the	cluster	this	configuration	is	not	supported,	because	ArangoDB	needs	to	guarantee	the	uniqueness	of	the		_key		attribute	in
all	shards	of	the	collection.

>	arangoimp	--file	"data.csv"	--type	csv	--remove-attribute	"_key"

The	same	thing	would	apply	if	your	data	contains	an	_id	attribute:

>	arangoimp	--file	"data.csv"	--type	csv	--remove-attribute	"_id"

Importing	into	an	Edge	Collection

Arangoimp

363

arangoimp	can	also	be	used	to	import	data	into	an	existing	edge	collection.	The	import	data	must,	for	each	edge	to	import,	contain	at	least
the	_from	and	_to	attributes.	These	indicate	which	other	two	documents	the	edge	should	connect.	It	is	necessary	that	these	attributes	are
set	for	all	records,	and	point	to	valid	document	ids	in	existing	collections.

Examples

{	"_from"	:	"users/1234",	"_to"	:	"users/4321",	"desc"	:	"1234	is	connected	to	4321"	}

Note:	The	edge	collection	must	already	exist	when	the	import	is	started.	Using	the	--create-collection	flag	will	not	work	because
arangoimp	will	always	try	to	create	a	regular	document	collection	if	the	target	collection	does	not	exist.

Updating	existing	documents

By	default,	arangoimp	will	try	to	insert	all	documents	from	the	import	file	into	the	specified	collection.	In	case	the	import	file	contains
documents	that	are	already	present	in	the	target	collection	(matching	is	done	via	the	_key	attributes),	then	a	default	arangoimp	run	will	not
import	these	documents	and	complain	about	unique	key	constraint	violations.

However,	arangoimp	can	be	used	to	update	or	replace	existing	documents	in	case	they	already	exist	in	the	target	collection.	It	provides	the
command-line	option	--on-duplicate	to	control	the	behavior	in	case	a	document	is	already	present	in	the	database.

The	default	value	of	--on-duplicate	is	error.	This	means	that	when	the	import	file	contains	a	document	that	is	present	in	the	target
collection	already,	then	trying	to	re-insert	a	document	with	the	same	_key	value	is	considered	an	error,	and	the	document	in	the	database
will	not	be	modified.

Other	possible	values	for	--on-duplicate	are:

update:	each	document	present	in	the	import	file	that	is	also	present	in	the	target	collection	already	will	be	updated	by	arangoimp.
update	will	perform	a	partial	update	of	the	existing	document,	modifying	only	the	attributes	that	are	present	in	the	import	file	and
leaving	all	other	attributes	untouched.

The	values	of	system	attributes	_id,	_key,	_rev,	_from	and	_to	cannot	be	updated	or	replaced	in	existing	documents.

replace:	each	document	present	in	the	import	file	that	is	also	present	in	the	target	collection	already	will	be	replace	by	arangoimp.
replace	will	replace	the	existing	document	entirely,	resulting	in	a	document	with	only	the	attributes	specified	in	the	import	file.

The	values	of	system	attributes	_id,	_key,	_rev,	_from	and	_to	cannot	be	updated	or	replaced	in	existing	documents.

ignore:	each	document	present	in	the	import	file	that	is	also	present	in	the	target	collection	already	will	be	ignored	and	not	modified
in	the	target	collection.

When	--on-duplicate	is	set	to	either	update	or	replace,	arangoimp	will	return	the	number	of	documents	updated/replaced	in	the	updated
return	value.	When	set	to	another	value,	the	value	of	updated	will	always	be	zero.	When	--on-duplicate	is	set	to	ignore,	arangoimp	will
return	the	number	of	ignored	documents	in	the	ignored	return	value.	When	set	to	another	value,	ignored	will	always	be	zero.

It	is	possible	to	perform	a	combination	of	inserts	and	updates/replaces	with	a	single	arangoimp	run.	When	--on-duplicate	is	set	to	update
or	replace,	all	documents	present	in	the	import	file	will	be	inserted	into	the	target	collection	provided	they	are	valid	and	do	not	already
exist	with	the	specified	_key.	Documents	that	are	already	present	in	the	target	collection	(identified	by	_key	attribute)	will	instead	be
updated/replaced.

Arangoimp	result	output

An	arangoimp	import	run	will	print	out	the	final	results	on	the	command	line.	It	will	show	the

number	of	documents	created	(created)
number	of	documents	updated/replaced	(updated/replaced,	only	non-zero	if	--on-duplicate	was	set	to	update	or	replace,	see	below)
number	of	warnings	or	errors	that	occurred	on	the	server	side	(warnings/errors)
number	of	ignored	documents	(only	non-zero	if	--on-duplicate	was	set	to	ignore).

Example

created:										2

warnings/errors:		0

updated/replaced:	0

ignored:										0

Arangoimp

364

For	CSV	and	TSV	imports,	the	total	number	of	input	file	lines	read	will	also	be	printed	(lines	read).

arangoimp	will	also	print	out	details	about	warnings	and	errors	that	happened	on	the	server-side	(if	any).

Attribute	Naming	and	Special	Attributes

Attributes	whose	names	start	with	an	underscore	are	treated	in	a	special	way	by	ArangoDB:

the	optional	_key	attribute	contains	the	document's	key.	If	specified,	the	value	must	be	formally	valid	(e.g.	must	be	a	string	and
conform	to	the	naming	conventions).	Additionally,	the	key	value	must	be	unique	within	the	collection	the	import	is	run	for.
_from:	when	importing	into	an	edge	collection,	this	attribute	contains	the	id	of	one	of	the	documents	connected	by	the	edge.	The
value	of	_from	must	be	a	syntactically	valid	document	id	and	the	referred	collection	must	exist.
_to:	when	importing	into	an	edge	collection,	this	attribute	contains	the	id	of	the	other	document	connected	by	the	edge.	The	value	of
_to	must	be	a	syntactically	valid	document	id	and	the	referred	collection	must	exist.
_rev:	this	attribute	contains	the	revision	number	of	a	document.	However,	the	revision	numbers	are	managed	by	ArangoDB	and
cannot	be	specified	on	import.	Thus	any	value	in	this	attribute	is	ignored	on	import.

If	you	import	values	into	_key,	you	should	make	sure	they	are	valid	and	unique.

When	importing	data	into	an	edge	collection,	you	should	make	sure	that	all	import	documents	can	_from	and	_to	and	that	their	values
point	to	existing	documents.

To	avoid	specifying	complete	document	ids	(consisting	of	collection	names	and	document	keys)	for	_from	and	_to	values,	there	are	the
options	--from-collection-prefix	and	--to-collection-prefix.	If	specified,	these	values	will	be	automatically	prepended	to	each	value	in
_from	(or	_to	resp.).	This	allows	specifying	only	document	keys	inside	_from	and/or	_to.

Example

>	arangoimp	--from-collection-prefix	users	--to-collection-prefix	products	...

Importing	the	following	document	will	then	create	an	edge	between	users/1234	and	products/4321:

{	"_from"	:	"1234",	"_to"	:	"4321",	"desc"	:	"users/1234	is	connected	to	products/4321"	}

Arangoimp

365

Dumping	Data	from	an	ArangoDB	database
To	dump	data	from	an	ArangoDB	server	instance,	you	will	need	to	invoke	arangodump.	Dumps	can	be	re-imported	with	arangorestore.
arangodump	can	be	invoked	by	executing	the	following	command:

unix>	arangodump	--output-directory	"dump"

This	will	connect	to	an	ArangoDB	server	and	dump	all	non-system	collections	from	the	default	database	(_system)	into	an	output
directory	named	dump.	Invoking	arangodump	will	fail	if	the	output	directory	already	exists.	This	is	an	intentional	security	measure	to
prevent	you	from	accidentally	overwriting	already	dumped	data.	If	you	are	positive	that	you	want	to	overwrite	data	in	the	output
directory,	you	can	use	the	parameter	--overwrite	true	to	confirm	this:

unix>	arangodump	--output-directory	"dump"	--overwrite	true

arangodump	will	by	default	connect	to	the	_system	database	using	the	default	endpoint.	If	you	want	to	connect	to	a	different	database	or
a	different	endpoint,	or	use	authentication,	you	can	use	the	following	command-line	options:

--server.database	:	name	of	the	database	to	connect	to
--server.endpoint	:	endpoint	to	connect	to
--server.username	:	username
--server.password	:	password	to	use	(omit	this	and	you'll	be	prompted	for	the	password)
--server.authentication	:	whether	or	not	to	use	authentication

Here's	an	example	of	dumping	data	from	a	non-standard	endpoint,	using	a	dedicated	database	name:

unix>	arangodump	--server.endpoint	tcp://192.168.173.13:8531	--server.username	backup	--server.database	mydb	--output-directory

	"dump"

When	finished,	arangodump	will	print	out	a	summary	line	with	some	aggregate	statistics	about	what	it	did,	e.g.:

Processed	43	collection(s),	wrote	408173500	byte(s)	into	datafiles,	sent	88	batch(es)

By	default,	arangodump	will	dump	both	structural	information	and	documents	from	all	non-system	collections.	To	adjust	this,	there	are
the	following	command-line	arguments:

--dump-data	:	set	to	true	to	include	documents	in	the	dump.	Set	to	false	to	exclude	documents.	The	default	value	is	true.
--include-system-collections	:	whether	or	not	to	include	system	collections	in	the	dump.	The	default	value	is	false.

For	example,	to	only	dump	structural	information	of	all	collections	(including	system	collections),	use:

unix>	arangodump	--dump-data	false	--include-system-collections	true	--output-directory	"dump"

To	restrict	the	dump	to	just	specific	collections,	there	is	is	the	--collection	option.	It	can	be	specified	multiple	times	if	required:

unix>	arangodump	--collection	myusers	--collection	myvalues	--output-directory	"dump"

Structural	information	for	a	collection	will	be	saved	in	files	with	name	pattern	.structure.json.	Each	structure	file	will	contains	a	JSON
object	with	these	attributes:

parameters:	contains	the	collection	properties
indexes:	contains	the	collection	indexes

Document	data	for	a	collection	will	be	saved	in	files	with	name	pattern	.data.json.	Each	line	in	a	data	file	is	a	document	insertion/update
or	deletion	marker,	alongside	with	some	meta	data.

Starting	with	Version	2.1	of	ArangoDB,	the	arangodump	tool	also	supports	sharding.	Simply	point	it	to	one	of	the	coordinators	and	it
will	behave	exactly	as	described	above,	working	on	sharded	collections	in	the	cluster.

Arangodump

366

However,	as	opposed	to	the	single	instance	situation,	this	operation	does	not	guarantee	to	dump	a	consistent	snapshot	if	write
operations	happen	during	the	dump	operation.	It	is	therefore	recommended	not	to	perform	any	data-modifcation	operations	on	the
cluster	whilst	arangodump	is	running.

As	above,	the	output	will	be	one	structure	description	file	and	one	data	file	per	sharded	collection.	Note	that	the	data	in	the	data	file	is
sorted	first	by	shards	and	within	each	shard	by	ascending	timestamp.	The	structural	information	of	the	collection	contains	the	number	of
shards	and	the	shard	keys.

Note	that	the	version	of	the	arangodump	client	tool	needs	to	match	the	version	of	the	ArangoDB	server	it	connects	to.

Advanced	cluster	options

Starting	with	version	3.1.17,	collections	may	be	created	with	shard	distribution	identical	to	an	existing	prototypical	collection;	i.e.	shards
are	distributed	in	the	very	same	pattern	as	in	the	prototype	collection.	Such	collections	cannot	be	dumped	without	the	reference
collection	or	arangodump	with	yield	an	error.

unix>	arangodump	--collection	clonedCollection	--output-directory	"dump"

ERROR	Collection	clonedCollection's	shard	distribution	is	based	on	a	that	of	collection	prototypeCollection,	which	is	not	dumpe

d	along.	You	may	dump	the	collection	regardless	of	the	missing	prototype	collection	by	using	the	--ignore-distribute-shards-lik

e-errors	parameter.

There	are	two	ways	to	approach	that	problem:	Solve	it,	i.e.	dump	the	prototype	collection	along:

unix>	arangodump	--collection	clonedCollection	--collection	prototypeCollection	--output-directory	"dump"

Processed	2	collection(s),	wrote	81920	byte(s)	into	datafiles,	sent	1	batch(es)

Or	override	that	behaviour	to	be	able	to	dump	the	collection	individually.

unix>	arangodump	--collection	B	clonedCollection	--output-directory	"dump"	--ignore-distribute-shards-like-errors

Processed	1	collection(s),	wrote	34217	byte(s)	into	datafiles,	sent	1	batch(es)

No	that	in	consequence,	restoring	such	a	collection	without	its	prototype	is	affected.	arangorestore

Encryption

In	the	ArangoDB	Enterprise	Edition	there	are	the	additional	parameters:

Encryption	key	stored	in	file

--encryption.keyfile	path-of-keyfile

The	file		path-to-keyfile		must	contain	the	encryption	key.	This	file	must	be	secured,	so	that	only		arangod		can	access	it.	You	should
also	ensure	that	in	case	some-one	steals	the	hardware,	he	will	not	be	able	to	read	the	file.	For	example,	by	encryption		/mytmpfs		or
creating	a	in-memory	file-system	under		/mytmpfs	.

Encryption	key	generated	by	a	program

--encryption.key-generator	path-to-my-generator

The	program		path-to-my-generator		must	output	the	encryption	on	standard	output	and	exit.

Creating	keys

The	encryption	keyfile	must	contain	32	bytes	of	random	data.

You	can	create	it	with	a	command	line	this.

dd	if=/dev/random	bs=1	count=32	of=yourSecretKeyFile

Arangodump

367

For	security,	it	is	best	to	create	these	keys	offline	(away	from	your	database	servers)	and	directly	store	them	in	you	secret	management
tool.

Arangodump

368

Arangorestore
To	reload	data	from	a	dump	previously	created	with	arangodump,	ArangoDB	provides	the	arangorestore	tool.

Please	note	that	arangorestore	must	not	be	used	to	create	several	similar	database	instances	in	one	installation.

This	means	if	you	have	an	arangodump	output	of	database		a	,	and	you	create	a	second	database		b		on	the	same	instance	of	ArangoDB,
and	restore	the	dump	of		a		into		b		-	data	integrity	can	not	be	guaranteed.

Reloading	Data	into	an	ArangoDB	database

Invoking	arangorestore

arangorestore	can	be	invoked	from	the	command-line	as	follows:

unix>	arangorestore	--input-directory	"dump"

This	will	connect	to	an	ArangoDB	server	and	reload	structural	information	and	documents	found	in	the	input	directory	dump.	Please	note
that	the	input	directory	must	have	been	created	by	running	arangodump	before.

arangorestore	will	by	default	connect	to	the	_system	database	using	the	default	endpoint.	If	you	want	to	connect	to	a	different	database
or	a	different	endpoint,	or	use	authentication,	you	can	use	the	following	command-line	options:

--server.database	:	name	of	the	database	to	connect	to
--server.endpoint	:	endpoint	to	connect	to
--server.username	:	username
--server.password	:	password	to	use	(omit	this	and	you'll	be	prompted	for	the	password)
--server.authentication	:	whether	or	not	to	use	authentication

Since	version	2.6	arangorestore	provides	the	option	--create-database.	Setting	this	option	to	true	will	create	the	target	database	if	it	does
not	exist.	When	creating	the	target	database,	the	username	and	passwords	passed	to	arangorestore	(in	options	--server.username	and	--
server.password)	will	be	used	to	create	an	initial	user	for	the	new	database.

The	option		--force-same-database		allows	restricting	arangorestore	operations	to	a	database	with	the	same	name	as	in	the	source	dump's
"dump.json"	file.	It	can	thus	be	used	to	prevent	restoring	data	into	a	"wrong"	database	by	accident.

For	example,	if	a	dump	was	taken	from	database		a	,	and	the	restore	is	attempted	into	database		b	,	then	with	the		--force-same-
database		option	set	to		true	,	arangorestore	will	abort	instantly.

The		--force-same-database		option	is	set	to		false		by	default	to	ensure	backwards-compatibility.

Here's	an	example	of	reloading	data	to	a	non-standard	endpoint,	using	a	dedicated	database	name:

unix>	arangorestore	--server.endpoint	tcp://192.168.173.13:8531	--server.username	backup	--server.database	mydb	--input-directo

ry	"dump"

To	create	the	target	database	whe	restoring,	use	a	command	like	this:

unix>	arangorestore	--server.username	backup	--server.database	newdb	--create-database	true	--input-directory	"dump"

arangorestore	will	print	out	its	progress	while	running,	and	will	end	with	a	line	showing	some	aggregate	statistics:

Processed	2	collection(s),	read	2256	byte(s)	from	datafiles,	sent	2	batch(es)

By	default,	arangorestore	will	re-create	all	non-system	collections	found	in	the	input	directory	and	load	data	into	them.	If	the	target
database	already	contains	collections	which	are	also	present	in	the	input	directory,	the	existing	collections	in	the	database	will	be	dropped
and	re-created	with	the	data	found	in	the	input	directory.

Arangorestore

369

The	following	parameters	are	available	to	adjust	this	behavior:

--create-collection	:	set	to	true	to	create	collections	in	the	target	database.	If	the	target	database	already	contains	a	collection	with	the
same	name,	it	will	be	dropped	first	and	then	re-created	with	the	properties	found	in	the	input	directory.	Set	to	false	to	keep	existing
collections	in	the	target	database.	If	set	to	false	and	arangorestore	encounters	a	collection	that	is	present	in	both	the	target	database
and	the	input	directory,	it	will	abort.	The	default	value	is	true.
--import-data	:	set	to	true	to	load	document	data	into	the	collections	in	the	target	database.	Set	to	false	to	not	load	any	document
data.	The	default	value	is	true.
--include-system-collections	:	whether	or	not	to	include	system	collections	when	re-creating	collections	or	reloading	data.	The	default
value	is	false.

For	example,	to	(re-)create	all	non-system	collections	and	load	document	data	into	them,	use:

unix>	arangorestore	--create-collection	true	--import-data	true	--input-directory	"dump"

This	will	drop	potentially	existing	collections	in	the	target	database	that	are	also	present	in	the	input	directory.

To	include	system	collections	too,	use	--include-system-collections	true:

unix>	arangorestore	--create-collection	true	--import-data	true	--include-system-collections	true	--input-directory	"dump"

To	(re-)create	all	non-system	collections	without	loading	document	data,	use:

unix>	arangorestore	--create-collection	true	--import-data	false	--input-directory	"dump"

This	will	also	drop	existing	collections	in	the	target	database	that	are	also	present	in	the	input	directory.

To	just	load	document	data	into	all	non-system	collections,	use:

unix>	arangorestore	--create-collection	false	--import-data	true	--input-directory	"dump"

To	restrict	reloading	to	just	specific	collections,	there	is	is	the	--collection	option.	It	can	be	specified	multiple	times	if	required:

unix>	arangorestore	--collection	myusers	--collection	myvalues	--input-directory	"dump"

Collections	will	be	processed	by	in	alphabetical	order	by	arangorestore,	with	all	document	collections	being	processed	before	all	edge
collections.	This	is	to	ensure	that	reloading	data	into	edge	collections	will	have	the	document	collections	linked	in	edges	(_from	and	_to
attributes)	loaded.

Encryption

See	arangodump	for	details.

Restoring	Revision	Ids	and	Collection	Ids

arangorestore	will	reload	document	and	edges	data	with	the	exact	same	_key,	_from	and	_to	values	found	in	the	input	directory.
However,	when	loading	document	data,	it	will	assign	its	own	values	for	the	_rev	attribute	of	the	reloaded	documents.	Though	this
difference	is	intentional	(normally,	every	server	should	create	its	own	_rev	values)	there	might	be	situations	when	it	is	required	to	re-use
the	exact	same	_rev	values	for	the	reloaded	data.	This	can	be	achieved	by	setting	the	--recycle-ids	parameter	to	true:

unix>	arangorestore	--collection	myusers	--collection	myvalues	--input-directory	"dump"

Note	that	setting	--recycle-ids	to	true	will	also	cause	collections	to	be	(re-)created	in	the	target	database	with	the	exact	same	collection	id
as	in	the	input	directory.	Any	potentially	existing	collection	in	the	target	database	with	the	same	collection	id	will	then	be	dropped.

Reloading	Data	into	a	different	Collection

Arangorestore

370

With	some	creativity	you	can	use	arangodump	and	arangorestore	to	transfer	data	from	one	collection	into	another	(either	on	the	same
server	or	not).	For	example,	to	copy	data	from	a	collection	myvalues	in	database	mydb	into	a	collection	mycopyvalues	in	database	mycopy,
you	can	start	with	the	following	command:

unix>	arangodump	--collection	myvalues	--server.database	mydb	--output-directory	"dump"

This	will	create	two	files,	myvalues.structure.json	and	myvalues.data.json,	in	the	output	directory.	To	load	data	from	the	datafile	into	an
existing	collection	mycopyvalues	in	database	mycopy,	rename	the	files	to	mycopyvalues.structure.json	and	mycopyvalues.data.json.	After
that,	run	the	following	command:

unix>	arangorestore	--collection	mycopyvalues	--server.database	mycopy	--input-directory	"dump"

Using	arangorestore	with	sharding

As	of	Version	2.1	the	arangorestore	tool	supports	sharding.	Simply	point	it	to	one	of	the	coordinators	in	your	cluster	and	it	will	work	as
usual	but	on	sharded	collections	in	the	cluster.

If	arangorestore	is	asked	to	drop	and	re-create	a	collection,	it	will	use	the	same	number	of	shards	and	the	same	shard	keys	as	when	the
collection	was	dumped.	The	distribution	of	the	shards	to	the	servers	will	also	be	the	same	as	at	the	time	of	the	dump.	This	means	in
particular	that	DBservers	with	the	same	IDs	as	before	must	be	present	in	the	cluster	at	time	of	the	restore.

If	a	collection	was	dumped	from	a	single	instance,	one	can	manually	add	the	structural	description	for	the	shard	keys	and	the	number	and
distribution	of	the	shards	and	then	the	restore	into	a	cluster	will	work.

If	you	restore	a	collection	that	was	dumped	from	a	cluster	into	a	single	ArangoDB	instance,	the	number	of	shards	and	the	shard	keys	will
silently	be	ignored.

Note	that	in	a	cluster,	every	newly	created	collection	will	have	a	new	ID,	it	is	not	possible	to	reuse	the	ID	from	the	originally	dumped
collection.	This	is	for	safety	reasons	to	ensure	consistency	of	IDs.

Restoring	collections	with	sharding	prototypes

arangorestore	will	yield	an	error,	while	trying	to	restore	a	collection,	whose	shard	distribution	follows	a	collection,	which	does	not	exist
in	the	cluster	and	which	was	not	dumped	along:

unix>	arangorestore	--collection	clonedCollection	--server.database	mydb	--input-directory	"dump"

ERROR	got	error	from	server:	HTTP	500	(Internal	Server	Error):	ArangoError	1486:	must	not	have	a	distributeShardsLike	attribute

	pointing	to	an	unknown	collection

Processed	0	collection(s),	read	0	byte(s)	from	datafiles,	sent	0	batch(es)

The	collection	can	be	restored	by	overriding	the	error	message	as	follows:

unix>	arangorestore	--collection	clonedCollection	--server.database	mydb	--input-directory	"dump"	--ignore-distribute-shards-li

ke-errors

Restore	into	an	authentication	enabled	ArangoDB

Of	course	you	can	restore	data	into	a	password	protected	ArangoDB	as	well.	However	this	requires	certain	user	rights	for	the	user	used
in	the	restore	process.	The	rights	are	described	in	detail	in	the	Managing	Users	chapter.	For	restore	this	short	overview	is	sufficient:

When	importing	into	an	existing	database,	the	given	user	needs		Administrate		access	on	this	database.
When	creating	a	new	Database	during	restore,	the	given	user	needs		Administrate		access	on		_system	.	The	user	will	be	promoted
with		Administrate		access	on	the	newly	created	database.

Arangorestore

371

Exporting	Data	from	an	ArangoDB	database
To	export	data	from	an	ArangoDB	server	instance,	you	will	need	to	invoke	arangoexport.	arangoexport	can	be	invoked	by	executing	the
following	command:

unix>	arangoexport	--collection	test	--output-directory	"dump"

This	exports	the	collections	test	into	the	directory	dump	as	one	big	json	array.	Every	entry	in	this	array	is	one	document	from	the
collection	without	a	specific	order.	To	export	more	than	one	collection	at	a	time	specify	multiple	--collection	options.

The	default	output	directory	is	export.

arangoexport	will	by	default	connect	to	the	_system	database	using	the	default	endpoint.	If	you	want	to	connect	to	a	different	database	or
a	different	endpoint,	or	use	authentication,	you	can	use	the	following	command-line	options:

--server.database	:	name	of	the	database	to	connect	to
--server.endpoint	:	endpoint	to	connect	to
--server.username	:	username
--server.password	:	password	to	use	(omit	this	and	you'll	be	prompted	for	the	password)
--server.authentication	:	whether	or	not	to	use	authentication

Here's	an	example	of	exporting	data	from	a	non-standard	endpoint,	using	a	dedicated	database	name:

unix>	arangoexport	--server.endpoint	tcp://192.168.173.13:8531	--server.username	backup	--server.database	mydb	--collection	tes

t	--output-directory	"my-export"

When	finished,	arangoexport	will	print	out	a	summary	line	with	some	aggregate	statistics	about	what	it	did,	e.g.:

Processed	2	collection(s),	wrote	9031763	Byte(s),	78	HTTP	request(s)

Export	JSON

unix>	arangoexport	--type	json	--collection	test

This	exports	the	collection	test	into	the	output	directory	export	as	one	json	array.	Every	array	entry	is	one	document	from	the	collection
test

Export	JSONL

unix>	arangoexport	--type	jsonl	--collection	test

This	exports	the	collection	test	into	the	output	directory	export	as	jsonl.	Every	line	in	the	export	is	one	document	from	the	collection	test
as	json.

Export	CSV

unix>	arangoexport	--type	csv	--collection	test	--fields	_key,_id,_rev

This	exports	the	collection	test	into	the	output	directory	export	as	CSV.	The	first	line	contains	the	header	with	all	field	names.	Each	line	is
one	document	represented	as	CSV	and	separated	with	a	comma.	Objects	and	Arrays	are	represented	as	a	JSON	string.

Arangoexport

372

http://jsonlines.org

Export	XML

unix>	arangoexport	--type	xml	--collection	test

This	exports	the	collection	test	into	the	output	directory	export	as	generic	XML.	The	root	element	of	the	generated	XML	file	is	named
collection.	Each	document	in	the	collection	is	exported	in	a	doc	XML	attribute.	Each	document	attribute	is	export	in	a	generic	att	element,
which	has	a	type	attribute	indicating	the	attribute	value,	and	a	value	attribute	containing	the	attribute's	value.

Export	XGMML
XGMML	is	an	XML	application	based	on	GML.	To	view	the	XGMML	file	you	can	use	for	example	Cytoscape.

important	note
If	you	export	all	attributes	(--xgmml-label-only	false)	keep	in	mind	that	a	atrribute	names	type	have	to	be	the	same	type	for	all
documents.	It	wont	work	if	you	have	a	attribute	named	rank	that	is	in	one	document	a	string	and	in	another	document	a	integer.

Bad

//	doc1

{

				"rank":	1

}

//	doc2

{

				"rank":	"2"

}

Good

//	doc1

{

				"rank":	1

}

//	doc2

{

				"rank":	2

}

XGMML	specific	options
--xgmml-label-attribute	specify	the	name	of	the	attribute	that	will	become	the	label	in	the	xgmml	file.

--xgmml-label-only	set	to	true	will	only	export	the	label	without	any	attributes	in	edges	or	nodes.

export	based	on	collections

unix>	arangoexport	--type	xgmml	--graph-name	mygraph	--collection	vertex	--collection	edge

This	exports	the	a	unnamed	graph	with	vertex	collection	vertex	and	edge	collection	edge	into	the	xgmml	file	mygraph.xgmml.

export	based	on	a	named	graph

unix>	arangoexport	--type	xgmml	--graph-name	mygraph

Arangoexport

373

https://en.wikipedia.org/wiki/XGMML
https://en.wikipedia.org/wiki/Graph_Modelling_Language
http://cytoscape.org

This	exports	the	named	graph	mygraph	into	the	xgmml	file	mygraph.xgmml.

export	XGMML	without	attributes

unix>	arangoexport	--type	xgmml	--graph-name	mygraph	--xgmml-label-only	true

This	exports	the	named	graph	mygraph	into	the	xgmml	file	mygraph.xgmml	without	the	<att>	tag	in	nodes	and	edges.

export	XGMML	with	a	specific	label

unix>	arangoexport	--type	xgmml	--graph-name	mygraph	--xgmml-label-attribute	name

This	exports	the	named	graph	mygraph	into	the	xgmml	file	mygraph.xgmml	with	a	label	from	documents	attribute	name	instead	of	the
default	attribute	label.

Export	via	AQL	query

unix>	arangoexport	--type	jsonl	--query	"for	book	in	books	filter	book.sells	>	100	return	book"

Export	via	an	aql	query	allows	you	to	export	the	returned	data	as	the	type	specified	with	--type.	The	example	exports	all	books	as	jsonl
that	are	sold	more	than	100	times.

Arangoexport

374

Managing	Users
The	user	management	in	ArangoDB	3	is	similar	to	the	ones	found	in	MySQL,	PostgreSQL,	or	other	database	systems.

User	management	is	possible	in	the	web	interface	and	in	arangosh	while	logged	on	to	the	_system	database.

Note	that	the	only	usernames	must	not	start	with		:role:	.

Actions	and	Access	Levels
An	ArangoDB	server	contains	a	list	of	users.	It	also	defines	various	access	levels	that	can	be	assigned	to	a	user	(for	details,	see	below)	and
that	are	needed	to	perform	certain	actions.	These	actions	can	be	grouped	into	three	categories:

server	actions
database	actions
collection	actions

The	server	actions	are

create	user:	allows	to	create	a	new	user.

update	user:	allows	to	change	the	access	levels	and	details	of	an	existing	user.

drop	user:	allows	to	delete	an	existing	user.

create	database:	allows	to	create	a	new	database.

drop	database:	allows	to	delete	an	existing	database.

shutdown	server:	remove	server	from	cluster	and	shutdown

The	database	actions	are	tied	to	a	given	database,	and	access	levels	must	be	set	for	each	database	individually.	For	a	given	database	the
actions	are

create	collection:	allows	to	create	a	new	collection	in	the	given	database.

update	collection:	allows	to	update	properties	of	an	existing	collection.

drop	collection:	allows	to	delete	an	existing	collection.

create	index:	allows	to	create	an	index	for	an	existing	collection	in	the	given	database.

drop	index:	allows	to	delete	an	index	of	an	existing	collection	in	the	given	database.

The	collection	actions	are	tied	to	a	given	collection	of	a	given	database,	and	access	levels	must	be	set	for	each	collection	individually.	For
a	given	collection	the	actions	are

read	document:	read	a	document	of	the	given	collection.

create	document:	creates	a	new	document	in	the	given	collection.

modify	document:	modifies	an	existing	document	of	the	given	collection,	this	can	be	an	update	or	replace	operation.

drop	document:	deletes	an	existing	document	of	the	given	collection.

truncate	collection:	deletes	all	documents	of	a	given	collection.

To	perform	actions	on	the	server	level	the	user	needs	at	least	the	following	access	levels.	The	access	levels	are	Administrate	and	No
access:

server	action server	level

create	a	database Administrate

drop	a	database Administrate

create	a	user Administrate

Managing	Users

375

update	a	user Administrate

update	user	access	level Administrate

drop	a	user Administrate

shutdown	server Administrate

To	perform	actions	in	a	specific	database	(like	creating	or	dropping	collections),	a	user	needs	at	least	the	following	access	level.	The
possible	access	levels	for	databases	are	Administrate,	Access	and	No	access.	The	access	levels	for	collections	are	Read/Write,	Read	Only
and	No	Access.

database	action database	level collection	level

create	collection Administrate Read/Write

list	collections Access Read	Only

rename	collection Administrate Read/Write

modify	collection	properties Administrate Read/Write

read	properties Access Read	Only

drop	collection Administrate Read/Write

create	an	index Administrate Read/Write

drop	an	index Administrate Read/Write

see	index	definition Access Read	Only

Note	that	the	access	level	Access	for	a	database	is	always	required	to	perform	any	action	on	a	collection	in	that	database.

For	collections	a	user	needs	the	following	access	levels	to	the	given	database	and	the	given	collection.	The	access	levels	for	the	database
are	Administrate,	Access	and	No	access.	The	access	levels	for	the	collection	are	Read/Write,	Read	Only	and	No	Access.

action collection	level database	level

read	a	document Read/Write	or	Read	Only Administrate	or	Access

create	a	document Read/Write Administrate	or	Access

modify	a	document Read/Write Administrate	or	Access

drop	a	document Read/Write Administrate	or	Access

truncate	a	collection Read/Write Administrate	or	Access

Example

For	example,	given

a	database	example
a	collection	data	in	the	database	example
a	user	JohnSmith

If	the	user	JohnSmith	is	assigned	the	access	level	Access	for	the	database	example	and	the	level	Read/Write	for	the	collection	data,	then	the
user	is	allowed	to	read,	create,	modify	or	delete	documents	in	the	collection	data.	But	the	user	is,	for	example,	not	allowed	to	create
indexes	for	the	collection	data	nor	create	new	collections	in	the	database	example.

Granting	Access	Levels

Access	levels	can	be	managed	via	the	web	interface	or	in	arangosh.

In	order	to	grant	an	access	level	to	a	user,	you	can	assign	one	of	three	access	levels	for	each	database	and	one	of	three	levels	for	each
collection	in	a	database.	The	server	access	level	for	the	user	follows	from	the	database	access	level	in	the		_system		database,	it	is
Administrate	if	and	only	if	the	database	access	level	is	Administrate.	Note	that	this	means	that	database	access	level	Access	does	not	grant
a	user	server	access	level	Administrate.

Managing	Users

376

Initial	Access	Levels

When	a	user	creates	a	database	the	access	level	of	the	user	for	that	database	is	set	to	Administrate.	The	same	is	true	for	creating	a
collection,	in	this	case	the	user	get	Read/Write	access	to	the	collection.

Wildcard	Database	Access	Level

With	the	above	definition,	one	must	define	the	database	access	level	for	all	database/user	pairs	in	the	server,	which	would	be	very	tedious.
In	order	to	simplify	this	process,	it	is	possible	to	define,	for	a	user,	a	wildcard	database	access	level.	This	wildcard	is	used	if	the	database
access	level	is	not	explicitly	defined	for	a	certain	database.	Each	new	created	user	has	an	initial	database	wildcard	of	No	Access.

Changing	the	wildcard	database	access	level	for	a	user	will	change	the	access	level	for	all	databases	that	have	no	explicitly	defined	access
level.	Note	that	this	includes	databases	which	will	be	created	in	the	future	and	for	which	no	explicit	access	levels	are	set	for	that	user!

If	you	delete	the	wildcard,	the	default	access	level	is	defined	as	No	Access.

The		root		user	has	an	initial	database	wildcard	of	Administrate.

Example

Assume	user	JohnSmith	has	the	following	database	access	levels:

access	level

database		*	 Access

database		shop1	 Administrate

database		shop2	 No	Access

This	will	give	the	user	JohnSmith	the	following	database	level	access:

database		shop1	:	Administrate
database		shop2	:	No	Access
database		something	:	Access

If	the	wildcard		*		is	changed	from	Access	to	No	Access	then	the	permissions	will	change	as	follows:

database		shop1	:	Administrate
database		shop2	:	No	Access
database		something	:	No	Access

Wildcard	Collection	Access	Level

For	each	user	and	database	there	is	a	wildcard	collection	access	level.	This	level	is	used	for	all	collections	pairs	without	an	explicitly
defined	collection	access	level.	Note	that	this	includes	collections	which	will	be	created	in	the	future	and	for	which	no	explicit	access
levels	are	set	for	a	that	user!	Each	new	created	user	has	an	initial	collection	wildcard	of	No	Access.

If	you	delete	the	wildcard,	the	system	defaults	to	No	Access.

The		root		user	has	an	initial	collection	wildcard	of	Read/Write	in	every	database.

When	creating	a	user	through	db._createDatabase(name,	options,	users)	the	access	level	of	the	user	for	this	database	will	be	set	to
Administrate	and	the	wildcard	for	all	collections	within	this	database	will	be	set	to	Read/Write.

Example

Assume	user	JohnSmith	has	the	following	database	access	levels:

access	level

database		*	 Access

and	collection	access	levels:

access	level

Managing	Users

377

database		*	,	collection		*	 Read/Write

database		shop1	,	collection		products	 Read-Only

database		shop1	,	collection		*	 No	Access

database		shop2	,	collection		*	 Read-Only

Then	the	user	doe	will	get	the	following	collection	access	levels:

database		shop1	,	collection		products	:	Read-Only
database		shop1	,	collection		customers	:	No	Access
database		shop2	,	collection		reviews	:	Read-Only
database		something	,	collection		else	:	Read/Write

Explanation:

Database		shop1	,	collection		products		directly	matches	a	defined	access	level.	This	level	is	defined	as	Read-Only.

Database		shop1	,	collection		customers		does	not	match	a	defined	access	level.	However,	database		shop1		matches	and	the	wildcard	in
this	database	for	collection	level	is	No	Access.

Database		shop2	,	collection		reviews		does	not	match	a	defined	access	level.	However,	database		shop2		matches	and	the	wildcard	in	this
database	for	collection	level	is	Read-Only.

Database		somehing	,	collection		else		does	not	match	a	defined	access	level.	The	database		something		also	does	have	a	direct	matches.
Therefore	the	wildcard	is	selected.	The	level	is	Read/Write.

Permission	Resolution

The	access	levels	for	databases	and	collections	are	resolved	in	the	following	way:

For	a	database	"foo":

1.	 Check	if	there	is	a	specific	database	grant	for	foo,	if	yes	use	the	granted	access	level
2.	 Choose	a	the	higher	access	level	of:

A	wildcard	database	grant	(for	example		grantDatabase('user',	'*',	'rw')
A	database	grant	on	the		_system		database

For	a	collection	named	"bar":

1.	 Check	if	there	is	a	specific	database	grant	for	bar,	if	yes	use	the	granted	access	level
2.	 Choose	a	the	higher	access	level	of:

Any	wildcard	access	grant	in	the	same	database,	or	on	"/"	(in	this	example		grantCollection('user',	'foo',	'*',	'rw'))
The	access	level	for	the	current	database	(in	this	example		grantDatabase('user',	'foo',	'rw')
The	access	level	for	the		_system		database

An	exception	to	this	are	system	collections,	here	only	the	access	level	for	the	database	is	used.

System	Collections

The	access	level	for	system	collections	cannot	be	changed.	They	follow	different	rules	than	user	defined	collections	and	may	change
without	further	notice.	Currently	the	system	collections	follow	these	rules:

collection access	level

	_users		(in	_system) No	Access

	_queues	 Read-Only

	_frontend	 Read/Write

	*	 same	as	db

All	other	system	collections	have	access	level	Read/Write	if	the	user	has	Administrate	access	to	the	database.	They	have	access	level
Read/Only	if	the	user	has	Access	to	the	database.

Managing	Users

378

To	modify	these	system	collections	you	should	always	use	the	specialized	APIs	provided	by	ArangoDB.	For	example	no	user	has	access
to	the	_users	collection	in	the	_system	database.	All	changes	to	the	access	levels	must	be	done	using	the	@arangodb/users	module,	the
	/_users/		API	or	the	web	interface.

LDAP	Users

This	feature	is	only	available	in	the	Enterprise	Edition.

ArangoDB	supports	LDAP	as	an	external	authentication	system.	For	detailed	information	please	have	look	into	the	LDAP	configuration
guide.

There	are	a	few	differences	to	normal	ArangoDB	users:

ArangoDB	does	not	"know"	LDAP	users	before	they	first	authenticate,	calls	to	various	API's	using	endpoints	in		_api/users/*		will
fail	until	the	user	first	logs-in
Access	levels	of	each	user	are	periodically	updated,	this	will	happen	by	default	every	5	minutes
It	is	not	possible	to	change	permissions	on	LDAP	users	directly,	only	on	roles
LDAP	users	cannot	store	configuration	data	per	user	(affects	for	example	custom	settings	in	the	graph	viewer)

To	grant	access	for	an	LDAP	user	you	will	need	to	create	roles	within	the	ArangoDB	server.	A	role	is	just	a	user	with	the	":role:"	prefix
in	its	name.	Role	users	cannot	login	as	database	users,	the	":role:"	prefix	ensures	this.	Your	LDAP	users	will	need	to	have	at	least	one	role,
once	the	user	logs	in	he	will	be	automatically	granted	the	union	of	all	access	rights	of	all	his	roles.	Note	that	a	lower	right	grant	in	one	role
will	be	overwritten	by	a	higher	access	grant	in	a	different	role.

Managing	Users

379

Managing	Users	in	the	ArangoDB	Shell
Please	note,	that	for	backward	compatibility	the	server	access	levels	follow	from	the	database	access	level	on	the	database	_system.

Also	note	that	the	server	and	database	access	levels	are	represented	as

	rw	:	for	Administrate
	ro	:	for	Access
	none	:	for	No	access

This	is	again	for	backward	compatibility.

Example

Fire	up	arangosh	and	require	the	users	module.	Use	it	to	create	a	new	user:

arangosh>	var	users	=	require('@arangodb/users');

arangosh>	users.save('JohnSmith',	'mypassword');

Creates	a	user	called	JohnSmith.	This	user	will	have	no	access	at	all.

arangosh>	users.grantDatabase('JohnSmith',	'testdb',	'rw');

This	grants	the	user	Administrate	access	to	the	database	testdb.		revokeDatabase		will	revoke	this	access	level	setting.

Note:	Be	aware	that	from	3.2	onwards	the		grantDatabase		will	not	automatically	grant	users	the	access	level	to	write	or	read	collections
in	a	database.	If	you	grant	access	to	a	database		testdb		you	will	additionally	need	to	explicitly	grant	access	levels	to	individual
collections	via		grantCollection	.

The	upgrade	procedure	from	3.1	to	3.2	sets	the	wildcard	database	access	level	for	all	users	to	Administrate	and	sets	the	wildcard
collection	access	level	for	all	user/database	pairs	to	Read/Write.

arangosh>	users.grantCollection('JohnSmith',	'testdb',	'testcoll',	'rw');

Save
	users.save(user,	passwd,	active,	extra)	

This	will	create	a	new	ArangoDB	user.	The	user	name	must	be	specified	in	user	and	must	not	be	empty.

The	password	must	be	given	as	a	string,	too,	but	can	be	left	empty	if	required.	If	you	pass	the	special	value
ARANGODB_DEFAULT_ROOT_PASSWORD,	the	password	will	be	set	the	value	stored	in	the	environment	variable
	ARANGODB_DEFAULT_ROOT_PASSWORD	.	This	can	be	used	to	pass	an	instance	variable	into	ArangoDB.	For	example,	the	instance	identifier	from
Amazon.

If	the	active	attribute	is	not	specified,	it	defaults	to	true.	The	extra	attribute	can	be	used	to	save	custom	data	with	the	user.

This	method	will	fail	if	either	the	user	name	or	the	passwords	are	not	specified	or	given	in	a	wrong	format,	or	there	already	exists	a	user
with	the	specified	name.

Note:	The	user	will	not	have	permission	to	access	any	database.	You	need	to	grant	the	access	rights	for	one	or	more	databases	using
grantDatabase.

Examples

arangosh>	require('@arangodb/users').save('my-user',	'my-secret-password');

show	execution	results

In	Arangosh

380

Grant	Database
	users.grantDatabase(user,	database,	type)	

This	grants	type	('rw',	'ro'	or	'none')	access	to	the	database	for	the	user.	If	database	is		"*"	,	this	sets	the	wildcard	database	access	level
for	the	user	user.

The	server	access	level	follows	from	the	access	level	for	the	database		_system	.

Revoke	Database
	users.revokeDatabase(user,	database)	

This	clears	the	access	level	setting	to	the	database	for	the	user	and	the	wildcard	database	access	setting	for	this	user	kicks	in.	In	case	no
wildcard	access	was	defined	the	default	is	No	Access.	This	will	also	clear	the	access	levels	for	all	the	collections	in	this	database.

Grant	Collection
	users.grantCollection(user,	database,	collection,	type)	

This	grants	type	('rw',	'ro'	or	'none')	access	level	to	the	collection	in	database	for	the	user.	If	collection	is		"*"		this	sets	the	wildcard
collection	access	level	for	the	user	user	in	database	database.

Revoke	Collection
	users.revokeCollection(user,	database)	

This	clears	the	access	level	setting	to	the	collection	collection	for	the	user	user.	The	system	will	either	fallback	to	the	wildcard	collection
access	level	or	default	to	No	Access

Replace
	users.replace(user,	passwd,	active,	extra)	

This	will	look	up	an	existing	ArangoDB	user	and	replace	its	user	data.

The	username	must	be	specified	in	user,	and	a	user	with	the	specified	name	must	already	exist	in	the	database.

The	password	must	be	given	as	a	string,	too,	but	can	be	left	empty	if	required.

If	the	active	attribute	is	not	specified,	it	defaults	to	true.	The	extra	attribute	can	be	used	to	save	custom	data	with	the	user.

This	method	will	fail	if	either	the	user	name	or	the	passwords	are	not	specified	or	given	in	a	wrong	format,	or	if	the	specified	user	cannot
be	found	in	the	database.

Note:	this	function	will	not	work	from	within	the	web	interface

Examples

arangosh>	require("@arangodb/users").replace("my-user",	"my-changed-password");

show	execution	results

Update
	users.update(user,	passwd,	active,	extra)	

This	will	update	an	existing	ArangoDB	user	with	a	new	password	and	other	data.

The	user	name	must	be	specified	in	user	and	the	user	must	already	exist	in	the	database.

In	Arangosh

381

The	password	must	be	given	as	a	string,	too,	but	can	be	left	empty	if	required.

If	the	active	attribute	is	not	specified,	the	current	value	saved	for	the	user	will	not	be	changed.	The	same	is	true	for	the	extra	attribute.

This	method	will	fail	if	either	the	user	name	or	the	passwords	are	not	specified	or	given	in	a	wrong	format,	or	if	the	specified	user	cannot
be	found	in	the	database.

Examples

arangosh>	require("@arangodb/users").update("my-user",	"my-secret-password");

show	execution	results

isValid
	users.isValid(user,	password)	

Checks	whether	the	given	combination	of	user	name	and	password	is	valid.	The	function	will	return	a	boolean	value	if	the	combination	of
user	name	and	password	is	valid.

Each	call	to	this	function	is	penalized	by	the	server	sleeping	a	random	amount	of	time.

Examples

arangosh>	require("@arangodb/users").isValid("my-user",	"my-secret-password");

true

Remove
	users.remove(user)	

Removes	an	existing	ArangoDB	user	from	the	database.

The	user	name	must	be	specified	in	User	and	the	specified	user	must	exist	in	the	database.

This	method	will	fail	if	the	user	cannot	be	found	in	the	database.

Examples

arangosh>	require("@arangodb/users").remove("my-user");

Document
	users.document(user)	

Fetches	an	existing	ArangoDB	user	from	the	database.

The	user	name	must	be	specified	in	user.

This	method	will	fail	if	the	user	cannot	be	found	in	the	database.

Examples

arangosh>	require("@arangodb/users").document("my-user");

show	execution	results

All

In	Arangosh

382

	users.all()	

Fetches	all	existing	ArangoDB	users	from	the	database.

Examples

arangosh>	require("@arangodb/users").all();

show	execution	results

Reload
	users.reload()	

Reloads	the	user	authentication	data	on	the	server

All	user	authentication	data	is	loaded	by	the	server	once	on	startup	only	and	is	cached	after	that.	When	users	get	added	or	deleted,	a	cache
flush	is	done	automatically,	and	this	can	be	performed	by	a	call	to	this	method.

Examples

arangosh>	require("@arangodb/users").reload();

Permission
	users.permission(user,	database[,	collection])	

Fetches	the	access	level	to	the	database	or	a	collection.

The	user	and	database	name	must	be	specified,	optionally	you	can	specify	the	collection	name.

This	method	will	fail	if	the	user	cannot	be	found	in	the	database.

Examples

arangosh>	require("@arangodb/users").permission("my-user",	"testdb");

rw

In	Arangosh

383

Command-line	options

General	Options

General	help
	--help	

	-h	

Prints	a	list	of	the	most	common	options	available	and	then	exits.	In	order	to	see	all	options	use	--help-all.

Version
	--version	

	-v	

Prints	the	version	of	the	server	and	exits.

Configuration	Files

Options	can	be	specified	on	the	command	line	or	in	configuration	files.	If	a	string	Variable	occurs	in	the	value,	it	is	replaced	by	the
corresponding	environment	variable.

	--configuration	filename	

	-c	filename	

Specifies	the	name	of	the	configuration	file	to	use.

If	this	command	is	not	passed	to	the	server,	then	by	default,	the	server	will	attempt	to	first	locate	a	file	named	~/.arango/arangod.conf	in
the	user's	home	directory.

If	no	such	file	is	found,	the	server	will	proceed	to	look	for	a	file	arangod.conf	in	the	system	configuration	directory.	The	system
configuration	directory	is	platform-specific,	and	may	be	changed	when	compiling	ArangoDB	yourself.	It	may	default	to	/etc/arangodb	or
/usr/local/etc/arangodb.	This	file	is	installed	when	using	a	package	manager	like	rpm	or	dpkg.	If	you	modify	this	file	and	later	upgrade	to
a	new	version	of	ArangoDB,	then	the	package	manager	normally	warns	you	about	the	conflict.	In	order	to	avoid	these	warning	for	small
adjustments,	you	can	put	local	overrides	into	a	file	arangod.conf.local.

Only	command	line	options	with	a	value	should	be	set	within	the	configuration	file.	Command	line	options	which	act	as	flags	should	be
entered	on	the	command	line	when	starting	the	server.

Each	option	is	specified	on	a	separate	line	in	the	form:

key	=	value

Alternatively,	a	header	section	can	be	specified	and	options	pertaining	to	that	section	can	be	specified	in	a	shorter	form

[log]

level	=	trace

rather	than	specifying

log.level	=	trace

So	you	see	in	general		--section.param	value		translates	to

[section]

param=value

Server	Configuration

384

Whitespace	around		=		is	ignored	in	the	configuration	file.	Do	not	put	spaces	around	additional		=		in	the	parameter	value
however.	The	following	example	shows	the	correct	way	to	specify	a	log	level	of		trace		for	the	topic		startup	:

log.level	=	startup=trace

Note	that	there	is	no	whitespace	between		startup		and		=	,	and	also	not		=		and		trace	.

Where	one	section	may	occur	multiple	times,	and	the	last	occurance	of		param		will	become	the	final	value.	In	case	of	parameters	being
vectors,	multiple	occurance	adds	another	item	to	the	vector.	Vectors	can	be	identified	by	the		...		in	the		--help		output	of	the	binaries.

Comments	can	be	placed	in	the	configuration	file,	only	if	the	line	begins	with	one	or	more	hash	symbols	(#).

There	may	be	occasions	where	a	configuration	file	exists	and	the	user	wishes	to	override	configuration	settings	stored	in	a	configuration
file.	Any	settings	specified	on	the	command	line	will	overwrite	the	same	setting	when	it	appears	in	a	configuration	file.	If	the	user	wishes
to	completely	ignore	configuration	files	without	necessarily	deleting	the	file	(or	files),	then	add	the	command	line	option

-c	none

or

--configuration	none

when	starting	up	the	server.	Note	that,	the	word	none	is	case-insensitive.

Server	Configuration

385

Operating	System	Configuration

File	Systems

(LINUX)

We	recommend	to	not	use	BTRFS	on	linux,	it's	known	to	not	work	well	in	conjunction	with	ArangoDB.	We	experienced	that	arangodb
facing	latency	issues	on	accessing	its	database	files	on	BTRFS	partitions.	In	conjunction	with	BTRFS	and	AUFS	we	also	saw	data	loss
on	restart.

Virtual	Memory	Page	Sizes
(LINUX)

By	default,	ArangoDB	uses	Jemalloc	as	the	memory	allocator.	Jemalloc	does	a	good	job	of	reducing	virtual	memory	fragmentation,
especially	for	long-running	processes.	Unfortunately,	some	OS	configurations	can	interfere	with	Jemalloc's	ability	to	function	properly.
Specifically,	Linux's	"transparent	hugepages",	Windows'	"large	pages"	and	other	similar	features	sometimes	prevent	Jemalloc	from
returning	unused	memory	to	the	operating	system	and	result	in	unnecessarily	high	memory	use.	Therefore,	we	recommend	disabling	these
features	when	using	Jemalloc	with	ArangoDB.	Please	consult	your	operating	system's	documentation	for	how	to	do	this.

Execute

sudo	bash	-c	"echo	madvise	>/sys/kernel/mm/transparent_hugepage/enabled"

sudo	bash	-c	"echo	madvise	>/sys/kernel/mm/transparent_hugepage/defrag"

before	executing		arangod	.

Swap	Space

(LINUX)

It	is	recommended	to	assign	swap	space	for	a	server	that	is	running	arangod.	Configuring	swap	space	can	prevent	the	operating	system's
OOM	killer	from	killing	ArangoDB	too	eagerly	on	Linux.

Over-Commit	Memory

For	the	MMFiles	storage	engine,	execute

sudo	bash	-c	"echo	0	>/proc/sys/vm/overcommit_memory"

before	executing		arangod	.

For	the	RocksDB	storage	engine,	execute

sudo	bash	-c	"echo	2	>/proc/sys/vm/overcommit_memory"

before	starting.

From	www.kernel.org:

When	this	flag	is	0,	the	kernel	attempts	to	estimate	the	amount	of	free	memory	left	when	userspace	requests	more	memory.

When	this	flag	is	1,	the	kernel	pretends	there	is	always	enough	memory	until	it	actually	runs	out.

When	this	flag	is	2,	the	kernel	uses	a	"never	overcommit"	policy	that	attempts	to	prevent	any	overcommit	of	memory.

Operating	System	Configuration

386

https://www.kernel.org/doc/Documentation/sysctl/vm.txt

Note	that	then	using	an		overcommit_memory		setting	of	2,	this	will	by	default	allow	processes	to	use	all	swap	space	but	only	half	of	the
available	RAM.	This	can	be	changed	by	adjusting	the	value	of		overcommit_ratio		as	well.

From	www.kernel.org:

When	overcommit_memory	is	set	to	2,	the	committed	address	space	is	not	permitted	to	exceed	swap	plus	this	percentage	of
physical	RAM.

Zone	Reclaim

Execute

sudo	bash	-c	"echo	0	>/proc/sys/vm/zone_reclaim_mode"

before	executing		arangod	.

From	www.kernel.org:

This	is	value	ORed	together	of

1	=	Zone	reclaim	on
2	=	Zone	reclaim	writes	dirty	pages	out
4	=	Zone	reclaim	swaps	pages

NUMA
Multi-processor	systems	often	have	non-uniform	Access	Memory	(NUMA).	ArangoDB	should	be	started	with	interleave	on	such
system.	This	can	be	achieved	using

numactl	--interleave=all	arangod	...

Max	Memory	Mappings
(LINUX)

Linux	kernels	by	default	restrict	the	maximum	number	of	memory	mappings	of	a	single	process	to	about	64K	mappings.	While	this	value
is	sufficient	for	most	workloads,	it	may	be	too	low	for	a	process	that	has	lots	of	parallel	threads	that	all	require	their	own	memory
mappings.	In	this	case	all	the	threads'	memory	mappings	will	be	accounted	to	the	single	arangod	process,	and	the	maximum	number	of
64K	mappings	may	be	reached.	When	the	maximum	number	of	mappings	is	reached,	calls	to	mmap	will	fail,	so	the	process	will	think	no
more	memory	is	available	although	there	may	be	plenty	of	RAM	left.

To	avoid	this	scenario,	it	is	recommended	to	raise	the	default	value	for	the	maximum	number	of	memory	mappings	to	a	sufficiently	high
value.	As	a	rule	of	thumb,	one	could	use	8	times	the	number	of	available	cores	times	8,000.

For	a	32	core	server,	a	good	rule-of-thumb	value	thus	would	be	2,048,000	(32	8	8000).	To	set	the	value	once,	use	the	following	command
before	starting	arangod:

sudo	bash	-c	"sysctl	-w	'vm.max_map_count=2048000'"

To	make	the	settings	durable,	it	will	be	necessary	to	store	the	adjusted	settings	in	/etc/sysctl.conf	or	other	places	that	the	operating
system	is	looking	at.

Environment	Variables
(LINUX)

It	is	recommended	to	set	the	environment	variable		GLIBCXX_FORCE_NEW		to	1	on	systems	that	use	glibc++	in	order	to	disable	the	memory
pooling	built	into	glibc++.	That	memory	pooling	is	unnecessary	because	Jemalloc	will	already	do	memory	pooling.

Operating	System	Configuration

387

https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt

Execute

export	GLIBCXX_FORCE_NEW=1

before	starting		arangod	.

32bit
While	it	is	possible	to	compile	ArangoDB	on	32bit	system,	this	is	not	a	recommended	environment.	64bit	systems	can	address	a
significantly	bigger	memory	region.

Operating	System	Configuration

388

Managing	Endpoints
The	ArangoDB	server	can	listen	for	incoming	requests	on	multiple	endpoints.

The	endpoints	are	normally	specified	either	in	ArangoDB's	configuration	file	or	on	the	command-line,	using	the		--server.endpoint	.
ArangoDB	supports	different	types	of	endpoints:

tcp://ipv4-address:port	-	TCP/IP	endpoint,	using	IPv4
tcp://[ipv6-address]:port	-	TCP/IP	endpoint,	using	IPv6
ssl://ipv4-address:port	-	TCP/IP	endpoint,	using	IPv4,	SSL	encryption
ssl://[ipv6-address]:port	-	TCP/IP	endpoint,	using	IPv6,	SSL	encryption
unix:///path/to/socket	-	Unix	domain	socket	endpoint

If	a	TCP/IP	endpoint	is	specified	without	a	port	number,	then	the	default	port	(8529)	will	be	used.	If	multiple	endpoints	need	to	be	used,
the	option	can	be	repeated	multiple	times.

The	default	endpoint	for	ArangoDB	is	tcp://127.0.0.1:8529	or	tcp://localhost:8529.

EXAMPLES

unix>	./arangod	--server.endpoint	tcp://127.0.0.1:8529

																--server.endpoint	ssl://127.0.0.1:8530

																--ssl.keyfile	server.pem	/tmp/vocbase

2012-07-26T07:07:47Z	[8161]	INFO	using	SSL	protocol	version	'TLSv1'

2012-07-26T07:07:48Z	[8161]	INFO	using	endpoint	'ssl://127.0.0.1:8530'	for	http	ssl	requests

2012-07-26T07:07:48Z	[8161]	INFO	using	endpoint	'tcp://127.0.0.1:8529'	for	http	tcp	requests

2012-07-26T07:07:49Z	[8161]	INFO	ArangoDB	(version	1.1.alpha)	is	ready	for	business

2012-07-26T07:07:49Z	[8161]	INFO	Have	Fun!

TCP	Endpoints

Given	a	hostname:

	--server.endpoint	tcp://hostname:port	

Given	an	IPv4	address:

	--server.endpoint	tcp://ipv4-address:port	

Given	an	IPv6	address:

	--server.endpoint	tcp://[ipv6-address]:port	

On	one	specific	ethernet	interface	each	port	can	only	be	bound	exactly	once.	You	can	look	up	your	available	interfaces	using	the	ifconfig
command	on	Linux	/	MacOSX	-	the	Windows	equivalent	is	ipconfig	(See	Wikipedia	for	more	details).	The	general	names	of	the	interfaces
differ	on	OS's	and	hardwares	they	run	on.	However,	typically	every	host	has	a	so	called	loopback	interface,	which	is	a	virtual	interface.
By	convention	it	always	has	the	address	127.0.0.1	or	::1	(ipv6),	and	can	only	be	reached	from	exactly	the	very	same	host.	Ethernet
interfaces	usually	have	names	like	eth0,	wlan0,	eth1:17,	le0	or	a	plain	text	name	in	Windows.

To	find	out	which	services	already	use	ports	(so	ArangoDB	can't	bind	them	anymore),	you	can	use	the	netstat	command	(it	behaves	a
little	different	on	each	platform,	run	it	with	-lnpt	on	Linux,	-p	tcp	on	MacOSX	or	with	-an	on	windows	for	valuable	information).

ArangoDB	can	also	do	a	so	called	broadcast	bind	using	tcp://0.0.0.0:8529.	This	way	it	will	be	reachable	on	all	interfaces	of	the	host.	This
may	be	useful	on	development	systems	that	frequently	change	their	network	setup	like	laptops.

Special	note	on	IPv6	link-local	addresses

ArangoDB	can	also	listen	to	IPv6	link-local	addresses	via	adding	the	zone	ID	to	the	IPv6	address	in	the	form		[ipv6-link-local-
address%zone-id]	.	However,	what	you	probably	instead	want	is	to	bind	to	a	local	IPv6	address.	Local	IPv6	addresses	start	with		fd	.	If
you	only	see	a		fe80:		IPv6	address	in	your	interface	configuration	but	no	IPv6	address	starting	with		fd		your	interface	has	no	local
IPv6	address	assigned.	You	can	read	more	about	IPv6	link-local	addresses	here.

Example

Managing	Endpoints

389

http://en.wikipedia.org/wiki/Ifconfig
http://en.wikipedia.org/wiki/Loop_device
http://en.wikipedia.org/wiki/Netstat
https://en.wikipedia.org/wiki/Link-local_address#IPv6

Bind	to	a	link-local	and	local	IPv6	address.

unix>	ifconfig

This	command	lists	all	interfaces	and	assigned	ip	addresses.	The	link-local	address	may	be		fe80::6257:18ff:fe82:3ec6%eth0		(IPv6
address	plus	interface	name).	A	local	IPv6	address	may	be		fd12:3456::789a	.	To	bind	ArangoDB	to	it	start	arangod	with		--
server.endpoint	tcp://[fe80::6257:18ff:fe82:3ec6%eth0]:8529	.	Use	telnet	to	test	the	connection.

unix>	telnet	fe80::6257:18ff:fe82:3ec6%eth0	8529

Trying	fe80::6257:18ff:fe82:3ec6...

Connected	to	my-machine.

Escape	character	is	'^]'.

GET	/	HTTP/1.1

HTTP/1.1	301	Moved	Permanently

Location:	/_db/_system/_admin/aardvark/index.html

Content-Type:	text/html

Server:	ArangoDB

Connection:	Keep-Alive

Content-Length:	197

<html><head><title>Moved</title></head><body><h1>Moved</h1><p>This	page	has	moved	to	<a	href="/_db/_system/_admin/aardvark/inde

x.html">/_db/_system/_admin/aardvark/index.html.</p></body></html>

Reuse	address
	--tcp.reuse-address	

If	this	boolean	option	is	set	to	true	then	the	socket	option	SO_REUSEADDR	is	set	on	all	server	endpoints,	which	is	the	default.	If	this
option	is	set	to	false	it	is	possible	that	it	takes	up	to	a	minute	after	a	server	has	terminated	until	it	is	possible	for	a	new	server	to	use	the
same	endpoint	again.	This	is	why	this	is	activated	by	default.

Please	note	however	that	under	some	operating	systems	this	can	be	a	security	risk	because	it	might	be	possible	for	another	process	to
bind	to	the	same	address	and	port,	possibly	hijacking	network	traffic.	Under	Windows,	ArangoDB	additionally	sets	the	flag
SO_EXCLUSIVEADDRUSE	as	a	measure	to	alleviate	this	problem.

Backlog	size
	--tcp.backlog-size	

Allows	to	specify	the	size	of	the	backlog	for	the	listen	system	call	The	default	value	is	10.	The	maximum	value	is	platform-dependent.
Specifying	a	higher	value	than	defined	in	the	system	header's	SOMAXCONN	may	result	in	a	warning	on	server	start.	The	actual	value
used	by	listen	may	also	be	silently	truncated	on	some	platforms	(this	happens	inside	the	listen	system	call).

Managing	Endpoints

390

SSL	Configuration

SSL	Endpoints

Given	a	hostname:

	--server.endpoint	tcp://hostname:port	

Given	an	IPv4	address:

	--server.endpoint	tcp://ipv4-address:port	

Given	an	IPv6	address:

	--server.endpoint	tcp://[ipv6-address]:port	

Note:	If	you	are	using	SSL-encrypted	endpoints,	you	must	also	supply	the	path	to	a	server	certificate	using	the		--ssl.keyfile		option.

Keyfile
	--ssl.keyfile	filename	

If	SSL	encryption	is	used,	this	option	must	be	used	to	specify	the	filename	of	the	server	private	key.	The	file	must	be	PEM	formatted
and	contain	both	the	certificate	and	the	server's	private	key.

The	file	specified	by	filename	can	be	generated	using	openssl:

#	create	private	key	in	file	"server.key"

openssl	genrsa	-des3	-out	server.key	1024

#	create	certificate	signing	request	(csr)	in	file	"server.csr"

openssl	req	-new	-key	server.key	-out	server.csr

#	copy	away	original	private	key	to	"server.key.org"

cp	server.key	server.key.org

#	remove	passphrase	from	the	private	key

openssl	rsa	-in	server.key.org	-out	server.key

#	sign	the	csr	with	the	key,	creates	certificate	PEM	file	"server.crt"

openssl	x509	-req	-days	365	-in	server.csr	-signkey	server.key	-out	server.crt

#	combine	certificate	and	key	into	single	PEM	file	"server.pem"

cat	server.crt	server.key	>	server.pem

You	may	use	certificates	issued	by	a	Certificate	Authority	or	self-signed	certificates.	Self-signed	certificates	can	be	created	by	a	tool	of
your	choice.	When	using	OpenSSL	for	creating	the	self-signed	certificate,	the	following	commands	should	create	a	valid	keyfile:

-----BEGIN	CERTIFICATE-----

(base64	encoded	certificate)

-----END	CERTIFICATE-----

-----BEGIN	RSA	PRIVATE	KEY-----

(base64	encoded	private	key)

-----END	RSA	PRIVATE	KEY-----

For	further	information	please	check	the	manuals	of	the	tools	you	use	to	create	the	certificate.

CA	File
	--ssl.cafile	filename	

SSL	Configuration

391

This	option	can	be	used	to	specify	a	file	with	CA	certificates	that	are	sent	to	the	client	whenever	the	server	requests	a	client	certificate.	If
the	file	is	specified,	The	server	will	only	accept	client	requests	with	certificates	issued	by	these	CAs.	Do	not	specify	this	option	if	you
want	clients	to	be	able	to	connect	without	specific	certificates.

The	certificates	in	filename	must	be	PEM	formatted.

SSL	protocol

	--ssl.protocol	value	

Use	this	option	to	specify	the	default	encryption	protocol	to	be	used.	The	following	variants	are	available:

1:	SSLv2
2:	SSLv2	or	SSLv3	(negotiated)
3:	SSLv3
4:	TLSv1
5:	TLSv1.2

The	default	value	is	5	(TLSv1.2).

SSL	cache
	--ssl.session-cache	value	

Set	to	true	if	SSL	session	caching	should	be	used.

value	has	a	default	value	of	false	(i.e.	no	caching).

SSL	peer	certificate

This	feature	is	available	in	the	Enterprise	Edition.

	--ssl.require-peer-certificate	

Require	a	peer	certificate	from	the	client	before	connecting.

SSL	options

	--ssl.options	value	

This	option	can	be	used	to	set	various	SSL-related	options.	Individual	option	values	must	be	combined	using	bitwise	OR.

Which	options	are	available	on	your	platform	is	determined	by	the	OpenSSL	version	you	use.	The	list	of	options	available	on	your
platform	might	be	retrieved	by	the	following	shell	command:

	>	grep	"#define	SSL_OP_.*"	/usr/include/openssl/ssl.h

	#define	SSL_OP_MICROSOFT_SESS_ID_BUG																				0x00000001L

	#define	SSL_OP_NETSCAPE_CHALLENGE_BUG																			0x00000002L

	#define	SSL_OP_LEGACY_SERVER_CONNECT																				0x00000004L

	#define	SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG									0x00000008L

	#define	SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG														0x00000010L

	#define	SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER															0x00000020L

	...

A	description	of	the	options	can	be	found	online	in	the	OpenSSL	documentation

SSL	cipher
	--ssl.cipher-list	cipher-list	

This	option	can	be	used	to	restrict	the	server	to	certain	SSL	ciphers	only,	and	to	define	the	relative	usage	preference	of	SSL	ciphers.

The	format	of	cipher-list	is	documented	in	the	OpenSSL	documentation.

To	check	which	ciphers	are	available	on	your	platform,	you	may	use	the	following	shell	command:

SSL	Configuration

392

http://www.openssl.org/docs/ssl/SSL_CTX_set_options.html

>	openssl	ciphers	-v

ECDHE-RSA-AES256-SHA				SSLv3	Kx=ECDH					Au=RSA		Enc=AES(256)		Mac=SHA1

ECDHE-ECDSA-AES256-SHA		SSLv3	Kx=ECDH					Au=ECDSA	Enc=AES(256)		Mac=SHA1

DHE-RSA-AES256-SHA						SSLv3	Kx=DH							Au=RSA		Enc=AES(256)		Mac=SHA1

DHE-DSS-AES256-SHA						SSLv3	Kx=DH							Au=DSS		Enc=AES(256)		Mac=SHA1

DHE-RSA-CAMELLIA256-SHA	SSLv3	Kx=DH							Au=RSA		Enc=Camellia(256)

Mac=SHA1

...

The	default	value	for	cipher-list	is	"ALL".

SSL	Configuration

393

LDAP
This	feature	is	only	available	in	the	Enterprise	Edition.

Basics	Concepts

The	basic	idea	is	that	one	can	keep	the	user	authentication	setup	for	an	ArangoDB	instance	(single	or	cluster)	outside	of	ArangoDB	in	an
LDAP	server.	A	crucial	feature	of	this	is	that	one	can	add	and	withdraw	users	and	permissions	by	only	changing	the	LDAP	server	and	in
particular	without	touching	the	ArangoDB	instance.	Changes	will	be	effective	in	ArangoDB	within	a	few	minutes.

Since	there	are	many	different	possible	LDAP	setups,	we	must	support	a	variety	of	possibilities	for	authentication	and	authorization.
Here	is	a	short	overview:

To	map	ArangoDB	user	names	to	LDAP	users	there	are	two	authentication	methods	called	"simple"	and	"search".	In	the	"simple"
method	the	LDAP	bind	user	is	derived	from	the	ArangoDB	user	name	by	prepending	a	prefix	and	appending	a	suffix.	For	example,	a	user
"alice"	could	be	mapped	to	the	distinguished	name		uid=alice,dc=arangodb,dc=com		to	perform	the	LDAP	bind	and	authentication.	See
Simple	authentication	method	below	for	details	and	configuration	options.

In	the	"search"	method	there	are	two	phases.	In	Phase	1	a	generic	read-only	admin	LDAP	user	account	is	used	to	bind	to	the	LDAP
server	first	and	search	for	an	LDAP	user	matching	the	ArangoDB	user	name.	In	Phase	2,	the	actual	authentication	is	then	performed
against	the	LDAP	user	that	was	found	in	phase	1.	Both	methods	are	sensible	and	are	recommended	to	use	in	production.	See	Search
authentication	method	below	for	details	and	configuration	options.

Once	the	user	is	authenticated,	there	are	now	two	methods	for	authorization:	(a)	"roles	attribute"	and	(b)	"roles	search".

In	method	(a)	ArangoDB	acquires	a	list	of	roles	the	authenticated	LDAP	user	has	from	the	LDAP	server.	The	actual	access	rights	to
databases	and	collections	for	these	roles	are	configured	in	ArangoDB	itself.	The	user	effectively	has	the	union	of	all	access	rights	of	all
roles	he	has.	This	method	is	probably	the	most	common	one	for	production	use	cases.	It	combines	the	advantages	of	managing	users	and
roles	outside	of	ArangoDB	in	the	LDAP	server	with	the	fine	grained	access	control	within	ArangoDB	for	the	individual	roles.	See	Roles
attribute	below	for	details	about	method	(a)	and	for	the	associated	configuration	options.

Method	(b)	is	very	similar	and	only	differs	from	(a)	in	the	way	the	actual	list	of	roles	of	a	user	is	derived	from	the	LDAP	server.	See
Roles	search	below	for	details	about	method	(b)	and	for	the	associated	configuration	options.

Fundamental	options

The	fundamental	options	for	specifying	how	to	access	the	LDAP	server	are	the	following:

	--ldap.enabled		this	is	a	boolean	option	which	must	be	set	to		true		to	activate	the	LDAP	feature
	--ldap.server		is	a	string	specifying	the	host	name	or	IP	address	of	the	LDAP	server
	--ldap.port		is	an	integer	specifying	the	port	the	LDAP	server	is	running	on,	the	default	is	389
	--ldap.basedn		specifies	the	base	distinguished	name	under	which	the	search	takes	place	(can	alternatively	be	set	via		--ldap.url)
	--ldap.binddn		and		--ldap.bindpasswd		are	distinguished	name	and	password	for	a	read-only	LDAP	user	to	which	ArangoDB	can
bind	to	search	the	LDAP	server.	Note	that	it	is	necessary	to	configure	these	for	both	the	"simple"	and	"search"	authentication
methods,	since	even	in	the	"simple"	method,	ArangoDB	occasionally	has	to	refresh	the	authorization	information	from	the	LDAP
server	even	if	the	user	session	persists	and	no	new	authentication	is	needed!	It	is,	however,	allowed	to	leave	both	empty,	but	then
the	LDAP	server	must	be	readable	with	anonymous	access.
	--ldap.refresh-rate		is	a	floating	point	value	in	seconds.	The	default	is	300,	which	means	that	ArangoDB	will	refresh	the
authorization	information	for	authenticated	users	after	at	most	5	minutes.	This	means	that	changes	in	the	LDAP	server	like	removed
users	or	added	or	removed	roles	for	a	user	will	be	effective	after	at	most	5	minutes.

Note	that	the		--ldap.server		and		--ldap.port		options	can	alternatively	be	specified	in	the		--ldap.url		string	together	with	other
configuration	options.	For	details	see	Section	"LDAP	URLs"	below.

Here	is	an	example	on	how	to	configure	the	connection	to	the	LDAP	server,	with	anonymous	bind:

--ldap.enabled=true	\

--ldap.server=ldap.arangodb.com	\

LDAP	Options

394

--ldap.basedn=dc=arangodb,dc=com

With	this	configuration	ArangoDB	binds	anonymously	to	the	LDAP	server	on	host		ldap.arangodb.com		on	the	default	port	389	and
executes	all	searches	under	the	base	distinguished	name		dc=arangodb,dc=com	.

If	we	need	a	user	to	read	in	LDAP	here	is	the	example	for	it:

--ldap.enabled=true	\

--ldap.server=ldap.arangodb.com	\

--ldap.basedn=dc=arangodb,dc=com	\

--ldap.binddn=uid=arangoadmin,dc=arangodb,dc=com	\

--ldap.bindpasswd=supersecretpassword

The	connection	is	identical	but	the	searches	will	be	executed	with	the	given	distinguished	name	in		binddn	.

Note	here:	The	given	user	(or	the	anonymous	one)	needs	at	least	read	access	on	all	user	objects	to	find	them	and	in	the	case	of	Roles
search	also	read	access	on	the	objects	storing	the	roles.

Up	to	this	point	ArangoDB	can	now	connect	to	a	given	LDAP	server	but	it	is	not	yet	able	to	authenticate	users	properly	with	it.	For	this
pick	one	of	the	following	two	authentication	methods.

LDAP	URLs

As	an	alternative	one	can	specify	the	values	of	multiple	LDAP	related	configuration	options	by	specifying	a	single	LDAP	URL.	Here	is
an	example:

--ldap.url	ldap://ldap.arangodb.com:1234/dc=arangodb,dc=com?uid?sub

This	one	option	has	the	combined	effect	of	setting	the	following:

--ldap.server=ldap.arangodb.com	\

--ldap.port=1234	\

--ldap.basedn=dc=arangodb,dc=com	\

--ldap.searchAttribute=uid	\

--ldap.searchScope=sub

That	is,	the	LDAP	URL	consists	of	the	LDAP	server	and	port,	a	basedn,	a	search	attribute	and	a	scope	which	can	be	one	of	base,	one	or
sub.	There	is	also	the	possibility	to	use	the		ldaps		protocol	as	in:

--ldap.url	ldaps://ldap.arangodb.com:636/dc=arangodb,dc=com?uid?sub

This	does	exactly	the	same	as	the	one	above,	except	that	it	uses	the	LDAP	over	TLS	protocol.	This	is	a	non-standard	method	which	does
not	involve	using	the	STARTTLS	protocol.	Note	that	this	does	not	work	in	the	Windows	version!	We	suggest	to	use	the		ldap		protocol
and	STARTTLS	as	described	in	the	next	section.

TLS	options

TLS	is	not	supported	in	the	Windows	version	of	ArangoDB!

To	configure	the	usage	of	encrypted	TLS	to	communicate	with	the	LDAP	server	the	following	options	are	available:

	--ldap.tls		The	main	switch	to	active	TLS.	can	either	be		true		(use	TLS)	or		false		(do	not	use	TLS).	It	is	switched	off	by
default.	If	you	switch	this	on	and	do	not	use	the		ldaps		protocol	via	the	LDAP	URL,	then	ArangoDB	will	use	the		STARTTLS	
protocol	to	initiate	TLS.	This	is	the	recommended	approach.
	--ldap.tls-version		the	minimal	TLS	version	that	ArangoDB	should	accept.	Available	versions	are		1.0	,		1.1		and		1.2	.	The
default	is		1.2	.	If	your	LDAP	server	does	not	support	Version	1.2,	you	have	to	change	this	setting.
	--ldap.tls-cert-check-strategy		strategy	to	validate	the	LDAP	server	certificate.	Available	strategies	are		never	,		hard	,		demand	,
	allow		and		try	.	The	default	is		hard	.

LDAP	Options

395

	--ldap.tls-cacert-file		A	file	path	to	one	or	more	(concatenated)	certificate	authority	certificates	in	PEM	format.	As	default	no
file	path	is	configured.	This	certificate	is	used	to	validate	the	server	response.
	--ldap.tls-cacert-dir		A	directory	path	to	certificate	authority	certificates	in	c_rehash	format.	As	default	no	directory	path	is
configured.

Assuming	you	have	the	TLS	CAcert	file	that	is	given	to	the	server	at		/path/to/certificate.pem	,	here	is	an	example	on	how	to	configure
TLS:

--ldap.tls	true	\

--ldap.tls-cacert-file	/path/to/certificate.pem

You	can	use	TLS	with	any	of	the	following	authentication	mechanisms.

Authentication	methods

In	order	to	authenticate	users	in	LDAP	we	have	two	options	available.	We	need	to	pick	exactly	one	them.

Simple	authentication	method

The	simple	authentication	method	is	used	if	and	only	if	both	the		--ldap.prefix		and		--ldap.suffix		configuration	options	are	specified
and	are	non-empty.	In	all	other	cases	the	"search"	authentication	method	is	used.

In	the	"simple"	method	the	LDAP	bind	user	is	derived	from	the	ArangoDB	user	name	by	prepending	the	value	of	the		--ldap.prefix	
configuration	option	and	by	appending	the	value	of	the		--ldap.suffix		configuration	option.	For	example,	an	ArangoDB	user	"alice"
would	be	mapped	to	the	distinguished	name		uid=alice,dc=arangodb,dc=com		to	perform	the	LDAP	bind	and	authentication,	if		--
ldap.prefix		is	set	to		uid=		and		--ldap.suffix		is	set	to		,dc=arangodb,dc=com	.

ArangoDB	binds	to	the	LDAP	server	and	authenticates	with	the	distinguished	name	and	the	password	provided	by	the	client.	If	the
LDAP	server	successfully	verifies	the	password	then	the	user	is	authenticated.

If	you	want	to	use	this	method	add	the	following	example	to	your	ArangoDB	configuration	together	with	the	fundamental	configuration:

--ldap.prefix	uid=	\

--ldap.suffix	,dc=arangodb,dc=com

This	method	will	authenticate	an	LDAP	user	with	the	distinguished	name		{PREFIX}{USERNAME}{SUFFIX}	,	in	this	case	for	the	arango	user
	alice		it	will	search	for:		uid=alice,dc=arangodb,dc=com	.	This	distinguished	name	will	be	used	as		{{USER}}		for	the	roles	later	on.

Search	authentication	method

The	search	authentication	method	is	used	if	at	least	one	of	the	two	options		--ldap.prefix		and		--ldap.suffix		is	empty	or	not
specified.	ArangoDB	uses	the	LDAP	user	credentials	given	by	the		--ldap.binddn		and		--ldap.bindpasswd		to	perform	a	search	for
LDAP	users.	In	this	case,	the	values	of	the	options		--ldap.basedn	,		--ldap.search-attribute	,		--ldap.search-filter		and		--
ldap.search-scope		are	used	in	the	following	way:

	--ldap.search-scope		is	an	LDAP	search	scope	with	possible	values		base		(just	search	the	base	distinguished	name),		sub	
(recursive	search	under	the	base	distinguished	name)	or		one		(search	the	base's	immediate	children)	(default:		sub)
	--ldap.search-filter		is	an	LDAP	filter	expression	which	limits	the	set	of	LDAP	users	being	considered	(default:		objectClass=*	
which	means	all	objects)
	--ldap.search-attribute		specifies	the	attribute	in	the	user	objects	which	is	used	to	match	the	ArangoDB	user	name	(default:
	uid)

Here	is	an	example	on	how	to	configure	the	search	method.	Assume	we	have	users	like	the	following	stored	in	LDAP:

dn:	uid=alice,dc=arangodb,dc=com

uid:	alice

objectClass:	inetOrgPerson

objectClass:	organizationalPerson

objectClass:	top

objectClass:	person	

LDAP	Options

396

https://www.openssl.org/docs/man1.0.2/apps/c_rehash.html

Where		uid		is	the	username	used	in	ArangoDB,	and	we	only	search	for	objects	of	type		person		then	we	can	add	the	following	to	our
fundamental	LDAP	configuration:

--ldap.search-attribute=uid	\

--ldap.search-filter=objectClass=person

This	will	use	the		sub		search	scope	by	default	and	will	find	all		person		objects	where	the		uid		is	equal	to	the	given	username.	From
these	the		dn		will	be	extracted	and	used	as		{{USER}}		in	the	roles	later	on.

Fetching	roles	for	a	user
After	authentication,	the	next	step	is	to	derive	authorization	information	from	the	authenticated	LDAP	user.	In	order	to	fetch	the	roles
and	thereby	the	access	rights	for	a	user	we	again	have	two	possible	options	and	need	to	pick	one	of	them.	We	can	combine	each
authentication	method	with	each	role	method.	In	any	case	a	user	can	have	no	role	or	more	than	one.	If	a	user	has	no	role	the	user	will	not
get	any	access	to	ArangoDB	at	all.	If	a	user	has	multiple	roles	with	different	rights	then	the	rights	will	be	combined	and	the		strongest	
right	will	win.	Example:

	alice		has	the	roles		project-a		and		project-b	.
	project-a		has	no	access	to	collection		BData	.
	project-b		has		rw		access	to	collection		BData	,
hence		alice		will	have		rw		on		BData	.

Note	that	the	actual	database	and	collection	access	rights	will	be	configured	in	ArangoDB	itself	by	roles	in	the	users	module.	The	role
name	is	always	prefixed	with		:role:	,	e.g.:		:role:project-a		and		:role:project-b		respectively.	You	can	use	the	normal	user
permissions	tools	in	the	Web	interface	or		arangosh		to	configure	these.

Roles	attribute

The	most	important	method	for	this	is	to	read	off	the	roles	an	LDAP	user	is	associated	with	from	an	attribute	in	the	LDAP	user	object.	If
the	configuration	option

--ldap.roles-attribute-name

configuration	option	is	set,	then	the	value	of	that	option	is	the	name	of	the	attribute	being	used.

Here	is	the	example	to	add	to	the	overall	configuration:

--ldap.roles-attribute-name=role

If	we	have	the	user	stored	like	the	following	in	LDAP:

dn:	uid=alice,dc=arangodb,dc=com

uid:	alice

objectClass:	inetOrgPerson

objectClass:	organizationalPerson

objectClass:	top

objectClass:	person	

role:	project-a

role:	project-b

Then	the	request	will	grant	the	roles		project-a		and		project-b		for	the	user		alice		after	successful	authentication,	as	they	are	stored
within	the		role		on	the	user	object.

Roles	search

An	alternative	method	for	authorization	is	to	conduct	a	search	in	the	LDAP	server	for	LDAP	objects	representing	roles	a	user	has.	If	the
configuration	option

--ldap.roles-search=<search-expression>

LDAP	Options

397

is	given,	then	the	string		{USER}		in		<search-expression>		is	replaced	with	the	distinguished	name	of	the	authenticated	LDAP	user	and
the	resulting	search	expression	is	used	to	match	distinguished	names	of	LDAP	objects	representing	roles	of	that	user.

Example:

--ldap.roles-search	'(&(objectClass=groupOfUniqueNames)(uniqueMember={USER}))'

After	a	LDAP	user	was	found	and	authenticated	as	described	in	the	authentication	section	above	the		{USER}		in	the	search	expression
will	be	replaced	by	its	distinguished	name,	e.g.		uid=alice,dc=arangodb,dc=com	,	and	thus	with	the	above	search	expression	the	actual
search	expression	would	end	up	being:

(&(objectClass=groupOfUniqueNames)(uniqueMember=uid=alice,dc=arangodb,dc=com}))

This	search	will	find	all	objects	of		groupOfUniqueNames		where	at	least	one		uniqueMember		has	the		dn		of		alice	.	The	list	of	results	of
that	search	would	be	the	list	of	roles	given	by	the	values	of	the		dn		attributes	of	the	found	role	objects.

Role	transformations	and	filters

For	both	of	the	above	authorization	methods	there	are	further	configuration	options	to	tune	the	role	lookup.	In	this	section	we	describe
these	further	options:

	--ldap.roles-include		can	be	used	to	specify	a	regular	expression	that	is	used	to	filter	roles.	Only	roles	that	match	the	regular
expression	are	used.

	--ldap.roles-exclude		can	be	used	to	specify	a	regular	expression	that	is	used	to	filter	roles.	Only	roles	that	do	not	match	the
regular	expression	are	used.

	--ldap.roles-transformation		can	be	used	to	specify	a	regular	expression	and	replacement	text	as		/re/text/	.	This	regular
expression	is	applied	to	the	role	name	found.	This	is	especially	useful	in	the	roles-search	variant	to	extract	the	real	role	name	out	of
the		dn		value.

	--ldap.superuser-role		can	be	used	to	specify	the	role	associated	with	the	superuser.	Any	user	belonging	to	this	role	gains
superuser	status.	This	role	is	checked	after	applying	the	roles-transformation	expression.

Example:

--ldap.roles-include	"^arangodb"	

will	only	consider	roles	that	start	with		arangodb	.

--ldap.roles-exclude=disabled

will	only	consider	roles	that	do	contain	the	word		disabled	.

--ldap.superuser-role	"arangodb-admin"	

anyone	belonging	to	the	group	"arangodb-admin"	will	become	a	superuser.

The	roles-transformation	deserves	a	larger	example.	Assume	we	are	using	roles	search	and	have	stored	roles	in	the	following	way:

dn:	cn=project-a,dc=arangodb,dc=com

objectClass:	top

objectClass:	groupOfUniqueNames

uniqueMember:	uid=alice,dc=arangodb,dc=com

uniqueMember:	uid=bob,dc=arangodb,dc=com

cn:	project-a

description:	Internal	project	A

dn:	cn=project-b,dc=arangodb,dc=com

objectClass:	top

objectClass:	groupOfUniqueNames

uniqueMember:	uid=alice,dc=arangodb,dc=com

uniqueMember:	uid=charlie,dc=arangodb,dc=com

LDAP	Options

398

cn:	project-b

description:	External	project	B

In	this	case	we	will	find		cn=project-a,dc=arangodb,dc=com		as	one	role	of		alice	.	However	we	actually	want	to	configure	a	role	name:
	:role:project-a		which	is	easier	to	read	and	maintain	for	our	administrators.

If	we	now	apply	the	following	transformation:

--ldap.roles-transformation=/^cn=([^,]*),.*$/$1/

The	regex	will	extract	out		project-a		resp.		project-b		of	the		dn		attribute.

In	combination	with	the		superuser-role		we	could	make	all		project-a		members	arangodb	admins	by	using:

--ldap.roles-transformation=/^cn=([^,]*),.*$/$1/	\

--ldap.superuser-role=project-a

Complete	configuration	examples

In	this	section	we	would	like	to	present	complete	examples	for	a	successful	LDAP	configuration	of	ArangoDB.	All	of	the	following	are
just	combinations	of	the	details	described	above.

Simple	authentication	with	role-search,	using	anonymous	LDAP	user

This	example	connects	to	the	LDAP	server	with	an	anonymous	read-only	user.	We	use	the	simple	authentication	mode	(prefix		+
	suffix)	to	authenticate	users	and	apply	a	role	search	for		groupOfUniqueNames		objects	where	the	user	is	a		uniqueMember	.	Furthermore
we	extract	only	the		cn		out	of	the	distinguished	role	name.

--ldap.enabled=true	\

--ldap.server=ldap.arangodb.com	\

--ldap.basedn=dc=arangodb,dc=com	\

--ldap.prefix	uid=	\

--ldap.suffix	,dc=arangodb,dc=com	\

--ldap.roles-search	'(&(objectClass=groupOfUniqueNames)(uniqueMember={USER}))'	\

--ldap.roles-transformation=/^cn=([^,]*),.*$/$1/	\

--ldap.superuser-role=project-a

Search	authentication	with	roles	attribute	using	LDAP	admin	user	having	TLS	enabled

This	example	connects	to	the	LDAP	server	with	a	given	distinguished	name	of	an	admin	user	+	password.	Furthermore	we	activate	TLS
and	give	the	certificate	file	to	validate	server	responses.	We	use	the	search	authentication	searching	for	the		uid		attribute	of		person	
objects.	These		person		objects	have		role		attribute(s)	containing	the	role(s)	of	a	user.

--ldap.enabled=true	\

--ldap.server=ldap.arangodb.com	\

--ldap.basedn=dc=arangodb,dc=com	\

--ldap.binddn=uid=arangoadmin,dc=arangodb,dc=com	\

--ldap.bindpasswd=supersecretpassword	\

--ldap.tls	true	\

--ldap.tls-cacert-file	/path/to/certificate.pem	\

--ldap.search-attribute=uid	\

--ldap.search-filter=objectClass=person	\

--ldap.roles-attribute-name=role

LDAP	Options

399

Command-Line	Options	for	Logging

Log	levels	and	topics

ArangoDB's	log	output	is	grouped	into	topics.		--log.level		can	be	specified	multiple	times	at	startup,	for	as	many	topics	as	needed.
The	log	verbosity	and	output	files	can	be	adjusted	per	log	topic.	For	example

--log.level	startup=trace	--log.level	queries=trace	--log.level	info

will	log	messages	concerning	startup	at	trace	level,	AQL	queries	at	trace	level	and	everything	else	at	info	level.

In	a	configuration	file,	it	is	written	like	this:

[log]

level	=	startup=trace

level	=	queries=trace

level	=	info

Note	that	there	must	not	be	any	whitespace	around	the	second		=	.

The	available	log	levels	are:

	fatal	:	only	logs	fatal	errors
	error	:	only	logs	errors
	warning	:	only	logs	warnings	and	errors
	info	:	logs	information	messages,	warnings	and	errors
	debug	:	logs	debug	and	information	messages,	warnings	and	errors
	trace	:	logs	trace,	debug	and	information	messages,	warnings	and	errors

Note	that	levels		debug		and		trace		will	be	very	verbose.

Some	relevant	log	topics	available	in	ArangoDB	3	are:

	agency	:	information	about	the	agency
	collector	:	information	about	the	WAL	collector's	state
	compactor	:	information	about	the	collection	datafile	compactor
	datafiles	:	datafile-related	operations
	mmap	:	information	about	memory-mapping	operations	(including	msync)
	performance	:	performance-releated	messages
	queries	:	executed	AQL	queries,	slow	queries
	replication	:	replication-related	info
	requests	:	HTTP	requests
	startup	:	information	about	server	startup	and	shutdown
	threads	:	information	about	threads

Log	outputs

The	log	option		--log.output	<definition>		allows	directing	the	global	or	per-topic	log	output	to	different	outputs.	The	output	definition
	<definition>		can	be	one	of

	-		for	stdin
	+		for	stderr
	syslog://<syslog-facility>	

	syslog://<syslog-facility>/<application-name>	

	file://<relative-path>	

The	option	can	be	specified	multiple	times	in	order	to	configure	the	output	for	different	log	topics.	To	set	up	a	per-topic	output
configuration,	use		--log.output	<topic>=<definition>	,	e.g.

Logging	Options

400

queries=file://queries.txt

logs	all	queries	to	the	file	"queries.txt".

The	old	option		--log.file		is	still	available	in	3.0	for	convenience	reasons.	In	3.0	it	is	a	shortcut	for	the	more	general	option		--
log.output	file://filename	.

The	old	option		--log.requests-file		is	still	available	in	3.0.	It	is	now	a	shortcut	for	the	more	general	option		--log.output
requests=file://...	.

Using		--log.output		also	allows	directing	log	output	to	different	files	based	on	topics.	For	example,	to	log	all	AQL	queries	to	a	file
"queries.log"	one	can	use	the	options:

--log.level	queries=trace	--log.output	queries=file:///path/to/queries.log

To	additionally	log	HTTP	request	to	a	file	named	"requests.log"	add	the	options:

--log.level	requests=info	--log.output	requests=file:///path/to/requests.log

Forcing	direct	output

The	option		--log.force-direct		can	be	used	to	disable	logging	in	an	extra	logging	thread.	If	set	to		true	,	any	log	messages	are
immediately	printed	in	the	thread	that	triggered	the	log	message.	This	is	non-optimal	for	performance	but	can	aid	debugging.	If	set	to
	false	,	log	messages	are	handed	off	to	an	extra	logging	thread,	which	asynchronously	writes	the	log	messages.

Local	time

Log	dates	and	times	in	local	time	zone:		--log.use-local-time	

If	specified,	all	dates	and	times	in	log	messages	will	use	the	server's	local	time-zone.	If	not	specified,	all	dates	and	times	in	log	messages
will	be	printed	in	UTC	/	Zulu	time.	The	date	and	time	format	used	in	logs	is	always		YYYY-MM-DD	HH:MM:SS	,	regardless	of	this	setting.	If
UTC	time	is	used,	a		Z		will	be	appended	to	indicate	Zulu	time.

Color	logging
	--log.color	value	

Logging	to	terminal	output	is	by	default	colored.	Colorful	logging	can	be	turned	off	by	setting	the	value	to	false.

Source	file	and	Line	number

Log	line	number:		--log.line-number	

Normally,	if	an	human	readable	fatal,	error,	warning	or	info	message	is	logged,	no	information	about	the	file	and	line	number	is	provided.
The	file	and	line	number	is	only	logged	for	debug	and	trace	message.	This	option	can	be	use	to	always	log	these	pieces	of	information.

Prefix

Log	prefix:		--log.prefix	prefix	

This	option	is	used	specify	an	prefix	to	logged	text.

Threads

Log	thread	identifier:		--log.thread	true	

Whenever	log	output	is	generated,	the	process	ID	is	written	as	part	of	the	log	information.	Setting	this	option	appends	the	thread	id	of
the	calling	thread	to	the	process	id.	For	example,

2010-09-20T13:04:01Z	[19355]	INFO	ready	for	business

Logging	Options

401

when	no	thread	is	logged	and

2010-09-20T13:04:17Z	[19371-18446744072487317056]	ready	for	business

when	this	command	line	option	is	set.

To	also	log	thread	names,	it	is	possible	to	set	the		--log.thread-name		option.	By	default		--log.thread-name		is	set	to		false	.

Role

Log	role:		--log.role	true	

When	set	to		true	,	this	option	will	make	the	ArangoDB	logger	print	a	single	character	with	the	server's	role	into	each	logged	message.
The	roles	are:

U:	undefined/unclear	(used	at	startup)
S:	single	server
C:	coordinator
P:	primary
A:	agent

The	default	value	for	this	option	is		false	,	so	no	roles	will	be	logged.

Logging	Options

402

General	Options

Database	Upgrade

	--database.auto-upgrade	

Specifying	this	option	will	make	the	server	perform	a	database	upgrade	instead	of	starting	the	server	normally.	A	database	upgrade	will
first	compare	the	version	number	stored	in	the	file	VERSION	in	the	database	directory	with	the	current	server	version.

If	the	version	number	found	in	the	database	directory	is	higher	than	the	version	number	the	server	is	running,	the	server	expects	this	is	an
unintentional	downgrade	and	will	warn	about	this.	Using	the	server	in	these	conditions	is	neither	recommended	nor	supported.

If	the	version	number	found	in	the	database	directory	is	lower	than	the	version	number	the	server	is	running,	the	server	will	check
whether	there	are	any	upgrade	tasks	to	perform.	It	will	then	execute	all	required	upgrade	tasks	and	print	their	statuses.	If	one	of	the
upgrade	tasks	fails,	the	server	will	exit	with	an	error.	Re-starting	the	server	with	the	upgrade	option	will	then	again	trigger	the	upgrade
check	and	execution	until	the	problem	is	fixed.

Whether	or	not	this	option	is	specified,	the	server	will	always	perform	a	version	check	on	startup.	Running	the	server	with	a	non-
matching	version	number	in	the	VERSION	file	will	make	the	server	refuse	to	start.

Storage	Engine

As	of	ArangoDB	3.2	two	storage	engines	are	supported.	The	"traditional"	engine	is	called		MMFiles	,	which	is	also	the	default	storage
engine.

An	alternative	engine	based	on	RocksDB	is	also	provided	and	can	be	turned	on	manually.

One	storage	engine	type	is	supported	per	server	per	installation.	Live	switching	of	storage	engines	on	already	installed	systems	isn't
supported.	Configuring	the	wrong	engine	(not	matching	the	previously	used	one)	will	result	in	the	server	refusing	to	start.	You	may
however	use		auto		to	let	ArangoDB	choose	the	previously	used	one.

	--server.storage-engine	[auto|mmfiles|rocksdb]	

Daemon

	--daemon	

Runs	the	server	as	a	daemon	(as	a	background	process).	This	parameter	can	only	be	set	if	the	pid	(process	id)	file	is	specified.	That	is,
unless	a	value	to	the	parameter	pid-file	is	given,	then	the	server	will	report	an	error	and	exit.

Default	Language
	--default-language	default-language	

The	default	language	ist	used	for	sorting	and	comparing	strings.	The	language	value	is	a	two-letter	language	code	(ISO-639)	or	it	is
composed	by	a	two-letter	language	code	with	and	a	two	letter	country	code	(ISO-3166).	Valid	languages	are	"de",	"en",	"en_US"	or
"en_UK".

The	default	default-language	is	set	to	be	the	system	locale	on	that	platform.

Supervisor

	--supervisor	

Executes	the	server	in	supervisor	mode.	In	the	event	that	the	server	unexpectedly	terminates	due	to	an	internal	error,	the	supervisor	will
automatically	restart	the	server.	Setting	this	flag	automatically	implies	that	the	server	will	run	as	a	daemon.	Note	that,	as	with	the	daemon
flag,	this	flag	requires	that	the	pid-file	parameter	will	set.

unix>	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

2012-06-27T15:58:28Z	[10133]	INFO	starting	up	in	supervisor	mode

As	can	be	seen	(e.g.	by	executing	the	ps	command),	this	will	start	a	supervisor	process	and	the	actual	database	process:

General	Options

403

http://rocksdb.org

unix>	ps	fax	|	grep	arangod

10137	?								Ssl				0:00	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

10142	?								Sl					0:00		_	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

When	the	database	process	terminates	unexpectedly,	the	supervisor	process	will	start	up	a	new	database	process:

>	kill	-SIGSEGV	10142

>	ps	fax	|	grep	arangod

10137	?								Ssl				0:00	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

10168	?								Sl					0:00		_	./arangod	--supervisor	--pid-file	/var/run/arangodb.pid	/tmp/vocbase/

User	identity

	--uid	uid	

The	name	(identity)	of	the	user	the	server	will	run	as.	If	this	parameter	is	not	specified,	the	server	will	not	attempt	to	change	its	UID,	so
that	the	UID	used	by	the	server	will	be	the	same	as	the	UID	of	the	user	who	started	the	server.	If	this	parameter	is	specified,	then	the
server	will	change	its	UID	after	opening	ports	and	reading	configuration	files,	but	before	accepting	connections	or	opening	other	files
(such	as	recovery	files).	This	is	useful	when	the	server	must	be	started	with	raised	privileges	(in	certain	environments)	but	security
considerations	require	that	these	privileges	be	dropped	once	the	server	has	started	work.

Observe	that	this	parameter	cannot	be	used	to	bypass	operating	system	security.	In	general,	this	parameter	(and	its	corresponding
relative	gid)	can	lower	privileges	but	not	raise	them.

Group	identity

	--gid	gid	

The	name	(identity)	of	the	group	the	server	will	run	as.	If	this	parameter	is	not	specified,	then	the	server	will	not	attempt	to	change	its
GID,	so	that	the	GID	the	server	runs	as	will	be	the	primary	group	of	the	user	who	started	the	server.	If	this	parameter	is	specified,	then
the	server	will	change	its	GID	after	opening	ports	and	reading	configuration	files,	but	before	accepting	connections	or	opening	other	files
(such	as	recovery	files).

This	parameter	is	related	to	the	parameter	uid.

Process	identity

	--pid-file	filename	

The	name	of	the	process	ID	file	to	use	when	running	the	server	as	a	daemon.	This	parameter	must	be	specified	if	either	the	flag	daemon
or	supervisor	is	set.

Check	max	memory	mappings

	--server.check-max-memory-mappings		can	be	used	on	Linux	to	make	arangod	check	the	number	of	memory	mappings	currently	used	by
the	process	(as	reported	in	/proc//maps)	and	compare	it	with	the	maximum	number	of	allowed	mappings	as	determined	by
/proc/sys/vm/max_map_count.	If	the	current	number	of	memory	mappings	gets	near	the	maximum	allowed	value,	arangod	will	log	a
warning	and	disallow	the	creation	of	further	V8	contexts	temporarily	until	the	current	number	of	mappings	goes	down	again.

If	the	option	is	set	to	false,	no	such	checks	will	be	performed.	All	non-Linux	operating	systems	do	not	provide	this	option	and	will	ignore
it.

Console
	--console	

Runs	the	server	in	an	exclusive	emergency	console	mode.	When	starting	the	server	with	this	option,	the	server	is	started	with	an
interactive	JavaScript	emergency	console,	with	all	networking	and	HTTP	interfaces	of	the	server	disabled.

No	requests	can	be	made	to	the	server	in	this	mode,	and	the	only	way	to	work	with	the	server	in	this	mode	is	by	using	the	emergency
console.	Note	that	the	server	cannot	be	started	in	this	mode	if	it	is	already	running	in	this	or	another	mode.

General	Options

404

Random	Generator

	--random.generator	arg	

The	argument	is	an	integer	(1,2,3	or	4)	which	sets	the	manner	in	which	random	numbers	are	generated.	The	default	method	(3)	is	to	use
the	a	non-blocking	random	(or	pseudorandom)	number	generator	supplied	by	the	operating	system.

Specifying	an	argument	of	2,	uses	a	blocking	random	(or	pseudorandom)	number	generator.	Specifying	an	argument	1	sets	a
pseudorandom	number	generator	using	an	implication	of	the	Mersenne	Twister	MT19937	algorithm.	Algorithm	4	is	a	combination	of	the
blocking	random	number	generator	and	the	Mersenne	Twister.

Enable/disable	authentication

	--server.authentication	

Setting	this	option	to	false	will	turn	off	authentication	on	the	server	side	so	all	clients	can	execute	any	action	without	authorization	and
privilege	checks.

The	default	value	is	true.

JWT	Secret

	--server.jwt-secret	secret	

ArangoDB	will	use	JWTs	to	authenticate	requests.	Using	this	option	lets	you	specify	a	JWT.

In	single	server	setups	and	when	not	specifying	this	secret	ArangoDB	will	generate	a	secret.

In	cluster	deployments	which	have	authentication	enabled	a	secret	must	be	set	consistently	across	all	cluster	tasks	so	they	can	talk	to
each	other.

Enable/disable	authentication	for	UNIX	domain	sockets

	--server.authentication-unix-sockets	value	

Setting	value	to	true	will	turn	off	authentication	on	the	server	side	for	requests	coming	in	via	UNIX	domain	sockets.	With	this	flag
enabled,	clients	located	on	the	same	host	as	the	ArangoDB	server	can	use	UNIX	domain	sockets	to	connect	to	the	server	without
authentication.	Requests	coming	in	by	other	means	(e.g.	TCP/IP)	are	not	affected	by	this	option.

The	default	value	is	false.

Note:	this	option	is	only	available	on	platforms	that	support	UNIX	domain	sockets.

Enable/disable	authentication	for	system	API	requests	only
	--server.authentication-system-only	boolean	

Controls	whether	incoming	requests	need	authentication	only	if	they	are	directed	to	the	ArangoDB's	internal	APIs	and	features,	located	at
/_api/,	/_admin/	etc.

If	the	flag	is	set	to	true,	then	HTTP	authentication	is	only	required	for	requests	going	to	URLs	starting	with	/_,	but	not	for	other	URLs.
The	flag	can	thus	be	used	to	expose	a	user-made	API	without	HTTP	authentication	to	the	outside	world,	but	to	prevent	the	outside
world	from	using	the	ArangoDB	API	and	the	admin	interface	without	authentication.	Note	that	checking	the	URL	is	performed	after	any
database	name	prefix	has	been	removed.	That	means	when	the	actual	URL	called	is	/_db/_system/myapp/myaction,	the	URL
/myapp/myaction	will	be	used	for	authentication-system-only	check.

The	default	is	true.

Note	that	authentication	still	needs	to	be	enabled	for	the	server	regularly	in	order	for	HTTP	authentication	to	be	forced	for	the	ArangoDB
API	and	the	web	interface.	Setting	only	this	flag	is	not	enough.

You	can	control	ArangoDB's	general	authentication	feature	with	the	--server.authentication	flag.

Enable	authentication	cache	timeout
	--server.authentication-timeout	value	

General	Options

405

Sets	the	cache	timeout	to	value	(in	seconds).	This	is	only	necessary	if	you	use	an	external	authentication	system	like	LDAP.

Enable	local	authentication

	--server.local-authentication	value	

If	set	to	false	only	use	the	external	authentication	system.	If	true	also	use	the	local	_users	collections.

The	default	value	is	true.

Enable/disable	replication	applier
	--database.replication-applier	flag	

If	false	the	server	will	start	with	replication	appliers	turned	off,	even	if	the	replication	appliers	are	configured	with	the	autoStart	option.
Using	the	command-line	option	will	not	change	the	value	of	the	autoStart	option	in	the	applier	configuration,	but	will	suppress	auto-
starting	the	replication	applier	just	once.

If	the	option	is	not	used,	ArangoDB	will	read	the	applier	configuration	from	the	file	REPLICATION-APPLIER-CONFIG	on	startup,	and
use	the	value	of	the	autoStart	attribute	from	this	file.

The	default	is	true.

Keep-alive	timeout

	--http.keep-alive-timeout	

Allows	to	specify	the	timeout	for	HTTP	keep-alive	connections.	The	timeout	value	must	be	specified	in	seconds.	Idle	keep-alive
connections	will	be	closed	by	the	server	automatically	when	the	timeout	is	reached.	A	keep-alive-timeout	value	0	will	disable	the	keep
alive	feature	entirely.

Hide	Product	header

	--http.hide-product-header	

If	true,	the	server	will	exclude	the	HTTP	header	"Server:	ArangoDB"	in	HTTP	responses.	If	set	to	false,	the	server	will	send	the	header	in
responses.

The	default	is	false.

Allow	method	override

	--http.allow-method-override	

When	this	option	is	set	to	true,	the	HTTP	request	method	will	optionally	be	fetched	from	one	of	the	following	HTTP	request	headers	if
present	in	the	request:

x-http-method
x-http-method-override
x-method-override

If	the	option	is	set	to	true	and	any	of	these	headers	is	set,	the	request	method	will	be	overridden	by	the	value	of	the	header.	For	example,
this	allows	issuing	an	HTTP	DELETE	request	which	to	the	outside	world	will	look	like	an	HTTP	GET	request.	This	allows	bypassing
proxies	and	tools	that	will	only	let	certain	request	types	pass.

Setting	this	option	to	true	may	impose	a	security	risk	so	it	should	only	be	used	in	controlled	environments.

The	default	value	for	this	option	is	false.

Server	threads

	--server.threads	number	

Specifies	the	number	of	threads	that	are	spawned	to	handle	requests.

General	Options

406

Toggling	server	statistics

	--server.statistics	value	

If	this	option	is	value	is	false,	then	ArangoDB's	statistics	gathering	is	turned	off.	Statistics	gathering	causes	regular	CPU	activity	so	using
this	option	to	turn	it	off	might	relieve	heavy-loaded	instances	a	bit.

Session	timeout

time	to	live	for	server	sessions		--server.session-timeout	value	

The	timeout	for	web	interface	sessions,	using	for	authenticating	requests	to	the	web	interface	(/_admin/aardvark)	and	related	areas.

Sessions	are	only	used	when	authentication	is	turned	on.

Foxx	queues

enable	or	disable	the	Foxx	queues	feature		--foxx.queues	flag	

If	true,	the	Foxx	queues	will	be	available	and	jobs	in	the	queues	will	be	executed	asynchronously.

The	default	is	true.	When	set	to		false		the	queue	manager	will	be	disabled	and	any	jobs	are	prevented	from	being	processed,	which	may
reduce	CPU	load	a	bit.

Foxx	queues	poll	interval

poll	interval	for	Foxx	queues		--foxx.queues-poll-interval	value	

The	poll	interval	for	the	Foxx	queues	manager.	The	value	is	specified	in	seconds.	Lower	values	will	mean	more	immediate	and	more
frequent	Foxx	queue	job	execution,	but	will	make	the	queue	thread	wake	up	and	query	the	queues	more	often.	When	set	to	a	low	value,
the	queue	thread	might	cause	CPU	load.

The	default	is	1	second.	If	Foxx	queues	are	not	used	much,	then	this	value	may	be	increased	to	make	the	queues	thread	wake	up	less.

Directory

	--database.directory	directory	

The	directory	containing	the	collections	and	datafiles.	Defaults	to	/var/lib/arango.	When	specifying	the	database	directory,	please	make
sure	the	directory	is	actually	writable	by	the	arangod	process.

You	should	further	not	use	a	database	directory	which	is	provided	by	a	network	filesystem	such	as	NFS.	The	reason	is	that	networked
filesystems	might	cause	inconsistencies	when	there	are	multiple	parallel	readers	or	writers	or	they	lack	features	required	by	arangod	(e.g.
flock()).

	directory	

When	using	the	command	line	version,	you	can	simply	supply	the	database	directory	as	argument.

Examples

>	./arangod	--server.endpoint	tcp://127.0.0.1:8529	--database.directory

/tmp/vocbase

Journal	size

	--database.maximal-journal-size	size	

Maximal	size	of	journal	in	bytes.	Can	be	overwritten	when	creating	a	new	collection.	Note	that	this	also	limits	the	maximal	size	of	a	single
document.

The	default	is	32MB.

Wait	for	sync

General	Options

407

default	wait	for	sync	behavior		--database.wait-for-sync	boolean	

Default	wait-for-sync	value.	Can	be	overwritten	when	creating	a	new	collection.

The	default	is	false.

Force	syncing	of	properties

force	syncing	of	collection	properties	to	disk		--database.force-sync-properties	boolean	

Force	syncing	of	collection	properties	to	disk	after	creating	a	collection	or	updating	its	properties.

If	turned	off,	no	fsync	will	happen	for	the	collection	and	database	properties	stored	in		parameter.json		files	in	the	file	system.	Turning
off	this	option	will	speed	up	workloads	that	create	and	drop	a	lot	of	collections	(e.g.	test	suites).

The	default	is	true.

Limiting	memory	for	AQL	queries

	--query.memory-limit	value	

The	default	maximum	amount	of	memory	(in	bytes)	that	a	single	AQL	query	can	use.	When	a	single	AQL	query	reaches	the	specified
limit	value,	the	query	will	be	aborted	with	a	resource	limit	exceeded	exception.	In	a	cluster,	the	memory	accounting	is	done	per	shard,	so
the	limit	value	is	effectively	a	memory	limit	per	query	per	shard.

The	global	limit	value	can	be	overriden	per	query	by	setting	the	memoryLimit	option	value	for	individual	queries	when	running	an	AQL
query.

The	default	value	is	0,	meaning	that	there	is	no	memory	limit.

Turning	AQL	warnings	into	errors

	--query.fail-on-warning	value	

When	set	to	true,	AQL	queries	that	produce	warnings	will	instantly	abort	and	throw	an	exception.	This	option	can	be	set	to	catch
obvious	issues	with	AQL	queries	early.	When	set	to	false,	AQL	queries	that	produce	warnings	will	not	abort	and	return	the	warnings
along	with	the	query	results.	The	option	can	also	be	overridden	for	each	individual	AQL	query.

Enable/disable	AQL	query	tracking
	--query.tracking	flag	

If	true,	the	server's	AQL	slow	query	tracking	feature	will	be	enabled	by	default.	Tracking	of	queries	can	be	disabled	by	setting	the	option
to	false.

The	default	is	true.

Enable/disable	tracking	of	bind	variables	in	AQL	queries
	--query.tracking-with-bindvars	flag	

If	true,	then	the	bind	variables	will	be	tracked	for	all	running	and	slow	AQL	queries.	This	option	only	has	an	effect	if		--query.tracking	
was	set	to	true.	Tracking	of	bind	variables	can	be	disabled	by	setting	the	option	to	false.

The	default	is	true.

Threshold	for	slow	AQL	queries

	--query.slow-threshold	value	

By	setting	value	it	can	be	controlled	after	what	execution	time	an	AQL	query	is	considered	"slow".	Any	slow	queries	that	exceed	the
execution	time	specified	in	value	will	be	logged	when	they	are	finished.	The	threshold	value	is	specified	in	seconds.	Tracking	of	slow
queries	can	be	turned	off	entirely	by	setting	the	option		--query.tracking		to	false.

The	default	value	is	10.0.

General	Options

408

Throw	collection	not	loaded	error

	--database.throw-collection-not-loaded-error	flag	

Accessing	a	not-yet	loaded	collection	will	automatically	load	a	collection	on	first	access.	This	flag	controls	what	happens	in	case	an
operation	would	need	to	wait	for	another	thread	to	finalize	loading	a	collection.	If	set	to	true,	then	the	first	operation	that	accesses	an
unloaded	collection	will	load	it.	Further	threads	that	try	to	access	the	same	collection	while	it	is	still	loading	will	get	an	error	(1238,
collection	not	loaded).	When	the	initial	operation	has	completed	loading	the	collection,	all	operations	on	the	collection	can	be	carried	out
normally,	and	error	1238	will	not	be	thrown.

If	set	to	false,	the	first	thread	that	accesses	a	not-yet	loaded	collection	will	still	load	it.	Other	threads	that	try	to	access	the	collection
while	loading	will	not	fail	with	error	1238	but	instead	block	until	the	collection	is	fully	loaded.	This	configuration	might	lead	to	all	server
threads	being	blocked	because	they	are	all	waiting	for	the	same	collection	to	complete	loading.	Setting	the	option	to	true	will	prevent	this
from	happening,	but	requires	clients	to	catch	error	1238	and	react	on	it	(maybe	by	scheduling	a	retry	for	later).

The	default	value	is	false.

AQL	Query	caching	mode
	--query.cache-mode	

Toggles	the	AQL	query	cache	behavior.	Possible	values	are:

off:	do	not	use	query	cache
on:	always	use	query	cache,	except	for	queries	that	have	their	cache	attribute	set	to	false
demand:	use	query	cache	only	for	queries	that	have	their	cache	attribute	set	to	true

AQL	Query	cache	size

	--query.cache-entries	

Maximum	number	of	query	results	that	can	be	stored	per	database-specific	query	cache.	If	a	query	is	eligible	for	caching	and	the	number
of	items	in	the	database's	query	cache	is	equal	to	this	threshold	value,	another	cached	query	result	will	be	removed	from	the	cache.

This	option	only	has	an	effect	if	the	query	cache	mode	is	set	to	either	on	or	demand.

JavaScript	code	execution

	--javascript.allow-admin-execute	

This	option	can	be	used	to	control	whether	user-defined	JavaScript	code	is	allowed	to	be	executed	on	server	by	sending	via	HTTP	to	the
API	endpoint		/_admin/execute		with	an	authenticated	user	account.	The	default	value	is	false,	which	disables	the	execution	of	user-
defined	code.	This	is	also	the	recommended	setting	for	production.	In	test	environments,	it	may	be	convenient	to	turn	the	option	on	in
order	to	send	arbitrary	setup	or	teardown	commands	for	execution	on	the	server.

V8	contexts
	--javascript.v8-contexts	number	

Specifies	the	maximum	number	of	V8	contexts	that	are	created	for	executing	JavaScript	code.	More	contexts	allow	executing	more
JavaScript	actions	in	parallel,	provided	that	there	are	also	enough	threads	available.	Please	note	that	each	V8	context	will	use	a	substantial
amount	of	memory	and	requires	periodic	CPU	processing	time	for	garbage	collection.

Note	that	this	value	configures	the	maximum	number	of	V8	contexts	that	can	be	used	in	parallel.	Upon	server	start	only	as	many	V8
contexts	will	be	created	as	are	configured	in	option		--javascript.v8-contexts-minimum	.	The	actual	number	of	available	V8	contexts	may
float	at	runtime	between		--javascript.v8-contexts-minimum		and		--javascript.v8-contexts	.	When	there	are	unused	V8	contexts	that
linger	around,	the	server's	garbage	collector	thread	will	automatically	delete	them.

	--javascript.v8-contexts-minimum	number	

Specifies	the	minimum	number	of	V8	contexts	that	will	be	present	at	any	time	the	server	is	running.	The	actual	number	of	V8	contexts
will	never	drop	below	this	value,	but	it	may	go	up	as	high	as	specified	via	the	option		--javascript.v8-contexts	.

When	there	are	unused	V8	contexts	that	linger	around	and	the	number	of	V8	contexts	is	greater	than		--javascript.v8-contexts-minimum	
the	server's	garbage	collector	thread	will	automatically	delete	them.

General	Options

409

	--javascript.v8-contexts-max-invocations	

Specifies	the	maximum	number	of	invocations	after	which	a	used	V8	context	is	disposed.	The	default	value	of		--javascript.v8-contexts-
max-invocations		is	0,	meaning	that	the	maximum	number	of	invocations	per	context	is	unlimited.

	--javascript.v8-contexts-max-age	

Specifies	the	time	duration	(in	seconds)	after	which	time	a	V8	context	is	disposed	automatically	after	its	creation.	If	the	time	is	elapsed,
the	context	will	be	disposed.	The	default	value	for		--javascript.v8-contexts-max-age		is	60	seconds.

If	both		--javascript.v8-contexts-max-invocations		and		--javascript.v8-contexts-max-age		are	set,	then	the	context	will	be	destroyed
when	either	of	the	specified	threshold	values	is	reached.

Garbage	collection	frequency	(time-based)
	--javascript.gc-frequency	frequency	

Specifies	the	frequency	(in	seconds)	for	the	automatic	garbage	collection	of	JavaScript	objects.	This	setting	is	useful	to	have	the	garbage
collection	still	work	in	periods	with	no	or	little	numbers	of	requests.

Garbage	collection	interval	(request-based)

	--javascript.gc-interval	interval	

Specifies	the	interval	(approximately	in	number	of	requests)	that	the	garbage	collection	for	JavaScript	objects	will	be	run	in	each	thread.

V8	options
	--javascript.v8-options	options	

Optional	arguments	to	pass	to	the	V8	Javascript	engine.	The	V8	engine	will	run	with	default	settings	unless	explicit	options	are	specified
using	this	option.	The	options	passed	will	be	forwarded	to	the	V8	engine	which	will	parse	them	on	its	own.	Passing	invalid	options	may
result	in	an	error	being	printed	on	stderr	and	the	option	being	ignored.

Options	need	to	be	passed	in	one	string,	with	V8	option	names	being	prefixed	with	double	dashes.	Multiple	options	need	to	be	separated
by	whitespace.	To	get	a	list	of	all	available	V8	options,	you	can	use	the	value	"--help" 	as	follows:

--javascript.v8-options="--help"

Another	example	of	specific	V8	options	being	set	at	startup:

--javascript.v8-options="--log"

Names	and	features	or	usable	options	depend	on	the	version	of	V8	being	used,	and	might	change	in	the	future	if	a	different	version	of	V8
is	being	used	in	ArangoDB.	Not	all	options	offered	by	V8	might	be	sensible	to	use	in	the	context	of	ArangoDB.	Use	the	specific	options
only	if	you	are	sure	that	they	are	not	harmful	for	the	regular	database	operation.

General	Options

410

MMFiles	Write-ahead	log	options
Since	ArangoDB	2.2,	the	MMFiles	storage	engine	will	write	all	data-modification	operations	into	its	write-ahead	log.

With	ArangoDB	3.2	another	Storage	engine	option	becomes	available	-	RocksDB.	In	case	of	using	RocksDB	most	of	the	subsequent
options	don't	have	a	useful	meaning.

The	write-ahead	log	is	a	sequence	of	logfiles	that	are	written	in	an	append-only	fashion.	Full	logfiles	will	eventually	be	garbage-collected,
and	the	relevant	data	might	be	transferred	into	collection	journals	and	datafiles.	Unneeded	and	already	garbage-collected	logfiles	will	either
be	deleted	or	kept	for	the	purpose	of	keeping	a	replication	backlog.

Directory

The	WAL	logfiles	directory:		--wal.directory	

Specifies	the	directory	in	which	the	write-ahead	logfiles	should	be	stored.	If	this	option	is	not	specified,	it	defaults	to	the	subdirectory
journals	in	the	server's	global	database	directory.	If	the	directory	is	not	present,	it	will	be	created.

Logfile	size

the	size	of	each	WAL	logfile		--wal.logfile-size	

Specifies	the	filesize	(in	bytes)	for	each	write-ahead	logfile.	The	logfile	size	should	be	chosen	so	that	each	logfile	can	store	a	considerable
amount	of	documents.	The	bigger	the	logfile	size	is	chosen,	the	longer	it	will	take	to	fill	up	a	single	logfile,	which	also	influences	the	delay
until	the	data	in	a	logfile	will	be	garbage-collected	and	written	to	collection	journals	and	datafiles.	It	also	affects	how	long	logfile	recovery
will	take	at	server	start.

Allow	oversize	entries

whether	or	not	oversize	entries	are	allowed		--wal.allow-oversize-entries	

Whether	or	not	it	is	allowed	to	store	individual	documents	that	are	bigger	than	would	fit	into	a	single	logfile.	Setting	the	option	to	false
will	make	such	operations	fail	with	an	error.	Setting	the	option	to	true	will	make	such	operations	succeed,	but	with	a	high	potential
performance	impact.	The	reason	is	that	for	each	oversize	operation,	an	individual	oversize	logfile	needs	to	be	created	which	may	also
block	other	operations.	The	option	should	be	set	to	false	if	it	is	certain	that	documents	will	always	have	a	size	smaller	than	a	single
logfile.

Number	of	reserve	logfiles

maximum	number	of	reserve	logfiles		--wal.reserve-logfiles	

The	maximum	number	of	reserve	logfiles	that	ArangoDB	will	create	in	a	background	process.	Reserve	logfiles	are	useful	in	the	situation
when	an	operation	needs	to	be	written	to	a	logfile	but	the	reserve	space	in	the	logfile	is	too	low	for	storing	the	operation.	In	this	case,	a
new	logfile	needs	to	be	created	to	store	the	operation.	Creating	new	logfiles	is	normally	slow,	so	ArangoDB	will	try	to	pre-create	logfiles
in	a	background	process	so	there	are	always	reserve	logfiles	when	the	active	logfile	gets	full.	The	number	of	reserve	logfiles	that
ArangoDB	keeps	in	the	background	is	configurable	with	this	option.

Number	of	historic	logfiles

maximum	number	of	historic	logfiles		--wal.historic-logfiles	

The	maximum	number	of	historic	logfiles	that	ArangoDB	will	keep	after	they	have	been	garbage-collected.	If	no	replication	is	used,	there
is	no	need	to	keep	historic	logfiles	except	for	having	a	local	changelog.

In	a	replication	setup,	the	number	of	historic	logfiles	affects	the	amount	of	data	a	slave	can	fetch	from	the	master's	logs.	The	more	historic
logfiles,	the	more	historic	data	is	available	for	a	slave,	which	is	useful	if	the	connection	between	master	and	slave	is	unstable	or	slow.	Not
having	enough	historic	logfiles	available	might	lead	to	logfile	data	being	deleted	on	the	master	already	before	a	slave	has	fetched	it.

Sync	interval

Write-Ahead	Log	Options

411

interval	for	automatic,	non-requested	disk	syncs		--wal.sync-interval	

The	interval	(in	milliseconds)	that	ArangoDB	will	use	to	automatically	synchronize	data	in	its	write-ahead	logs	to	disk.	Automatic	syncs
will	only	be	performed	for	not-yet	synchronized	data,	and	only	for	operations	that	have	been	executed	without	the	waitForSync
attribute.

Flush	timeout

WAL	flush	timeout	`--wal.flush-timeout

The	timeout	(in	milliseconds)	that	ArangoDB	will	at	most	wait	when	flushing	a	full	WAL	logfile	to	disk.	When	the	timeout	is	reached	and
the	flush	is	not	completed,	the	operation	that	requested	the	flush	will	fail	with	a	lock	timeout	error.

Throttling

Throttle	writes	to	WAL	when	at	least	such	many	operations	are	waiting	for	garbage	collection:		--wal.throttle-when-pending	

The	maximum	value	for	the	number	of	write-ahead	log	garbage-collection	queue	elements.	If	set	to	0,	the	queue	size	is	unbounded,	and	no
write-throttling	will	occur.	If	set	to	a	non-zero	value,	write-throttling	will	automatically	kick	in	when	the	garbage-collection	queue
contains	at	least	as	many	elements	as	specified	by	this	option.	While	write-throttling	is	active,	data-modification	operations	will
intentionally	be	delayed	by	a	configurable	amount	of	time.	This	is	to	ensure	the	write-ahead	log	garbage	collector	can	catch	up	with	the
operations	executed.	Write-throttling	will	stay	active	until	the	garbage-collection	queue	size	goes	down	below	the	specified	value.	Write-
throttling	is	turned	off	by	default.

	--wal.throttle-wait	

This	option	determines	the	maximum	wait	time	(in	milliseconds)	for	operations	that	are	write-throttled.	If	write-throttling	is	active	and	a
new	write	operation	is	to	be	executed,	it	will	wait	for	at	most	the	specified	amount	of	time	for	the	write-ahead	log	garbage-collection
queue	size	to	fall	below	the	throttling	threshold.	If	the	queue	size	decreases	before	the	maximum	wait	time	is	over,	the	operation	will	be
executed	normally.	If	the	queue	size	does	not	decrease	before	the	wait	time	is	over,	the	operation	will	be	aborted	with	an	error.	This
option	only	has	an	effect	if		--wal.throttle-when-pending		has	a	non-zero	value,	which	is	not	the	default.

Number	of	slots

Maximum	number	of	slots	to	be	used	in	parallel:		--wal.slots	

Configures	the	amount	of	write	slots	the	write-ahead	log	can	give	to	write	operations	in	parallel.	Any	write	operation	will	lease	a	slot	and
return	it	to	the	write-ahead	log	when	it	is	finished	writing	the	data.	A	slot	will	remain	blocked	until	the	data	in	it	was	synchronized	to
disk.	After	that,	a	slot	becomes	reusable	by	following	operations.	The	required	number	of	slots	is	thus	determined	by	the	parallelity	of
write	operations	and	the	disk	synchronization	speed.	Slow	disks	probably	need	higher	values,	and	fast	disks	may	only	require	a	value
lower	than	the	default.

Ignore	logfile	errors

Ignore	logfile	errors	when	opening	logfiles:		--wal.ignore-logfile-errors	

Ignores	any	recovery	errors	caused	by	corrupted	logfiles	on	startup.	When	set	to	false,	the	recovery	procedure	on	startup	will	fail	with	an
error	whenever	it	encounters	a	corrupted	(that	includes	only	half-written)	logfile.	This	is	a	security	precaution	to	prevent	data	loss	in	case
of	disk	errors	etc.	When	the	recovery	procedure	aborts	because	of	corruption,	any	corrupted	files	can	be	inspected	and	fixed	(or	removed)
manually	and	the	server	can	be	restarted	afterwards.

Setting	the	option	to	true	will	make	the	server	continue	with	the	recovery	procedure	even	in	case	it	detects	corrupt	logfile	entries.	In	this
case	it	will	stop	at	the	first	corrupted	logfile	entry	and	ignore	all	others,	which	might	cause	data	loss.

Ignore	recovery	errors

Ignore	recovery	errors:		--wal.ignore-recovery-errors	

Ignores	any	recovery	errors	not	caused	by	corrupted	logfiles	but	by	logical	errors.	Logical	errors	can	occur	if	logfiles	or	any	other	server
datafiles	have	been	manually	edited	or	the	server	is	somehow	misconfigured.

Write-Ahead	Log	Options

412

Ignore	(non-WAL)	datafile	errors

Ignore	datafile	errors	when	loading	collections:		--database.ignore-datafile-errors	boolean	

If	set	to		false	,	CRC	mismatch	and	other	errors	in	collection	datafiles	will	lead	to	a	collection	not	being	loaded	at	all.	The	collection	in
this	case	becomes	unavailable.	If	such	collection	needs	to	be	loaded	during	WAL	recovery,	the	WAL	recovery	will	also	abort	(if	not	forced
with	option		--wal.ignore-recovery-errors	true).

Setting	this	flag	to		false		protects	users	from	unintentionally	using	a	collection	with	corrupted	datafiles,	from	which	only	a	subset	of
the	original	data	can	be	recovered.	Working	with	such	collection	could	lead	to	data	loss	and	follow	up	errors.	In	order	to	access	such
collection,	it	is	required	to	inspect	and	repair	the	collection	datafile	with	the	datafile	debugger	(arango-dfdb).

If	set	to		true	,	CRC	mismatch	and	other	errors	during	the	loading	of	a	collection	will	lead	to	the	datafile	being	partially	loaded,	up	to	the
position	of	the	first	error.	All	data	up	to	until	the	invalid	position	will	be	loaded.	This	will	enable	users	to	continue	with	collection
datafiles	even	if	they	are	corrupted,	but	this	will	result	in	only	a	partial	load	of	the	original	data	and	potential	follow	up	errors.	The	WAL
recovery	will	still	abort	when	encountering	a	collection	with	a	corrupted	datafile,	at	least	if		--wal.ignore-recovery-errors		is	not	set	to
	true	.

The	default	value	is	false,	so	collections	with	corrupted	datafiles	will	not	be	loaded	at	all,	preventing	partial	loads	and	follow	up	errors.
However,	if	such	collection	is	required	at	server	startup,	during	WAL	recovery,	the	server	will	abort	the	recovery	and	refuse	to	start.

Write-Ahead	Log	Options

413

MMFiles	Compaction	options
The	ArangoDB	MMFiles	storage	engine	will	run	a	compaction	over	data	files.

ArangoDB	writes	Documents	in	the	WAL	file.	Once	they	have	been	sealed	in	the	wal	file,	the	collector	may	copy	them	into	a	per
collection	journal	file.

Once	journal	files	fill	up,	they're	sealed	to	become	data	files.

=>	one	collection	may	have	documents	in	the	WAL	logs,	its	journal	file,	and	an	arbitrary	number	of	data	files.

If	a	collection	is	loaded,	each	of	these	files	are	opened	(thus	use	a	file	handle)	and	are	mmap'ed.	Since	file	handles	and	memory	mapped
files	are	also	a	sparse	resource,	that	number	should	be	kept	low.

Once	you	update	or	remove	documents	from	data	files	(or	already	did	while	it	was	the	journal	file)	these	documents	are	marked	as	'dead'
with	a	deletion	marker.

Over	time	the	number	of	dead	documents	may	rise,	and	we	don't	want	to	use	the	previously	mentioned	resources,	plus	the	disk	space
should	be	given	back	to	the	system.	Thus	several	journal	files	can	be	combined	to	one,	ommitting	the	dead	documents.

Combining	several	of	these	data	files	into	one	is	called	compaction.	The	compaction	process	reads	the	alive	documents	from	the	original
data	files,	and	writes	them	into	new	data	file.

Once	that	is	done,	the	memory	mappings	to	the	old	data	files	is	released,	and	the	files	are	erased.

Since	the	compaction	locks	the	collection,	and	also	uses	I/O	resources,	its	carefully	configurable	under	which	conditions	the	system
should	perform	which	amount	of	these	compaction	jobs:

ArangoDB	spawns	one	compactor	thread	per	database.	The	settings	below	vary	in	scope.

Activity	control
The	activity	control	parameters	alter	the	behaviour	in	terms	of	scan	/	execution	frequency	of	the	compaction.

Sleep	interval	between	two	compaction	runs	(in	seconds):		--compaction.db-sleep-time		The	number	of	seconds	the	collector	thread	will
wait	between	two	attempts	to	search	for	compactable	data	files	of	collections	in	one	Database.	If	the	compactor	has	actually	executed
work,	a	subsequent	lookup	is	done.	Scope:	Database.

Minimum	sleep	time	between	two	compaction	runs	(in	seconds):		--compaction.min-interval		When	an	actual	compaction	was	executed
for	one	collection,	we	wait	for	this	time	before	we	execute	the	compaction	on	this	collection	again.	This	is	here	to	let	eventually	piled	up
user	load	be	worked	out.	Scope:	collection.

Source	data	files
These	parameters	control	which	data	files	are	taken	into	account	for	a	compaction	run.	You	can	specify	several	criteria	which	each	off
may	be	sufficcient	alone.

The	scan	over	the	data	files	belonging	to	one	collection	is	executed	from	oldest	data	file	to	newest;	if	files	qualify	for	a	compaction	they
may	be	merged	with	newer	files	(containing	younger	documents)

Scope:	Collection	level,	some	are	influenced	by	collection	settings.

minimal	filesize	threshold	original	data	files	have	to	be	below	for	a	compaction:		--compaction.min-small-data-file-size		This	is	the
threshold	which	controls	below	which	minimum	total	size	a	data	file	will	always	be	taken	into	account	for	the	compaction.

Minimum	unused	count	of	documents	in	a	datafile:		--compaction.dead-documents-threshold		Data	files	will	often	contain	dead
documents.	This	parameter	specifies	their	top	most	accetpeable	count	until	the	data	file	qualifies	for	compaction.

How	many	bytes	of	the	source	data	file	are	allowed	to	be	unused	at	most:		--compaction.dead-size-threshold		The	dead	data	size	varies
along	with	the	size	of	your	documents.	If	you	have	many	big	documents,	this	threshold	may	hit	before	the	document	count	threshold.

Compaction	Options

414

How	many	percent	of	the	source	data	file	should	be	unused	at	least:		--compaction.dead-size-percent-threshold		since	the	size	of	the
documents	may	vary	this	threshold	works	on	the	percentage	of	the	dead	documents	size.	Thus,	if	you	have	many	huge	dead	documents,
this	threshold	kicks	in	earlier.

To	name	an	example	with	numbers,	if	the	data	file	contains	800	kbytes	of	alive	and	400	kbytes	of	dead	documents,	the	share	of	the	dead
documents	is:

	400	/	(400	+	800)	=	33	%	.

If	this	value	if	higher	than	the	specified	threshold,	the	data	file	will	be	compacted.

Compacted	target	files
Once	data	files	of	a	collection	are	qualified	for	a	compaction	run,	these	parameters	control	how	many	data	files	are	merged	into	one,	(or
even	one	source	data	file	may	be	compacted	into	one	smaller	target	data	file)

Scope:	Collection	level,	some	are	influenced	by	collection	settings.

Maximum	number	of	files	to	merge	to	one	file:		--compaction.dest-max-files		How	many	data	files	(at	most)	we	may	merge	into	one
resulting	data	file	during	one	compaction	run.

How	large	the	resulting	file	may	be	in	comparison	to	the	collections		database.maximal-journal-size		setting:		--compaction.dest-max-
file-size-factor		In	ArangoDB	you	can	configure	a	default		journal	filesize		globally	and	override	it	on	a	per	collection	level.	This
value	controls	the	size	of	collected	data	files	relative	to	the	configured	journal	file	size	of	the	collection	in	question.

A	factor	of	3	means	that	the	maximum	filesize	of	the	compacted	file	is	3	times	the	size	of	the	maximum	collection	journal	file	size.

how	large	may	the	compaction	result	file	become:		--compaction.dest-max-result-file-size		next	to	the	factor	above,	a	totally	maximum
allowed	filesize	in	bytes	may	be	specified.	This	will	overrule	all	previous	parameters.

Compaction	Options

415

Clusters	Options

Agency	endpoint

List	of	agency	endpoints:		--cluster.agency-endpoint	endpoint	

An	agency	endpoint	the	server	can	connect	to.	The	option	can	be	specified	multiple	times,	so	the	server	can	use	a	cluster	of	agency
servers.	Endpoints	have	the	following	pattern:

tcp://ipv4-address:port	-	TCP/IP	endpoint,	using	IPv4
tcp://[ipv6-address]:port	-	TCP/IP	endpoint,	using	IPv6
ssl://ipv4-address:port	-	TCP/IP	endpoint,	using	IPv4,	SSL	encryption
ssl://[ipv6-address]:port	-	TCP/IP	endpoint,	using	IPv6,	SSL	encryption

At	least	one	endpoint	must	be	specified	or	ArangoDB	will	refuse	to	start.	It	is	recommended	to	specify	at	least	two	endpoints	so
ArangoDB	has	an	alternative	endpoint	if	one	of	them	becomes	unavailable.

Examples

--cluster.agency-endpoint	tcp://192.168.1.1:4001	--cluster.agency-endpoint	tcp://192.168.1.2:4002	...

My	address

This	server's	address	/	endpoint:		--cluster.my-address	endpoint	

The	server's	endpoint	for	cluster-internal	communication.	If	specified,	it	must	have	the	following	pattern:

tcp://ipv4-address:port	-	TCP/IP	endpoint,	using	IPv4
tcp://[ipv6-address]:port	-	TCP/IP	endpoint,	using	IPv6
ssl://ipv4-address:port	-	TCP/IP	endpoint,	using	IPv4,	SSL	encryption
ssl://[ipv6-address]:port	-	TCP/IP	endpoint,	using	IPv6,	SSL	encryption

If	no	endpoint	is	specified,	the	server	will	look	up	its	internal	endpoint	address	in	the	agency.	If	no	endpoint	can	be	found	in	the	agency
for	the	server's	id,	ArangoDB	will	refuse	to	start.

Examples

Listen	only	on	interface	with	address		192.168.1.1	

--cluster.my-address	tcp://192.168.1.1:8530

Listen	on	all	ipv4	and	ipv6	addresses,	which	are	configured	on	port		8530	

--cluster.my-address	ssl://[::]:8530

My	role

This	server's	role:		--cluster.my-role	[dbserver|coordinator]	

The	server's	role.	Is	this	instance	a	db	server	(backend	data	server)	or	a	coordinator	(frontend	server	for	external	and	application	access)

Node	ID	(deprecated)

This	server's	id:		--cluster.my-local-info	info	

Some	local	information	about	the	server	in	the	cluster,	this	can	for	example	be	an	IP	address	with	a	process	ID	or	any	string	unique	to	the
server.	Specifying	info	is	mandatory	on	startup	if	the	server	id	(see	below)	is	not	specified.	Each	server	of	the	cluster	must	have	a	unique
local	info.	This	is	ignored	if	my-id	below	is	specified.

Cluster	Options

416

This	option	is	deprecated	and	will	be	removed	in	a	future	release.	The	cluster	node	ids	have	been	dropped	in	favour	of	once	generated
UUIDs.

More	advanced	options	(should	generally	remain	untouched)

Synchroneous	replication	timing:		--cluster.synchronous-replication-timeout-factor	double	

Strech	or	clinch	timeouts	for	internal	synchroneous	replication	mechanism	between	db	servers.	All	such	timeouts	are	affected	by	this
change.	Please	change	only	with	intent	and	great	care.	Default	at		1.0	.

System	replication	factor:		--cluster.system-replication-factorinteger	

Change	default	replication	factor	for	system	collections.	Default	at		2	.

Cluster	Options

417

RocksDB	engine	options
RocksDB	is	a	highly	configurable	key-value	store	used	to	power	our	RocksDB	storage	engine.	Most	of	the	options	on	this	page	are	pass-
through	options	to	the	underlying	RocksDB	instance,	and	we	change	very	few	of	their	default	settings.

Depending	on	the	storage	engine	you	have	chosen	the	availability	and	the	scope	of	these	options	changes.

In	case	you	have	chosen		mmfiles		some	of	the	following	options	apply	to	persistent	indexes.	In	case	of		rocksdb		it	will	apply	to	all
data	stored	as	well	as	indexes.

Pass-through	options
	--rocksdb.wal-directory	

Absolute	path	for	the	RocksDB	WAL	files.	If	left	empty,	this	will	use	a	subdirectory		journals		inside	the	data	directory.

Write	buffers

	--rocksdb.write-buffer-size	

The	amount	of	data	to	build	up	in	each	in-memory	buffer	(backed	by	a	log	file)	before	closing	the	buffer	and	queuing	it	to	be	flushed	into
standard	storage.	Default:	64MiB.	Larger	values	may	improve	performance,	especially	for	bulk	loads.

	--rocksdb.max-write-buffer-number	

The	maximum	number	of	write	buffers	that	built	up	in	memory.	If	this	number	is	reached	before	the	buffers	can	be	flushed,	writes	will	be
slowed	or	stalled.	Default:	2.

	--rocksdb.min-write-buffer-number-to-merge	

Minimum	number	of	write	buffers	that	will	be	merged	together	when	flushing	to	normal	storage.	Default:	1.

	--rocksdb.max-total-wal-size	

Maximum	total	size	of	WAL	files	that,	when	reached,	will	force	a	flush	of	all	column	families	whose	data	is	backed	by	the	oldest	WAL
files.	Setting	this	to	a	low	value	will	trigger	regular	flushing	of	column	family	data	from	memtables,	so	that	WAL	files	can	be	moved	to	the
archive.	Setting	this	to	a	high	value	will	avoid	regular	flushing	but	may	prevent	WAL	files	from	being	moved	to	the	archive	and	being
removed.

	--rocksdb.delayed-write-rate		(Hidden)

Limited	write	rate	to	DB	(in	bytes	per	second)	if	we	are	writing	to	the	last	in-memory	buffer	allowed	and	we	allow	more	than	3	buffers.
Default:	16MiB/s.

LSM	tree	structure

	--rocksdb.num-levels	

The	number	of	levels	for	the	database	in	the	LSM	tree.	Default:	7.

	--rocksdb.num-uncompressed-levels	

The	number	of	levels	that	do	not	use	compression.	The	default	value	is	2.	Levels	above	this	number	will	use	Snappy	compression	to
reduce	the	disk	space	requirements	for	storing	data	in	these	levels.

	--rocksdb.dynamic-level-bytes	

If	true,	the	amount	of	data	in	each	level	of	the	LSM	tree	is	determined	dynamically	so	as	to	minimize	the	space	amplification;	otherwise,
the	level	sizes	are	fixed.	The	dynamic	sizing	allows	RocksDB	to	maintain	a	well-structured	LSM	tree	regardless	of	total	data	size.
Default:	true.

	--rocksdb.max-bytes-for-level-base	

The	maximum	total	data	size	in	bytes	in	level-1	of	the	LSM	tree.	Only	effective	if		--rocksdb.dynamic-level-bytes		is	false.	Default:
256MiB.

RocksDB	Engine	Options

418

	--rocksdb.max-bytes-for-level-multiplier	

The	maximum	total	data	size	in	bytes	for	level	L	of	the	LSM	tree	can	be	calculated	as		max-bytes-for-level-base	*	(max-bytes-for-level-
multiplier	^	(L-1))	.	Only	effective	if		--rocksdb.dynamic-level-bytes		is	false.	Default:	10.

	--rocksdb.level0-compaction-trigger	

Compaction	of	level-0	to	level-1	is	triggered	when	this	many	files	exist	in	level-0.	Setting	this	to	a	higher	number	may	help	bulk	writes	at
the	expense	of	slowing	down	reads.	Default:	2.

	--rocksdb.level0-slowdown-trigger	

When	this	many	files	accumulate	in	level-0,	writes	will	be	slowed	down	to		--rocksdb.delayed-write-rate		to	allow	compaction	to	catch
up.	Default:	20.

	--rocksdb.level0-stop-trigger	

When	this	many	files	accumulate	in	level-0,	writes	will	be	stopped	to	allow	compaction	to	catch	up.	Default:	36.

File	I/O

	--rocksdb.compaction-read-ahead-size	

If	non-zero,	we	perform	bigger	reads	when	doing	compaction.	If	you're	running	RocksDB	on	spinning	disks,	you	should	set	this	to	at
least	2MiB.	That	way	RocksDB's	compaction	is	doing	sequential	instead	of	random	reads.	Default:	0.

	--rocksdb.use-direct-reads		(Hidden)

Only	meaningful	on	Linux.	If	set,	use		O_DIRECT		for	reading	files.	Default:	false.

	--rocksdb.use-direct-io-for-flush-and-compaction		(Hidden)

Only	meaningful	on	Linux.	If	set,	use		O_DIRECT		for	writing	files.	Default:	false.

	--rocksdb.use-fsync		(Hidden)

If	set,	issue	an		fsync		call	when	writing	to	disk	(set	to	false	to	issue		fdatasync		only.	Default:	false.

Background	tasks

	--rocksdb.max-background-jobs	

Maximum	number	of	concurrent	background	compaction	jobs,	submitted	to	the	low	priority	thread	pool.	Default:	number	of	processors.

	--rocksdb.num-threads-priority-high	

Number	of	threads	for	high	priority	operations	(e.g.	flush).	We	recommend	setting	this	equal	to		max-background-flushes	.	Default:
number	of	processors	/	2.

	--rocksdb.num-threads-priority-low	

Number	of	threads	for	low	priority	operations	(e.g.	compaction).	Default:	number	of	processors	/	2.

Caching

	--rocksdb.block-cache-size	

This	is	the	size	of	the	block	cache	in	bytes.	Increasing	this	may	improve	performance.	If	there	is	less	than	4GiB	of	RAM	on	the	system,
the	default	value	is	256MiB.	If	there	is	more,	the	default	is		(system	RAM	size	-	2GiB)	*	0.3	.

	--rocksdb.block-cache-shard-bits	

The	number	of	bits	used	to	shard	the	block	cache	to	allow	concurrent	operations.	To	keep	individual	shards	at	a	reasonable	size	(i.e.	at
least	512KB),	keep	this	value	to	at	most		block-cache-shard-bits	/	512KB	.	Default:		block-cache-size	/	2^19	.

	--rocksdb.table-block-size	

Approximate	size	of	user	data	(in	bytes)	packed	per	block	for	uncompressed	data.

	--rocksdb.recycle-log-file-num		(Hidden)

Number	of	log	files	to	keep	around	for	recycling.	Default:	0.

RocksDB	Engine	Options

419

Miscellaneous

	--rocksdb.optimize-filters-for-hits		(Hidden)

This	flag	specifies	that	the	implementation	should	optimize	the	filters	mainly	for	cases	where	keys	are	found	rather	than	also	optimize
for	the	case	where	keys	are	not.	This	would	be	used	in	cases	where	the	application	knows	that	there	are	very	few	misses	or	the
performance	in	the	case	of	misses	is	not	as	important.	Default:	false.

	--rocksdb.wal-recovery-skip-corrupted		(Hidden)

If	true,	skip	corrupted	records	in	WAL	recovery.	Default:	false.

Non-Pass-Through	Options
	--rocksdb.wal-file-timeout		(Hidden)

Timeout	after	which	unused	WAL	files	are	deleted	(in	seconds).	Default:	10.0s.

Data	of	ongoing	transactions	is	stored	in	RAM.	Transactions	that	get	too	big	(in	terms	of	number	of	operations	involved	or	the	total	size
of	data	created	or	modified	by	the	transaction)	will	be	committed	automatically.	Effectively	this	means	that	big	user	transactions	are	split
into	multiple	smaller	RocksDB	transactions	that	are	committed	individually.	The	entire	user	transaction	will	not	necessarily	have	ACID
properties	in	this	case.

The	following	options	can	be	used	to	control	the	RAM	usage	and	automatic	intermediate	commits	for	the	RocksDB	engine:

	--rocksdb.max-transaction-size	

Transaction	size	limit	(in	bytes).	Transactions	store	all	keys	and	values	in	RAM,	so	large	transactions	run	the	risk	of	causing	out-of-
memory	sitations.	This	setting	allows	you	to	ensure	that	does	not	happen	by	limiting	the	size	of	any	individual	transaction.	Transactions
whose	operations	would	consume	more	RAM	than	this	threshold	value	will	abort	automatically	with	error	32	("resource	limit	exceeded").

	--rocksdb.intermediate-commit-size	

If	the	size	of	all	operations	in	a	transaction	reaches	this	threshold,	the	transaction	is	committed	automatically	and	a	new	transaction	is
started.	The	value	is	specified	in	bytes.

	--rocksdb.intermediate-commit-count	

If	the	number	of	operations	in	a	transaction	reaches	this	value,	the	transaction	is	committed	automatically	and	a	new	transaction	is
started.

	--rocksdb.throttle	

If	enabled,	throttles	the	ingest	rate	of	writes	if	necessary	to	reduce	chances	of	compactions	getting	too	far	behind	and	blocking	incoming
writes.	This	option	is		true		by	default.

RocksDB	Engine	Options

420

Hash	cache	options
Since	ArangoDB	3.2,	the	several	core	components	of	the	server	use	a	cache	system	which	pools	memory	across	many	different	cache
tables.	In	order	to	provide	intelligent	internal	memory	management,	the	system	periodically	reclaims	memory	from	caches	which	are	used
less	often	and	reallocates	it	to	caches	which	get	more	activity.

Cache	size

Global	size	limit	for	all	hash	caches:		--cache.size	

The	global	caching	system,	all	caches,	and	all	the	data	contained	therein	will	fit	inside	this	limit.	The	size	is	specified	in	bytes.	If	there	is
less	than	4GiB	of	RAM	on	the	system,	the	default	value	is	256MiB.	If	there	is	more,	the	default	is		(system	RAM	size	-	2GiB)	*	0.3	.

Rebalancing	interval

Time	between	cache	rebalancing	attempts:		--cache.rebalancing-interval	

The	value	is	specified	in	microseconds	with	a	default	of	2	seconds	and	a	minimum	of	500	milliseconds.

Hash	Cache	Options

421

Asynchronous	Tasks

maximal	queue	size

Maximum	size	of	the	queue	for	requests:		--server.maximal-queue-size	size	

Specifies	the	maximum	size	of	the	queue	for	asynchronous	task	execution.	If	the	queue	already	contains	size	tasks,	new	tasks	will	be
rejected	until	other	tasks	are	popped	from	the	queue.	Setting	this	value	may	help	preventing	from	running	out	of	memory	if	the	queue	is
filled	up	faster	than	the	server	can	process	requests.

Asynchronous	Tasks

422

Durability	Configuration

Global	Configuration

There	are	global	configuration	values	for	durability,	which	can	be	adjusted	by	specifying	the	following	configuration	options:

default	wait	for	sync	behavior		--database.wait-for-sync	boolean	

Default	wait-for-sync	value.	Can	be	overwritten	when	creating	a	new	collection.

The	default	is	false.

force	syncing	of	collection	properties	to	disk		--database.force-sync-properties	boolean	

Force	syncing	of	collection	properties	to	disk	after	creating	a	collection	or	updating	its	properties.

If	turned	off,	no	fsync	will	happen	for	the	collection	and	database	properties	stored	in		parameter.json		files	in	the	file	system.	Turning
off	this	option	will	speed	up	workloads	that	create	and	drop	a	lot	of	collections	(e.g.	test	suites).

The	default	is	true.

interval	for	automatic,	non-requested	disk	syncs		--wal.sync-interval	

The	interval	(in	milliseconds)	that	ArangoDB	will	use	to	automatically	synchronize	data	in	its	write-ahead	logs	to	disk.	Automatic	syncs
will	only	be	performed	for	not-yet	synchronized	data,	and	only	for	operations	that	have	been	executed	without	the	waitForSync
attribute.

Per-collection	configuration
You	can	also	configure	the	durability	behavior	on	a	per-collection	basis.	Use	the	ArangoDB	shell	to	change	these	properties.

gets	or	sets	the	properties	of	a	collection		collection.properties()	

Returns	an	object	containing	all	collection	properties.

waitForSync:	If	true	creating	a	document	will	only	return	after	the	data	was	synced	to	disk.

journalSize	:	The	size	of	the	journal	in	bytes.	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

isVolatile:	If	true	then	the	collection	data	will	be	kept	in	memory	only	and	ArangoDB	will	not	write	or	sync	the	data	to	disk.	This
option	is	meaningful	for	the	MMFiles	storage	engine	only.

keyOptions	(optional)	additional	options	for	key	generation.	This	is	a	JSON	array	containing	the	following	attributes	(note:	some	of
the	attributes	are	optional):

type:	the	type	of	the	key	generator	used	for	the	collection.
allowUserKeys:	if	set	to	true,	then	it	is	allowed	to	supply	own	key	values	in	the	_key	attribute	of	a	document.	If	set	to	false,
then	the	key	generator	will	solely	be	responsible	for	generating	keys	and	supplying	own	key	values	in	the	_key	attribute	of
documents	is	considered	an	error.
increment:	increment	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.
offset:	initial	offset	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.

indexBuckets:	number	of	buckets	into	which	indexes	using	a	hash	table	are	split.	The	default	is	16	and	this	number	has	to	be	a	power
of	2	and	less	than	or	equal	to	1024.	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

For	very	large	collections	one	should	increase	this	to	avoid	long	pauses	when	the	hash	table	has	to	be	initially	built	or	resized,	since
buckets	are	resized	individually	and	can	be	initially	built	in	parallel.	For	example,	64	might	be	a	sensible	value	for	a	collection	with
100	000	000	documents.	Currently,	only	the	edge	index	respects	this	value,	but	other	index	types	might	follow	in	future	ArangoDB
versions.	Changes	(see	below)	are	applied	when	the	collection	is	loaded	the	next	time.

In	a	cluster	setup,	the	result	will	also	contain	the	following	attributes:

numberOfShards:	the	number	of	shards	of	the	collection.

Durability

423

shardKeys:	contains	the	names	of	document	attributes	that	are	used	to	determine	the	target	shard	for	documents.

replicationFactor:	determines	how	many	copies	of	each	shard	are	kept	on	different	DBServers.

	collection.properties(properties)	

Changes	the	collection	properties.	properties	must	be	an	object	with	one	or	more	of	the	following	attribute(s):

waitForSync:	If	true	creating	a	document	will	only	return	after	the	data	was	synced	to	disk.

journalSize	:	The	size	of	the	journal	in	bytes.	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.

indexBuckets	:	See	above,	changes	are	only	applied	when	the	collection	is	loaded	the	next	time.	This	option	is	meaningful	for	the
MMFiles	storage	engine	only.

replicationFactor	:	Change	the	number	of	shard	copies	kept	on	different	DBServers,	valid	values	are	integer	numbers	in	the	range	of
1-10	(Cluster	only)

Note:	it	is	not	possible	to	change	the	journal	size	after	the	journal	or	datafile	has	been	created.	Changing	this	parameter	will	only	effect
newly	created	journals.	Also	note	that	you	cannot	lower	the	journal	size	to	less	then	size	of	the	largest	document	already	stored	in	the
collection.

Note:	some	other	collection	properties,	such	as	type,	isVolatile,	or	keyOptions	cannot	be	changed	once	the	collection	is	created.

Examples

Read	all	properties

arangosh>	db.example.properties();

show	execution	results
Change	a	property

arangosh>	db.example.properties({	waitForSync	:	true	});

show	execution	results

Per-operation	configuration
Many	data-modification	operations	and	also	ArangoDB's	transactions	allow	to	specify	a	waitForSync	attribute,	which	when	set	ensures
the	operation	data	has	been	synchronized	to	disk	when	the	operation	returns.

Disk-Usage	Configuration
The	amount	of	disk	space	used	by	ArangoDB	is	determined	by	a	few	configuration	options.

Global	Configuration
The	total	amount	of	disk	storage	required	by	ArangoDB	is	determined	by	the	size	of	the	write-ahead	logfiles	plus	the	sizes	of	the
collection	journals	and	datafiles.

There	are	the	following	options	for	configuring	the	number	and	sizes	of	the	write-ahead	logfiles:

maximum	number	of	reserve	logfiles		--wal.reserve-logfiles	

The	maximum	number	of	reserve	logfiles	that	ArangoDB	will	create	in	a	background	process.	Reserve	logfiles	are	useful	in	the	situation
when	an	operation	needs	to	be	written	to	a	logfile	but	the	reserve	space	in	the	logfile	is	too	low	for	storing	the	operation.	In	this	case,	a
new	logfile	needs	to	be	created	to	store	the	operation.	Creating	new	logfiles	is	normally	slow,	so	ArangoDB	will	try	to	pre-create	logfiles
in	a	background	process	so	there	are	always	reserve	logfiles	when	the	active	logfile	gets	full.	The	number	of	reserve	logfiles	that
ArangoDB	keeps	in	the	background	is	configurable	with	this	option.

Durability

424

maximum	number	of	historic	logfiles		--wal.historic-logfiles	

The	maximum	number	of	historic	logfiles	that	ArangoDB	will	keep	after	they	have	been	garbage-collected.	If	no	replication	is	used,	there
is	no	need	to	keep	historic	logfiles	except	for	having	a	local	changelog.

In	a	replication	setup,	the	number	of	historic	logfiles	affects	the	amount	of	data	a	slave	can	fetch	from	the	master's	logs.	The	more	historic
logfiles,	the	more	historic	data	is	available	for	a	slave,	which	is	useful	if	the	connection	between	master	and	slave	is	unstable	or	slow.	Not
having	enough	historic	logfiles	available	might	lead	to	logfile	data	being	deleted	on	the	master	already	before	a	slave	has	fetched	it.

the	size	of	each	WAL	logfile		--wal.logfile-size	

Specifies	the	filesize	(in	bytes)	for	each	write-ahead	logfile.	The	logfile	size	should	be	chosen	so	that	each	logfile	can	store	a	considerable
amount	of	documents.	The	bigger	the	logfile	size	is	chosen,	the	longer	it	will	take	to	fill	up	a	single	logfile,	which	also	influences	the	delay
until	the	data	in	a	logfile	will	be	garbage-collected	and	written	to	collection	journals	and	datafiles.	It	also	affects	how	long	logfile	recovery
will	take	at	server	start.

whether	or	not	oversize	entries	are	allowed		--wal.allow-oversize-entries	

Whether	or	not	it	is	allowed	to	store	individual	documents	that	are	bigger	than	would	fit	into	a	single	logfile.	Setting	the	option	to	false
will	make	such	operations	fail	with	an	error.	Setting	the	option	to	true	will	make	such	operations	succeed,	but	with	a	high	potential
performance	impact.	The	reason	is	that	for	each	oversize	operation,	an	individual	oversize	logfile	needs	to	be	created	which	may	also
block	other	operations.	The	option	should	be	set	to	false	if	it	is	certain	that	documents	will	always	have	a	size	smaller	than	a	single
logfile.	When	data	gets	copied	from	the	write-ahead	logfiles	into	the	journals	or	datafiles	of	collections,	files	will	be	created	on	the
collection	level.	How	big	these	files	are	is	determined	by	the	following	global	configuration	value:

	--database.maximal-journal-size	size	

Maximal	size	of	journal	in	bytes.	Can	be	overwritten	when	creating	a	new	collection.	Note	that	this	also	limits	the	maximal	size	of	a	single
document.

The	default	is	32MB.

Per-collection	configuration
The	journal	size	can	also	be	adjusted	on	a	per-collection	level	using	the	collection's	properties	method.

Durability

425

Encryption
This	feature	is	only	available	in	the	Enterprise	Edition.

When	you	store	sensitive	data	in	your	ArangoDB	database,	you	want	to	protect	that	data	under	all	circumstances.	At	runtime	you	will
protect	it	with	SSL	transport	encryption	and	strong	authentication,	but	when	the	data	is	already	on	disk,	you	also	need	protection.	That
is	where	the	Encryption	feature	comes	in.

The	Encryption	feature	of	ArangoDB	will	encrypt	all	data	that	ArangoDB	is	storing	in	your	database	before	it	is	written	to	disk.

The	data	is	encrypted	with	AES-256-CTR,	which	is	a	strong	encryption	algorithm,	that	is	very	suitable	for	multi-processor
environments.	This	means	that	your	data	is	safe,	but	your	database	is	still	fast,	even	under	load.

Most	modern	CPU's	have	builtin	support	for	hardware	AES	encryption,	which	makes	it	even	faster.

Note:	The	Encryption	feature	requires	the	RocksDB	storage	engine.

Encryption	keys

The	Encryption	feature	of	ArangoDB	requires	a	single	32-byte	key	per	server.	It	is	recommended	to	use	a	different	key	for	each	server
(when	operating	in	a	cluster	configuration).	Make	sure	to	protect	these	keys!

That	means:

Do	not	write	them	to	persistent	disks	or	your	server(s),	always	store	them	on	an	in-memory	(tmpfs)	filesystem.
Transport	your	keys	safely	to	your	server(s).	There	are	various	tools	for	managing	secrets	like	this	(e.g.	vaultproject.io).
Store	a	copy	of	your	key	offline	in	a	safe	place.	If	you	lose	your	key,	there	is	NO	way	to	get	your	data	back.

Configuration
To	activate	encryption	of	your	database,	you	need	to	supply	an	encryption	key	to	the	server.

Make	sure	to	pass	this	option	the	very	first	time	you	start	your	database.	You	cannot	encrypt	a	database	that	already	exists.

Note:	You	also	have	to	activate	the		rocksdb		storage	engine.

Encryption	key	stored	in	file

Pass	the	following	option	to		arangod	:

$	arangod	\

				--rocksdb.encryption-keyfile=/mytmpfs/mySecretKey	\

				--server.storage-engine=rocksdb

The	file		/mytmpfs/mySecretKey		must	contain	the	encryption	key.	This	file	must	be	secured,	so	that	only		arangod		can	access	it.	You
should	also	ensure	that	in	case	some-one	steals	the	hardware,	he	will	not	be	able	to	read	the	file.	For	example,	by	encryption		/mytmpfs	
or	creating	a	in-memory	file-system	under		/mytmpfs	.

Encryption	key	generated	by	a	program

Pass	the	following	option	to		arangod	:

$	arangod	\

				--rocksdb.encryption-key-generator=path-to-my-generator	\

				--server.storage-engine=rocksdb

The	program		path-to-my-generator		output	the	encryption	on	standard	output	and	exit.

Encryption

426

Creating	keys

The	encryption	keyfile	must	contain	32	bytes	of	random	data.

You	can	create	it	with	a	command	line	this.

dd	if=/dev/random	bs=1	count=32	of=yourSecretKeyFile

For	security,	it	is	best	to	create	these	keys	offline	(away	from	your	database	servers)	and	directly	store	them	in	you	secret	management
tool.

Encryption

427

Auditing
This	feature	is	available	in	the	Enterprise	Edition.

Auditing	allows	you	to	monitor	access	to	the	database	in	detail.	In	general	audit	logs	are	of	the	form

2016-01-01	12:00:00	|	server	|	username	|	database	|	client-ip	|	authentication	|	text1	|	text2	|	...

The	time-stamp	is	in	GMT.	This	allows	to	easily	match	log	entries	from	servers	in	different	time	zones.

The	name	of	the	server.	You	can	specify	a	custom	name	on	startup.	Otherwise	the	default	hostname	is	used.

The	username	is	the	(authenticated	or	unauthenticated)	name	supplied	by	the	client.	A	dash		-		is	printed	if	no	name	was	given	by	the
client.

The	database	describes	the	database	that	was	accessed.	Please	note	that	there	are	no	database	crossing	queries.	Each	access	is	restricted	to
one	database.

The	client-ip	describes	the	source	of	the	request.

The	authentication	details	the	methods	used	to	authenticate	the	user.

Details	about	the	requests	follow	in	the	additional	fields.

Auditing

428

Audit	Configuration
This	feature	is	available	in	the	Enterprise	Edition.

Output
	--audit.output	output	

Specifies	the	target	of	the	audit	log.	Possible	values	are

	file://filename		where	filename	can	be	relative	or	absolute.

	syslog://facility		or		syslog://facility/application-name		to	log	into	a	syslog	server.

The	option	can	be	specified	multiple	times	in	order	to	configure	the	output	for	multiple	targets.

Hostname
	--audit.hostname	name	

The	name	of	the	server	used	in	audit	log	messages.	By	default	the	system	hostname	is	used.

Configuration

429

Audit	Events
This	feature	is	available	in	the	Enterprise	Edition.

Authentication

Unknown	authentication	methods

2016-10-03	15:44:23	|	server1	|	-	|	database1	|	127.0.0.1:61525	|	-	|	unknown	authentication	method	|	/_api/version

Missing	credentials

2016-10-03	15:39:49	|	server1	|	-	|	database1	|	127.0.0.1:61498	|	-	|	credentials	missing	|	/_api/version

Wrong	credentials

2016-10-03	15:47:26	|	server1	|	user1	|	database1	|	127.0.0.1:61528	|	http	basic	|	credentials	wrong	|	/_api/version

Password	change	required

2016-10-03	16:18:53	|	server1	|	user1	|	database1	|	127.0.0.1:62257	|	-	|	password	change	required	|	/_api/version

JWT	login	succeeded

2016-10-03	17:21:22	|	server1	|	-	|	database1	|	127.0.0.1:64214	|	http	jwt	|	user	'root'	authenticated	|	/_open/auth

Please	note,	that	the	user	given	as	third	part	is	the	user	that	requested	the	login.	In	general,	it	will	be	empty.

JWT	login	failed

2016-10-03	17:21:22	|	server1	|	-	|	database1	|	127.0.0.1:64214	|	http	jwt	|	user	'root'	wrong	credentials		|	/_open/auth

Please	note,	that	the	user	given	as	third	part	is	the	user	that	requested	the	login.	In	general,	it	will	be	empty.

Authorization

User	not	authorized	to	access	database

2016-10-03	16:20:52	|	server1	|	user1	|	database2	|	127.0.0.1:62262	|	http	basic	|	not	authorized	|	/_api/version

Databases

Create	a	database

2016-10-04	15:33:25	|	server1	|	user1	|	database1	|	127.0.0.1:56920	|	http	basic	|	create	database	'database1'	|	ok	|	/_api/dat

abase

Events

430

Drop	a	database

2016-10-04	15:33:25	|	server1	|	user1	|	database1	|	127.0.0.1:56920	|	http	basic	|	delete	database	'database1'	|	ok	|	/_api/dat

abase

Collections

Create	a	collection

2016-10-05	17:35:57	|	server1	|	user1	|	database1	|	127.0.0.1:51294	|	http	basic	|	create	collection	'collection1'	|	ok	|	/_api

/collection

Truncate	a	collection

2016-10-05	17:36:08	|	server1	|	user1	|	database1	|	127.0.0.1:51294	|	http	basic	|	truncate	collection	'collection1'	|	ok	|	/_a

pi/collection/collection1/truncate

Drop	a	collection

2016-10-05	17:36:30	|	server1	|	user1	|	database1	|	127.0.0.1:51294	|	http	basic	|	delete	collection	'collection1'	|	ok	|	/_api

/collection/collection1

Indexes

Create	a	index

2016-10-05	18:19:40	|	server1	|	user1	|	database1	|	127.0.0.1:52467	|	http	basic	|	create	index	in	'collection1'	|	ok	|	{"field

s":["a"],"sparse":false,"type":"skiplist","unique":false}	|	/_api/index?collection=collection1

Drop	a	index

2016-10-05	18:18:28	|	server1	|	user1	|	database1	|	127.0.0.1:52464	|	http	basic	|	drop	index	':44051'	|	ok	|	/_api/index/colle

ction1/44051

Documents

Reading	a	single	document

2016-10-04	12:27:55	|	server1	|	user1	|	database1	|	127.0.0.1:53699	|	http	basic	|	create	document	ok	|	/_api/document/collecti

on1

Replacing	a	single	document

2016-10-04	12:28:08	|	server1	|	user1	|	database1	|	127.0.0.1:53699	|	http	basic	|	replace	document	ok	|	/_api/document/collect

ion1/21456?ignoreRevs=false

Modifying	a	single	document

2016-10-04	12:28:15	|	server1	|	user1	|	database1	|	127.0.0.1:53699	|	http	basic	|	modify	document	ok	|	/_api/document/collecti

on1/21456?keepNull=true&ignoreRevs=false

Events

431

Deleting	a	single	document

2016-10-04	12:28:23	|	server1	|	user1	|	database1	|	127.0.0.1:53699	|	http	basic	|	delete	document	ok	|	/_api/document/collecti

on1/21456?ignoreRevs=false

For	example,	if	someones	tries	to	delete	a	non-existing	document,	it	will	be	logged	as

2016-10-04	12:28:26	|	server1	|	user1	|	database1	|	127.0.0.1:53699	|	http	basic	|	delete	document	failed	|	/_api/document/coll

ection1/21456?ignoreRevs=false

Queries

2016-10-06	12:12:10	|	server1	|	user1	|	database1	|	127.0.0.1:54232	|	http	basic	|	query	document	|	ok	|	for	i	in	collection1	r

eturn	i	|	/_api/cursor

Events

432

Introduction	to	Replication
Replication	allows	you	to	replicate	data	onto	another	machine.	It	forms	the	base	of	all	disaster	recovery	and	failover	features	ArangoDB
offers.

ArangoDB	offers	asynchronous	and	synchronous	replication,	depending	on	which	type	of	arangodb	deployment	you	are	using.	Since
ArangoDB	3.2	the	synchronous	replication	replication	is	the	only	replication	type	used	in	a	cluster	whereas	the	asynchronous	replication
is	only	available	between	single-server	nodes.	Future	versions	of	ArangoDB	may	reintroduce	asynchronous	replication	for	the	cluster.

We	will	describe	pros	and	cons	of	each	of	them	in	the	following	sections.

Asynchronous	replication

In	ArangoDB	any	write	operation	will	be	logged	to	the	write-ahead	log.	When	using	Asynchronous	replication	slaves	will	connect	to	a
master	and	apply	all	the	events	from	the	log	in	the	same	order	locally.	After	that,	they	will	have	the	same	state	of	data	as	the	master
database.

Synchronous	replication

Synchronous	replication	only	works	within	a	cluster	and	is	typically	used	for	mission	critical	data	which	must	be	accessible	at	all	times.
Synchronous	replication	generally	stores	a	copy	of	a	shard's	data	on	another	db	server	and	keeps	it	in	sync.	Essentially,	when	storing	data
after	enabling	synchronous	replication	the	cluster	will	wait	for	all	replicas	to	write	all	the	data	before	greenlighting	the	write	operation	to
the	client.	This	will	naturally	increase	the	latency	a	bit,	since	one	more	network	hop	is	needed	for	each	write.	However,	it	will	enable	the
cluster	to	immediately	fail	over	to	a	replica	whenever	an	outage	has	been	detected,	without	losing	any	committed	data,	and	mostly
without	even	signaling	an	error	condition	to	the	client.

Synchronous	replication	is	organized	such	that	every	shard	has	a	leader	and		r-1		followers,	where		r		denoted	the	replication	factor.
The	number	of	followers	can	be	controlled	using	the		replicationFactor		parameter	whenever	you	create	a	collection,	the
	replicationFactor		parameter	is	the	total	number	of	copies	being	kept,	that	is,	it	is	one	plus	the	number	of	followers.

Satellite	collections

Satellite	collections	are	synchronously	replicated	collections	having	a	dynamic	replicationFactor.	They	will	replicate	all	data	to	all
database	servers	allowing	the	database	servers	to	join	data	locally	instead	of	doing	heavy	network	operations.

Satellite	collections	are	an	enterprise	only	feature.

Replication

433

Asynchronous	replication
Asynchronous	replication	works	by	logging	every	data	modification	on	a	master	and	replaying	these	events	on	a	number	of	slaves.

Transactions	are	honored	in	replication,	i.e.	transactional	write	operations	will	become	visible	on	slaves	atomically.

As	all	write	operations	will	be	logged	to	a	master	database's	write-ahead	log,	the	replication	in	ArangoDB	currently	cannot	be	used	for
write-scaling.	The	main	purposes	of	the	replication	in	current	ArangoDB	are	to	provide	read-scalability	and	"hot	backups"	of	specific
databases.

It	is	possible	to	connect	multiple	slave	databases	to	the	same	master	database.	Slave	databases	should	be	used	as	read-only	instances,	and
no	user-initiated	write	operations	should	be	carried	out	on	them.	Otherwise	data	conflicts	may	occur	that	cannot	be	solved	automatically,
and	that	will	make	the	replication	stop.

In	an	asynchronous	replication	scenario	slaves	will	pull	changes	from	the	master	database.	Slaves	need	to	know	to	which	master	database
they	should	connect	to,	but	a	master	database	is	not	aware	of	the	slaves	that	replicate	from	it.	When	the	network	connection	between	the
master	database	and	a	slave	goes	down,	write	operations	on	the	master	can	continue	normally.	When	the	network	is	up	again,	slaves	can
reconnect	to	the	master	database	and	transfer	the	remaining	changes.	This	will	happen	automatically	provided	slaves	are	configured
appropriately.

Replication	lag

In	this	setup,	write	operations	are	applied	first	in	the	master	database,	and	applied	in	the	slave	database(s)	afterwards.

For	example,	let's	assume	a	write	operation	is	executed	in	the	master	database	at	point	in	time	t0.	To	make	a	slave	database	apply	the
same	operation,	it	must	first	fetch	the	write	operation's	data	from	master	database's	write-ahead	log,	then	parse	it	and	apply	it	locally.
This	will	happen	at	some	point	in	time	after	t0,	let's	say	t1.

The	difference	between	t1	and	t0	is	called	the	replication	lag,	and	it	is	unavoidable	in	asynchronous	replication.	The	amount	of	replication
lag	depends	on	many	factors,	a	few	of	which	are:

the	network	capacity	between	the	slaves	and	the	master
the	load	of	the	master	and	the	slaves
the	frequency	in	which	slaves	poll	the	master	for	updates

Between	t0	and	t1,	the	state	of	data	on	the	master	is	newer	than	the	state	of	data	on	the	slave(s).	At	point	in	time	t1,	the	state	of	data	on
the	master	and	slave(s)	is	consistent	again	(provided	no	new	data	modifications	happened	on	the	master	in	between).	Thus,	the
replication	will	lead	to	an	eventually	consistent	state	of	data.

Replication	configuration

The	replication	is	turned	off	by	default.	In	order	to	create	a	master-slave	setup,	the	so-called	replication	applier	needs	to	be	enabled	on
the	slave	databases.

Replication	is	configured	on	a	per-database	level.	If	multiple	database	are	to	be	replicated,	the	replication	must	be	set	up	individually	per
database.

The	replication	applier	on	the	slave	can	be	used	to	perform	a	one-time	synchronization	with	the	master	(and	then	stop),	or	to	perform	an
ongoing	replication	of	changes.	To	resume	replication	on	slave	restart,	the	autoStart	attribute	of	the	replication	applier	must	be	set	to	true.

Replication	overhead

As	the	master	servers	are	logging	any	write	operation	in	the	write-ahead-log	anyway	replication	doesn't	cause	any	extra	overhead	on	the
master.	However	it	will	of	course	cause	some	overhead	for	the	master	to	serve	incoming	read	requests	of	the	slaves.	Returning	the
requested	data	is	however	a	trivial	task	for	the	master	and	should	not	result	in	a	notable	performance	degration	in	production.

Asynchronous	Replication

434

Components

Replication	Logger

Purpose

The	replication	logger	will	write	all	data-modification	operations	into	the	write-ahead	log.	This	log	may	then	be	read	by	clients	to	replay
any	data	modification	on	a	different	server.

Checking	the	state

To	query	the	current	state	of	the	logger,	use	the	state	command:

require("@arangodb/replication").logger.state();

The	result	might	look	like	this:

{	

		"state"	:	{	

				"running"	:	true,	

						"lastLogTick"	:	"133322013",	

						"totalEvents"	:	16,	

						"time"	:	"2014-07-06T12:58:11Z"	

		},	

		"server"	:	{	

				"version"	:	"2.2.0-devel",	

				"serverId"	:	"40897075811372"	

		},	

		"clients"	:	{	

		}	

}

The	running	attribute	will	always	be	true.	In	earlier	versions	of	ArangoDB	the	replication	was	optional	and	this	could	have	been	false.

The	totalEvents	attribute	indicates	how	many	log	events	have	been	logged	since	the	start	of	the	ArangoDB	server.	Finally,	the	lastLogTick
value	indicates	the	id	of	the	last	operation	that	was	written	to	the	server's	write-ahead	log.	It	can	be	used	to	determine	whether	new
operations	were	logged,	and	is	also	used	by	the	replication	applier	for	incremental	fetching	of	data.

Note:	The	replication	logger	state	can	also	be	queried	via	the	HTTP	API.

To	query	which	data	ranges	are	still	available	for	replication	clients	to	fetch,	the	logger	provides	the	firstTick	and	tickRanges	functions:

require("@arangodb/replication").logger.firstTick();

This	will	return	the	minimum	tick	value	that	the	server	can	provide	to	replication	clients	via	its	replication	APIs.	The	tickRanges	function
returns	the	minimum	and	maximum	tick	values	per	logfile:

require("@arangodb/replication").logger.tickRanges();

Replication	Applier

Purpose

The	purpose	of	the	replication	applier	is	to	read	data	from	a	master	database's	event	log,	and	apply	them	locally.	The	applier	will	check
the	master	database	for	new	operations	periodically.	It	will	perform	an	incremental	synchronization,	i.e.	only	asking	the	master	for
operations	that	occurred	after	the	last	synchronization.

Asynchronous	Replication

435

The	replication	applier	does	not	get	notified	by	the	master	database	when	there	are	"new"	operations	available,	but	instead	uses	the	pull
principle.	It	might	thus	take	some	time	(the	so-called	replication	lag)	before	an	operation	from	the	master	database	gets	shipped	to	and
applied	in	a	slave	database.

The	replication	applier	of	a	database	is	run	in	a	separate	thread.	It	may	encounter	problems	when	an	operation	from	the	master	cannot	be
applied	safely,	or	when	the	connection	to	the	master	database	goes	down	(network	outage,	master	database	is	down	or	unavailable	etc.).
In	this	case,	the	database's	replication	applier	thread	might	terminate	itself.	It	is	then	up	to	the	administrator	to	fix	the	problem	and
restart	the	database's	replication	applier.

If	the	replication	applier	cannot	connect	to	the	master	database,	or	the	communication	fails	at	some	point	during	the	synchronization,	the
replication	applier	will	try	to	reconnect	to	the	master	database.	It	will	give	up	reconnecting	only	after	a	configurable	amount	of
connection	attempts.

The	replication	applier	state	is	queryable	at	any	time	by	using	the	state	command	of	the	applier.	This	will	return	the	state	of	the	applier
of	the	current	database:

require("@arangodb/replication").applier.state();

The	result	might	look	like	this:

{	

		"state"	:	{	

				"running"	:	true,	

				"lastAppliedContinuousTick"	:	"152786205",	

				"lastProcessedContinuousTick"	:	"152786205",	

				"lastAvailableContinuousTick"	:	"152786205",	

				"progress"	:	{	

						"time"	:	"2014-07-06T13:04:57Z",	

						"message"	:	"fetching	master	log	from	offset	152786205",	

						"failedConnects"	:	0	

				},	

				"totalRequests"	:	38,	

				"totalFailedConnects"	:	0,	

				"totalEvents"	:	1,	

				"lastError"	:	{	

						"errorNum"	:	0	

				},	

				"time"	:	"2014-07-06T13:04:57Z"	

		},	

		"server"	:	{	

				"version"	:	"2.2.0-devel",	

				"serverId"	:	"210189384542896"	

		},	

		"endpoint"	:	"tcp://master.example.org:8529",	

		"database"	:	"_system"	

}

The	running	attribute	indicates	whether	the	replication	applier	of	the	current	database	is	currently	running	and	polling	the	server	at
endpoint	for	new	events.

The	progress.failedConnects	attribute	shows	how	many	failed	connection	attempts	the	replication	applier	currently	has	encountered	in	a
row.	In	contrast,	the	totalFailedConnects	attribute	indicates	how	many	failed	connection	attempts	the	applier	has	made	in	total.	The
totalRequests	attribute	shows	how	many	requests	the	applier	has	sent	to	the	master	database	in	total.	The	totalEvents	attribute	shows
how	many	log	events	the	applier	has	read	from	the	master.

The	progress.message	sub-attribute	provides	a	brief	hint	of	what	the	applier	currently	does	(if	it	is	running).	The	lastError	attribute	also
has	an	optional	errorMessage	sub-attribute,	showing	the	latest	error	message.	The	errorNum	sub-attribute	of	the	lastError	attribute	can
be	used	by	clients	to	programmatically	check	for	errors.	It	should	be	0	if	there	is	no	error,	and	it	should	be	non-zero	if	the	applier
terminated	itself	due	to	a	problem.

Here	is	an	example	of	the	state	after	the	replication	applier	terminated	itself	due	to	(repeated)	connection	problems:

{	

		"state"	:	{	

				"running"	:	false,	

				"progress"	:	{	

						"time"	:	"2014-07-06T13:14:37Z",	

Asynchronous	Replication

436

						"message"	:	"applier	stopped",	

						"failedConnects"	:	6	

				},	

				"totalRequests"	:	79,	

				"totalFailedConnects"	:	11,	

				"totalEvents"	:	0,	

				"lastError"	:	{	

						"time"	:	"2014-07-06T13:09:41Z",	

						"errorMessage"	:	"could	not	connect	to	master	at	tcp://master.example.org:8529:	Could	not	connect	to	'tcp:/...",	

						"errorNum"	:	1400	

				},

				...

		}

}

Note:	the	state	of	a	database's	replication	applier	is	queryable	via	the	HTTP	API,	too.	Please	refer	to	HTTP	Interface	for	Replication	for
more	details.

All-in-one	setup

To	copy	the	initial	data	from	the	slave	to	the	master	and	start	the	continuous	replication,	there	is	an	all-in-one	command	setupReplication:

require("@arangodb/replication").setupReplication(configuration);

The	following	example	demonstrates	how	to	use	the	command	for	setting	up	replication	for	the	_system	database.	Note	that	it	should	be
run	on	the	slave	and	not	the	master:

db._useDatabase("_system");

require("@arangodb/replication").setupReplication({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		verbose:	false,

		includeSystem:	false,

		incremental:	true,

		autoResync:	true

});

The	command	will	return	when	the	initial	synchronization	is	finished	and	the	continuous	replication	is	started,	or	in	case	the	initial
synchronization	has	failed.

If	the	initial	synchronization	is	successful,	the	command	will	store	the	given	configuration	on	the	slave.	It	also	configures	the	continuous
replication	to	start	automatically	if	the	slave	is	restarted,	i.e.	autoStart	is	set	to	true.

If	the	command	is	run	while	the	slave's	replication	applier	is	already	running,	it	will	first	stop	the	running	applier,	drop	its	configuration
and	do	a	resynchronization	of	data	with	the	master.	It	will	then	use	the	provided	configration,	overwriting	any	previously	existing
replication	configuration	on	the	slave.

Starting	and	Stopping

To	manually	start	and	stop	the	applier	in	the	current	database,	the	start	and	stop	commands	can	be	used	like	this:

require("@arangodb/replication").applier.start(<tick>);

require("@arangodb/replication").applier.stop();

Note:	Starting	a	replication	applier	without	setting	up	an	initial	configuration	will	fail.	The	replication	applier	will	look	for	its
configuration	in	a	file	named	REPLICATION-APPLIER-CONFIG	in	the	current	database's	directory.	If	the	file	is	not	present,	ArangoDB
will	use	some	default	configuration,	but	it	cannot	guess	the	endpoint	(the	address	of	the	master	database)	the	applier	should	connect	to.
Thus	starting	the	applier	without	configuration	will	fail.

Note	that	at	the	first	time	you	start	the	applier,	you	should	pass	the	value	returned	in	the	lastLogTick	attribute	of	the	initial	sync
operation.

Asynchronous	Replication

437

Note:	Starting	a	database's	replication	applier	via	the	start	command	will	not	necessarily	start	the	applier	on	the	next	and	following
ArangoDB	server	restarts.	Additionally,	stopping	a	database's	replication	applier	manually	will	not	necessarily	prevent	the	applier	from
being	started	again	on	the	next	server	start.	All	of	this	is	configurable	separately	(hang	on	reading).

Note:	when	stopping	and	restarting	the	replication	applier	of	database,	it	will	resume	where	it	last	stopped.	This	is	sensible	because
replication	log	events	should	be	applied	incrementally.	If	the	replication	applier	of	a	database	has	never	been	started	before,	it	needs	some
tick	value	from	the	master's	log	from	which	to	start	fetching	events.

There	is	one	caveat	to	consider	when	stopping	a	replication	on	the	slave:	if	there	are	still	ongoing	replicated	transactions	that	are	neither
committed	or	aborted,	stopping	the	replication	applier	will	cause	these	operations	to	be	lost	for	the	slave.	If	these	transactions	commit	on
the	master	later	and	the	replication	is	resumed,	the	slave	will	not	be	able	to	commit	these	transactions,	too.	Thus	stopping	the	replication
applier	on	the	slave	manually	should	only	be	done	if	there	is	certainty	that	there	are	no	ongoing	transactions	on	the	master.

Configuration

To	configure	the	replication	applier	of	a	specific	database,	use	the	properties	command.	Using	it	without	any	arguments	will	return	the
applier's	current	configuration:

require("@arangodb/replication").applier.properties();

The	result	might	look	like	this:

{	

		"requestTimeout"	:	600,	

		"connectTimeout"	:	10,	

		"ignoreErrors"	:	0,	

		"maxConnectRetries"	:	10,	

		"chunkSize"	:	0,	

		"autoStart"	:	false,	

		"adaptivePolling"	:	true,

		"includeSystem"	:	true,

		"requireFromPresent"	:	false,

		"autoResync"	:	false,

		"autoResyncRetries"	:	2,

		"verbose"	:	false	

}

Note:	There	is	no	endpoint	attribute	configured	yet.	The	endpoint	attribute	is	required	for	the	replication	applier	to	be	startable.	You	may
also	want	to	configure	a	username	and	password	for	the	connection	via	the	username	and	password	attributes.

require("@arangodb/replication").applier.properties({	

		endpoint:	"tcp://master.domain.org:8529",	

		username:		"root",	

		password:	"secret",

		verbose:	false

});

This	will	re-configure	the	replication	applier	for	the	current	database.	The	configuration	will	be	used	from	the	next	start	of	the	replication
applier.	The	replication	applier	cannot	be	re-configured	while	it	is	running.	It	must	be	stopped	first	to	be	re-configured.

To	make	the	replication	applier	of	the	current	database	start	automatically	when	the	ArangoDB	server	starts,	use	the	autoStart	attribute.

Setting	the	adaptivePolling	attribute	to	true	will	make	the	replication	applier	poll	the	master	database	for	changes	with	a	variable
frequency.	The	replication	applier	will	then	lower	the	frequency	when	the	master	is	idle,	and	increase	it	when	the	master	can	provide	new
events).	Otherwise	the	replication	applier	will	poll	the	master	database	for	changes	with	a	constant	frequency.

The	idleMinWaitTime	attribute	controls	the	minimum	wait	time	(in	seconds)	that	the	replication	applier	will	intentionally	idle	before
fetching	more	log	data	from	the	master	in	case	the	master	has	already	sent	all	its	log	data.	This	wait	time	can	be	used	to	control	the
frequency	with	which	the	replication	applier	sends	HTTP	log	fetch	requests	to	the	master	in	case	there	is	no	write	activity	on	the	master.

The	idleMaxWaitTime	attribute	controls	the	maximum	wait	time	(in	seconds)	that	the	replication	applier	will	intentionally	idle	before
fetching	more	log	data	from	the	master	in	case	the	master	has	already	sent	all	its	log	data	and	there	have	been	previous	log	fetch	attempts
that	resulted	in	no	more	log	data.	This	wait	time	can	be	used	to	control	the	maximum	frequency	with	which	the	replication	applier	sends

Asynchronous	Replication

438

HTTP	log	fetch	requests	to	the	master	in	case	there	is	no	write	activity	on	the	master	for	longer	periods.	Note	that	this	configuration
value	will	only	be	used	if	the	option	adaptivePolling	is	set	to	true.

To	set	a	timeout	for	connection	and	following	request	attempts,	use	the	connectTimeout	and	requestTimeout	values.	The
maxConnectRetries	attribute	configures	after	how	many	failed	connection	attempts	in	a	row	the	replication	applier	will	give	up	and	turn
itself	off.	You	may	want	to	set	this	to	a	high	value	so	that	temporary	network	outages	do	not	lead	to	the	replication	applier	stopping
itself.	The	connectRetryWaitTime	attribute	configures	how	long	the	replication	applier	will	wait	before	retrying	the	connection	to	the
master	in	case	of	connection	problems.

The	chunkSize	attribute	can	be	used	to	control	the	approximate	maximum	size	of	a	master's	response	(in	bytes).	Setting	it	to	a	low	value
may	make	the	master	respond	faster	(less	data	is	assembled	before	the	master	sends	the	response),	but	may	require	more	request-
response	roundtrips.	Set	it	to	0	to	use	ArangoDB's	built-in	default	value.

The	includeSystem	attribute	controls	whether	changes	to	system	collections	(such	as	_graphs	or	_users)	should	be	applied.	If	set	to	true,
changes	in	these	collections	will	be	replicated,	otherwise,	they	will	not	be	replicated.	It	is	often	not	necessary	to	replicate	data	from
system	collections,	especially	because	it	may	lead	to	confusion	on	the	slave	because	the	slave	needs	to	have	its	own	system	collections	in
order	to	start	and	keep	operational.

The	requireFromPresent	attribute	controls	whether	the	applier	will	start	synchronizing	in	case	it	detects	that	the	master	cannot	provide
data	for	the	initial	tick	value	provided	by	the	slave.	This	may	be	the	case	if	the	master	does	not	have	a	big	enough	backlog	of	historic
WAL	logfiles,	and	when	the	replication	is	re-started	after	a	longer	pause.	When	requireFromPresent	is	set	to	true,	then	the	replication
applier	will	check	at	start	whether	the	start	tick	from	which	it	starts	or	resumes	replication	is	still	present	on	the	master.	If	not,	then	there
would	be	data	loss.	If	requireFromPresent	is	true,	the	replication	applier	will	abort	with	an	appropriate	error	message.	If	set	to	false,
then	the	replication	applier	will	still	start,	and	ignore	the	data	loss.

The	autoResync	option	can	be	used	in	conjunction	with	the	requireFromPresent	option	as	follows:	when	both	requireFromPresent	and
autoResync	are	set	to	true	and	the	master	cannot	provide	the	log	data	the	slave	requests,	the	replication	applier	will	stop	as	usual.	But	due
to	the	fact	that	autoResync	is	set	to	true,	the	slave	will	automatically	trigger	a	full	resync	of	all	data	with	the	master.	After	that,	the
replication	applier	will	go	into	continuous	replication	mode	again.	Additionally,	setting	autoResync	to	true	will	trigger	a	full	re-
synchronization	of	data	when	the	continuous	replication	is	started	and	detects	that	there	is	no	start	tick	value.

Automatic	re-synchronization	may	transfer	a	lot	of	data	from	the	master	to	the	slave	and	can	be	expensive.	It	is	therefore	turned	off	by
default.	When	turned	off,	the	slave	will	never	perform	an	automatic	re-synchronization	with	the	master.

The	autoResyncRetries	option	can	be	used	to	control	the	number	of	resynchronization	retries	that	will	be	performed	in	a	row	when
automatic	resynchronization	is	enabled	and	kicks	in.	Setting	this	to	0	will	effectively	disable	autoResync.	Setting	it	to	some	other	value
will	limit	the	number	of	retries	that	are	performed.	This	helps	preventing	endless	retries	in	case	resynchronizations	always	fail.

The	verbose	attribute	controls	the	verbosity	of	the	replication	logger.	Setting	it	to		true		will	make	the	replication	applier	write	a	line	to
the	log	for	every	operation	it	performs.	This	should	only	be	used	for	diagnosing	replication	problems.

The	following	example	will	set	most	of	the	discussed	properties	for	the	current	database's	applier:

require("@arangodb/replication").applier.properties({	

		endpoint:	"tcp://master.domain.org:8529",	

		username:	"root",	

		password:	"secret",

		adaptivePolling:	true,

		connectTimeout:	15,

		maxConnectRetries:	100,

		chunkSize:	262144,

		autoStart:	true,

		includeSystem:	true,

		autoResync:	true,

		autoResyncRetries:	2,

});

After	the	applier	is	now	fully	configured,	it	could	theoretically	be	started.	However,	we	may	first	need	an	initial	synchronization	of	all
collections	and	their	data	from	the	master	before	we	start	the	replication	applier.

The	only	safe	method	for	doing	a	full	synchronization	(or	re-synchronization)	is	thus	to

stop	the	replication	applier	on	the	slave	(if	currently	running)
perform	an	initial	full	sync	with	the	master	database
note	the	master	database's	lastLogTick	value	and

Asynchronous	Replication

439

start	the	continuous	replication	applier	on	the	slave	using	this	tick	value.

The	initial	synchronization	for	the	current	database	is	executed	with	the	sync	command:

require("@arangodb/replication").sync({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"root",

		password:	"secret,

		includeSystem:	true

});

The	includeSystem	option	controls	whether	data	from	system	collections	(such	as	_graphs	and	_users)	shall	be	synchronized.

The	initial	synchronization	can	optionally	be	configured	to	include	or	exclude	specific	collections	using	the	restrictType	and
restrictCollection	parameters.

The	following	command	only	synchronizes	collection	foo	and	bar:

require("@arangodb/replication").sync({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"root",

		password:	"secret,

		restrictType:	"include",

		restrictCollections:	["foo",	"bar"]

});

Using	a	restrictType	of	exclude,	all	collections	but	the	specified	will	be	synchronized.

Warning:	sync	will	do	a	full	synchronization	of	the	collections	in	the	current	database	with	collections	present	in	the	master	database.
Any	local	instances	of	the	collections	and	all	their	data	are	removed!	Only	execute	this	command	if	you	are	sure	you	want	to	remove	the
local	data!

As	sync	does	a	full	synchronization,	it	might	take	a	while	to	execute.	When	sync	completes	successfully,	it	returns	an	array	of	collections
it	has	synchronized	in	its	collections	attribute.	It	will	also	return	the	master	database's	last	log	tick	value	at	the	time	the	sync	was	started
on	the	master.	The	tick	value	is	contained	in	the	lastLogTick	attribute	of	the	sync	command:

{	

		"lastLogTick"	:	"231848833079705",	

		"collections"	:	[...]

}

Now	you	can	start	the	continuous	synchronization	for	the	current	database	on	the	slave	with	the	command

require("@arangodb/replication").applier.start("231848833079705");

Note:	The	tick	values	should	be	treated	as	strings.	Using	numeric	data	types	for	tick	values	is	unsafe	because	they	might	exceed	the	32	bit
value	and	the	IEEE754	double	accuracy	ranges.

Asynchronous	Replication

440

Per-Database	Setup
This	page	describes	the	replication	process	based	on	a	specific	database	within	an	ArangoDB	instance.	That	means	that	only	the
specified	database	will	be	replicated.

Setting	up	a	working	master-slave	replication	requires	two	ArangoDB	instances:

master:	this	is	the	instance	that	all	data-modification	operations	should	be	directed	to
slave:	on	this	instance,	we'll	start	a	replication	applier,	and	this	will	fetch	data	from	the	master	database's	write-ahead	log	and	apply
its	operations	locally

For	the	following	example	setup,	we'll	use	the	instance	tcp://master.domain.org:8529	as	the	master,	and	the	instance
tcp://slave.domain.org:8530	as	a	slave.

The	goal	is	to	have	all	data	from	the	database	_system	on	master	tcp://master.domain.org:8529	be	replicated	to	the	database	_system	on
the	slave	tcp://slave.domain.org:8530.

On	the	master,	nothing	special	needs	to	be	done,	as	all	write	operations	will	automatically	be	logged	in	the	master's	write-ahead	log
(WAL).

All-in-one	setup

To	make	the	replication	copy	the	initial	data	from	the	master	to	the	slave	and	start	the	continuous	replication	on	the	slave,	there	is	an
all-in-one	command:

require("@arangodb/replication").setupReplication(configuration);

The	following	example	demonstrates	how	to	use	the	command	for	setting	up	replication	for	the	_system	database.	Note	that	it	should	be
run	on	the	slave	and	not	the	master:

db._useDatabase("_system");

require("@arangodb/replication").setupReplication({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		verbose:	false,

		includeSystem:	false,

		incremental:	true,

		autoResync:	true

});

The	command	will	return	when	the	initial	synchronization	is	finished	and	the	continuous	replication	has	been	started,	or	in	case	the	initial
synchronization	has	failed.

If	the	initial	synchronization	is	successful,	the	command	will	store	the	given	configuration	on	the	slave.	It	also	configures	the	continuous
replication	to	start	automatically	if	the	slave	is	restarted,	i.e.	autoStart	is	set	to	true.

If	the	command	is	run	while	the	slave's	replication	applier	is	already	running,	it	will	first	stop	the	running	applier,	drop	its	configuration
and	do	a	resynchronization	of	data	with	the	master.	It	will	then	use	the	provided	configration,	overwriting	any	previously	existing
replication	configuration	on	the	slave.

Initial	synchronization

The	initial	synchronization	and	continuous	replication	applier	can	also	be	started	separately.	To	start	replication	on	the	slave,	make	sure
there	currently	is	no	replication	applier	running.

The	following	commands	stop	a	running	applier	in	the	slave's	_system	database:

db._useDatabase("_system");

Asynchronous	Replication

441

require("@arangodb/replication").applier.stop();

The	stop	operation	will	terminate	any	replication	activity	in	the	_system	database	on	the	slave.

After	that,	the	initial	synchronization	can	be	run.	It	will	copy	the	collections	from	the	master	to	the	slave,	overwriting	existing	data.	To
run	the	initial	synchronization,	execute	the	following	commands	on	the	slave:

db._useDatabase("_system");

require("@arangodb/replication").sync({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		verbose:	false

});

Username	and	password	only	need	to	be	specified	when	the	master	requires	authentication.	To	check	what	the	synchronization	is
currently	doing,	supply	set	the	verbose	option	to	true.	If	set,	the	synchronization	will	create	log	messages	with	the	current
synchronization	status.

Warning:	The	sync	command	will	replace	data	in	the	slave	database	with	data	from	the	master	database!	Only	execute	these	commands
if	you	have	verified	you	are	on	the	correct	server,	in	the	correct	database!

The	sync	operation	will	return	an	attribute	named	lastLogTick	which	we'll	need	to	note.	The	last	log	tick	will	be	used	as	the	starting	point
for	subsequent	replication	activity.	Let's	assume	we	got	the	following	last	log	tick:

{	

		"lastLogTick"	:	"40694126",	

		...

}

Initial	synchronization	from	the	ArangoShell

The	initial	synchronization	via	the	sync	command	may	take	a	long	time	to	complete.	The	shell	will	block	until	the	slave	has	completed	the
initial	synchronization	or	until	an	error	occurs.	By	default,	the	sync	command	in	the	ArangoShell	will	poll	the	slave	for	a	status	update
every	10	seconds.

Optionally	the	sync	command	can	be	made	non-blocking	by	setting	its	async	option	to	true.	In	this	case,	the	sync	command	will	return
instantly	with	an	id	string,	and	the	initial	synchronization	will	run	detached	on	the	master.	To	fetch	the	current	status	of	the	sync	progress
from	the	ArangoShell,	the	getSyncResult	function	can	be	used	as	follows:

db._useDatabase("_system");

var	replication	=	require("@arangodb/replication");

/*	run	command	in	async	mode	*/

var	id	=	replication.sync({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		async:	true

});

/*	now	query	the	status	of	our	operation	*/

print(replication.getSyncResult(id));

getSyncResult	will	return	false	as	long	as	the	synchronization	is	not	complete,	and	return	the	synchronization	result	otherwise.

Continuous	synchronization

When	the	initial	synchronization	is	finished,	the	continuous	replication	applier	can	be	started	using	the	last	log	tick	provided	by	the	sync
command.	Before	starting	it,	there	is	at	least	one	configuration	option	to	consider:	replication	on	the	slave	will	be	running	until	the	slave
gets	shut	down.	When	the	slave	server	gets	restarted,	replication	will	be	turned	off	again.	To	change	this,	we	first	need	to	configure	the
slave's	replication	applier	and	set	its	autoStart	attribute.

Asynchronous	Replication

442

Here's	the	command	to	configure	the	replication	applier	with	several	options,	including	the	autoStart	attribute:

db._useDatabase("_system");

require("@arangodb/replication").applier.properties({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		autoStart:	true,

		autoResync:	true,

		autoResyncRetries:	2,

		adaptivePolling:	true,

		includeSystem:	false,

		requireFromPresent:	false,

		idleMinWaitTime:	0.5,

		idleMaxWaitTime:	1.5,

		verbose:	false

});

An	important	consideration	for	replication	is	whether	data	from	system	collections	(such	as	_graphs	or	_users)	should	be	applied.	The
includeSystem	option	controls	that.	If	set	to	true,	changes	in	system	collections	will	be	replicated.	Otherwise,	they	will	not	be	replicated.
It	is	often	not	necessary	to	replicate	data	from	system	collections,	especially	because	it	may	lead	to	confusion	on	the	slave	because	the
slave	needs	to	have	its	own	system	collections	in	order	to	start	and	keep	operational.

The	requireFromPresent	attribute	controls	whether	the	applier	will	start	synchronizing	in	case	it	detects	that	the	master	cannot	provide
data	for	the	initial	tick	value	provided	by	the	slave.	This	may	be	the	case	if	the	master	does	not	have	a	big	enough	backlog	of	historic
WAL	logfiles,	and	when	the	replication	is	re-started	after	a	longer	pause.	When	requireFromPresent	is	set	to	true,	then	the	replication
applier	will	check	at	start	whether	the	start	tick	from	which	it	starts	or	resumes	replication	is	still	present	on	the	master.	If	not,	then	there
would	be	data	loss.	If	requireFromPresent	is	true,	the	replication	applier	will	abort	with	an	appropriate	error	message.	If	set	to	false,
then	the	replication	applier	will	still	start,	and	ignore	the	data	loss.

The	autoResync	option	can	be	used	in	conjunction	with	the	requireFromPresent	option	as	follows:	when	both	requireFromPresent	and
autoResync	are	set	to	true	and	the	master	cannot	provide	the	log	data	the	slave	had	requested,	the	replication	applier	will	stop	as	usual.
But	due	to	the	fact	that	autoResync	is	set	to	true,	the	slave	will	automatically	trigger	a	full	resync	of	all	data	with	the	master.	After	that,
the	replication	applier	will	go	into	continuous	replication	mode	again.	Additionally,	setting	autoResync	to	true	will	trigger	a	full	re-
synchronization	of	data	when	the	continuous	replication	is	started	and	detects	that	there	is	no	start	tick	value.

Note	that	automatic	re-synchronization	(autoResync	option	set	to	true)	may	transfer	a	lot	of	data	from	the	master	to	the	slave	and	can
therefore	be	expensive.	Still	it's	turned	on	here	so	there's	less	need	for	manual	intervention.

The	autoResyncRetries	option	can	be	used	to	control	the	number	of	resynchronization	retries	that	will	be	performed	in	a	row	when
automatic	resynchronization	is	enabled	and	kicks	in.	Setting	this	to	0	will	effectively	disable	autoResync.	Setting	it	to	some	other	value
will	limit	the	number	of	retries	that	are	performed.	This	helps	preventing	endless	retries	in	case	resynchronizations	always	fail.

Now	it's	time	to	start	the	replication	applier	on	the	slave	using	the	last	log	tick	we	got	before:

db._useDatabase("_system");

require("@arangodb/replication").applier.start("40694126");

This	will	replicate	all	operations	happening	in	the	master's	system	database	and	apply	them	on	the	slave,	too.

After	that,	you	should	be	able	to	monitor	the	state	and	progress	of	the	replication	applier	by	executing	the	state	command	on	the	slave
server:

				db._useDatabase("_system");

				require("@arangodb/replication").applier.state();

Please	note	that	stopping	the	replication	applier	on	the	slave	using	the	stop	command	should	be	avoided.	The	reason	is	that	currently
ongoing	transactions	(that	have	partly	been	replicated	to	the	slave)	will	be	need	to	be	restarted	after	a	restart	of	the	replication	applier.
Stopping	and	restarting	the	replication	applier	on	the	slave	should	thus	only	be	performed	if	there	is	certainty	that	the	master	is	currently
fully	idle	and	all	transactions	have	been	replicated	fully.

Note	that	while	a	slave	has	only	partly	executed	a	transaction	from	the	master,	it	might	keep	a	write	lock	on	the	collections	involved	in
the	transaction.

Asynchronous	Replication

443

You	may	also	want	to	check	the	master	and	slave	states	via	the	HTTP	APIs	(see	HTTP	Interface	for	Replication).

Asynchronous	Replication

444

Server-level	Setup
This	page	describes	the	replication	process	based	on	a	complete	ArangoDB	instance.	That	means	that	all	included	databases	will	be
replicated.

Setting	up	a	working	master-slave	replication	requires	two	ArangoDB	instances:

master:	this	is	the	instance	that	all	data-modification	operations	should	be	directed	to
slave:	on	this	instance,	we'll	start	a	replication	applier,	and	this	will	fetch	data	from	the	master	database's	write-ahead	log	and	apply
its	operations	locally

For	the	following	example	setup,	we'll	use	the	instance	tcp://master.domain.org:8529	as	the	master,	and	the	instance
tcp://slave.domain.org:8530	as	a	slave.

The	goal	is	to	have	all	data	of	all	databases	on	master	tcp://master.domain.org:8529	be	replicated	to	the	slave	instance
tcp://slave.domain.org:8530.

On	the	master,	nothing	special	needs	to	be	done,	as	all	write	operations	will	automatically	be	logged	in	the	master's	write-ahead	log
(WAL).

All-in-one	setup

To	make	the	replication	copy	the	initial	data	from	the	master	to	the	slave	and	start	the	continuous	replication	on	the	slave,	there	is	an
all-in-one	command:

require("@arangodb/replication").setupReplicationGlobal(configuration);

The	following	example	demonstrates	how	to	use	the	command	for	setting	up	replication	for	the	complete	ArangoDB	instance.	Note	that
it	should	be	run	on	the	slave	and	not	the	master:

db._useDatabase("_system");

require("@arangodb/replication").setupReplicationGlobal({

		endpoint:	"tcp://127.0.0.1:8529",

		username:	"root",

		password:	"",

		autoStart:	true

});

The	command	will	return	when	the	initial	synchronization	is	finished	and	the	continuous	replication	has	been	started,	or	in	case	the	initial
synchronization	has	failed.

If	the	initial	synchronization	is	successful,	the	command	will	store	the	given	configuration	on	the	slave.	It	also	configures	the	continuous
replication	to	start	automatically	if	the	slave	is	restarted,	i.e.	autoStart	is	set	to	true.

If	the	command	is	run	while	the	slave's	replication	applier	is	already	running,	it	will	first	stop	the	running	applier,	drop	its	configuration
and	do	a	resynchronization	of	data	with	the	master.	It	will	then	use	the	provided	configration,	overwriting	any	previously	existing
replication	configuration	on	the	slave.

Stopping	synchronization

The	initial	synchronization	and	continuous	replication	applier	can	also	be	started	separately.	To	start	replication	on	the	slave,	make	sure
there	currently	is	no	replication	applier	running.

The	following	commands	stop	a	running	applier	in	the	slave's	instance:

db._useDatabase("_system");

require("@arangodb/replication").globalApplier.stop();

Asynchronous	Replication

445

The	stop	operation	will	terminate	any	replication	activity	in	the	ArangoDB	instance	on	the	slave.

After	that,	the	initial	synchronization	can	be	run.	It	will	copy	the	collections	from	the	master	to	the	slave,	overwriting	existing	data.	To
run	the	initial	synchronization,	execute	the	following	commands	on	the	slave:

db._useDatabase("_system");

require("@arangodb/replication").syncGlobal({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		verbose:	false

});

Username	and	password	only	need	to	be	specified	when	the	master	requires	authentication.	To	check	what	the	synchronization	is
currently	doing,	supply	set	the	verbose	option	to	true.	If	set,	the	synchronization	will	create	log	messages	with	the	current
synchronization	status.

Warning:	The	syncGlobal	command	will	replace	data	in	the	slave	database	with	data	from	the	master	database!	Only	execute	these
commands	if	you	have	verified	you	are	on	the	correct	server,	in	the	correct	database!

The	sync	operation	will	return	an	attribute	named	lastLogTick	which	we'll	need	to	note.	The	last	log	tick	will	be	used	as	the	starting	point
for	subsequent	replication	activity.	Let's	assume	we	got	the	following	last	log	tick:

{	

		"lastLogTick"	:	"40694126",	

		...

}

Initial	synchronization	from	the	ArangoShell
The	initial	synchronization	via	the	syncGlobal	command	may	take	a	long	time	to	complete.	The	shell	will	block	until	the	slave	has
completed	the	initial	synchronization	or	until	an	error	occurs.	By	default,	the	syncGlobal	command	in	the	ArangoShell	will	poll	the	slave
for	a	status	update	every	10	seconds.

Optionally	the	syncGlobal	command	can	be	made	non-blocking	by	setting	its	async	option	to	true.	In	this	case,	the	syncGlobal	command
will	return	instantly	with	an	id	string,	and	the	initial	synchronization	will	run	detached	on	the	master.	To	fetch	the	current	status	of	the
syncGlobal	progress	from	the	ArangoShell,	the	getSyncResult	function	can	be	used	as	follows:

db._useDatabase("_system");

var	replication	=	require("@arangodb/replication");

/*	run	command	in	async	mode	*/

var	id	=	replication.syncGlobal({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		async:	true

});

/*	now	query	the	status	of	our	operation	*/

print(replication.getSyncResult(id));

getSyncResult	will	return	false	as	long	as	the	synchronization	is	not	complete,	and	return	the	synchronization	result	otherwise.

Continuous	synchronization

When	the	initial	synchronization	is	finished,	the	continuous	replication	applier	can	be	started	using	the	last	log	tick	provided	by	the
syncGlobal	command.	Before	starting	it,	there	is	at	least	one	configuration	option	to	consider:	replication	on	the	slave	will	be	running
until	the	slave	gets	shut	down.	When	the	slave	server	gets	restarted,	replication	will	be	turned	off	again.	To	change	this,	we	first	need	to
configure	the	slave's	replication	applier	and	set	its	autoStart	attribute.

Here's	the	command	to	configure	the	replication	applier	with	several	options,	including	the	autoStart	attribute:

Asynchronous	Replication

446

db._useDatabase("_system");

require("@arangodb/replication").globalApplier.properties({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		autoStart:	true,

		autoResync:	true,

		autoResyncRetries:	2,

		adaptivePolling:	true,

		includeSystem:	false,

		requireFromPresent:	false,

		idleMinWaitTime:	0.5,

		idleMaxWaitTime:	1.5,

		verbose:	false

});

An	important	consideration	for	replication	is	whether	data	from	system	collections	(such	as	_graphs	or	_users)	should	be	applied.	The
includeSystem	option	controls	that.	If	set	to	true,	changes	in	system	collections	will	be	replicated.	Otherwise,	they	will	not	be	replicated.
It	is	often	not	necessary	to	replicate	data	from	system	collections,	especially	because	it	may	lead	to	confusion	on	the	slave	because	the
slave	needs	to	have	its	own	system	collections	in	order	to	start	and	keep	operational.

The	requireFromPresent	attribute	controls	whether	the	applier	will	start	synchronizing	in	case	it	detects	that	the	master	cannot	provide
data	for	the	initial	tick	value	provided	by	the	slave.	This	may	be	the	case	if	the	master	does	not	have	a	big	enough	backlog	of	historic
WAL	logfiles,	and	when	the	replication	is	re-started	after	a	longer	pause.	When	requireFromPresent	is	set	to	true,	then	the	replication
applier	will	check	at	start	whether	the	start	tick	from	which	it	starts	or	resumes	replication	is	still	present	on	the	master.	If	not,	then	there
would	be	data	loss.	If	requireFromPresent	is	true,	the	replication	applier	will	abort	with	an	appropriate	error	message.	If	set	to	false,
then	the	replication	applier	will	still	start,	and	ignore	the	data	loss.

The	autoResync	option	can	be	used	in	conjunction	with	the	requireFromPresent	option	as	follows:	when	both	requireFromPresent	and
autoResync	are	set	to	true	and	the	master	cannot	provide	the	log	data	the	slave	had	requested,	the	replication	applier	will	stop	as	usual.
But	due	to	the	fact	that	autoResync	is	set	to	true,	the	slave	will	automatically	trigger	a	full	resync	of	all	data	with	the	master.	After	that,
the	replication	applier	will	go	into	continuous	replication	mode	again.	Additionally,	setting	autoResync	to	true	will	trigger	a	full	re-
synchronization	of	data	when	the	continuous	replication	is	started	and	detects	that	there	is	no	start	tick	value.

Note	that	automatic	re-synchronization	(autoResync	option	set	to	true)	may	transfer	a	lot	of	data	from	the	master	to	the	slave	and	can
therefore	be	expensive.	Still	it's	turned	on	here	so	there's	less	need	for	manual	intervention.

The	autoResyncRetries	option	can	be	used	to	control	the	number	of	resynchronization	retries	that	will	be	performed	in	a	row	when
automatic	resynchronization	is	enabled	and	kicks	in.	Setting	this	to	0	will	effectively	disable	autoResync.	Setting	it	to	some	other	value
will	limit	the	number	of	retries	that	are	performed.	This	helps	preventing	endless	retries	in	case	resynchronizations	always	fail.

Now	it's	time	to	start	the	replication	applier	on	the	slave	using	the	last	log	tick	we	got	before:

db._useDatabase("_system");

require("@arangodb/replication").globalApplier.start("40694126");

This	will	replicate	all	operations	happening	in	the	master's	system	database	and	apply	them	on	the	slave,	too.

After	that,	you	should	be	able	to	monitor	the	state	and	progress	of	the	replication	applier	by	executing	the	state	command	on	the	slave
server:

db._useDatabase("_system");

require("@arangodb/replication").globalApplier.state();

Please	note	that	stopping	the	replication	applier	on	the	slave	using	the	stop	command	should	be	avoided.	The	reason	is	that	currently
ongoing	transactions	(that	have	partly	been	replicated	to	the	slave)	will	be	need	to	be	restarted	after	a	restart	of	the	replication	applier.
Stopping	and	restarting	the	replication	applier	on	the	slave	should	thus	only	be	performed	if	there	is	certainty	that	the	master	is	currently
fully	idle	and	all	transactions	have	been	replicated	fully.

Note	that	while	a	slave	has	only	partly	executed	a	transaction	from	the	master,	it	might	keep	a	write	lock	on	the	collections	involved	in
the	transaction.

You	may	also	want	to	check	the	master	and	slave	states	via	the	HTTP	APIs	(see	HTTP	Interface	for	Replication).

Asynchronous	Replication

447

Asynchronous	Replication

448

Syncing	Collections
In	order	to	synchronize	data	for	a	single	collection	from	a	master	to	a	slave	instance,	there	is	the	syncCollection	function:

It	will	fetch	all	documents	of	the	specified	collection	from	the	master	database	and	store	them	in	the	local	instance.	After	the
synchronization,	the	collection	data	on	the	slave	will	be	identical	to	the	data	on	the	master,	provided	no	further	data	changes	happen	on
the	master.	Any	data	changes	that	are	performed	on	the	master	after	the	synchronization	was	started	will	not	be	captured	by
syncCollection,	but	need	to	be	replicated	using	the	regular	replication	applier	mechanism.

For	the	following	example	setup,	we'll	use	the	instance	tcp://master.domain.org:8529	as	the	master,	and	the	instance
tcp://slave.domain.org:8530	as	a	slave.

The	goal	is	to	have	all	data	from	the	collection	test	in	database	_system	on	master	tcp://master.domain.org:8529	be	replicated	to	the
collection	test	in	database	_system	on	the	slave	tcp://slave.domain.org:8530.

On	the	master,	the	collection	test	needs	to	be	present	in	the	_system	database,	with	any	data	in	it.

To	transfer	this	collection	to	the	slave,	issue	the	following	commands	there:

db._useDatabase("_system");

require("@arangodb/replication").syncCollection("test",	{

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd"

});

Warning:	The	syncCollection	command	will	replace	the	collection's	data	in	the	slave	database	with	data	from	the	master	database!	Only
execute	these	commands	if	you	have	verified	you	are	on	the	correct	server,	in	the	correct	database!

Setting	the	optional	incremental	attribute	in	the	call	to	syncCollection	will	start	an	incremental	transfer	of	data.	This	may	be	useful	in	case
when	the	slave	already	has	parts	or	almost	all	of	the	data	in	the	collection	and	only	the	differences	need	to	be	synchronized.	Note	that	to
compute	the	differences	the	incremental	transfer	will	build	a	sorted	list	of	all	document	keys	in	the	collection	on	both	the	slave	and	the
master,	which	may	still	be	expensive	for	huge	collections	in	terms	of	memory	usage	and	runtime.	During	building	the	list	of	keys	the
collection	will	be	read-locked	on	the	master.

The	initialSyncMaxWaitTime	attribute	in	the	call	to	syncCollection	controls	how	long	the	slave	will	wait	for	a	master's	response.	This	wait
time	can	be	used	to	control	after	what	time	the	synchronization	will	give	up	and	fail.

The	syncCollection	command	may	take	a	long	time	to	complete	if	the	collection	is	big.	The	shell	will	block	until	the	slave	has
synchronized	the	entire	collection	from	the	master	or	until	an	error	occurs.	By	default,	the	syncCollection	command	in	the	ArangoShell
will	poll	for	a	status	update	every	10	seconds.

When	syncCollection	is	called	from	the	ArangoShell,	the	optional	async	attribute	can	be	used	to	start	the	synchronization	as	a	background
process	on	the	slave.	If	async	is	set	to	true,	the	call	to	syncCollection	will	return	almost	instantly	with	an	id	string.	Using	this	id	string,
the	status	of	the	sync	job	on	the	slave	can	be	queried	using	the	getSyncResult	function	as	follows:

db._useDatabase("_system");

var	replication	=	require("@arangodb/replication");

/*	run	command	in	async	mode	*/

var	id	=	replication.syncCollection("test",	{

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		async:	true

});

/*	now	query	the	status	of	our	operation	*/

print(replication.getSyncResult(id));

getSyncResult	will	return	false	as	long	as	the	synchronization	is	not	complete,	and	return	the	synchronization	result	otherwise.

Asynchronous	Replication

449

Asynchronous	Replication

450

Replication	Limitations
The	replication	in	ArangoDB	has	a	few	limitations.	Some	of	these	limitations	may	be	removed	in	later	versions	of	ArangoDB:

there	is	no	feedback	from	the	slaves	to	the	master.	If	a	slave	cannot	apply	an	event	it	got	from	the	master,	the	master	will	have	a
different	state	of	data.	In	this	case,	the	replication	applier	on	the	slave	will	stop	and	report	an	error.	Administrators	can	then	either
"fix"	the	problem	or	re-sync	the	data	from	the	master	to	the	slave	and	start	the	applier	again.
at	the	moment	it	is	assumed	that	only	the	replication	applier	executes	write	operations	on	a	slave.	ArangoDB	currently	does	not
prevent	users	from	carrying	out	their	own	write	operations	on	slaves,	though	this	might	lead	to	undefined	behavior	and	the
replication	applier	stopping.
when	a	replication	slave	asks	a	master	for	log	events,	the	replication	master	will	return	all	write	operations	for	user-defined
collections,	but	it	will	exclude	write	operations	for	certain	system	collections.	The	following	collections	are	excluded	intentionally
from	replication:	_apps,	_trx,	_replication,	_configuration,	_jobs,	_queues,	_sessions,	_foxxlog	and	all	statistics	collections.	Write
operations	for	the	following	system	collections	can	be	queried	from	a	master:	_aqlfunctions,	_graphs,	_users.
Foxx	applications	consist	of	database	entries	and	application	scripts	in	the	file	system.	The	file	system	parts	of	Foxx	applications
are	not	tracked	anywhere	and	thus	not	replicated	in	current	versions	of	ArangoDB.	To	replicate	a	Foxx	application,	it	is	required	to
copy	the	application	to	the	remote	server	and	install	it	there	using	the	foxx-manager	utility.
master	servers	do	not	know	which	slaves	are	or	will	be	connected	to	them.	All	servers	in	a	replication	setup	are	currently	only
loosely	coupled.	There	currently	is	no	way	for	a	client	to	query	which	servers	are	present	in	a	replication.
when	not	using	our	mesos	integration	failover	must	be	handled	by	clients	or	client	APIs.
there	currently	is	one	replication	applier	per	ArangoDB	database.	It	is	thus	not	possible	to	have	a	slave	apply	operations	from
multiple	masters	into	the	same	target	database.
replication	is	set	up	on	a	per-database	level.	When	using	ArangoDB	with	multiple	databases,	replication	must	be	configured
individually	for	each	database.
the	replication	applier	is	single-threaded,	but	write	operations	on	the	master	may	be	executed	in	parallel	if	they	affect	different
collections.	Thus	the	replication	applier	might	not	be	able	to	catch	up	with	a	very	powerful	and	loaded	master.
replication	is	only	supported	between	the	two	ArangoDB	servers	running	the	same	ArangoDB	version.	It	is	currently	not	possible
to	replicate	between	different	ArangoDB	versions.
a	replication	applier	cannot	apply	data	from	itself.

Asynchronous	Replication

451

Synchronous	Replication
At	its	core	synchronous	replication	will	replicate	write	operations	to	multiple	hosts.	This	feature	is	only	available	when	operating
ArangoDB	in	a	cluster.	Whenever	a	coordinator	executes	a	sychronously	replicated	write	operation	it	will	only	be	reported	to	be
successful	if	it	was	carried	out	on	all	replicas.	In	contrast	to	multi	master	replication	setups	known	from	other	systems	ArangoDB's
synchronous	operation	guarantees	a	consistent	state	across	the	cluster.

Synchronous	Replication

452

Implementation

Architecture	inside	the	cluster

Synchronous	replication	can	be	configured	per	collection	via	the	property	replicationFactor.	Synchronous	replication	requires	a	cluster	to
operate.

Whenever	you	specify	a	replicationFactor	greater	than	1	when	creating	a	collection,	synchronous	replication	will	be	activated	for	this
collection.	The	cluster	will	determine	suitable	leaders	and	followers	for	every	requested	shard	(numberOfShards)	within	the	cluster.
When	requesting	data	of	a	shard	only	the	current	leader	will	be	asked	whereas	followers	will	only	keep	their	copy	in	sync.	This	is	due	to
the	current	implementation	of	transactions.

Using	synchronous	replication	alone	will	guarantee	consistency	and	high	availabilty	at	the	cost	of	reduced	performance:	Write	requests
will	have	a	higher	latency	(due	to	every	write-request	having	to	be	executed	on	the	followers)	and	read	requests	won't	scale	out	as	only
the	leader	is	being	asked.

In	a	cluster	synchronous	replication	will	be	managed	by	the	coordinators	for	the	client.	The	data	will	always	be	stored	on	primaries.

The	following	example	will	give	you	an	idea	of	how	synchronous	operation	has	been	implemented	in	ArangoDB.

1.	 Connect	to	a	coordinator	via	arangosh
2.	 Create	a	collection

127.0.0.1:8530@_system>	db._create("test",	{"replicationFactor":	2})

3.	 the	coordinator	will	figure	out	a	leader	and	1	follower	and	create	1	shard	(as	this	is	the	default)

4.	 Insert	data

127.0.0.1:8530@_system>	db.test.insert({"replication":	"ᚇ"})

5.	 The	coordinator	will	write	the	data	to	the	leader,	which	in	turn	will	replicate	it	to	the	follower.

6.	 Only	when	both	were	successful	the	result	is	reported	to	be	successful

{

	"_id"	:	"test/7987",	

	"_key"	:	"7987",	

	"_rev"	:	"7987"	

}

When	a	follower	fails,	the	leader	will	give	up	on	it	after	3	seconds	and	proceed	with	the	operation.	As	soon	as	the	follower	(or	the
network	connection	to	the	leader)	is	back	up,	the	two	will	resynchronize	and	synchronous	replication	is	resumed.	This	happens	all
transparently	to	the	client.

The	current	implementation	of	ArangoDB	does	not	allow	changing	the	replicationFactor	later.	This	is	subject	to	change.	In	the	meantime
the	only	way	is	to	dump	and	restore	the	collection.	See	the	cookbook	recipe	about	migrating.

Automatic	failover

Whenever	the	leader	of	a	shard	is	failing	and	there	is	a	query	trying	to	access	data	of	that	shard	the	coordinator	will	continue	trying	to
contact	the	leader	until	it	timeouts.	The	internal	cluster	supervision	running	on	the	agency	will	check	cluster	health	every	few	seconds	and
will	take	action	if	there	is	no	heartbeat	from	a	server	for	15	seconds.	If	the	leader	doesn't	come	back	in	time	the	supervision	will
reorganize	the	cluster	by	promoting	for	each	shard	a	follower	that	is	in	sync	with	its	leader	to	be	the	new	leader.	From	then	on	the
coordinators	will	contact	the	new	leader.

The	process	is	best	outlined	using	an	example:

1.	 The	leader	of	a	shard	(lets	name	it	DBServer001)	is	going	down.
2.	 A	coordinator	is	asked	to	return	a	document:

Synchronous	Replication

453

127.0.0.1:8530@_system>	db.test.document("100069")

3.	 The	coordinator	determines	which	server	is	responsible	for	this	document	and	finds	DBServer001

4.	 The	coordinator	tries	to	contact	DBServer001	and	timeouts	because	it	is	not	reachable.
5.	 After	a	short	while	the	supervision	(running	in	parallel	on	the	agency)	will	see	that	heartbeats	from	DBServer001	are	not	coming	in
6.	 The	supervision	promotes	one	of	the	followers	(say	DBServer002)	that	is	in	sync	to	be	leader	and	makes	DBServer001	a	follower.
7.	 As	the	coordinator	continues	trying	to	fetch	the	document	it	will	see	that	the	leader	changed	to	DBServer002
8.	 The	coordinator	tries	to	contact	the	new	leader	(DBServer002)	and	returns	the	result:

{

	"_key"	:	"100069",	

	"_id"	:	"test/100069",	

	"_rev"	:	"513",	

	"replication"	:	"ᚇ"

}

9.	 After	a	while	the	supervision	declares	DBServer001	to	be	completely	dead.
10.	 A	new	follower	is	determined	from	the	pool	of	DBservers.
11.	 The	new	follower	syncs	its	data	from	the	leader	and	order	is	restored.

Please	note	that	there	may	still	be	timeouts.	Depending	on	when	exactly	the	request	has	been	done	(in	regard	to	the	supervision)	and
depending	on	the	time	needed	to	reconfigure	the	cluster	the	coordinator	might	fail	with	a	timeout	error!

Synchronous	Replication

454

Configuration

Requirements

Synchronous	replication	requires	an	operational	ArangoDB	cluster.

Enabling	synchronous	replication

Synchronous	replication	can	be	enabled	per	collection.	When	creating	a	collection	you	may	specify	the	number	of	replicas	using	the
replicationFactor	parameter.	The	default	value	is	set	to		1		which	effectively	disables	synchronous	replication.

Example:

127.0.0.1:8530@_system>	db._create("test",	{"replicationFactor":	3})

In	the	above	case,	any	write	operation	will	require	2	replicas	to	report	success	from	now	on.

Preparing	growth

You	may	create	a	collection	with	higher	replication	factor	than	available.	When	additional	db	servers	become	available	the	shards	are
automatically	replicated	to	the	newly	available	machines.

Multiple	replicas	of	the	same	shard	can	never	coexist	on	the	same	db	server	instance.

Synchronous	Replication

455

Satellite	Collections
Satellite	Collections	are	an	Enterprise	only	feature.	When	doing	Joins	in	an	ArangoDB	cluster	data	has	to	exchanged	between	different
servers.

Joins	will	be	executed	on	a	coordinator.	It	will	prepare	an	execution	plan	and	execute	it.	When	executing	the	coordinator	will	contact	all
shards	of	the	starting	point	of	the	join	and	ask	for	their	data.	The	database	servers	carrying	out	this	operation	will	load	all	their	local	data
and	then	ask	the	cluster	for	the	other	part	of	the	join.	This	again	will	be	distributed	to	all	involved	shards	of	this	join	part.

In	sum	this	results	in	much	network	traffic	and	slow	results	depending	of	the	amount	of	data	that	has	to	be	sent	throughout	the	cluster.

Satellite	collections	are	collections	that	are	intended	to	address	this	issue.

They	will	facilitate	the	synchronous	replication	and	replicate	all	its	data	to	all	database	servers	that	are	part	of	the	cluster.

This	enables	the	database	servers	to	execute	that	part	of	any	Join	locally.

This	greatly	improves	performance	for	such	joins	at	the	costs	of	increased	storage	requirements	and	poorer	write	performance	on	this
data.

To	create	a	satellite	collection	set	the	replicationFactor	of	this	collection	to	"satellite".

Using	arangosh:

arangosh>	db._create("satellite",	{"replicationFactor":	"satellite"});

A	full	example

arangosh>	var	explain	=	require("@arangodb/aql/explainer").explain

arangosh>	db._create("satellite",	{"replicationFactor":	"satellite"})

arangosh>	db._create("nonsatellite",	{numberOfShards:	8})

arangosh>	db._create("nonsatellite2",	{numberOfShards:	8})

Let's	analyse	a	normal	join	not	involving	satellite	collections:

arangosh>	explain("FOR	doc	in	nonsatellite	FOR	doc2	in	nonsatellite2	RETURN	1")

Query	string:

	FOR	doc	in	nonsatellite	FOR	doc2	in	nonsatellite2	RETURN	1

Execution	plan:

	Id			NodeType																		Site							Est.			Comment

		1			SingletonNode													DBS											1			*	ROOT

		4			CalculationNode											DBS											1					-	LET	#2	=	1			/*	json	expression	*/			/*	const	assignment	*/

		2			EnumerateCollectionNode			DBS											0					-	FOR	doc	IN	nonsatellite			/*	full	collection	scan	*/

	12			RemoteNode																COOR										0							-	REMOTE

	13			GatherNode																COOR										0							-	GATHER

		6			ScatterNode															COOR										0							-	SCATTER

		7			RemoteNode																DBS											0							-	REMOTE

		3			EnumerateCollectionNode			DBS											0							-	FOR	doc2	IN	nonsatellite2			/*	full	collection	scan	*/

		8			RemoteNode																COOR										0									-	REMOTE

		9			GatherNode																COOR										0									-	GATHER

		5			ReturnNode																COOR										0									-	RETURN	#2

Indexes	used:

	none

Optimization	rules	applied:

	Id			RuleName

		1			move-calculations-up

		2			scatter-in-cluster

		3			remove-unnecessary-remote-scatter

Satellite	Collections

456

All	shards	involved	querying	the		nonsatellite		collection	will	fan	out	via	the	coordinator	to	the	shards	of		nonsatellite	.	In	sum	8
shards	will	open	8	connections	to	the	coordinator	asking	for	the	results	of	the		nonsatellite2		join.	The	coordinator	will	fan	out	to	the	8
shards	of		nonsatellite2	.	So	there	will	be	quite	some	network	traffic.

Let's	now	have	a	look	at	the	same	using	satellite	collections:

arangosh>	db._query("FOR	doc	in	nonsatellite	FOR	doc2	in	satellite	RETURN	1")

Query	string:

	FOR	doc	in	nonsatellite	FOR	doc2	in	satellite	RETURN	1

Execution	plan:

	Id			NodeType																		Site							Est.			Comment

		1			SingletonNode													DBS											1			*	ROOT

		4			CalculationNode											DBS											1					-	LET	#2	=	1			/*	json	expression	*/			/*	const	assignment	*/

		2			EnumerateCollectionNode			DBS											0					-	FOR	doc	IN	nonsatellite			/*	full	collection	scan	*/

		3			EnumerateCollectionNode			DBS											0							-	FOR	doc2	IN	satellite			/*	full	collection	scan,	satellite	*/

		8			RemoteNode																COOR										0									-	REMOTE

		9			GatherNode																COOR										0									-	GATHER

		5			ReturnNode																COOR										0									-	RETURN	#2

Indexes	used:

	none

Optimization	rules	applied:

	Id			RuleName

		1			move-calculations-up

		2			scatter-in-cluster

		3			remove-unnecessary-remote-scatter

		4			remove-satellite-joins

In	this	scenario	all	shards	of	nonsatellite	will	be	contacted.	However	as	the	join	is	a	satellite	join	all	shards	can	do	the	join	locally	as	the
data	is	replicated	to	all	servers	reducing	the	network	overhead	dramatically.

Caveats

The	cluster	will	automatically	keep	all	satellite	collections	on	all	servers	in	sync	by	facilitating	the	synchronous	replication.	This	means
that	write	will	be	executed	on	the	leader	only	and	this	server	will	coordinate	replication	to	the	followers.	If	a	follower	doesn't	answer	in
time	(due	to	network	problems,	temporary	shutdown	etc.)	it	may	be	removed	as	a	follower.	This	is	being	reported	to	the	Agency.

The	follower	(once	back	in	business)	will	then	periodically	check	the	Agency	and	know	that	it	is	out	of	sync.	It	will	then	automatically
catch	up.	This	may	take	a	while	depending	on	how	much	data	has	to	be	synced.	When	doing	a	join	involving	the	satellite	you	can	specify
how	long	the	DBServer	is	allowed	to	wait	for	sync	until	the	query	is	being	aborted.

Check	Accessing	Cursors	for	details.

During	network	failure	there	is	also	a	minimal	chance	that	a	query	was	properly	distributed	to	the	DBServers	but	that	a	previous	satellite
write	could	not	be	replicated	to	a	follower	and	the	leader	dropped	the	follower.	The	follower	however	only	checks	every	few	seconds	if	it
is	really	in	sync	so	it	might	indeed	deliver	stale	results.

Satellite	Collections

457

Sharding
ArangoDB	is	organizing	its	collection	data	in	shards.	Sharding	allows	to	use	multiple	machines	to	run	a	cluster	of	ArangoDB	instances
that	together	constitute	a	single	database.	This	enables	you	to	store	much	more	data,	since	ArangoDB	distributes	the	data	automatically
to	the	different	servers.	In	many	situations	one	can	also	reap	a	benefit	in	data	throughput,	again	because	the	load	can	be	distributed	to
multiple	machines.

Shards	are	configured	per	collection	so	multiple	shards	of	data	form	the	collection	as	a	whole.	To	determine	in	which	shard	the	data	is	to
be	stored	ArangoDB	performs	a	hash	across	the	values.	By	default	this	hash	is	being	created	from	_key.

To	configure	the	number	of	shards:

127.0.0.1:8529@_system>	db._create("sharded_collection",	{"numberOfShards":	4});

To	configure	the	hashing	for	another	attribute:

127.0.0.1:8529@_system>	db._create("sharded_collection",	{"numberOfShards":	4,	"shardKeys":	["country"]});

This	would	be	useful	to	keep	data	of	every	country	in	one	shard	which	would	result	in	better	performance	for	queries	working	on	a	per
country	base.	You	can	also	specify	multiple		shardKeys	.	Note	however	that	if	you	change	the	shard	keys	from	their	default		["_key"]	,
then	finding	a	document	in	the	collection	by	its	primary	key	involves	a	request	to	every	single	shard.	Furthermore,	in	this	case	one	can	no
longer	prescribe	the	primary	key	value	of	a	new	document	but	must	use	the	automatically	generated	one.	This	latter	restriction	comes
from	the	fact	that	ensuring	uniqueness	of	the	primary	key	would	be	very	inefficient	if	the	user	could	specify	the	primary	key.

On	which	node	in	a	cluster	a	particular	shard	is	kept	is	undefined.	There	is	no	option	to	configure	an	affinity	based	on	certain	shard	keys.

Unique	indexes	(hash,	skiplist,	persistent)	on	sharded	collections	are	only	allowed	if	the	fields	used	to	determine	the	shard	key	are	also
included	in	the	list	of	attribute	paths	for	the	index:

shardKeys indexKeys

a a ok

a b not	ok

a a,	b ok

a,	b a not	ok

a,	b b not	ok

a,	b a,	b ok

a,	b a,	b,	c ok

a,	b,	c a,	b not	ok

a,	b,	c a,	b,	c ok

Sharding

458

General	Upgrade	Information

Recommended	major	upgrade	procedure

To	upgrade	an	existing	ArangoDB	2.x	to	3.0	please	use	the	procedure	described	here.

Recommended	minor	upgrade	procedure

To	upgrade	an	existing	ArangoDB	database	to	a	newer	version	of	ArangoDB	(e.g.	3.0	to	3.1,	or	3.1	to	3.2),	the	following	method	is
recommended:

Check	the	CHANGELOG	and	the	list	of	incompatible	changes	for	API	or	other	changes	in	the	new	version	of	ArangoDB	and	make
sure	your	applications	can	deal	with	them
Stop	the	"old"	arangod	service	or	binary
Copy	the	entire	"old"	data	directory	to	a	safe	place	(that	is,	a	backup)
Install	the	new	version	of	ArangoDB	and	start	the	server	with	the	--database.auto-upgrade	option	once.	This	might	write	to	the
logfile	of	ArangoDB,	so	you	may	want	to	check	the	logs	for	any	issues	before	going	on.
Start	the	"new"	arangod	service	or	binary	regularly	and	check	the	logs	for	any	issues.	When	you're	confident	everything	went	well,
you	may	want	to	check	the	database	directory	for	any	files	with	the	ending	.old.	These	files	are	created	by	ArangoDB	during
upgrades	and	can	be	safely	removed	manually	later.

If	anything	goes	wrong	during	or	shortly	after	the	upgrade:

Stop	the	"new"	arangod	service	or	binary
Revert	to	the	"old"	arangod	binary	and	restore	the	"old"	data	directory
Start	the	"old"	version	again

It	is	not	supported	to	use	datafiles	created	or	modified	by	a	newer	version	of	ArangoDB	with	an	older	ArangoDB	version.	For	example,	it
is	unsupported	and	is	likely	to	cause	problems	when	using	3.2	datafiles	with	an	ArangoDB	3.0	instance.

Switching	the	storage	engine

In	order	to	use	a	different	storage	engine	with	an	existing	data	directory,	it	is	required	to	first	create	a	logical	backup	of	the	data	using
arangodump.

After	that,	the	arangod	server	should	be	restarted	with	the	desired	storage	engine	selected	(this	can	be	done	by	setting	the	option	--
server.storage-engine)	and	using	a	non-existing	data	directory.

When	the	server	is	up	and	running	with	the	desired	storage	engine,	the	data	can	be	re-imported	using	arangorestore.

Upgrading

459

Upgrading	to	ArangoDB	3.3
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	3.3.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	3.3	before	upgrading.

Upgrading	to	3.3

460

Upgrading	to	ArangoDB	3.2
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	3.2.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	3.2	before	upgrading.

Switching	the	storage	engine

In	order	to	use	a	different	storage	engine	with	an	existing	data	directory,	it	is	required	to	first	create	a	logical	backup	of	the	data	using
arangodump.	That	backup	should	be	created	before	the	upgrade	to	3.2.

After	that,	the	ArangoDB	installation	can	be	upgraded	and	stopped.	The	server	should	then	be	restarted	with	the	desired	storage	engine
selected	(this	can	be	done	by	setting	the	option	--server.storage-engine)	and	using	a	non-existing	data	directory.	This	will	start	the	server
with	the	selected	storage	engine	but	with	no	data.

When	the	server	is	up	and	running,	the	data	from	the	logical	backup	can	be	re-imported	using	arangorestore.

Upgrading	to	3.2

461

Upgrading	to	ArangoDB	3.1
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	3.1.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	3.1	before	upgrading.

Upgrading	to	3.1

462

Upgrading	to	ArangoDB	3.0
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	3.0.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	3.0	before	upgrading.

Migrating	databases	and	collections	from	ArangoDB	2.8	to	3.0

ArangoDB	3.0	does	not	provide	an	automatic	update	mechanism	for	database	directories	created	with	the	2.x	branches	of	ArangoDB.

In	order	to	migrate	data	from	ArangoDB	2.8	(or	an	older	2.x	version)	into	ArangoDB	3.0,	it	is	necessary	to	export	the	data	from	2.8	using
	arangodump	,	and	then	import	the	dump	into	a	fresh	ArangoDB	3.0	with		arangorestore	.

To	do	this,	first	run	the	2.8	version	of		arangodump		to	export	the	database	data	into	a	directory.		arangodump		will	dump	the		_system	
database	by	default.	In	order	to	make	it	dump	multiple	databases,	it	needs	to	be	invoked	once	per	source	database,	e.g.

#	in	2.8

arangodump	--server.database	_system	--output-directory	dump-system

arangodump	--server.database	mydb	--output-directory	dump-mydb

...

That	will	produce	a	dump	directory	for	each	database	that		arangodump		is	called	for.	If	the	server	has	authentication	turned	on,	it	may	be
necessary	to	provide	the	required	credentials	when	invoking		arangodump	,	e.g.

arangodump	--server.database	_system	--server.username	myuser	--server.password	mypasswd	--output-directory	dump-system

The	dumps	produced	by		arangodump		can	now	be	imported	into	ArangoDB	3.0	using	the	3.0	version	of		arangodump	:

#	in	3.0

arangorestore	--server.database	_system	--input-directory	dump-system

arangorestore	--server.database	mydb	--input-directory	dump-mydb

...

arangorestore	will	by	default	fail	if	the	target	database	does	not	exist.	It	can	be	told	to	create	it	automatically	using	the	option		--create-
database	true	:

arangorestore	--server.database	mydb	--create-database	true	--input-directory	dump-mydb

And	again	it	may	be	required	to	provide	access	credentials	when	invoking		arangorestore	:

arangorestore	--server.database	mydb	--create-database	true	--server.username	myuser	--server.password	mypasswd	--input-directo

ry	dump-system

Please	note	that	the	version	of	dump/restore	should	match	the	server	version,	i.e.	it	is	required	to	dump	the	original	data	with	the	2.8
version	of		arangodump		and	restore	it	with	the	3.0	version	of		arangorestore	.

After	that	the	3.0	instance	of	ArangoDB	will	contain	the	databases	and	collections	that	were	present	in	the	2.8	instance.

Adjusting	authentication	info

Authentication	information	was	stored	per	database	in	ArangoDB	2.8,	meaning	there	could	be	different	users	and	access	credentials	per
database.	In	3.0,	the	users	are	stored	in	a	central	location	in	the		_system		database.	To	use	the	same	user	setup	as	in	2.8,	it	may	be
required	to	create	extra	users	and/or	adjust	their	permissions.

In	order	to	do	that,	please	connect	to	the	3.0	instance	with	an	ArangoShell	(this	will	connect	to	the		_system		database	by	default):

arangosh	--server.username	myuser	--server.password	mypasswd

Upgrading	to	3.0

463

Use	the	following	commands	to	create	a	new	user	with	some	password	and	grant	them	access	to	a	specific	database

require("@arangodb/users").save(username,	password,	true);

require("@arangodb/users").grantDatabase(username,	databaseName,	"rw");

For	example,	to	create	a	user		myuser		with	password		mypasswd		and	give	them	access	to	databases		mydb1		and		mydb2	,	the	commands
would	look	as	follows:

require("@arangodb/users").save("myuser",	"mypasswd",	true);

require("@arangodb/users").grantDatabase("myuser",	"mydb1",	"rw");

require("@arangodb/users").grantDatabase("myuser",	"mydb2",	"rw");

Existing	users	can	also	be	updated,	removed	or	listed	using	the	following	commands:

/*	update	user	myuser	with	password	mypasswd	*/

require("@arangodb/users").update("myuser",	"mypasswd",	true);	

/*	remove	user	myuser	*/

require("@arangodb/users").remove("myuser");

/*	list	all	users	*/

require("@arangodb/users").all();

Foxx	applications

The	dump/restore	procedure	described	above	will	not	export	and	re-import	Foxx	applications.	In	order	to	move	these	from	2.8	to	3.0,
Foxx	applications	should	be	exported	as	zip	files	via	the	2.8	web	interface.

The	zip	files	can	then	be	uploaded	in	the	"Services"	section	in	the	ArangoDB	3.0	web	interface.	Applications	may	need	to	be	adjusted
manually	to	run	in	3.0.	Please	consult	the	migration	guide	for	Foxx	apps.

An	alternative	way	of	moving	Foxx	apps	into	3.0	is	to	copy	the	source	directory	of	a	2.8	Foxx	application	manually	into	the	3.0	Foxx
apps	directory	for	the	target	database	(which	is	normally		/var/lib/arangodb3-apps/_db/<dbname>/		but	the	exact	location	is	platform-
specific).

Upgrading	to	3.0

464

Upgrading	to	ArangoDB	2.8
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	2.8.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	2.8	before	upgrading.

Please	note	first	that	a	database	directory	used	with	ArangoDB	2.8	cannot	be	used	with	earlier	versions	(e.g.	ArangoDB	2.7)	any	more.
Upgrading	a	database	directory	cannot	be	reverted.	Therefore	please	make	sure	to	create	a	full	backup	of	your	existing	ArangoDB
installation	before	performing	an	upgrade.

Database	Directory	Version	Check	and	Upgrade

ArangoDB	will	perform	a	database	version	check	at	startup.	When	ArangoDB	2.8	encounters	a	database	created	with	earlier	versions	of
ArangoDB,	it	will	refuse	to	start.	This	is	intentional.

The	output	will	then	look	like	this:

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	Database	directory	version	(20702)	is	lower	than	current	version	(208

00).

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	---

-

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':			--upgrade

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2015-12-04T17:11:17Z	[31432]	ERROR	In	database	'_system':	---

-

2015-12-04T17:11:17Z	[31432]	FATAL	Database	'_system'	needs	upgrade.	Please	start	the	server	with	the	--upgrade	option

To	make	ArangoDB	2.8	start	with	a	database	directory	created	with	an	earlier	ArangoDB	version,	you	may	need	to	invoke	the	upgrade
procedure	once.	This	can	be	done	by	running	ArangoDB	from	the	command	line	and	supplying	the		--upgrade		option.

Note:	here	the	same	database	should	be	specified	that	is	also	specified	when	arangod	is	started	regularly.	Please	do	not	run	the		--
upgrade		command	on	each	individual	database	subfolder	(named		database-<some	number>).

For	example,	if	you	regularly	start	your	ArangoDB	server	with

unix>	arangod	mydatabasefolder

then	running

unix>	arangod	mydatabasefolder	--upgrade

will	perform	the	upgrade	for	the	whole	ArangoDB	instance,	including	all	of	its	databases.

Starting	with		--upgrade		will	run	a	database	version	check	and	perform	any	necessary	migrations.	As	usual,	you	should	create	a	backup
of	your	database	directory	before	performing	the	upgrade.

The	last	line	of	the	output	should	look	like	this:

2015-12-04T17:12:15Z	[31558]	INFO	database	upgrade	passed

Please	check	the	full	output	the		--upgrade		run.	Upgrading	may	produce	errors,	which	need	to	be	fixed	before	ArangoDB	can	be	used
properly.	If	no	errors	are	present	or	they	have	been	resolved	manually,	you	can	start	ArangoDB	2.8	regularly.

Upgrading	a	cluster	planned	in	the	web	interface

Upgrading	to	2.8

465

A	cluster	of	ArangoDB	instances	has	to	be	upgraded	as	well.	This	involves	upgrading	all	ArangoDB	instances	in	the	cluster,	as	well	as
running	the	version	check	on	the	whole	running	cluster	in	the	end.

We	have	tried	to	make	this	procedure	as	painless	and	convenient	for	you.	We	assume	that	you	planned,	launched	and	administrated	a
cluster	using	the	graphical	front	end	in	your	browser.	The	upgrade	procedure	is	then	as	follows:

1.	 First	shut	down	your	cluster	using	the	graphical	front	end	as	usual.

2.	 Then	upgrade	all	dispatcher	instances	on	all	machines	in	your	cluster	using	the	version	check	as	described	above	and	restart	them.

3.	 Now	open	the	cluster	dash	board	in	your	browser	by	pointing	it	to	the	same	dispatcher	that	you	used	to	plan	and	launch	the	cluster
in	the	graphical	front	end.	In	addition	to	the	usual	buttons	"Relaunch",	"Edit	cluster	plan"	and	"Delete	cluster	plan"	you	will	see
another	button	marked	"Upgrade	and	relaunch	cluster".

4.	 Hit	this	button,	your	cluster	will	be	upgraded	and	launched	and	all	is	done	for	you	behind	the	scenes.	If	all	goes	well,	you	will	see
the	usual	cluster	dash	board	after	a	few	seconds.	If	there	is	an	error,	you	have	to	inspect	the	log	files	of	your	cluster	ArangoDB
instances.	Please	let	us	know	if	you	run	into	problems.

There	is	an	alternative	way	using	the		ArangoDB		shell.	Instead	of	steps	3.	and	4.	above	you	can	launch		arangosh	,	point	it	to	the
dispatcher	that	you	have	used	to	plan	and	launch	the	cluster	using	the	option		--server.endpoint	,	and	execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This	upgrades	the	cluster	and	launches	it,	exactly	as	with	the	button	above	in	the	graphical	front	end.	You	have	to	replace		"root"		with	a
user	name	and		""		with	a	password	that	is	valid	for	authentication	with	the	cluster.

Upgrading	Foxx	apps	generated	by	ArangoDB	2.7	and	earlier

The	implementation	of	the		require		function	used	to	import	modules	in	ArangoDB	and	Foxx	has	changed	in	order	to	improve
compatibility	with	Node.js	modules.

Given	an	app/service	with	the	following	layout:

manifest.json
controllers/

todos.js
models/

todo.js
repositories/

todos.js
node_modules/

models/
todo.js

The	file		controllers/todos.js		would	previously	contain	the	following		require		calls:

var	_	=	require('underscore');

var	joi	=	require('joi');

var	Foxx	=	require('org/arangodb/foxx');

var	ArangoError	=	require('org/arangodb').ArangoError;

var	Todos	=	require('repositories/todos');	//	<--	!

var	Todo	=	require('models/todo');	//	<--	!

The	require	paths		repositories/todos		and		models/todo		were	previously	resolved	locally	as	relative	to	the	app	root.

Starting	with	2.8	these	paths	would	instead	be	resolved	as	relative	to	the		node_modules		folder	or	the	global	ArangoDB	module	paths
before	being	resolved	locally	as	a	fallback.

In	the	given	example	layout	the	app	would	break	in	2.8	because	the	module	name		models/todo		would	always	resolve	to
	node_modules/models/todo.js		(which	previously	would	have	been	ignored)	instead	of	the	local		models/todo.js	.

In	order	to	make	sure	the	app	still	works	in	2.8,	the	require	calls	in		controllers/todos.js		would	need	to	be	adjusted	to	look	like	this:

Upgrading	to	2.8

466

var	_	=	require('underscore');

var	joi	=	require('joi');

var	Foxx	=	require('org/arangodb/foxx');

var	ArangoError	=	require('org/arangodb').ArangoError;

var	Todos	=	require('../repositories/todos');	//	<--	!

var	Todo	=	require('../models/todo');	//	<--	!

Note	that	the	old	"global"	style	require	calls	may	still	work	in	2.8	but	may	break	unexpectedly	if	modules	with	matching	names	are
installed	globally.

Upgrading	to	2.8

467

Upgrading	to	ArangoDB	2.6
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	2.6.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	2.6	before	upgrading.

Please	note	first	that	a	database	directory	used	with	ArangoDB	2.6	cannot	be	used	with	earlier	versions	(e.g.	ArangoDB	2.5)	any	more.
Upgrading	a	database	directory	cannot	be	reverted.	Therefore	please	make	sure	to	create	a	full	backup	of	your	existing	ArangoDB
installation	before	performing	an	upgrade.

Database	Directory	Version	Check	and	Upgrade

ArangoDB	will	perform	a	database	version	check	at	startup.	When	ArangoDB	2.6	encounters	a	database	created	with	earlier	versions	of
ArangoDB,	it	will	refuse	to	start.	This	is	intentional.

The	output	will	then	look	like	this:

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	Database	directory	version	(20501)	is	lower	than	current	version	(2060

0).

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	--

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			--upgrade

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	--

2015-02-17T09:43:11Z	[8302]	FATAL	Database	'_system'	needs	upgrade.	Please	start	the	server	with	the	--upgrade	option

To	make	ArangoDB	2.6	start	with	a	database	directory	created	with	an	earlier	ArangoDB	version,	you	may	need	to	invoke	the	upgrade
procedure	once.	This	can	be	done	by	running	ArangoDB	from	the	command	line	and	supplying	the		--upgrade		option.

Note:	here	the	same	database	should	be	specified	that	is	also	specified	when	arangod	is	started	regularly.	Please	do	not	run	the		--
upgrade		command	on	each	individual	database	subfolder	(named		database-<some	number>).

For	example,	if	you	regularly	start	your	ArangoDB	server	with

unix>	arangod	mydatabasefolder

then	running

unix>	arangod	mydatabasefolder	--upgrade

will	perform	the	upgrade	for	the	whole	ArangoDB	instance,	including	all	of	its	databases.

Starting	with		--upgrade		will	run	a	database	version	check	and	perform	any	necessary	migrations.	As	usual,	you	should	create	a	backup
of	your	database	directory	before	performing	the	upgrade.

The	last	line	of	the	output	should	look	like	this:

2014-12-22T12:03:31Z	[12026]	INFO	database	upgrade	passed

Please	check	the	full	output	the		--upgrade		run.	Upgrading	may	produce	errors,	which	need	to	be	fixed	before	ArangoDB	can	be	used
properly.	If	no	errors	are	present	or	they	have	been	resolved	manually,	you	can	start	ArangoDB	2.6	regularly.

Upgrading	a	cluster	planned	in	the	web	interface

Upgrading	to	2.6

468

A	cluster	of	ArangoDB	instances	has	to	be	upgraded	as	well.	This	involves	upgrading	all	ArangoDB	instances	in	the	cluster,	as	well	as
running	the	version	check	on	the	whole	running	cluster	in	the	end.

We	have	tried	to	make	this	procedure	as	painless	and	convenient	for	you.	We	assume	that	you	planned,	launched	and	administrated	a
cluster	using	the	graphical	front	end	in	your	browser.	The	upgrade	procedure	is	then	as	follows:

1.	 First	shut	down	your	cluster	using	the	graphical	front	end	as	usual.

2.	 Then	upgrade	all	dispatcher	instances	on	all	machines	in	your	cluster	using	the	version	check	as	described	above	and	restart	them.

3.	 Now	open	the	cluster	dash	board	in	your	browser	by	pointing	it	to	the	same	dispatcher	that	you	used	to	plan	and	launch	the	cluster
in	the	graphical	front	end.	In	addition	to	the	usual	buttons	"Relaunch",	"Edit	cluster	plan"	and	"Delete	cluster	plan"	you	will	see
another	button	marked	"Upgrade	and	relaunch	cluster".

4.	 Hit	this	button,	your	cluster	will	be	upgraded	and	launched	and	all	is	done	for	you	behind	the	scenes.	If	all	goes	well,	you	will	see
the	usual	cluster	dash	board	after	a	few	seconds.	If	there	is	an	error,	you	have	to	inspect	the	log	files	of	your	cluster	ArangoDB
instances.	Please	let	us	know	if	you	run	into	problems.

There	is	an	alternative	way	using	the		ArangoDB		shell.	Instead	of	steps	3.	and	4.	above	you	can	launch		arangosh	,	point	it	to	the
dispatcher	that	you	have	used	to	plan	and	launch	the	cluster	using	the	option		--server.endpoint	,	and	execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This	upgrades	the	cluster	and	launches	it,	exactly	as	with	the	button	above	in	the	graphical	front	end.	You	have	to	replace		"root"		with	a
user	name	and		""		with	a	password	that	is	valid	for	authentication	with	the	cluster.

Upgrading	to	2.6

469

Upgrading	to	ArangoDB	2.5
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	2.5.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	2.5	before	upgrading.

Please	note	first	that	a	database	directory	used	with	ArangoDB	2.5	cannot	be	used	with	earlier	versions	(e.g.	ArangoDB	2.4)	any	more.
Upgrading	a	database	directory	cannot	be	reverted.	Therefore	please	make	sure	to	create	a	full	backup	of	your	existing	ArangoDB
installation	before	performing	an	upgrade.

In	2.5	we	have	also	changed	the	paths	for	Foxx	applications.	Please	also	make	sure	that	you	have	a	backup	of	all	Foxx	apps	in	your
	javascript.app-path		and		javascript.dev-app-path	.	It	is	sufficient	to	have	the	source	files	for	Foxx	somewhere	else	so	you	can	reinstall
them	on	error.	To	check	that	everything	has	worked	during	upgrade	you	could	use	the	web-interface	Applications	tab	or

unix>	foxx-manager	list

for	all	your	databases.	The	listed	apps	should	be	identical	before	and	after	the	upgrade.

Database	Directory	Version	Check	and	Upgrade

ArangoDB	will	perform	a	database	version	check	at	startup.	When	ArangoDB	2.5	encounters	a	database	created	with	earlier	versions	of
ArangoDB,	it	will	refuse	to	start.	This	is	intentional.

The	output	will	then	look	like	this:

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	Database	directory	version	(20401)	is	lower	than	current	version	(2050

0).

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	--

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			--upgrade

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2015-02-17T09:43:11Z	[8302]	ERROR	In	database	'_system':	--

2015-02-17T09:43:11Z	[8302]	FATAL	Database	'_system'	needs	upgrade.	Please	start	the	server	with	the	--upgrade	option

To	make	ArangoDB	2.5	start	with	a	database	directory	created	with	an	earlier	ArangoDB	version,	you	may	need	to	invoke	the	upgrade
procedure	once.	This	can	be	done	by	running	ArangoDB	from	the	command	line	and	supplying	the		--upgrade		option.	Note:	We	have
changed	Foxx	folder	structure	and	implemented	an	upgrade	task	to	move	your	applications	to	the	new	structure.	In	order	to	tell	this
upgrade	task	to	also	move	your	development	Foxx	apps	please	make	sure	you	give	the	dev-app-path	as	well.	If	you	have	not	used
development	mode	for	Foxx	apps	you	can	drop	the		--javascript.dev-app-path	.	It	is	only	possible	to	upgrade	one	dev-app-path
together	with	one	data	folder.

unix>	arangod	data	--upgrade	--javascript.dev-app-path	devapps

where		data		is	ArangoDB's	main	data	directory	and		devapps		is	the	directory	where	you	develop	Foxx	apps.

Note:	here	the	same	database	should	be	specified	that	is	also	specified	when	arangod	is	started	regularly.	Please	do	not	run	the		--
upgrade		command	on	each	individual	database	subfolder	(named		database-<some	number>).

For	example,	if	you	regularly	start	your	ArangoDB	server	with

unix>	arangod	mydatabasefolder

then	running

unix>	arangod	mydatabasefolder	--upgrade

Upgrading	to	2.5

470

will	perform	the	upgrade	for	the	whole	ArangoDB	instance,	including	all	of	its	databases.

Starting	with		--upgrade		will	run	a	database	version	check	and	perform	any	necessary	migrations.	As	usual,	you	should	create	a	backup
of	your	database	directory	before	performing	the	upgrade.

The	last	line	of	the	output	should	look	like	this:

2014-12-22T12:03:31Z	[12026]	INFO	database	upgrade	passed

Please	check	the	full	output	the		--upgrade		run.	Upgrading	may	produce	errors,	which	need	to	be	fixed	before	ArangoDB	can	be	used
properly.	If	no	errors	are	present	or	they	have	been	resolved	manually,	you	can	start	ArangoDB	2.5	regularly.

Upgrading	a	cluster	planned	in	the	web	interface
A	cluster	of	ArangoDB	instances	has	to	be	upgraded	as	well.	This	involves	upgrading	all	ArangoDB	instances	in	the	cluster,	as	well	as
running	the	version	check	on	the	whole	running	cluster	in	the	end.

We	have	tried	to	make	this	procedure	as	painless	and	convenient	for	you.	We	assume	that	you	planned,	launched	and	administrated	a
cluster	using	the	graphical	front	end	in	your	browser.	The	upgrade	procedure	is	then	as	follows:

1.	 First	shut	down	your	cluster	using	the	graphical	front	end	as	usual.

2.	 Then	upgrade	all	dispatcher	instances	on	all	machines	in	your	cluster	using	the	version	check	as	described	above	and	restart	them.

3.	 Now	open	the	cluster	dash	board	in	your	browser	by	pointing	it	to	the	same	dispatcher	that	you	used	to	plan	and	launch	the	cluster
in	the	graphical	front	end.	In	addition	to	the	usual	buttons	"Relaunch",	"Edit	cluster	plan"	and	"Delete	cluster	plan"	you	will	see
another	button	marked	"Upgrade	and	relaunch	cluster".

4.	 Hit	this	button,	your	cluster	will	be	upgraded	and	launched	and	all	is	done	for	you	behind	the	scenes.	If	all	goes	well,	you	will	see
the	usual	cluster	dash	board	after	a	few	seconds.	If	there	is	an	error,	you	have	to	inspect	the	log	files	of	your	cluster	ArangoDB
instances.	Please	let	us	know	if	you	run	into	problems.

There	is	an	alternative	way	using	the		ArangoDB		shell.	Instead	of	steps	3.	and	4.	above	you	can	launch		arangosh	,	point	it	to	the
dispatcher	that	you	have	used	to	plan	and	launch	the	cluster	using	the	option		--server.endpoint	,	and	execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This	upgrades	the	cluster	and	launches	it,	exactly	as	with	the	button	above	in	the	graphical	front	end.	You	have	to	replace		"root"		with	a
user	name	and		""		with	a	password	that	is	valid	for	authentication	with	the	cluster.

Upgrading	to	2.5

471

Upgrading	to	ArangoDB	2.4
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	2.4.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	2.4	before	upgrading.

Please	note	first	that	a	database	directory	used	with	ArangoDB	2.4	cannot	be	used	with	earlier	versions	(e.g.	ArangoDB	2.3)	any	more.
Upgrading	a	database	directory	cannot	be	reverted.	Therefore	please	make	sure	to	create	a	full	backup	of	your	existing	ArangoDB
installation	before	performing	an	upgrade.

Database	Directory	Version	Check	and	Upgrade

ArangoDB	will	perform	a	database	version	check	at	startup.	When	ArangoDB	2.4	encounters	a	database	created	with	earlier	versions	of
ArangoDB,	it	will	refuse	to	start.	This	is	intentional.

The	output	will	then	look	like	this:

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	Database	directory	version	(20302)	is	lower	than	current	version	(204

00).

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	---

-

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':			--upgrade

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2014-12-22T12:02:28Z	[12001]	ERROR	In	database	'_system':	---

-

2014-12-22T12:02:28Z	[12001]	FATAL	Database	'_system'	needs	upgrade.	Please	start	the	server	with	the	--upgrade	option

To	make	ArangoDB	2.4	start	with	a	database	directory	created	with	an	earlier	ArangoDB	version,	you	may	need	to	invoke	the	upgrade
procedure	once.	This	can	be	done	by	running	ArangoDB	from	the	command	line	and	supplying	the		--upgrade		option:

unix>	arangod	data	--upgrade

where		data		is	ArangoDB's	main	data	directory.

Note:	here	the	same	database	should	be	specified	that	is	also	specified	when	arangod	is	started	regularly.	Please	do	not	run	the		--
upgrade		command	on	each	individual	database	subfolder	(named		database-<some	number>).

For	example,	if	you	regularly	start	your	ArangoDB	server	with

unix>	arangod	mydatabasefolder

then	running

unix>	arangod	mydatabasefolder	--upgrade

will	perform	the	upgrade	for	the	whole	ArangoDB	instance,	including	all	of	its	databases.

Starting	with		--upgrade		will	run	a	database	version	check	and	perform	any	necessary	migrations.	As	usual,	you	should	create	a	backup
of	your	database	directory	before	performing	the	upgrade.

The	last	line	of	the	output	should	look	like	this:

2014-12-22T12:03:31Z	[12026]	INFO	database	upgrade	passed

Upgrading	to	2.4

472

Please	check	the	full	output	the		--upgrade		run.	Upgrading	may	produce	errors,	which	need	to	be	fixed	before	ArangoDB	can	be	used
properly.	If	no	errors	are	present	or	they	have	been	resolved	manually,	you	can	start	ArangoDB	2.4	regularly.

Upgrading	a	cluster	planned	in	the	web	interface

A	cluster	of	ArangoDB	instances	has	to	be	upgraded	as	well.	This	involves	upgrading	all	ArangoDB	instances	in	the	cluster,	as	well	as
running	the	version	check	on	the	whole	running	cluster	in	the	end.

We	have	tried	to	make	this	procedure	as	painless	and	convenient	for	you.	We	assume	that	you	planned,	launched	and	administrated	a
cluster	using	the	graphical	front	end	in	your	browser.	The	upgrade	procedure	is	then	as	follows:

1.	 First	shut	down	your	cluster	using	the	graphical	front	end	as	usual.

2.	 Then	upgrade	all	dispatcher	instances	on	all	machines	in	your	cluster	using	the	version	check	as	described	above	and	restart	them.

3.	 Now	open	the	cluster	dash	board	in	your	browser	by	pointing	it	to	the	same	dispatcher	that	you	used	to	plan	and	launch	the	cluster
in	the	graphical	front	end.	In	addition	to	the	usual	buttons	"Relaunch",	"Edit	cluster	plan"	and	"Delete	cluster	plan"	you	will	see
another	button	marked	"Upgrade	and	relaunch	cluster".

4.	 Hit	this	button,	your	cluster	will	be	upgraded	and	launched	and	all	is	done	for	you	behind	the	scenes.	If	all	goes	well,	you	will	see
the	usual	cluster	dash	board	after	a	few	seconds.	If	there	is	an	error,	you	have	to	inspect	the	log	files	of	your	cluster	ArangoDB
instances.	Please	let	us	know	if	you	run	into	problems.

There	is	an	alternative	way	using	the		ArangoDB		shell.	Instead	of	steps	3.	and	4.	above	you	can	launch		arangosh	,	point	it	to	the
dispatcher	that	you	have	used	to	plan	and	launch	the	cluster	using	the	option		--server.endpoint	,	and	execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This	upgrades	the	cluster	and	launches	it,	exactly	as	with	the	button	above	in	the	graphical	front	end.	You	have	to	replace		"root"		with	a
user	name	and		""		with	a	password	that	is	valid	for	authentication	with	the	cluster.

Upgrading	to	2.4

473

Upgrading	to	ArangoDB	2.3
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	2.3.	Please	be	sure	that	you	have	checked	the	list
of	changes	in	2.3	before	upgrading.

Please	note	first	that	a	database	directory	used	with	ArangoDB	2.3	cannot	be	used	with	earlier	versions	(e.g.	ArangoDB	2.2)	any	more.
Upgrading	a	database	directory	cannot	be	reverted.	Therefore	please	make	sure	to	create	a	full	backup	of	your	existing	ArangoDB
installation	before	performing	an	upgrade.

Database	Directory	Version	Check	and	Upgrade

ArangoDB	will	perform	a	database	version	check	at	startup.	When	ArangoDB	2.3	encounters	a	database	created	with	earlier	versions	of
ArangoDB,	it	will	refuse	to	start.	This	is	intentional.

The	output	will	then	look	like	this:

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	Database	directory	version	(2.2)	is	lower	than	current	version	(20300)

.

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	--

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':			--upgrade

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2014-11-03T15:48:06Z	[2694]	ERROR	In	database	'_system':	--

2014-11-03T15:48:06Z	[2694]	FATAL	Database	'_system'	needs	upgrade.	Please	start	the	server	with	the	--upgrade	option

To	make	ArangoDB	2.3	start	with	a	database	directory	created	with	an	earlier	ArangoDB	version,	you	may	need	to	invoke	the	upgrade
procedure	once.	This	can	be	done	by	running	ArangoDB	from	the	command	line	and	supplying	the		--upgrade		option:

unix>	arangod	data	--upgrade

where		data		is	ArangoDB's	main	data	directory.

Note:	here	the	same	database	should	be	specified	that	is	also	specified	when	arangod	is	started	regularly.	Please	do	not	run	the		--
upgrade		command	on	each	individual	database	subfolder	(named		database-<some	number>).

For	example,	if	you	regularly	start	your	ArangoDB	server	with

unix>	arangod	mydatabasefolder

then	running

unix>	arangod	mydatabasefolder	--upgrade

will	perform	the	upgrade	for	the	whole	ArangoDB	instance,	including	all	of	its	databases.

Starting	with		--upgrade		will	run	a	database	version	check	and	perform	any	necessary	migrations.	As	usual,	you	should	create	a	backup
of	your	database	directory	before	performing	the	upgrade.

The	output	should	look	like	this:

2014-11-03T15:48:47Z	[2708]	INFO	In	database	'_system':	Found	24	defined	task(s),	5	task(s)	to	run

2014-11-03T15:48:47Z	[2708]	INFO	In	database	'_system':	state	prod/standalone/upgrade,	tasks	updateUserModel,	createStatistics,

	upgradeClusterPlan,	setupQueues,	setupJobs

2014-11-03T15:48:48Z	[2708]	INFO	In	database	'_system':	upgrade	successfully	finished

2014-11-03T15:48:48Z	[2708]	INFO	database	upgrade	passed

Upgrading	to	2.3

474

Please	check	the	output	the		--upgrade		run.	It	may	produce	errors,	which	need	to	be	fixed	before	ArangoDB	can	be	used	properly.	If	no
errors	are	present	or	they	have	been	resolved,	you	can	start	ArangoDB	2.3	regularly.

Upgrading	a	cluster	planned	in	the	web	interface

A	cluster	of	ArangoDB	instances	has	to	be	upgraded	as	well.	This	involves	upgrading	all	ArangoDB	instances	in	the	cluster,	as	well	as
running	the	version	check	on	the	whole	running	cluster	in	the	end.

We	have	tried	to	make	this	procedure	as	painless	and	convenient	for	you.	We	assume	that	you	planned,	launched	and	administrated	a
cluster	using	the	graphical	front	end	in	your	browser.	The	upgrade	procedure	is	then	as	follows:

1.	 First	shut	down	your	cluster	using	the	graphical	front	end	as	usual.

2.	 Then	upgrade	all	dispatcher	instances	on	all	machines	in	your	cluster	using	the	version	check	as	described	above	and	restart	them.

3.	 Now	open	the	cluster	dash	board	in	your	browser	by	pointing	it	to	the	same	dispatcher	that	you	used	to	plan	and	launch	the	cluster
in	the	graphical	front	end.	In	addition	to	the	usual	buttons	"Relaunch",	"Edit	cluster	plan"	and	"Delete	cluster	plan"	you	will	see
another	button	marked	"Upgrade	and	relaunch	cluster".

4.	 Hit	this	button,	your	cluster	will	be	upgraded	and	launched	and	all	is	done	for	you	behind	the	scenes.	If	all	goes	well,	you	will	see
the	usual	cluster	dash	board	after	a	few	seconds.	If	there	is	an	error,	you	have	to	inspect	the	log	files	of	your	cluster	ArangoDB
instances.	Please	let	us	know	if	you	run	into	problems.

There	is	an	alternative	way	using	the		ArangoDB		shell.	Instead	of	steps	3.	and	4.	above	you	can	launch		arangosh	,	point	it	to	the
dispatcher	that	you	have	used	to	plan	and	launch	the	cluster	using	the	option		--server.endpoint	,	and	execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This	upgrades	the	cluster	and	launches	it,	exactly	as	with	the	button	above	in	the	graphical	front	end.	You	have	to	replace		"root"		with	a
user	name	and		""		with	a	password	that	is	valid	for	authentication	with	the	cluster.

Upgrading	to	2.3

475

Upgrading	to	ArangoDB	2.2
Please	read	the	following	sections	if	you	upgrade	from	a	previous	version	to	ArangoDB	2.2.

Please	note	first	that	a	database	directory	used	with	ArangoDB	2.2	cannot	be	used	with	earlier	versions	(e.g.	ArangoDB	2.1)	any	more.
Upgrading	a	database	directory	cannot	be	reverted.	Therefore	please	make	sure	to	create	a	full	backup	of	your	existing	ArangoDB
installation	before	performing	an	upgrade.

Database	Directory	Version	Check	and	Upgrade

ArangoDB	will	perform	a	database	version	check	at	startup.	When	ArangoDB	2.2	encounters	a	database	created	with	earlier	versions	of
ArangoDB,	it	will	refuse	to	start.	This	is	intentional.

The	output	will	then	look	like	this:

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	Database	directory	version	(2.1)	is	lower	than	server	version	(2.2).

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	---

-

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	It	seems	like	you	have	upgraded	the	ArangoDB	binary.

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	If	this	is	what	you	wanted	to	do,	please	restart	with	the

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			--upgrade

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	option	to	upgrade	the	data	in	the	database	directory.

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	Normally	you	can	use	the	control	script	to	upgrade	your	database

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			/etc/init.d/arangodb	stop

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			/etc/init.d/arangodb	upgrade

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':			/etc/init.d/arangodb	start

2014-07-07T22:04:53Z	[18675]	ERROR	In	database	'_system':	---

-

2014-07-07T22:04:53Z	[18675]	FATAL	Database	version	check	failed	for	'_system'.	Please	start	the	server	with	the	--upgrade	opti

on

To	make	ArangoDB	2.2	start	with	a	database	directory	created	with	an	earlier	ArangoDB	version,	you	may	need	to	invoke	the	upgrade
procedure	once.	This	can	be	done	by	running	ArangoDB	from	the	command	line	and	supplying	the		--upgrade		option:

unix>	arangod	data	--upgrade

where		data		is	ArangoDB's	main	data	directory.

Note:	here	the	same	database	should	be	specified	that	is	also	specified	when	arangod	is	started	regularly.	Please	do	not	run	the		--
upgrade		command	on	each	individual	database	subfolder	(named		database-<some	number>).

For	example,	if	you	regularly	start	your	ArangoDB	server	with

unix>	arangod	mydatabasefolder

then	running

unix>	arangod	mydatabasefolder	--upgrade

will	perform	the	upgrade	for	the	whole	ArangoDB	instance,	including	all	of	its	databases.

Starting	with		--upgrade		will	run	a	database	version	check	and	perform	any	necessary	migrations.	As	usual,	you	should	create	a	backup
of	your	database	directory	before	performing	the	upgrade.

The	output	should	look	like	this:

2014-07-07T22:11:30Z	[18867]	INFO	In	database	'_system':	starting	upgrade	from	version	2.1	to	2.2.0

2014-07-07T22:11:30Z	[18867]	INFO	In	database	'_system':	Found	19	defined	task(s),	2	task(s)	to	run

2014-07-07T22:11:30Z	[18867]	INFO	In	database	'_system':	upgrade	successfully	finished

2014-07-07T22:11:30Z	[18867]	INFO	database	upgrade	passed

Upgrading	to	2.2

476

Please	check	the	output	the		--upgrade		run.	It	may	produce	errors,	which	need	to	be	fixed	before	ArangoDB	can	be	used	properly.	If	no
errors	are	present	or	they	have	been	resolved,	you	can	start	ArangoDB	2.2	regularly.

Upgrading	a	cluster	planned	in	the	web	interface

A	cluster	of	ArangoDB	instances	has	to	be	upgraded	as	well.	This	involves	upgrading	all	ArangoDB	instances	in	the	cluster,	as	well	as
running	the	version	check	on	the	whole	running	cluster	in	the	end.

We	have	tried	to	make	this	procedure	as	painless	and	convenient	for	you.	We	assume	that	you	planned,	launched	and	administrated	a
cluster	using	the	graphical	front	end	in	your	browser.	The	upgrade	procedure	is	then	as	follows:

1.	 First	shut	down	your	cluster	using	the	graphical	front	end	as	usual.

2.	 Then	upgrade	all	dispatcher	instances	on	all	machines	in	your	cluster	using	the	version	check	as	described	above	and	restart	them.

3.	 Now	open	the	cluster	dash	board	in	your	browser	by	pointing	it	to	the	same	dispatcher	that	you	used	to	plan	and	launch	the	cluster
in	the	graphical	front	end.	In	addition	to	the	usual	buttons	"Relaunch",	"Edit	cluster	plan"	and	"Delete	cluster	plan"	you	will	see
another	button	marked	"Upgrade	and	relaunch	cluster".

4.	 Hit	this	button,	your	cluster	will	be	upgraded	and	launched	and	all	is	done	for	you	behind	the	scenes.	If	all	goes	well,	you	will	see
the	usual	cluster	dash	board	after	a	few	seconds.	If	there	is	an	error,	you	have	to	inspect	the	log	files	of	your	cluster	ArangoDB
instances.	Please	let	us	know	if	you	run	into	problems.

There	is	an	alternative	way	using	the		ArangoDB		shell.	Instead	of	steps	3.	and	4.	above	you	can	launch		arangosh	,	point	it	to	the
dispatcher	that	you	have	used	to	plan	and	launch	the	cluster	using	the	option		--server.endpoint	,	and	execute

arangosh>	require("org/arangodb/cluster").Upgrade("root","");

This	upgrades	the	cluster	and	launches	it,	exactly	as	with	the	button	above	in	the	graphical	front	end.	You	have	to	replace		"root"		with	a
user	name	and		""		with	a	password	that	is	valid	for	authentication	with	the	cluster.

Upgrading	to	2.2

477

Troubleshooting

Troubleshooting

478

Arangod
If	the	ArangoDB	server	does	not	start	or	if	you	cannot	connect	to	it	using	arangosh	or	other	clients,	you	can	try	to	find	the	problem
cause	by	executing	the	following	steps.	If	the	server	starts	up	without	problems	you	can	skip	this	section.

Check	the	server	log	file:	If	the	server	has	written	a	log	file	you	should	check	it	because	it	might	contain	relevant	error	context
information.

Check	the	configuration:	The	server	looks	for	a	configuration	file	named	arangod.conf	on	startup.	The	contents	of	this	file	will	be
used	as	a	base	configuration	that	can	optionally	be	overridden	with	command-line	configuration	parameters.	You	should	check	the
config	file	for	the	most	relevant	parameters	such	as:

server.endpoint:	What	IP	address	and	port	to	bind	to
log	parameters:	If	and	where	to	log
database.directory:	Path	the	database	files	are	stored	in

If	the	configuration	reveals	that	something	is	not	configured	right	the	config	file	should	be	adjusted	and	the	server	be	restarted.

Start	the	server	manually	and	check	its	output:	Starting	the	server	might	fail	even	before	logging	is	activated	so	the	server	will	not
produce	log	output.	This	can	happen	if	the	server	is	configured	to	write	the	logs	to	a	file	that	the	server	has	no	permissions	on.	In
this	case	the	server	cannot	log	an	error	to	the	specified	log	file	but	will	write	a	startup	error	on	stderr	instead.	Starting	the	server
manually	will	also	allow	you	to	override	specific	configuration	options,	e.g.	to	turn	on/off	file	or	screen	logging	etc.

Check	the	TCP	port:	If	the	server	starts	up	but	does	not	accept	any	incoming	connections	this	might	be	due	to	firewall	configuration
between	the	server	and	any	client(s).	The	server	by	default	will	listen	on	TCP	port	8529.	Please	make	sure	this	port	is	actually
accessible	by	other	clients	if	you	plan	to	use	ArangoDB	in	a	network	setup.

When	using	hostnames	in	the	configuration	or	when	connecting,	please	make	sure	the	hostname	is	actually	resolvable.	Resolving
hostnames	might	invoke	DNS,	which	can	be	a	source	of	errors	on	its	own.

It	is	generally	good	advice	to	not	use	DNS	when	specifying	the	endpoints	and	connection	addresses.	Using	IP	addresses	instead	will
rule	out	DNS	as	a	source	of	errors.	Another	alternative	is	to	use	a	hostname	specified	in	the	local	/etc/hosts	file,	which	will	then
bypass	DNS.

Test	if	curl	can	connect:	Once	the	server	is	started,	you	can	quickly	verify	if	it	responds	to	requests	at	all.	This	check	allows	you	to
determine	whether	connection	errors	are	client-specific	or	not.	If	at	least	one	client	can	connect,	it	is	likely	that	connection	problems
of	other	clients	are	not	due	to	ArangoDB's	configuration	but	due	to	client	or	in-between	network	configurations.

You	can	test	connectivity	using	a	simple	command	such	as:

curl	--dump	-	-X	GET	http://127.0.0.1:8529/_api/version	&&	echo

This	should	return	a	response	with	an	HTTP	200	status	code	when	the	server	is	running.	If	it	does	it	also	means	the	server	is
generally	accepting	connections.	Alternative	tools	to	check	connectivity	are	lynx	or	ab.

arangod

479

http://127.0.0.1:8529/_api/version

Emergency	Console
The	ArangoDB	database	server	has	two	modes	of	operation:	As	a	server,	where	it	will	answer	to	client	requests	and	as	an	emergency
console,	in	which	you	can	access	the	database	directly.	The	latter	-	as	the	name	suggests	-	should	only	be	used	in	case	of	an	emergency,
for	example,	a	corrupted	collection.	Using	the	emergency	console	allows	you	to	issue	all	commands	normally	available	in	actions	and
transactions.	When	starting	the	server	in	emergency	console	mode,	the	server	cannot	handle	any	client	requests.

You	should	never	start	more	than	one	server	using	the	same	database	directory,	independent	of	the	mode	of	operation.	Normally,
ArangoDB	will	prevent	you	from	doing	this	by	placing	a	lockfile	in	the	database	directory	and	not	allowing	a	second	ArangoDB	instance
to	use	the	same	database	directory	if	a	lockfile	is	already	present.

In	Case	Of	Disaster

The	following	command	starts	an	emergency	console.

Note:	Never	start	the	emergency	console	for	a	database	which	also	has	a	server	attached	to	it.	In	general,	the	ArangoDB	shell	is	what	you
want.

>	./arangod	--console	--log	error	/tmp/vocbase

ArangoDB	shell	[V8	version	5.0.71.39,	DB	version	3.x.x]

arango>	1	+	2;

3

arango>	var	db	=	require("@arangodb").db;	db.geo.count();

703

The	emergency	console	provides	a	JavaScript	console	directly	running	in	the	arangod	server	process.	This	allows	to	debug	and	examine
collections	and	documents	as	with	the	normal	ArangoDB	shell,	but	without	client/server	communication.

However,	it	is	very	likely	that	you	will	never	need	the	emergency	console	unless	you	are	an	ArangoDB	developer.

Emergency	Console

480

Datafile	Debugger

In	Case	Of	Disaster

AranagoDB	uses	append-only	journals.	Data	corruption	should	only	occur	when	the	database	server	is	killed.	In	this	case,	the	corruption
should	only	occur	in	the	last	object(s)	that	have	being	written	to	the	journal.

If	a	corruption	occurs	within	a	normal	datafile,	then	this	can	only	happen	if	a	hardware	fault	occurred.

If	a	journal	or	datafile	is	corrupt,	shut	down	the	database	server	and	start	the	program

unix>	arango-dfdb

in	order	to	check	the	consistency	of	the	datafiles	and	journals.	This	brings	up

				___						_									__	_	_											___		___				___	

			/			__	_|	|_	__	_	/	_(_)	|	___					/			\/	__\		/	_	\

		/	/\	/	_`	|	__/	_`	|	|_|	|	|/	_	\			/	/\	/__\//	/	/_\/

	/	/_//	(_|	|	||	(_|	|		_|	|	|		__/		/	/_//	\/		\/	/_\\	

/___,'	__,_|____,_|_|	|_|_|___|	/___,'_____/____/	

Available	collections:

		0:	_structures

		1:	_users

		2:	_routing

		3:	_modules

		4:	_graphs

		5:	products

		6:	prices

		*:	all

Collection	to	check:	

You	can	now	select	which	database	and	collection	you	want	to	check.	After	you	selected	one	or	all	of	the	collections,	a	consistency	check
will	be	performed.

Checking	collection	#1:	_users

Database

		path:	/usr/local/var/lib/arangodb

Collection

		name:	_users

		identifier:	82343

Datafiles

		#	of	journals:	1

		#	of	compactors:	1

		#	of	datafiles:	0

Datafile

		path:	/usr/local/var/lib/arangodb/collection-82343/journal-1065383.db

		type:	journal

		current	size:	33554432

		maximal	size:	33554432

		total	used:	256

		#	of	entries:	3

		status:	OK

If	there	is	a	problem	with	one	of	the	datafiles,	then	the	database	debugger	will	print	it	and	prompt	for	whether	to	attempt	to	fix	it.

WARNING:	The	journal	was	not	closed	properly,	the	last	entries	are	corrupted.

									This	might	happen	ArangoDB	was	killed	and	the	last	entries	were	not

									fully	written	to	disk.

Datafile	Debugger

481

Wipe	the	last	entries	(Y/N)?

If	you	answer	Y,	the	corrupted	entry	will	be	removed.

If	you	see	a	corruption	in	a	datafile	(and	not	a	journal),	then	something	is	terribly	wrong.	These	files	are	immutable	and	never	changed	by
ArangoDB.	A	corruption	in	such	file	is	an	indication	of	a	hard-disk	failure.

Datafile	Debugger

482

Arangobench
Arangobench	is	ArangoDB's	benchmark	and	test	tool.	It	can	be	used	to	issue	test	requests	to	the	database	for	performance	and	server
function	testing.	It	supports	parallel	querying	and	batch	requests.

Related	blog	posts:

Measuring	ArangoDB	insert	performance
Gain	factor	of	5	using	batch	requests

Startup	options
--async:	Send	asynchronous	requests.	The	default	value	is	false.

--batch-size:	Number	of	operations	to	send	per	batch.	Use	0	to	disable	batching	(this	is	the	default).

--collection:	Name	of	collection	to	use	in	test	(only	relevant	for	tests	that	invoke	collections).

--replication-factor:	In	case	of	a	cluster,	the	replication	factor	of	the	created	collections.

--number-of-shards:	In	case	of	a	cluster,	the	number	of	shards	of	the	created	collections.

--wait-for-sync:	The	value	of	waitForSync	for	created	collections.

--complexity:	Complexity	value	for	test	case	(default:	1).	Meaning	depends	on	test	case.

--concurrency:	Number	of	parallel	threads	that	will	issue	requests	(default:	1).

--configuration:	Read	configuration	from	file.

--delay:	Use	a	startup	delay.	This	is	only	necessary	when	run	in	series.	The	default	value	is	false.

--keep-alive:	Use	HTTP	keep-alive	(default:	true).

--progress:	Show	progress	of	benchmark,	on	every	20th	request.	Set	to	false	to	disable	intermediate	logging.	The	default	value	is
true.

--requests:	Total	number	of	requests	to	perform	(default:	1000).

--server.endpoint:	Server	endpoint	to	connect	to,	consisting	of	protocol,	IP	address	and	port.	Defaults	to	tcp://localhost:8529.

--server.database:	Database	name	to	use	when	connecting	(default:	"_system").

--server.username:	Username	to	use	when	connecting	(default:	"root").

--server.password:	Password	to	use	when	connecting.	Don't	specify	this	option	to	get	a	password	prompt.

--server.authentication:	Wether	or	not	to	show	the	password	prompt	and	use	authentication	when	connecting	to	the	server	(default:
true).

--test-case:	Name	of	test	case	to	perform	(default:	"version").	Possible	values:

version	:	requests	/_api/version
document	:	creates	documents
collection	:	creates	collections
import-document	:	creates	documents	via	the	import	API
hash	:	Create/Read/Update/Read	documents	indexed	by	a	hash	index
skiplist	:	Create/Read/Update/Read	documents	indexed	by	a	skiplist
edge	:	Create/Read/Update	edge	documents
shapes	:	Create	&	Delete	documents	with	heterogeneous	attribute	names
shapes-append	:	Create	documents	with	heterogeneous	attribute	names
random-shapes	:	Create/Read/Delete	heterogeneous	documents	with	random	values
crud	:	Create/Read/Update/Delete
crud-append	:	Create/Read/Update/Read	again

Arangobench

483

https://www.arangodb.com/2012/10/gain-factor-of-5-using-batch-updates/
https://www.arangodb.com/2013/11/measuring-arangodb-insert-performance/

crud-write-read	:	Create/Read	Documents
aqltrx	:	AQL	Transactions	with	deep	nested	AQL		FOR		-	loops
counttrx	:	uses	JS	transactions	to	count	the	documents	and	insert	the	result	again
multitrx	:	multiple	transactions	combining	reads	&	writes	from	js
multi-collection	:	multiple	transactions	combining	reads	&	writes	from	js	on	multiple	collections
aqlinsert	:	insert	documents	via	AQL
aqlv8	:	execute	AQL	with	V8	functions	to	insert	random	documents

--verbose:	Print	out	replies	if	the	HTTP	header	indicates	DB	errors.	(default:	false).

Examples

arangobench

Starts	Arangobench	with	the	default	user	and	server	endpoint.

--test-case	version	--requests	1000	--concurrency	1

Runs	the	'version'	test	case	with	1000	requests,	without	concurrency.

--test-case	document	--requests	1000	--concurrency	2

Runs	the	'document'	test	case	with	2000	requests,	with	two	concurrent	threads.

--test-case	document	--requests	1000	--concurrency	2	--async	true

Runs	the	'document'	test	case	with	2000	requests,	with	concurrency	2,	with	async	requests.

--test-case	document	--requests	1000	--concurrency	2	--batch-size	10

Runs	the	'document'	test	case	with	2000	requests,	with	concurrency	2,	using	batch	requests.

Arangobench

484

Architecture

AppendOnly/MVCC

Instead	of	overwriting	existing	documents,	ArangoDB	will	create	a	new	version	of	modified	documents.	This	is	even	the	case	when	a
document	gets	deleted.	The	two	benefits	are:

Objects	can	be	stored	coherently	and	compactly	in	the	main	memory.
Objects	are	preserved,	isolated	writing	and	reading	transactions	allow	accessing	these	objects	for	parallel	operations.

The	system	collects	obsolete	versions	as	garbage,	recognizing	them	as	forsaken.	Garbage	collection	is	asynchronous	and	runs	parallel	to
other	processes.

Mostly	Memory/Durability

Database	documents	are	stored	in	memory-mapped	files.	Per	default,	these	memory-mapped	files	are	synced	regularly	but	not	instantly.
This	is	often	a	good	tradeoff	between	storage	performance	and	durability.	If	this	level	of	durability	is	too	low	for	an	application,	the
server	can	also	sync	all	modifications	to	disk	instantly.	This	will	give	full	durability	but	will	come	with	a	performance	penalty	as	each
data	modification	will	trigger	a	sync	I/O	operation.

Architecture

485

Write-ahead	log
Both	storage	engines	use	a	form	of	write	ahead	logging	(WAL).
Starting	with	version	2.2	ArangoDB	stores	all	data-modification	operation	in	its	write-ahead	log.	The	write-ahead	log	is	sequence	of
append-only	files	containing	all	the	write	operations	that	were	executed	on	the	server.

It	is	used	to	run	data	recovery	after	a	server	crash,	and	can	also	be	used	in	a	replication	setup	when	slaves	need	to	replay	the	same
sequence	of	operations	as	on	the	master.

MMFiles	WAL	Details

By	default,	each	write-ahead	logfile	is	32	MiB	in	size.	This	size	is	configurable	via	the	option	--wal.logfile-size.	When	a	write-ahead
logfile	is	full,	it	is	set	to	read-only,	and	following	operations	will	be	written	into	the	next	write-ahead	logfile.	By	default,	ArangoDB	will
reserve	some	spare	logfiles	in	the	background	so	switching	logfiles	should	be	fast.	How	many	reserve	logfiles	ArangoDB	will	try	to	keep
available	in	the	background	can	be	controlled	by	the	configuration	option	--wal.reserve-logfiles.

Data	contained	in	full	write-ahead	files	will	eventually	be	transferred	into	the	journals	or	datafiles	of	collections.	Only	the	"surviving"
documents	will	be	copied	over.	When	all	remaining	operations	from	a	write-ahead	logfile	have	been	copied	over	into	the	journals	or
datafiles	of	the	collections,	the	write-ahead	logfile	can	safely	be	removed	if	it	is	not	used	for	replication.

Long-running	transactions	prevent	write-ahead	logfiles	from	being	fully	garbage-collected	because	it	is	unclear	whether	a	transaction	will
commit	or	abort.	Long-running	transactions	can	thus	block	the	garbage-collection	progress	and	should	therefore	be	avoided	at	all	costs.

On	a	system	that	acts	as	a	replication	master,	it	is	useful	to	keep	a	few	of	the	already	collected	write-ahead	logfiles	so	replication	slaves
still	can	fetch	data	from	them	if	required.	How	many	collected	logfiles	will	be	kept	before	they	get	deleted	is	configurable	via	the	option	--
wal.historic-logfiles.

For	all	write-ahead	log	configuration	options,	please	refer	to	the	page	Write-ahead	log	options.

RocksDB	WAL	Details

The	options	mentioned	above	only	apply	for	MMFiles.	The	WAL	in	the	rocksdb	storage	engine	works	slightly	differently.	Note:	In
rocksdb	the	WAL	options	are	all	prefixed	with		--rocksdb.*	.	The		--wal.*		options	do	have	no	effect.

The	individual	RocksDB	WAL	files	are	per	default	about	64	MiB	big.	The	size	will	always	be	proportionally	sized	to	the	value	specified
via		--rocksdb.write-buffer-size	.	The	value	specifies	the	amount	of	data	to	build	up	in	memory	(backed	by	the	unsorted	WAL	on	disk)
before	converting	it	to	a	sorted	on-disk	file.	Larger	values	can	increase	performance,	especially	during	bulk	loads.	Up	to		--rocksdb.max-
write-buffer-number		write	buffers	may	be	held	in	memory	at	the	same	time,	so	you	may	wish	to	adjust	this	parameter	to	control
memory	usage.	A	larger	write	buffer	will	result	in	a	longer	recovery	time	the	next	time	the	database	is	opened.

The	RocksDB	WAL	only	contains	committed	transactions.	This	means	you	will	never	see	partial	transactions	in	the	replication	log,	but	it
also	means	transactions	are	tracked	completely	in-memory.	In	practice	this	causes	RocksDB	transaction	sizes	to	be	limited,	for	more
information	see	the	RocksDB	Configuration

Write-ahead	log

486

Storage	Engines
At	the	very	bottom	of	the	ArangoDB	database	lies	the	storage	engine.	The	storage	engine	is	responsible	for	persisting	the	documents	on
disk,	holding	copies	in	memory,	providing	indexes	and	caches	to	speed	up	queries.

Up	to	version	3.1	ArangoDB	only	supported	memory	mapped	files	(MMFiles)	as	sole	storage	engine.	Beginning	with	3.2	ArangoDB	has
support	for	pluggable	storage	engines.	The	second	supported	engine	is	RocksDB	from	Facebook.

MMFiles RocksDB

default optional

dataset	needs	to	fit	into	memory work	with	as	much	data	as	fits	on	disk

indexes	in	memory hot	set	in	memory,	data	and	indexes	on	disk

slow	restart	due	to	index	rebuilding fast	startup	(no	rebuilding	of	indexes)

volatile	collections	(only	in	memory,	optional) collection	data	always	persisted

collection	level	locking	(writes	block	reads) concurrent	reads	and	writes

Blog	article:	Comparing	new	RocksDB	and	MMFiles	storage	engines

RocksDB	is	an	embeddable	persistent	key-value	store.	It	is	a	log	structure	database	and	is	optimized	for	fast	storage.

The	MMFiles	engine	is	optimized	for	the	use-case	where	the	data	fits	into	the	main	memory.	It	allows	for	very	fast	concurrent	reads.
However,	writes	block	reads	and	locking	is	on	collection	level.	Indexes	are	always	in	memory	and	are	rebuilt	on	startup.	This	gives	better
performance	but	imposes	a	longer	startup	time.

The	RocksDB	engine	is	optimized	for	large	data-sets	and	allows	for	a	steady	insert	performance	even	if	the	data-set	is	much	larger	than
the	main	memory.	Indexes	are	always	stored	on	disk	but	caches	are	used	to	speed	up	performance.	RocksDB	uses	document-level	locks
allowing	for	concurrent	writes.	Writes	do	not	block	reads.	Reads	do	not	block	writes.

The	engine	must	be	selected	for	the	whole	server	/	cluster.	It	is	not	possible	to	mix	engines.	The	transaction	handling	and	write-ahead-log
format	in	the	individual	engines	is	very	different	and	therefore	cannot	be	mixed.

RocksDB

Advantages

RocksDB	is	a	very	flexible	engine	that	can	be	configured	for	various	use	cases.

The	main	advantages	of	RocksDB	are

document-level	locks
support	for	large	data-sets
persistent	indexes

Caveats

RocksDB	allows	concurrent	writes.	However,	when	touching	the	same	document	a	write	conflict	is	raised.	This	cannot	happen	with	the
MMFiles	engine,	therefore	applications	that	switch	to	RocksDB	need	to	be	prepared	that	such	exception	can	arise.	It	is	possible	to
exclusively	lock	collections	when	executing	AQL.	This	will	avoid	write	conflicts	but	also	inhibits	concurrent	writes.

Currently,	another	restriction	is	due	to	the	transaction	handling	in	RocksDB.	Transactions	are	limited	in	total	size.	If	you	have	a
statement	modifying	a	lot	of	documents	it	is	necessary	to	commit	data	inbetween.	This	will	be	done	automatically	for	AQL	by	default.

Performance

RocksDB	is	a	based	on	log-structured	merge	tree.	A	good	introduction	can	be	found	in:

Storage	Engines

487

https://www.arangodb.com/why-arangodb/comparing-rocksdb-mmfiles-storage-engines/

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
https://blog.acolyer.org/2014/11/26/the-log-structured-merge-tree-lsm-tree/

The	basic	idea	is	that	data	is	organized	in	levels	were	each	level	is	a	factor	larger	than	the	previous.	New	data	will	reside	in	smaller	levels
while	old	data	is	moved	down	to	the	larger	levels.	This	allows	to	support	high	rate	of	inserts	over	an	extended	period.	In	principle	it	is
possible	that	the	different	levels	reside	on	different	storage	media.	The	smaller	ones	on	fast	SSD,	the	larger	ones	on	bigger	spinning	disks.

RocksDB	itself	provides	a	lot	of	different	knobs	to	fine	tune	the	storage	engine	according	to	your	use-case.	ArangoDB	supports	the	most
common	ones	using	the	options	below.

Performance	reports	for	the	storage	engine	can	be	found	here:

https://github.com/facebook/rocksdb/wiki/performance-benchmarks
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

ArangoDB	options

ArangoDB	has	a	cache	for	the	persistent	indexes	in	RocksDB.	The	total	size	of	this	cache	is	controlled	by	the	option

--cache.size

RocksDB	also	has	a	cache	for	the	blocks	stored	on	disk.	The	size	of	this	cache	is	controlled	by	the	option

--rocksdb.block-cache-size

ArangoDB	distributes	the	available	memory	equally	between	the	two	caches	by	default.

ArangoDB	chooses	a	size	for	the	various	levels	in	RocksDB	that	is	suitable	for	general	purpose	applications.

RocksDB	log	strutured	data	levels	have	increasing	size

MEM:	--

L0:		--

L1:		--	--

L2:		--	--	--	--

...

New	or	updated	Documents	are	first	stored	in	memory.	If	this	memtable	reaches	the	limit	given	by

--rocksdb.write-buffer-size	

it	will	converted	to	an	SST	file	and	inserted	at	level	0.

The	following	option	controls	the	size	of	each	level	and	the	depth.

--rocksdb.num-levels	N

Limits	the	number	of	levels	to	N.	By	default	it	is	7	and	there	is	seldom	a	reason	to	change	this.	A	new	level	is	only	opened	if	there	is	too
much	data	in	the	previous	one.

--rocksdb.max-bytes-for-level-base	B

L0	will	hold	at	most	B	bytes.

--rocksdb.max-bytes-for-level-multiplier	M

Each	level	is	at	most	M	times	as	much	bytes	as	the	previous	one.	Therefore	the	maximum	number	of	bytes	forlevel	L	can	be	calculated	as

max-bytes-for-level-base	*	(max-bytes-for-level-multiplier	^	(L-1))

Storage	Engines

488

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/
https://blog.acolyer.org/2014/11/26/the-log-structured-merge-tree-lsm-tree/
https://github.com/facebook/rocksdb/wiki/performance-benchmarks
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide

Future

RocksDB	imposes	a	limit	on	the	transaction	size.	It	is	optimized	to	handle	small	transactions	very	efficiently,	but	is	effectively	limiting
the	total	size	of	transactions.

ArangoDB	currently	uses	RocksDB's	transactions	to	implement	the	ArangoDB	transaction	handling.	Therefore	the	same	restrictions
apply	for	ArangoDB	transactions	when	using	the	RocksDB	engine.

We	will	improve	this	by	introducing	distributed	transactions	in	a	future	version	of	ArangoDB.	This	will	allow	handling	large	transactions
as	a	series	of	small	RocksDB	transactions	and	hence	removing	the	size	restriction.

Storage	Engines

489

Release	Notes

Whats	New

Whats	New	in	3.3
Whats	New	in	3.2
Whats	New	in	3.1
Whats	New	in	3.0
Whats	New	in	2.8
Whats	New	in	2.7
Whats	New	in	2.6
Whats	New	in	2.5
Whats	New	in	2.4
Whats	New	in	2.3
Whats	New	in	2.2
Whats	New	in	2.1

Known	Issues

Known	Issues	in	3.2

Incompatible	changes

Also	see	Upgrading	in	the	Administration	chapter.

Incompatible	changes	in	3.3
Incompatible	changes	in	3.2
Incompatible	changes	in	3.1
Incompatible	changes	in	3.0
Incompatible	changes	in	2.8
Incompatible	changes	in	2.7
Incompatible	changes	in	2.6
Incompatible	changes	in	2.5
Incompatible	changes	in	2.4
Incompatible	changes	in	2.3

Release	notes

490

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	3.3.	ArangoDB	3.3	also	contains	several
bugfixes	that	are	not	listed	here.

Datacenter-to-datacenter	replication	(DC2DC)

Every	company	needs	a	disaster	recovery	plan	for	all	important	systems.	This	is	true	from	small	units	like	single	processes	running	in
some	container	to	the	largest	distributed	architectures.	For	databases	in	particular	this	usually	involves	a	mixture	of	fault-tolerance,
redundancy,	regular	backups	and	emergency	plans.	The	larger	a	data	store,	the	more	difficult	it	is	to	come	up	with	a	good	strategy.

Therefore,	it	is	desirable	to	be	able	to	run	a	distributed	database	in	one	data-center	and	replicate	all	transactions	to	another	data-center	in
some	way.	Often,	transaction	logs	are	shipped	over	the	network	to	replicate	everything	in	another,	identical	system	in	the	other	data-
center.	Some	distributed	data	stores	have	built-in	support	for	multiple	data-center	awareness	and	can	replicate	between	data-centers	in	a
fully	automatic	fashion.

ArangoDB	3.3	takes	an	evolutionary	step	forward	by	introducing	multi-data-center	support,	which	is	asynchronous	data-center	to	data-
center	replication.	Our	solution	is	asynchronous	and	scales	to	arbitrary	cluster	sizes,	provided	your	network	link	between	the	data-
centers	has	enough	bandwidth.	It	is	fault-tolerant	without	a	single	point	of	failure	and	includes	a	lot	of	metrics	for	monitoring	in	a
production	scenario.

DC2DC	is	available	in	the	Enterprise	edition.

Encrypted	backups

Arangodump	can	now	create	encrypted	backups	using	AES256	for	encryption.	The	encryption	key	can	be	read	from	a	file	or	from	a
generator	program.	It	works	in	single	server	and	cluster	mode.

Example	for	non-encrypted	backup	(everyone	with	access	to	the	backup	will	be	able	to	read	it):

arangodump	--collection	"secret"	dump	

In	order	to	create	an	encrypted	backup,	add	the		--encryption.keyfile		option	when	invoking	arangodump:

arangodump	--collection	"secret"	dump	--encryption.keyfile	~/SECRET-KEY

The	key	must	be	exactly	32	bytes	long	(required	by	the	AES	block	cipher).

Note	that	arangodump	will	not	store	the	key	anywhere.	It	is	the	responsibility	of	the	user	to	find	a	safe	place	for	the	key.	However,
arangodump	will	store	the	used	encryption	method	in	a	file	named		ENCRYPTION		in	the	dump	directory.	That	way	arangorestore	can	later
find	out	whether	it	is	dealing	with	an	encrypted	dump	or	not.

Trying	to	restore	the	encrypted	dump	without	specifying	the	key	will	fail:

arangorestore	--collection	"secret-collection"	dump	--create-collection	true

arangorestore	will	complain	with:

the	dump	data	seems	to	be	encrypted	with	aes-256-ctr,	but	no	key	information	was	specified	to	decrypt	the	dump	it	is
recommended	to	specify	either		--encryption.key-file		or		--encryption.key-generator		when	invoking	arangorestore	with	an
encrypted	dump

It	is	required	to	use	the	exact	same	key	when	restoring	the	data.	Again	this	is	done	by	providing	the		--encryption.keyfile		parameter:

arangorestore	--collection	"secret-collection"	dump	--create-collection	true	--encryption.keyfile	~/SECRET-KEY

Whats	New	in	3.3

491

Using	a	different	key	will	lead	to	the	backup	being	non-recoverable.

Note	that	encrypted	backups	can	be	used	together	with	the	already	existing	RocksDB	encryption-at-rest	feature,	but	they	can	also	be
used	for	the	MMFiles	engine,	which	does	not	have	encryption-at-rest.

Encrypted	backups	are	available	in	the	Enterprise	edition.

Server-level	replication
ArangoDB	supports	asynchronous	replication	functionality	since	version	1.4,	but	replicating	from	a	master	server	with	multiple
databases	required	manual	setup	on	the	slave	for	each	individual	database	to	replicate.	When	a	new	database	was	created	on	the	master,
one	needed	to	take	action	on	the	slave	to	ensure	that	data	for	that	database	got	actually	replicated.	Replication	on	the	slave	also	was	not
aware	of	when	a	database	was	dropped	on	the	master.

3.3	adds	server-level	replication,	which	will	replicate	the	current	and	future	databases	from	the	master	to	the	slave	automatically	after	the
initial	setup.

In	order	to	set	up	global	replication	on	a	3.3	slave	for	all	databases	of	a	given	3.3	master,	there	is	now	the	so-called		globalApplier	.	It	has
the	same	interface	as	the	existing		applier	,	but	it	will	replicate	from	all	databases	of	the	master	and	not	just	a	single	one.

In	order	to	start	the	replication	on	the	slave	and	make	it	replicate	all	databases	from	a	given	master,	use	these	commands	on	the	slave:

var	replication	=	require("@arangodb/replication");

replication.setupReplicationGlobal({

		endpoint:	"tcp://127.0.0.1:8529",

		username:	"root",

		password:	"",

		autoStart:	true

});

To	check	if	the	applier	is	running,	also	use	the		globalApplier		object:

replication.globalApplier.state().state

The	server-level	replication	requires	both	the	master	and	slave	servers	to	ArangoDB	version	3.3	or	higher.

Asynchronous	failover

A	resilient	setup	can	now	easily	be	achieved	by	running	a	pair	of	connected	servers,	of	which	one	instance	becomes	the	master	and	the
other	an	asynchronously	replicating	slave,	with	automatic	failover	between	them.

Two	servers	are	connected	via	asynchronous	replication.	One	of	the	servers	is	elected	leader,	and	the	other	one	is	made	a	follower
automatically.	At	startup,	the	two	servers	fight	for	leadership.	The	follower	will	automatically	start	replication	from	the	master	for	all
available	databases,	using	the	server-level	replication	introduced	in	3.3.

When	the	master	goes	down,	this	is	automatically	detected	by	an	agency	instance,	which	is	also	started	in	this	mode.	This	instance	will
make	the	previous	follower	stop	its	replication	and	make	it	the	new	leader.

The	follower	will	automatically	deny	all	read	and	write	requests	from	client	applications.	Only	the	replication	itself	is	allowed	to	access
the	follower's	data	until	the	follower	becomes	a	new	leader.

When	sending	a	request	to	read	or	write	data	on	a	follower,	the	follower	will	always	respond	with		HTTP	503	(Service	unavailable)		and
provide	the	address	of	the	current	leader.	Client	applications	and	drivers	can	use	this	information	to	then	make	a	follow-up	request	to	the
proper	leader:

HTTP/1.1	503	Service	Unavailable

X-Arango-Endpoint:	http://[::1]:8531

....

Whats	New	in	3.3

492

Client	applications	can	also	detect	who	the	current	leader	and	the	followers	are	by	calling	the		/_api/cluster/endpoints		REST	API.	This
API	is	accessible	on	leaders	and	followers	alike.

The	ArangoDB	starter	supports	starting	two	servers	with	asynchronous	replication	and	failover	out	of	the	box.

The	arangojs	driver	for	JavaScript,	the	Go	driver	and	the	Java	driver	for	ArangoDB	support	automatic	failover	in	case	the	currently
accessed	server	endpoint	responds	with	HTTP	503.

Blog	articles:

Using	Automatic	failover	for	resilient	single	servers
Introducing	the	new	ArangoDB	Java	driver	with	load	balancing	and	advanced	fallback

RocksDB	throttling
ArangoDB	3.3	allows	write	operations	to	the	RocksDB	engine	be	throttled,	in	order	to	prevent	longer	write	stalls.	The	throttling	is
adaptive,	meaning	that	it	automatically	adapts	to	the	actual	write	rate.	This	results	in	much	more	stable	response	times,	which	is	better
for	client	applications	and	cluster	health	tests,	because	timeouts	caused	by	write	stalls	are	less	likely	to	occur	and	the	server	thus	not
mistakenly	assumed	to	be	down.

Blog	article:	RocksDB	smoothing	for	ArangoDB	customers

Faster	shard	creation	in	cluster

When	using	a	cluster,	one	normally	wants	resilience,	so		replicationFactor		is	set	to	at	least		2	.	The	number	of	shards	is	often	set	to
rather	high	values	when	creating	collections.

Creating	a	collection	in	the	cluster	will	make	the	coordinator	store	the	setup	metadata	of	the	new	collection	in	the	agency	first.
Subsequentially	all	database	servers	of	the	cluster	will	detect	that	there	is	work	to	do	and	will	begin	creating	the	shards.	This	will	first
happen	for	the	shard	leaders.	For	each	shard	leader	that	finishes	with	the	setup,	the	synchronous	replication	with	its	followers	is	then
established.	That	will	make	sure	that	every	future	data	modification	will	not	become	effective	on	the	leader	only,	but	also	on	all	the
followers.

In	3.3	this	setup	protocol	has	got	some	shortcuts	for	the	initial	shard	creation,	which	speeds	up	collection	creation	by	roughly	50	to	60
percent.

LDAP	authentication
The	LDAP	authentication	module	in	the	Enterprise	edition	has	been	enhanced.	The	following	options	have	been	added	to	it:

the	option		--server.local-authentication		controls	whether	the	local	_users	collection	is	also	used	for	looking	up	users.	This	is
also	the	default	behavior.	If	the	authentication	shall	be	restricted	to	just	the	LDAP	directory,	the	option	can	be	set	to	true,	and
arangod	will	then	not	make	any	queries	to	its	_users	collection	when	looking	up	users.

the	option		--server.authentication-timeout		controls	the	expiration	time	for	cached	LDAP	user	information	entries	in	arangod.

basic	role	support	has	been	added	for	the	LDAP	module	in	the	Enterprise	edition.	New	configuration	options	for	LDAP	in	3.3	are:

	--ldap.roles-attribute-name	

	--ldap.roles-transformation	

	--ldap.roles-search	

	--ldap.roles-include	

	--ldap.roles-exclude	

	--ldap.superuser-role	

Please	refer	to	LDAP	for	a	detailed	explanation.

Miscellaneous	features

Whats	New	in	3.3

493

https://www.arangodb.com/2017/10/milestone2-arangodb33-new-data-replication/#using-automatic-failover
https://www.arangodb.com/2017/12/introducing-the-new-arangodb-java-driver-load-balancing/
https://www.arangodb.com/2017/11/rocksdb-smoothing-arangodb-customers/

when	creating	a	collection	in	the	cluster,	there	is	now	an	optional	parameter		enforceReplicationFactor	:	when	set,	this	parameter
enforces	that	the	collection	will	only	be	created	if	there	are	not	enough	database	servers	available	for	the	desired		replicationFactor	.

AQL	DISTINCT	is	not	changing	the	order	of	previous	(sorted)	results

Previously	the	implementation	of	AQL	distinct	stored	all	encountered	values	in	a	hash	table	internally.	When	done,	the	final	results
were	returned	in	the	order	dictated	by	the	hash	table	that	was	used	to	store	the	keys.	This	order	was	more	or	less	unpredictable.
Though	this	was	documented	behavior,	it	was	inconvenient	for	end	users.

3.3	now	does	not	change	the	sort	order	of	the	result	anymore	when	DISTINCT	is	used.

Several	AQL	functions	have	been	implemented	in	C++,	which	can	help	save	memory	and	CPU	time	for	converting	the	function
arguments	and	results.	The	following	functions	have	been	ported:

LEFT
RIGHT
SUBSTRING
TRIM
MATCHES

The	ArangoShell	prompt	substitution	characters	have	been	extended.	Now	the	following	extra	substitutions	can	be	used	for	the
arangosh	prompt:

'%t':	current	time	as	timestamp
'%a':	elpased	time	since	ArangoShell	start	in	seconds
'%p':	duration	of	last	command	in	seconds

For	example,	to	show	the	execution	time	of	the	last	command	executed	in	arangosh	in	the	shell's	prompt,	start	arangosh	using:

arangosh	--console.prompt	"%E@%d	%p>	"

There	are	new	startup	options	for	the	logging	to	aid	debugging	and	error	reporting:

	--log.role	:	will	show	one-letter	code	of	server	role	(A	=	agent,	C	=	coordinator,	...)	This	is	especially	useful	when	aggregating
logs.

The	existing	roles	used	in	logs	are:

U:	undefined/unclear	(used	at	startup)
S:	single	server
C:	coordinator
P:	primary
A:	agent

	--log.line-number	true	:	this	option	will	now	additionally	show	the	name	of	the	C++	function	that	triggered	the	log	message
(file	name	and	line	number	were	already	logged	in	previous	versions)

	--log.thread-name	true	:	this	new	option	will	log	the	name	of	the	ArangoDB	thread	that	triggered	the	log	message.	Will	have
meaningful	output	on	Linux	only

make	the	ArangoShell	(arangosh)	refill	its	collection	cache	when	a	yet-unknown	collection	is	first	accessed.	This	fixes	the	following
problem	when	working	with	the	shell	while	in	another	shell	or	by	another	process	a	new	collection	is	added:

arangosh1>	db._collections();		//	shell1	lists	all	collections

arangosh2>	db._create("test");	//	shell2	now	creates	a	new	collection	'test'

arangosh1>	db.test.insert({});	//	shell1	is	not	aware	of	the	collection	created

																															//	in	shell2,	so	the	insert	will	fail

Whats	New	in	3.3

494

Incompatible	changes	in	ArangoDB	3.3
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	3.3,	and	adjust	any	client	programs
if	necessary.

The	following	incompatible	changes	have	been	made	in	ArangoDB	3.3:

AQL:	during	a	traversal	if	a	vertex	is	not	found,	arangod	will	not	log	an	error	and	continue	with	a	NULL	value,	but	will	instead
register	a	warning	at	the	query	and	continue	with	a	NULL	value.

If	a	non-existing	vertex	is	referenced	from	a	traversal,	it	is	not	desirable	to	log	errors	as	ArangoDB	can	store	edges	pointing	to	non-
existing	vertices	(which	is	perfectly	valid	if	the	low-level	insert	APIs	are	used).	As	linking	to	non-existing	vertices	may	indicate	an
issue	in/with	the	data	model	or	the	client	application,	the	warning	is	registered	in	the	query	so	client	applications	have	access	to	it.

ArangoDB	usernames	must	not	start	with	the	string		:role:	.

The	startup	configuration	parameter		--cluster.my-id		does	not	have	any	effect	in	3.3.	For	compatibility	reasons,	ArangoDB	3.3
will	not	fail	on	startup	if	the	option	is	still	used	in	the	configuration,	but	it	will	silently	ignore	this	option.

The	startup	configuration	parameter		--cluster.my-local-info		is	deprecated	now.	Using	it	will	make	arangod	log	a	warning	on
startup.

Server	startup:	the	recommended	value	for	the	Linux	kernel	setting	in		/proc/sys/vm/max_map_count		was	increased	to	a	value	eight
times	as	high	as	in	3.2.	arangod	compares	at	startup	if	the	effective	value	of	this	setting	is	presumably	too	low,	and	it	will	issue	a
warning	in	this	case,	recommending	to	increase	the	value.

This	is	now	more	likely	to	happen	than	in	previous	versions,	as	the	recommended	value	is	now	eight	times	higher	than	in	3.2.	The
startup	warnings	will	look	like	this	(with	actual	numbers	varying):

WARNING	{memory}	maximum	number	of	memory	mappings	per	process	is	65530,	which	seems	too	low.	it	is	recommended	to	set	it	

to	at	least	512000

Please	refer	to	the	Linux	kernel	documentation	for	more	information	on	this	setting.	This	change	only	affects	the	Linux	version	of
ArangoDB.

Client	tools

The	option		--recycle-ids		has	been	removed	from	the	arangorestore	command.	Using	this	option	could	have	led	to	problems	on
the	restore,	with	potential	id	conflicts	between	the	originating	server	(the	source	dump	server)	and	the	target	server	(the	restore
server).

The	option		--compat		parameter	has	been	removed	from	the	arangodump	command	and	the		/_api/replication/dump		REST	API
endpoint.	In	order	to	create	a	dump	from	an	ArangoDB	2.8	instance,	please	use	an	older	version	of	the	client	tools.	Older	ArangoDB
versions	are	no	longer	be	supported	by	the	arangodump	and	arangorestore	binaries	shipped	with	3.3.

Miscellaneous

The	minimum	supported	compiler	for	compiling	ArangoDB	from	source	is	now	g++	5.4	(bumped	up	from	g++	4.9).	This	change	only
affects	users	that	compile	ArangoDB	on	their	own.

Incompatible	changes	in	3.3

495

https://www.kernel.org/doc/Documentation/sysctl/vm.txt

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	3.2.	ArangoDB	3.2	also	contains	several
bugfixes	that	are	not	listed	here.

Storage	engines

ArangoDB	3.2	offers	two	storage	engines:

the	always-existing	memory-mapped	files	storage	engine
a	new	storage	engine	based	on	RocksDB

Memory-mapped	files	storage	engine	(MMFiles)

The	former	storage	engine	(named	MMFiles	engine	henceforth)	persists	data	in	memory-mapped	files.

Any	data	changes	are	done	first	in	the	engine's	write-ahead	log	(WAL).	The	WAL	is	replayed	after	a	crash	so	the	engine	offers	durability
and	crash-safety.	Data	from	the	WAL	is	eventually	moved	to	collection-specific	datafiles.	The	files	are	always	written	in	an	append-only
fashion,	so	data	in	files	is	never	overwritten.	Obsolete	data	in	files	will	eventually	be	purged	by	background	compaction	threads.

Most	of	this	engine's	indexes	are	built	in	RAM.	When	a	collection	is	loaded,	this	requires	rebuilding	the	indexes	in	RAM	from	the	data
stored	on	disk.	The	MMFiles	engine	has	collection-level	locking.

This	storage	engine	is	a	good	choice	when	data	(including	the	indexes)	can	fit	in	the	server's	available	RAM.	If	the	size	of	data	plus	the	in-
memory	indexes	exceeds	the	size	of	the	available	RAM,	then	this	engine	may	try	to	allocate	more	memory	than	available.	This	will	either
make	the	operating	system	swap	out	parts	of	the	data	(and	cause	disk	I/O)	or,	when	no	swap	space	is	configured,	invoke	the	operating
system's	out-of-memory	process	killer.

The	locking	strategy	allows	parallel	reads	and	is	often	good	enough	in	read-mostly	workloads.	Writes	need	exclusive	locks	on	the
collections,	so	they	can	block	other	operations	in	the	same	collection.	The	locking	strategy	also	provides	transactional	consistency	and
isolation.

RocksDB	storage	engine

The	RocksDB	storage	engine	is	new	in	ArangoDB	3.2.	It	is	designed	to	store	datasets	that	are	bigger	than	the	server's	available	RAM.	It
persists	all	data	(including	the	indexes)	in	a	RocksDB	instance.

That	means	any	document	read	or	write	operations	will	be	answered	by	RocksDB	under	the	hood.	RocksDB	will	serve	the	data	from	its
own	in-RAM	caches	or	from	disk.	The	RocksDB	engine	has	a	write-ahead	log	(WAL)	and	uses	background	threads	for	compaction.	It
supports	data	compression.

The	RocksDB	storage	engine	has	document-level	locking.	Read	operations	do	not	block	and	are	never	blocked	by	other	operations.	Write
operations	only	block	writes	on	the	same	documents/index	values.	Because	multiple	writers	can	operate	in	parallel	on	the	same	collection,
there	is	the	possibility	of	write-write	conflicts.	If	such	write	conflict	is	detected,	one	of	the	write	operations	is	aborted	with	error	1200
("conflict").	Client	applications	can	then	either	abort	the	operation	or	retry,	based	on	the	required	consistency	semantics.

Storage	engine	selection

The	storage	engine	to	use	in	an	ArangoDB	cluster	or	a	single-server	instance	must	be	selected	initially.	The	default	storage	engine	in
ArangoDB	3.2	is	the	MMFiles	engine	if	no	storage	engine	is	selected	explicitly.	This	ensures	all	users	upgrading	from	earlier	versions	can
continue	with	the	well-known	MMFiles	engine.

To	select	the	storage-engine,	there	is	the	configuration	option		--server.storage-engine	.	It	can	be	set	to	either		mmfiles	,		rocksdb		or
	auto	.	While	the	first	two	values	will	explicitly	select	a	storage	engine,	the		auto		option	will	automatically	choose	the	storage	engine
based	on	which	storage	engine	was	previously	selected.	If	no	engine	was	selected	previously,		auto		will	select	the	MMFiles	engine.	If	an
engine	was	previously	selected,	the	selection	will	be	written	to	a	file		ENGINE		in	the	server's	database	directory	and	will	be	read	from
there	at	any	subsequent	server	starts.

Whats	New	in	3.2

496

https://www.github.com/facebook/rocksdb/

Once	the	storage	engine	was	selected,	the	selection	cannot	be	changed	by	adjusting		--server.storage-engine	.	In	order	to	switch	to
another	storage	engine,	it	is	required	to	re-start	the	server	with	another	(empty)	database	directory.	In	order	to	use	data	created	with	the
other	storage	engine,	it	is	required	to	dump	the	data	first	with	the	old	engine	and	restore	it	using	the	new	storage	engine.	This	can	be
achieved	via	invoking	arangodump	and	arangorestore.

Unlike	in	MySQL,	the	storage	engine	selection	in	ArangoDB	is	for	an	entire	cluster	or	an	entire	single-server	instance.	All	databases	and
collections	will	use	the	same	storage	engine.

RocksDB	storage	engine:	supported	index	types

The	existing	indexes	in	the	RocksDB	engine	are	all	persistent.	The	following	indexes	are	supported	there:

primary:	this	type	of	index	is	automatically	created.	It	indexes		_id		/		_key	

edge:	this	index	is	automatically	created	for	edge	collections.	It	indexes		_from		and		_to	

hash,	skiplist,	persistent:	these	are	user-defined	indexes,	Despite	their	names,	they	are	neither	hash	nor	skiplist	indexes.	These	index
types	map	to	the	same	RocksDB-based	sorted	index	implementation.	The	same	is	true	for	the	"persistent"	index.	The	names	"hash",
"skiplist"	and	"persistent"	are	only	used	for	compatibility	with	the	MMFiles	engine	where	these	indexes	existed	in	previous	and	the
current	version	of	ArangoDB.

geo:	user-defined	index	for	proximity	searches

fulltext:	user-defined	sorted	reverted	index	on	words	occurring	in	documents

Satellite	Collections

With	SatelliteCollections,	you	can	define	collections	to	shard	to	a	cluster	and	collections	to	replicate	to	each	machine.	The	ArangoDB
query	optimizer	knows	where	each	shard	is	located	and	sends	the	requests	to	the	DBServers	involved,	which	then	executes	the	query,
locally.	With	this	approach,	network	hops	during	join	operations	on	sharded	collections	can	be	avoided	and	response	times	can	be	close
to	that	of	a	single	instance.

Satellite	collections	are	available	in	the	Enterprise	edition.

Memory	management
make	arangod	start	with	less	V8	JavaScript	contexts

This	speeds	up	the	server	start	and	makes	arangod	use	less	memory	at	start.	Whenever	a	V8	context	is	needed	by	a	Foxx	action	or
some	other	JavaScript	operation	and	there	is	no	usable	V8	context,	a	new	context	will	be	created	dynamically	now.

Up	to		--javascript.v8-contexts		V8	contexts	will	be	created,	so	this	option	will	change	its	meaning.	Previously	as	many	V8
contexts	as	specified	by	this	option	were	created	at	server	start,	and	the	number	of	V8	contexts	did	not	change	at	runtime.	Now	up
to	this	number	of	V8	contexts	will	be	in	use	at	the	same	time,	but	the	actual	number	of	V8	contexts	is	dynamic.

The	garbage	collector	thread	will	automatically	delete	unused	V8	contexts	after	a	while.	The	number	of	spare	contexts	will	go	down
to	as	few	as	configured	in	the	new	option		--javascript.v8-contexts-minimum	.	Actually	that	many	V8	contexts	are	also	created	at
server	start.

The	first	few	requests	in	new	V8	contexts	may	take	longer	than	in	contexts	that	have	been	there	already.	Performance	may	therefore
suffer	a	bit	for	the	initial	requests	sent	to	ArangoDB	or	when	there	are	only	few	but	performance-	critical	situations	in	which	new
V8	contexts	need	to	be	created.	If	this	is	a	concern,	it	can	easily	be	fixed	by	setting		--javascipt.v8-contexts-minimum		and		--
javascript.v8-contexts		to	a	relatively	high	value,	which	will	guarantee	that	many	number	of	V8	contexts	to	be	created	at	startup
and	kept	around	even	when	unused.

Waiting	for	an	unused	V8	context	will	now	also	abort	and	write	a	log	message	in	case	no	V8	context	can	be	acquired/created	after	60
seconds.

the	number	of	pending	operations	in	arangod	can	now	be	limited	to	a	configurable	number.	If	this	number	is	exceeded,	the	server	will
now	respond	with	HTTP	503	(service	unavailable).	The	maximum	size	of	pending	operations	is	controlled	via	the	startup	option		-
-server.maximal-queue-size	.	Setting	it	to	0	means	"no	limit".

Whats	New	in	3.2

497

the	in-memory	document	revisions	cache	was	removed	entirely	because	it	did	not	provide	the	expected	benefits.	The	3.1
implementation	shadowed	document	data	in	RAM,	which	increased	the	server's	RAM	usage	but	did	not	speed	up	document
lookups	too	much.

This	also	obsoletes	the	startup	options		--database.revision-cache-chunk-size		and		--database.revision-cache-target-size	.

The	MMFiles	engine	now	does	not	use	a	document	revisions	cache	but	has	in-memory	indexes	and	maps	documents	to	RAM
automatically	via	mmap	when	documents	are	accessed.	The	RocksDB	engine	has	its	own	mechanism	for	caching	accessed
documents.

Communication	Layer
HTTP	responses	returned	by	arangod	will	now	include	the	extra	HTTP	header		x-content-type-options:	nosniff		to	work	around	a
cross-site	scripting	bug	in	MSIE

the	default	value	for		--ssl.protocol		was	changed	from	TLSv1	to	TLSv1.2.	When	not	explicitly	set,	arangod	and	all	client	tools	will
now	use	TLSv1.2.

the	JSON	data	in	all	incoming	HTTP	requests	in	now	validated	for	duplicate	attribute	names.

Incoming	JSON	data	with	duplicate	attribute	names	will	now	be	rejected	as	invalid.	Previous	versions	of	ArangoDB	only	validated
the	uniqueness	of	attribute	names	inside	incoming	JSON	for	some	API	endpoints,	but	not	consistently	for	all	APIs.

Internal	JavaScript	REST	actions	will	now	hide	their	stack	traces	to	the	client	unless	in	HTTP	responses.	Instead	they	will	always
log	to	the	logfile.

JavaScript

updated	V8	version	to	5.7.0.0

change	undocumented	behaviour	in	case	of	invalid	revision	ids	in		If-Match		and		If-None-Match		headers	from	400	(BAD)	to	412
(PRECONDITION	FAILED).

change	default	string	truncation	length	from	80	characters	to	256	characters	for		print	/	printShell		functions	in	ArangoShell	and
arangod.	This	will	emit	longer	prefixes	of	string	values	before	truncating	them	with		...	,	which	is	helpful	for	debugging.	This
change	is	mostly	useful	when	using	the	ArangoShell	(arangosh).

the		@arangodb		module	now	provides	a		time		function	which	returns	the	current	time	in	seconds	as	a	floating	point	value	with
microsecond	precision.

Foxx
There	is	now	an	official	HTTP	API	for	managing	services,	allowing	services	to	be	installed,	modified,	uninstalled	and	reconfigured
without	the	administrative	web	interface.

It	is	now	possible	to	upload	a	single	JavaScript	file	instead	of	a	zip	archive	if	your	service	requires	no	configuration,	additional	files
or	setup.	A	minimal	manifest	will	be	generated	automatically	upon	installation	and	the	uploaded	file	will	be	used	as	the	service's
main	entry	point.

Distributed	Graph	Processing

We	added	support	for	executing	distributed	graph	algorithms	aka		Pregel	.
Users	can	run	arbitrary	algorithms	on	an	entire	graph,	including	in	cluster	mode.
We	implemented	a	number	of	algorithms	for	various	well-known	graph	measures:

Connected	Components
PageRank
Shortest	Paths
Centrality	Measures	(Centrality	and	Betweeness)

Whats	New	in	3.2

498

Community	Detection	(via	Label	Propagation,	Speakers-Listeners	Label	Propagation	or	DMID)
Users	can	contribute	their	own	algorithms

AQL

Optimizer	improvements

Geo	indexes	are	now	implicitly	and	automatically	used	when	using	appropriate	SORT/FILTER	statements	in	AQL,	without	the
need	to	use	the	somewhat	limited	special-purpose	geo	AQL	functions		NEAR		or		WITHIN	.

Compared	to	using	the	special	purpose	AQL	functions	this	approach	has	the	advantage	that	it	is	more	composable,	and	will	also
honor	any		LIMIT		values	used	in	the	AQL	query.

The	special	purpose		NEAR		AQL	function	can	now	be	substituted	with	the	following	AQL	(provided	there	is	a	geo	index	present	on
the		doc.latitude		and		doc.longitude		attributes):

FOR	doc	in	geoSort	

		SORT	DISTANCE(doc.latitude,	doc.longitude,	0,	0)	

		LIMIT	5	

		RETURN	doc

	WITHIN		can	be	substituted	with	the	following	AQL:

FOR	doc	in	geoFilter	

		FILTER	DISTANCE(doc.latitude,	doc.longitude,	0,	0)	<	2000	

		RETURN	doc

Miscellaneous	improvements

added		REGEX_REPLACE		AQL	function

	REGEX_REPLACE(text,	search,	replacement,	caseInsensitive)	→	string	

Replace	the	pattern	search	with	the	string	replacement	in	the	string	text,	using	regular	expression	matching.

text	(string):	the	string	to	search	in
search	(string):	a	regular	expression	search	pattern
replacement	(string):	the	string	to	replace	the	search	pattern	with
returns	string	(string):	the	string	text	with	the	search	regex	pattern	replaced	with	the	replacement	string	wherever	the	pattern
exists	in	text

added	new	startup	option		--query.fail-on-warning		to	make	AQL	queries	abort	instead	of	continuing	with	warnings.

When	set	to	true,	this	will	make	an	AQL	query	throw	an	exception	and	abort	in	case	a	warning	occurs.	This	option	should	be	used	in
development	to	catch	errors	early.	If	set	to	false,	warnings	will	not	be	propagated	to	exceptions	and	will	be	returned	with	the	query
results.	The	startup	option	can	also	be	overriden	on	a	per	query-level.

the	slow	query	list	now	contains	the	values	of	bind	variables	used	in	the	slow	queries.	Bind	variables	are	also	provided	for	the
currently	running	queries.	This	helps	debugging	slow	or	blocking	queries	that	use	dynamic	collection	names	via	bind	parameters.

AQL	breaking	change	in	cluster:	The	SHORTEST_PATH	statement	using	edge	collection	names	instead	of	a	graph	names	now
requires	to	explicitly	name	the	vertex	collection	names	within	the	AQL	query	in	the	cluster.	It	can	be	done	by	adding		WITH	<name>	
at	the	beginning	of	the	query.

Example:

FOR	v,e	IN	OUTBOUND	SHORTEST_PATH	@start	TO	@target	edges	[...]

Now	has	to	be:

WITH	vertices

FOR	v,e	IN	OUTBOUND	SHORTEST_PATH	@start	TO	@target	edges	[...]

Whats	New	in	3.2

499

This	change	is	due	to	avoid	deadlock	sitations	in	clustered	case.	An	error	stating	the	above	is	included.

Client	tools

added	data	export	tool,	arangoexport.

arangoexport	can	be	used	to	export	collections	to	json,	jsonl	or	xml	and	export	a	graph	or	collections	to	xgmml.

added	"jsonl"	as	input	file	type	for	arangoimp

added		--translate		option	for	arangoimp	to	translate	attribute	names	from	the	input	files	to	attriubte	names	expected	by
ArangoDB

The		--translate		option	can	be	specified	multiple	times	(once	per	translation	to	be	executed).	The	following	example	renames	the
"id"	column	from	the	input	file	to	"_key",	and	the	"from"	column	to	"_from",	and	the	"to"	column	to	"_to":

arangoimp	--type	csv	--file	data.csv	--translate	"id=_key"	--translate	"from=_from"	--translate	"to=_to"

	--translate		works	for	CSV	and	TSV	inputs	only.

added		--threads		option	to	arangoimp	to	specify	the	number	of	parallel	import	threads

changed	default	value	for	client	tools	option		--server.max-packet-size		from	128	MB	to	256	MB.	this	allows	transferring	bigger
result	sets	from	the	server	without	the	client	tools	rejecting	them	as	invalid.

Authentication

added	LDAP	authentication	(Enterprise	only)

Authorization

added	read	only	mode	for	users
collection	level	authorization	rights

Read	more	in	the	overview.

Foxx
the	cookie	session	transport	now	supports	all	options	supported	by	the	cookie	method	of	the	response	object.

it's	now	possible	to	provide	your	own	version	of	the		graphql-sync		module	when	using	the	GraphQL	extensions	for	Foxx	by
passing	a	copy	of	the	module	using	the	new	graphql	option.

custom	API	endpoints	can	now	be	tagged	using	the	tag	method	to	generate	a	cleaner	Swagger	documentation.

Miscellaneous	Changes

arangod	now	validates	several	OS/environment	settings	on	startup	and	warns	if	the	settings	are	non-ideal.	It	additionally	will	print
out	ways	to	remedy	the	options.

Most	of	the	checks	are	executed	on	Linux	systems	only.

added	"deduplicate"	attribute	for	array	indexes,	which	controls	whether	inserting	duplicate	index	values	from	the	same	document
into	a	unique	array	index	will	lead	to	an	error	or	not:

//	with	deduplicate	=	true,	which	is	the	default	value:

db._create("test");

db.test.ensureIndex({	type:	"hash",	fields:	["tags[*]"],	deduplicate:	true	});

db.test.insert({	tags:	["a",	"b"]	});

Whats	New	in	3.2

500

db.test.insert({	tags:	["c",	"d",	"c"]	});	//	will	work,	because	deduplicate	=	true

db.test.insert({	tags:	["a"]	});	//	will	fail

//	with	deduplicate	=	false

db._create("test");

db.test.ensureIndex({	type:	"hash",	fields:	["tags[*]"],	deduplicate:	false	});

db.test.insert({	tags:	["a",	"b"]	});

db.test.insert({	tags:	["c",	"d",	"c"]	});	//	will	not	work,	because	deduplicate	=	false

db.test.insert({	tags:	["a"]	});	//	will	fail

Whats	New	in	3.2

501

Known	Issues
The	following	known	issues	are	present	in	this	version	of	ArangoDB	and	will	be	fixed	in	follow-up	releases:

RocksDB	storage	engine

The	RocksDB	storage	engine	is	intentionally	missing	the	following	features	that	are	present	in	the	MMFiles	engine:

the	datafile	debugger	(arango-dfdb)	cannot	be	used	with	this	storage	engine

RocksDB	has	its	own	crash	recovery	so	using	the	dfdb	will	not	make	any	sense	here.

APIs	that	return	collection	properties	or	figures	will	return	slightly	different	attributes	for	the	RocksDB	engine	than	for	the
MMFiles	engine.	For	example,	the	attributes		journalSize	,		doCompact	,		indexBuckets		and		isVolatile		are	present	in	the
MMFiles	engine	but	not	in	the	RocksDB	engine.	The	memory	usage	figures	reported	for	collections	in	the	RocksDB	engine	are
estimate	values,	whereas	they	are	exact	for	the	MMFiles	engine.

the	RocksDB	engine	does	not	support	some	operations	which	only	make	sense	in	the	context	of	the	MMFiles	engine.	These	are:

the		rotate		method	on	collections
the		flush		method	for	WAL	files

the	RocksDB	storage	engine	does	not	support	volatile	collections

transactions	are	limited	in	size.	Transactions	that	get	too	big	(in	terms	of	number	of	operations	involved	or	the	total	size	of	data
modified	by	the	transaction)	will	be	committed	automatically.	Effectively	this	means	that	big	user	transactions	are	split	into	multiple
smaller	RocksDB	transactions	that	are	committed	individually.	The	entire	user	transaction	will	not	necessarily	have	ACID
properties	in	this	case.

The	threshold	values	for	transaction	sizes	can	be	configured	globally	using	the	startup	options

	--rocksdb.intermediate-commit-size	:	if	the	size	of	all	operations	in	a	transaction	reaches	this	threshold,	the	transaction	is
committed	automatically	and	a	new	transaction	is	started.	The	value	is	specified	in	bytes.

	--rocksdb.intermediate-commit-count	:	if	the	number	of	operations	in	a	transaction	reaches	this	value,	the	transaction	is
committed	automatically	and	a	new	transaction	is	started.

	--rocksdb.max-transaction-size	:	this	is	an	upper	limit	for	the	total	number	of	bytes	of	all	operations	in	a	transaction.	If	the
operations	in	a	transaction	consume	more	than	this	threshold	value,	the	transaction	will	automatically	abort	with	error	32
("resource	limit	exceeded").

It	is	also	possible	to	override	these	thresholds	per	transaction.

The	following	known	issues	will	be	resolved	in	future	releases:

the	RocksDB	engine	is	not	yet	performance-optimized	and	potentially	not	well	configured

collections	for	which	a	geo	index	is	present	will	use	collection-level	write	locks	even	with	the	RocksDB	engine.	Reads	from	these
collections	can	still	be	done	in	parallel	but	no	writes

modifying	documents	in	a	collection	with	a	geo	index	will	cause	multiple	additional	writes	to	RocksDB	for	maintaining	the	index
structures

the	number	of	documents	reported	for	collections	(db.<collection>.count())	may	be	slightly	wrong	during	transactions	if	there	are
parallel	transactions	ongoing	for	the	same	collection	that	also	modify	the	number	of	documents

the		any		operation	to	provide	a	random	document	from	a	collection	is	supported	by	the	RocksDB	engine	but	the	operation	has
much	higher	algorithmic	complexity	than	in	the	MMFiles	engine.	It	is	therefore	discouraged	to	call	it	for	cases	other	than	manual
inspection	of	a	few	documents	in	a	collection

AQL	queries	in	the	cluster	still	issue	an	extra	locking	HTTP	request	per	shard	though	this	would	not	be	necessary	for	the	RocksDB
engine	in	most	cases

Installer

Known	Issues	in	3.2

502

Upgrading	from	3.1	to	3.2	on	Windows	requires	the	user	to	manually	copy	the	database	directory	to	the	new	location	and	run	an
upgrade	on	the	database.	Please	consult	the	Documentation	for	detailed	instructions.

System	Integration

On	some	Linux	systems	systemd	and	system	v	might	report	that	the	arangodb	service	is	in	good	condition	when	it	could	not	be
started.	In	this	case	the	user	needs	to	check		/var/log/arangodb3		for	further	information	about	the	failed	startup.

Mac	OS	X

Storage	engine	is	not	changeable	on	an	existing	database.	Currently	only	the	initial	selection	of	the	storage	engine	is	supported.	In
order	to	use	another	storage	engine,	you	have	to	delete	your	ArangoDB	application	(Mac	Application	Folder)	and
	/Users/<your_user_name>/Library/ArangoDB		folder.

OpenSSL	1.1

ArangoDB	has	been	tested	with	OpenSSL	1.0	only	and	won't	build	against	1.1	when	compiling	on	your	own.	See	here	for	how	to
compile	on	systems	that	ship	OpenSSL	1.1	by	default.

Known	Issues	in	3.2

503

Incompatible	changes	in	ArangoDB	3.2
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	3.2,	and	adjust	any	client	programs
if	necessary.

AQL

AQL	breaking	change	in	cluster:	The	SHORTEST_PATH	statement	using	edge-collection	names	instead	of	a	graph	name	now
requires	to	explicitly	name	the	vertex-collection	names	within	the	AQL	query	in	the	cluster.	It	can	be	done	by	adding		WITH	<name>	
at	the	beginning	of	the	query.

Example:

FOR	v,e	IN	OUTBOUND	SHORTEST_PATH	@start	TO	@target	edges	[...]

Now	has	to	be:

WITH	vertices

FOR	v,e	IN	OUTBOUND	SHORTEST_PATH	@start	TO	@target	edges	[...]

This	change	is	due	to	avoid	dead-lock	sitations	in	clustered	case.	An	error	stating	the	above	is	included.

REST	API
Removed	undocumented	internal	HTTP	API:

PUT	/_api/edges
The	documented	GET	/_api/edges	and	the	undocumented	POST	/_api/edges	remains	unmodified.

change	undocumented	behaviour	in	case	of	invalid	revision	ids	in		If-Match		and		If-None-Match		headers	from	returning	HTTP
status	code	400	(bad	request)	to	returning	HTTP	status	code	412	(precondition	failed).

the	REST	API	for	fetching	the	list	of	currently	running	AQL	queries	and	the	REST	API	for	fetching	the	list	of	slow	AQL	queries
now	return	an	extra	bindVars	attribute	which	contains	the	bind	parameters	used	by	the	queries.

This	affects	the	return	values	of	the	following	API	endpoints:

GET	/_api/query/current
GET	/_api/query/slow

The	REST	API	for	retrieving	indexes	(GET	/_api/index)	now	returns	the	deduplicate	attribute	for	each	index

The	REST	API	for	creating	indexes	(POST	/_api/index)	now	accepts	the	optional	deduplicate	attribute

JavaScript	API

change	undocumented	behaviour	in	case	of	invalid	revision	ids	in	JavaScript	document	operations	from	returning	error	code	1239
("illegal	document	revision")	to	returning	error	code	1200	("conflict").

the		collection.getIndexes()		function	now	returns	the	deduplicate	attribute	for	each	index

the		collection.ensureIndex()		function	now	accepts	the	optional	deduplicate	attribute

Foxx

JWT	tokens	issued	by	the	built-in	JWT	session	storage	now	correctly	specify	the		iat		and		exp		values	in	seconds	rather	than
milliseconds	as	specified	in	the	JSON	Web	Token	standard.

Incompatible	changes	in	3.2

504

This	may	result	in	previously	expired	tokens	using	milliseconds	being	incorrectly	accepted.	For	this	reason	it	is	recommended	to
replace	the	signing		secret		or	set	the	new		maxExp		option	to	a	reasonable	value	that	is	smaller	than	the	oldest	issued	expiration
timestamp.

For	example	setting		maxExp		to		10**12		would	invalidate	all	incorrectly	issued	tokens	before	9	September	2001	without	impairing
new	tokens	until	the	year	33658	(at	which	point	these	tokens	are	hopefully	no	longer	relevant).

ArangoDB	running	in	standalone	mode	will	commit	all	services	in	the		javascript.app-path		to	the	database	on	startup.	This	may
result	in	uninstalled	services	showing	up	in	ArangoDB	if	they	were	not	properly	removed	from	the	filesystem.

ArangoDB	coordinators	in	a	cluster	now	perform	a	self-healing	step	during	startup	to	ensure	installed	services	are	consistent	accross
all	coordinators.	We	recommend	backing	up	your	services	and	configuration	before	upgrading	to	ArangoDB	3.2,	especially	if	you
have	made	use	of	the	development	mode.

Services	installed	before	upgrading	to	3.2	(including	services	installed	on	alpha	releases	of	ArangoDB	3.2)	are	NOT	picked	up	by	the
coordinator	self-healing	watchdog.	This	can	be	solved	by	either	upgrading/replacing	these	services	or	by	using	the	"commit"	route	of
the	Foxx	service	management	HTTP	API,	which	commits	the	exact	services	installed	on	a	given	coordinator	to	the	cluster.	New
services	will	be	picked	up	automatically.

The	format	used	by	Foxx	to	store	internal	service	metadata	in	the	database	has	been	simplified	and	existing	documents	will	be
updated	to	the	new	format.	If	you	have	made	any	changes	to	the	data	stored	in	the		_apps		system	collection,	you	may	wish	to
export	these	changes	as	they	will	be	overwritten.

There	is	now	an	official	HTTP	API	for	managing	services.	If	you	were	previously	using	any	of	the	undocumented	APIs	or	the
routes	used	by	the	administrative	web	interface	we	highly	recommend	migrating	to	the	new	API.	The	old	undocumented	HTTP	API
for	mananaging	services	is	deprecated	and	will	be	removed	in	a	future	version	of	ArangoDB.

Although	changes	to	the	filesystem	outside	of	development	mode	were	already	strongly	discouraged,	this	is	a	reminder	that	they	are
no	longer	supported.	All	files	generated	by	services	(whether	by	a	setup	script	or	during	normal	operation	such	as	uploads)	should
either	be	stored	outside	the	service	directory	or	be	considered	extremely	volatile.

Introduced	distinction	between		arangoUser		and		authorized		in	Foxx	requests.	Cluster	internal	requests	will	never	have	an
	arangoUser		but	are	authorized.	In	earlier	versions	of	ArangoDB	parts	of	the	statistics	were	not	accessible	by	the	coordinators
because	the	underlying	Foxx	service	couldn't	authorize	the	requests.	It	now	correctly	checks	the	new		req.authorized		property.
	req.arangoUser		still	works	as	before.	Endusers	may	use	this	new	property	as	well	to	easily	check	if	a	request	is	authorized	or	not
regardless	of	a	specific	user.

Command-line	options	changed

--server.maximal-queue-size	is	now	an	absolute	maximum.	If	the	queue	is	full,	then	503	is	returned.	Setting	it	to	0	means	"no	limit".
The	default	value	for	this	option	is	now		0	.

the	default	value	for		--ssl.protocol		has	been	changed	from		4		(TLSv1)	to		5		(TLSv1.2).

the	startup	options		--database.revision-cache-chunk-size		and		--database.revision-cache-target-size		are	now	obsolete	and	do
nothing

the	startup	option		--database.index-threads		option	is	now	obsolete

the	option		--javascript.v8-contexts		is	now	an	absolute	maximum.	The	server	may	start	less	V8	contexts	for	JavaScript	execution
at	startup.	If	at	some	point	the	server	needs	more	V8	contexts	it	may	start	them	dynamically,	until	the	number	of	V8	contexts
reaches	the	value	of		--javascript.v8-contexts	.

the	minimum	number	of	V8	contexts	to	create	at	startup	can	be	configured	via	the	new	startup	option		--javascript.v8-contexts-
minimum	.

added	command-line	option		--javascript.allow-admin-execute	

This	option	can	be	used	to	control	whether	user-defined	JavaScript	code	is	allowed	to	be	executed	on	server	by	sending	via	HTTP	to
the	API	endpoint		/_admin/execute		with	an	authenticated	user	account.	The	default	value	is		false	,	which	disables	the	execution
of	user-defined	code.	This	is	also	the	recommended	setting	for	production.	In	test	environments,	it	may	be	convenient	to	turn	the
option	on	in	order	to	send	arbitrary	setup	or	teardown	commands	for	execution	on	the	server.

Incompatible	changes	in	3.2

505

The	introduction	of	this	option	changes	the	default	behavior	of	ArangoDB	3.2:	3.2	now	by	default	disables	the	execution	of
JavaScript	code	via	this	API,	whereas	earlier	versions	allowed	it.	To	restore	the	old	behavior,	it	is	necessary	to	set	the	option	to
	true	.

Users	Management

It	is	no	longer	supported	to	access	the		_users		collecction	in	any	way	directly,	except	through	the	official		@arangodb/users	
module	or	the		_apit/users		REST	API.

The	access	to	the		_users		collection	from	outside	of	the	arangod	server	process	is	now	forbidden	(Through	drivers,	arangosh	or	the
REST	API).	Foxx	services	are	still	be	able	to	access	the		_users		collection	for	now,	but	this	might	change	in	future	minor	releases.

The	internal	format	of	the	documents	in	the		_users		collection	has	changed	from	previous	versions

The		_queues		collection	only	allows	read-only	access	from	outside	of	the	arangod	server	process.

Accessing		_queues		is	only	supported	through	the	official		@arangodb/queues		module	for	Foxx	apps.

Incompatible	changes	in	3.2

506

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	3.1.	ArangoDB	3.1	also	contains	several
bugfixes	that	are	not	listed	here.

SmartGraphs

ArangoDB	3.1	adds	a	first	major	enterprise	only	feature	called	SmartGraphs.	SmartGraphs	form	an	addition	to	the	already	existing	graph
features	and	allow	to	scale	graphs	beyond	a	single	machine	while	keeping	almost	the	same	query	performance.	The	SmartGraph	feature	is
suggested	for	all	graph	database	use	cases	that	require	a	cluster	of	database	servers	for	what	ever	reason.	You	can	either	have	a	graph	that
is	too	large	to	be	stored	on	a	single	machine	only.	Or	you	can	have	a	small	graph,	but	at	the	same	time	need	additional	data	with	has	to	be
sharded	and	you	want	to	keep	all	of	them	in	the	same	envirenment.	Or	you	simply	use	the	cluster	for	high-availability.	In	all	the	above
cases	SmartGraphs	will	significantly	increase	the	performance	of	graph	operations.	For	more	detailed	information	read	this	manual
section.

Data	format

The	format	of	the	revision	values	stored	in	the		_rev		attribute	of	documents	has	been	changed	in	3.1.	Up	to	3.0	they	were	strings
containing	largish	decimal	numbers.	With	3.1,	revision	values	are	still	strings,	but	are	actually	encoded	time	stamps	of	the	creation	date	of
the	revision	of	the	document.	The	time	stamps	are	acquired	using	a	hybrid	logical	clock	(HLC)	on	the	DBserver	that	holds	the	revision
(for	the	concept	of	a	hybrid	logical	clock	see	this	paper).	See	this	manual	section	for	details.

ArangoDB	>=	3.1	can	ArangoDB	3.0	database	directories	and	will	simply	continue	to	use	the	old		_rev		attribute	values.	New	revisions
will	be	written	with	the	new	time	stamps.

It	is	highly	recommended	to	backup	all	your	data	before	loading	a	database	directory	that	was	written	by	ArangoDB	<=	3.0	into	an
ArangoDB	>=	3.1.

Communication	Layer
ArangoDB	up	to	3.0	used	libev	for	the	communication	layer.	ArangoDB	starting	from	3.1	uses	Boost	ASIO.

Starting	with	ArangoDB	3.1	we	begin	to	provide	the	VelocyStream	Protocol	(vst)	as	a	addition	to	the	established	http	protocol.

A	few	options	have	changed	concerning	communication,	please	checkout	Incompatible	changes	in	3.1.

Cluster
For	its	internal	cluster	communication	a	(bundled	version)	of	curl	is	now	being	used.	This	enables	asynchronous	operation	throughout	the
cluster	and	should	improve	general	performance	slightly.

Authentication	is	now	supported	within	the	cluster.

Document	revisions	cache

The	ArangoDB	server	now	provides	an	in-memory	cache	for	frequently	accessed	document	revisions.	Documents	that	are	accessed
during	read/write	operations	are	loaded	into	the	revisions	cache	automatically,	and	subsequently	served	from	there.

The	cache	has	a	total	target	size,	which	can	be	controlled	with	the	startup	option		--database.revision-cache-target-size	.	Once	the
cache	reaches	the	target	size,	older	entries	may	be	evicted	from	the	cache	to	free	memory.	Note	that	the	target	size	currently	is	a	high
water	mark	that	will	trigger	cache	memory	garbage	collection	if	exceeded.	However,	if	all	cache	chunks	are	still	in	use	when	the	high	water
mark	is	reached,	the	cache	may	still	grow	and	allocate	more	chunks	until	cache	entries	become	unused	and	are	allowed	to	be	garbage-
collected.

Whats	New	in	3.1

507

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf
http://software.schmorp.de/pkg/libev.html

The	cache	is	maintained	on	a	per-collection	basis,	that	is,	memory	for	the	cache	is	allocated	on	a	per-collection	basis	in	chunks.	The	size
for	the	cache	memory	chunks	can	be	controlled	via	the	startup	option		--database.revision-cache-chunk-size	.	The	default	value	is	4	MB
per	chunk.	Bigger	chunk	sizes	allow	saving	more	documents	per	chunk,	which	can	lead	to	more	efficient	chunk	allocation	and	lookups,
but	will	also	lead	to	memory	waste	if	many	chunks	are	allocated	and	not	fully	used.	The	latter	will	be	the	case	if	there	exist	many	small
collections	which	all	allocate	their	own	chunks	but	not	fully	utilize	them	because	of	the	low	number	of	documents.

AQL

Functions	added

The	following	AQL	functions	have	been	added	in	3.1:

OUTERSECTION(array1,	array2,	...,	arrayn):	returns	the	values	that	occur	only	once	across	all	arrays	specified.

DISTANCE(lat1,	lon1,	lat2,	lon2):	returns	the	distance	between	the	two	coordinates	specified	by	(lat1,	lon1)	and	(lat2,	lon2).	The
distance	is	calculated	using	the	haversine	formula.

JSON_STRINGIFY(value):	returns	a	JSON	string	representation	of	the	value.

JSON_PARSE(value):	converts	a	JSON-encoded	string	into	a	regular	object

Index	usage	in	traversals

3.1	allows	AQL	traversals	to	use	other	indexes	than	just	the	edge	index.	Traversals	with	filters	on	edges	can	now	make	use	of	more
specific	indexes.	For	example,	the	query

FOR	v,	e,	p	IN	2	OUTBOUND	@start	@@edge	

		FILTER	p.edges[0].foo	==	"bar"

		RETURN	[v,	e,	p]

may	use	a	hash	index	on		["_from",	"foo"]		instead	of	the	edge	index	on	just		["_from"]	.

Optimizer	improvements

Make	the	AQL	query	optimizer	inject	filter	condition	expressions	referred	to	by	variables	during	filter	condition	aggregation.	For
example,	in	the	following	query

FOR	doc	IN	collection

		LET	cond1	=	(doc.value	==	1)

		LET	cond2	=	(doc.value	==	2)

		FILTER	cond1	||	cond2

		RETURN	{	doc,	cond1,	cond2	}

the	optimizer	will	now	inject	the	conditions	for		cond1		and		cond2		into	the	filter	condition		cond1	||	cond2	,	expanding	it	to
	(doc.value	==	1)	||	(doc.value	==	2)		and	making	these	conditions	available	for	index	searching.

Note	that	the	optimizer	previously	already	injected	some	conditions	into	other	conditions,	but	only	if	the	variable	that	defined	the
condition	was	not	used	elsewhere.	For	example,	the	filter	condition	in	the	query

FOR	doc	IN	collection

		LET	cond	=	(doc.value	==	1)

		FILTER	cond

		RETURN	{	doc	}

already	got	optimized	before	because		cond		was	only	used	once	in	the	query	and	the	optimizer	decided	to	inject	it	into	the	place	where	it
was	used.

This	only	worked	for	variables	that	were	referred	to	once	in	the	query.	When	a	variable	was	used	multiple	times,	the	condition	was	not
injected	as	in	the	following	query

FOR	doc	IN	collection

Whats	New	in	3.1

508

		LET	cond	=	(doc.value	==	1)

		FILTER	cond

		RETURN	{	doc,	cond	}

3.1	allows	using	this	condition	so	that	the	query	can	use	an	index	on		doc.value		(if	such	index	exists).

Miscellaneous	improvements

The	performance	of	the		[*]		operator	was	improved	for	cases	in	which	this	operator	did	not	use	any	filters,	projections	and/or
offset/limits.

The	AQL	query	executor	can	now	report	the	time	required	for	loading	and	locking	the	collections	used	in	an	AQL	query.	When	profiling
is	enabled,	it	will	report	the	total	loading	and	locking	time	for	the	query	in	the		loading	collections		sub-attribute	of	the		extra.profile	
value	of	the	result.	The	loading	and	locking	time	can	also	be	view	in	the	AQL	query	editor	in	the	web	interface.

Audit	Log
Audit	logging	has	been	added,	see	Auditing.

Client	tools
Added	option		--skip-lines		for	arangoimp	This	allows	skipping	the	first	few	lines	from	the	import	file	in	case	the	CSV	or	TSV	import
are	used	and	some	initial	lines	should	be	skipped	from	the	input.

Web	Admin	Interface
The	usability	of	the	AQL	editor	significantly	improved.	In	addition	to	the	standard	JSON	output,	the	AQL	Editor	is	now	able	to	render
query	results	as	a	graph	preview	or	a	table.	Furthermore	the	AQL	editor	displays	query	profiling	information.

Added	a	new	Graph	Viewer	in	order	to	exchange	the	technically	obsolete	version.	The	new	Graph	Viewer	is	based	on	Canvas	but	does
also	include	a	first	WebGL	implementation	(limited	functionality	-	will	change	in	the	future).	The	new	Graph	Viewer	offers	a	smooth	way
to	discover	and	visualize	your	graphs.

The	shard	view	in	cluster	mode	now	displays	a	progress	indicator	while	moving	shards.

Authentication
Up	to	ArangoDB	3.0	authentication	of	client	requests	was	only	possible	with	HTTP	basic	authentication.

Starting	with	3.1	it	is	now	possible	to	also	use	a	JSON	Web	Tokens	(JWT)	for	authenticating	incoming	requests.

For	details	check	the	HTTP	authentication	chapter.	Both	authentication	methods	are	valid	and	will	be	supported	in	the	near	future.	Use
whatever	suits	you	best.

Foxx

GraphQL

It	is	now	easy	to	get	started	with	providing	GraphQL	APIs	in	Foxx,	see	Foxx	GraphQL.

OAuth2

Foxx	now	officially	provides	a	module	for	implementing	OAuth2	clients,	see	Foxx	OAuth2.

Per-route	middleware

Whats	New	in	3.1

509

https://jwt.io/

It's	now	possible	to	specify	middleware	functions	for	a	route	when	defining	a	route	handler.	These	middleware	functions	only	apply	to
the	single	route	and	share	the	route's	parameter	definitions.	Check	out	the	Foxx	Router	documentation	for	more	information.

Whats	New	in	3.1

510

Incompatible	changes	in	ArangoDB	3.1
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	3.1,	and	adjust	any	client	programs
if	necessary.

Communication	Layer

The	internal	commication	layer	is	now	based	on	Boost	ASIO.	A	few	options	regarding	threads	and	communication	have	been	changed.

There	are	no	longer	two	different	threads	pools	(--scheduler.threads		and		--server.threads).	The	option		--scheduler.threads		has
been	removed.	The	number	of	threads	is	now	controlled	by	the	option		--server.threads		only.	By	default		--server.threads		is	set	to
the	number	of	hyper-cores.

As	a	consequence	of	the	change,	the	following	(hidden)	startup	options	have	been	removed:

	--server.extra-threads	

	--server.aql-threads	

	--server.backend	

	--server.show-backends	

	--server.thread-affinity	

AQL

The	behavior	of	the	AQL	array	comparison	operators	has	changed	for	empty	arrays:

	ALL		and		ANY		now	always	return		false		when	the	left-hand	operand	is	an	empty	array.	The	behavior	for	non-empty	arrays	does
not	change:

	[]	ALL	==	1		will	return		false	
	[1]	ALL	==	1		will	return		true	
	[1,	2]	ALL	==	1		will	return		false	
	[2,	2]	ALL	==	1		will	return		false	
	[]	ANY	==	1		will	return		false	
	[1]	ANY	==	1		will	return		true	
	[1,	2]	ANY	==	1		will	return		true	
	[2,	2]	ANY	==	1		will	return		false	

	NONE		now	always	returns		true		when	the	left-hand	operand	is	an	empty	array.	The	behavior	for	non-empty	arrays	does	not
change:

	[]	NONE	==	1		will	return		true	
	[1]	NONE	==	1		will	return		false	
	[1,	2]	NONE	==	1		will	return		false	
	[2,	2]	NONE	==	1		will	return		true	

	WITH		in	cluster	traversals	is	now	mandatory	in	order	to	avoid	deadlocks.

Data	format	changes

The	attribute		maximalSize		has	been	renamed	to		journalSize		in	collection	meta-data	files	("parameter.json").	Files	containing	the
	maximalSize		attribute	will	still	be	picked	up	correctly	for	not-yet	adjusted	collections.

The	format	of	the	revision	values	stored	in	the		_rev		attribute	of	documents	has	been	changed	in	3.1.	Up	to	3.0	they	were	strings
containing	largish	decimal	numbers.	With	3.1,	revision	values	are	still	strings,	but	are	actually	encoded	time	stamps	of	the	creation	date	of
the	revision	of	the	document.	The	time	stamps	are	acquired	using	a	hybrid	logical	clock	(HLC)	on	the	DBserver	that	holds	the	revision
(for	the	concept	of	a	hybrid	logical	clock	see	this	paper).	See	this	manual	section	for	details.

Incompatible	changes	in	3.1

511

http://www.cse.buffalo.edu/tech-reports/2014-04.pdf

ArangoDB	>=	3.1	can	ArangoDB	3.0	database	directories	and	will	simply	continue	to	use	the	old		_rev		attribute	values.	New	revisions
will	be	written	with	the	new	time	stamps.

It	is	highly	recommended	to	backup	all	your	data	before	loading	a	database	directory	that	was	written	by	ArangoDB	<=	3.0	into	an
ArangoDB	>=	3.1.

To	change	all	your	old		_rev		attributes	into	new	style	time	stamps	you	have	to	use		arangodump		to	dump	all	data	out	(using	ArangoDB
3.0),	and	use		arangorestore		into	the	new	ArangoDB	3.1,	which	is	the	safest	way	to	upgrade.

The	change	also	affects	the	return	format	of		_rev		values	and	other	revision	values	in	HTTP	APIs	(see	below).

HTTP	API	changes

APIs	added

The	following	HTTP	REST	APIs	have	been	added	for	online	loglevel	adjustment	of	the	server:

GET		/_admin/log/level		returns	the	current	loglevel	settings
PUT		/_admin/log/level		modifies	the	current	loglevel	settings

APIs	changed

the	following	REST	APIs	that	return	revision	ids	now	make	use	of	the	new	revision	id	format	introduced	in	3.1.	All	revision	ids
returned	will	be	strings	as	in	3.0,	but	have	a	different	internal	format.

The	following	APIs	are	affected:

GET	/_api/collection/{collection}/checksum:		revision		attribute
GET	/_api/collection/{collection}/revision:		revision		attribute
all	other	APIs	that	return	documents,	which	may	include	the	documents'		_rev		attribute

Client	applications	should	not	try	to	interpret	the	internals	of	revision	values,	but	only	use	revision	values	for	checking	whether	two
revision	strings	are	identical.

the	replication	REST	APIs	will	now	use	the	attribute	name		journalSize		instead	of		maximalSize		when	returning	information
about	collections.

the	default	value	for		keepNull		has	been	changed	from		false		to		true		for	the	following	partial	update	operations	for	vertices	and
edges	in	/_api/gharial:

PATCH	/_api/gharial/{graph}/vertex/{collection}/{key}
PATCH	/_api/gharial/{graph}/edge/{collection}/{key}

The	value	for		keepNull		can	still	be	set	explicitly	to		false		by	setting	the	URL	parameter		keepNull		to	a	value	of		false	.

the	REST	API	for	dropping	collections	(DELETE	/_api/collection)	now	accepts	an	optional	query	string	parameter		isSystem	,
which	can	set	to		true		in	order	to	drop	system	collections.	If	the	parameter	is	not	set	or	not	set	to	true,	the	REST	API	will	refuse
to	drop	system	collections.	In	previous	versions	of	ArangoDB,	the		isSystem		parameter	did	not	exist,	and	there	was	no	distinction
between	system	and	non-system	collections	when	dropping	collections.

the	REST	API	for	retrieving	AQL	query	results	(POST	/_api/cursor)	will	now	return	an	additional	sub-attribute		loading
collections		that	will	contain	the	total	time	required	for	loading	and	locking	collections	during	the	AQL	query	when	profiling	is
enabled.	The	attribute	can	be	found	in	the		extra		result	attribute	in	sub-attribute		loading	collections	.	The	attribute	will	only	be
set	if	profiling	was	enabled	for	the	query.

Foxx	Testing

The	QUnit	interface	to	Mocha	has	been	removed.	This	affects	the	behaviour	of	the		suite	,		test	,		before	,		after	,		beforeEach		and
	afterEach		functions	in	Foxx	test	suites.	The		suite		and		test		functions	are	now	provided	by	the	TDD	interface.	The		before	,
	after	,		beforeEach		and		afterEach		functions	are	now	provided	by	the	BDD	interface.

This	should	not	cause	any	problems	with	existing	tests	but	may	result	in	failures	in	test	cases	that	previously	passed	for	the	wrong
reasons.	Specifically	the	execution	order	of	the		before	,		after	,	etc	functions	now	follows	the	intended	order	and	is	no	longer	arbitrary.

Incompatible	changes	in	3.1

512

For	details	on	the	expected	behaviour	of	these	functions	see	the	testing	chapter	in	the	Foxx	documentation.

Incompatible	changes	in	3.1

513

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	3.0.	ArangoDB	3.0	also	contains	several
bugfixes	that	are	not	listed	here.

Internal	data	format	changes

ArangoDB	now	uses	VelocyPack	for	storing	documents,	query	results	and	temporarily	computed	values.	Using	a	single	data	format
removed	the	need	for	some	data	conversions	in	the	core	that	slowed	operations	down	previously.

The	VelocyPack	format	is	also	quite	compact,	and	reduces	storage	space	requirements	for	"small"	values	such	as	boolean,	integers,	short
strings.	This	can	speed	up	several	operations	inside	AQL	queries.

VelocyPack	document	entries	stored	on	disk	are	also	self-contained,	in	the	sense	that	each	stored	document	will	contain	all	of	its	data
type	and	attribute	name	descriptions.	While	this	may	require	a	bit	more	space	for	storing	the	documents,	it	removes	the	overhead	of
fetching	attribute	names	and	document	layout	from	shared	structures	as	in	previous	versions	of	ArangoDB.	It	also	simplifies	the	code
paths	for	storing	and	reading	documents.

AQL	improvements

Syntax	improvements

	LIKE		string-comparison	operator

AQL	now	provides	a		LIKE		operator	and	can	be	used	to	compare	strings	like	this,	for	example	inside	filter	conditions:

value	LIKE	search

This	change	makes		LIKE		an	AQL	keyword.	Using		LIKE		as	an	attribute	or	collection	name	in	AQL	thus	requires	quoting	the	name	from
now	on.

The		LIKE		operator	is	currently	implemented	by	calling	the	already	existing	AQL	function		LIKE	,	which	also	remains	operational	in	3.0.
Use	the		LIKE		function	in	case	you	want	to	search	case-insensitive	(optional	parameter),	as	the		LIKE		operator	always	compares	case-
sensitive.

AQL	array	comparison	operators

All	AQL	comparison	operators	now	also	exist	in	an	array	variant.	In	the	array	variant,	the	operator	is	preceded	with	one	of	the	keywords
ALL,	ANY	or	NONE.	Using	one	of	these	keywords	changes	the	operator	behavior	to	execute	the	comparison	operation	for	all,	any,	or
none	of	its	left	hand	argument	values.	It	is	therefore	expected	that	the	left	hand	argument	of	an	array	operator	is	an	array.

Examples:

[1,	2,	3]	ALL	IN	[2,	3,	4]			//	false

[1,	2,	3]	ALL	IN	[1,	2,	3]			//	true

[1,	2,	3]	NONE	IN	[3]								//	false

[1,	2,	3]	NONE	IN	[23,	42]			//	true

[1,	2,	3]	ANY	IN	[4,	5,	6]			//	false

[1,	2,	3]	ANY	IN	[1,	42]					//	true

[1,	2,	3]	ANY	==	2													//	true

[1,	2,	3]	ANY	==	4													//	false

[1,	2,	3]	ANY	>	0														//	true

[1,	2,	3]	ANY	<=	1													//	true

[1,	2,	3]	NONE	<	99												//	false

[1,	2,	3]	NONE	>	10												//	true

[1,	2,	3]	ALL	>	2														//	false

[1,	2,	3]	ALL	>	0														//	true

[1,	2,	3]	ALL	>=	3													//	false

["foo",	"bar"]	ALL	!=	"moo"						//	true

Whats	New	in	3.0

514

https://github.com/arangodb/velocypack

["foo",	"bar"]	NONE	==	"bar"					//	false

["foo",	"bar"]	ANY	==	"foo"						//	true

Regular	expression	string-comparison	operators

AQL	now	supports	the	operators	=~	and	!~	for	testing	strings	against	regular	expressions.	=~	tests	if	a	string	value	matches	a	regular
expression,	and	!~	tests	if	a	string	value	does	not	match	a	regular	expression.

The	two	operators	expect	their	left-hand	operands	to	be	strings,	and	their	right-hand	operands	to	be	strings	containing	valid	regular
expressions	as	specified	below.

The	regular	expressions	may	consist	of	literal	characters	and	the	following	characters	and	sequences:

	.		–	the	dot	matches	any	single	character	except	line	terminators.	To	include	line	terminators,	use		[\s\S]		instead	to	simulate		.	
with	DOTALL	flag.
	\d		–	matches	a	single	digit,	equivalent	to		[0-9]	
	\s		–	matches	a	single	whitespace	character
	\S		–	matches	a	single	non-whitespace	character
	\t		–	matches	a	tab	character
	\r		–	matches	a	carriage	return
	\n		–	matches	a	line-feed	character
	[xyz]		–	set	of	characters.	matches	any	of	the	enclosed	characters	(i.e.	x,	y	or	z	in	this	case
	[^xyz]		–	negated	set	of	characters.	matches	any	other	character	than	the	enclosed	ones	(i.e.	anything	but	x,	y	or	z	in	this	case)
	[x-z]		–	range	of	characters.	Matches	any	of	the	characters	in	the	specified	range,	e.g.		[0-9A-F]		to	match	any	character	in
0123456789ABCDEF
	[^x-z]		–	negated	range	of	characters.	Matches	any	other	character	than	the	ones	specified	in	the	range
	(xyz)		–	defines	and	matches	a	pattern	group
	(x|y)		–	matches	either	x	or	y
	̂ 		–	matches	the	beginning	of	the	string	(e.g.	 	̂ xyz)
	$		–	matches	the	end	of	the	string	(e.g.		xyz$)

Note	that	the	characters		.	,		*	,		?	,		[,]	,		(,)	,		{	,		}	,	 	̂ 	,	and		$		have	a	special	meaning	in	regular	expressions	and	may
need	to	be	escaped	using	a	backslash	(\\).	A	literal	backslash	should	also	be	escaped	using	another	backslash,	i.e.		\\\\	.

Characters	and	sequences	may	optionally	be	repeated	using	the	following	quantifiers:

	x*		–	matches	zero	or	more	occurrences	of	x
	x+		–	matches	one	or	more	occurrences	of	x
	x?		–	matches	one	or	zero	occurrences	of	x
	x{y}		–	matches	exactly	y	occurrences	of	x
	x{y,z}		–	matches	between	y	and	z	occurrences	of	x
	x{y,}		–	matches	at	least	y	occurences	of	x

Enclosing	identifiers	in	forward	ticks

AQL	identifiers	can	now	optionally	be	enclosed	in	forward	ticks	in	addition	to	using	backward	ticks.	This	allows	convenient	writing	of
AQL	queries	in	JavaScript	template	strings	(which	are	delimited	with	backticks	themselves),	e.g.

var	q	=	`FOR	doc	IN	´collection´	RETURN	doc.´name´`;

Functions	added

The	following	AQL	functions	have	been	added	in	3.0:

REGEX_TEST(value,	regex):	tests	whether	the	string	value	matches	the	regular	expression	specified	in	regex.	Returns	true	if	it
matches,	and	false	otherwise.

The	syntax	for	regular	expressions	is	the	same	as	for	the	regular	expression	operators	=~	and	!~.

Whats	New	in	3.0

515

HASH(value):	Calculates	a	hash	value	for	value.	value	is	not	required	to	be	a	string,	but	can	have	any	data	type.	The	calculated	hash
value	will	take	the	data	type	of	value	into	account,	so	for	example	the	number	1	and	the	string	"1" 	will	have	different	hash	values.
For	arrays	the	hash	values	will	be	creared	if	the	arrays	contain	exactly	the	same	values	(including	value	types)	in	the	same	order.	For
objects	the	same	hash	values	will	be	created	if	the	objects	have	exactly	the	same	attribute	names	and	values	(including	value	types).
The	order	in	which	attributes	appear	inside	objects	is	not	important	for	hashing.	The	hash	value	returned	by	this	function	is	a
number.	The	hash	algorithm	is	not	guaranteed	to	remain	the	same	in	future	versions	of	ArangoDB.	The	hash	values	should	therefore
be	used	only	for	temporary	calculations,	e.g.	to	compare	if	two	documents	are	the	same,	or	for	grouping	values	in	queries.

TYPENAME(value):	Returns	the	data	type	name	of	value.	The	data	type	name	can	be	either	null,	bool,	number,	string,	array	or
object.

LOG(value):	Returns	the	natural	logarithm	of	value.	The	base	is	Euler's	constant	(2.71828...).

LOG2(value):	Returns	the	base	2	logarithm	of	value.

LOG10(value):	Returns	the	base	10	logarithm	of	value.

EXP(value):	Returns	Euler's	constant	(2.71828...)	raised	to	the	power	of	value.

EXP2(value):	Returns	2	raised	to	the	power	of	value.

SIN(value):	Returns	the	sine	of	value.

COS(value):	Returns	the	cosine	of	value.

TAN(value):	Returns	the	tangent	of	value.

ASIN(value):	Returns	the	arcsine	of	value.

ACOS(value):	Returns	the	arccosine	of	value.

ATAN(value):	Returns	the	arctangent	of	value.

ATAN2(y,	x):	Returns	the	arctangent	of	the	quotient	of	y	and	x.

RADIANS(value):	Returns	the	angle	converted	from	degrees	to	radians.

DEGREES(value):	Returns	the	angle	converted	from	radians	to	degrees.

Optimizer	improvements

"inline-subqueries"	rule

The	AQL	optimizer	rule	"inline-subqueries"	has	been	added.	This	rule	can	pull	out	certain	subqueries	that	are	used	as	an	operand	to	a
	FOR		loop	one	level	higher,	eliminating	the	subquery	completely.	This	reduces	complexity	of	the	query's	execution	plan	and	will	likely
enable	further	optimizations.	For	example,	the	query

FOR	i	IN	(

				FOR	j	IN	[1,2,3]

						RETURN	j

)

		RETURN	i

will	be	transformed	by	the	rule	to:

FOR	i	IN	[1,2,3]

		RETURN	i

The	query

FOR	name	IN	(

		FOR	doc	IN	_users

				FILTER	doc.status	==	1

				RETURN	doc.name

)

		LIMIT	2

Whats	New	in	3.0

516

		RETURN	name

will	be	transformed	into

FOR	tmp	IN	_users

		FILTER	tmp.status	==	1

		LIMIT	2

		RETURN	tmp.name

The	rule	will	only	fire	when	the	subquery	is	used	as	an	operand	to	a		FOR		loop,	and	if	the	subquery	does	not	contain	a		COLLECT		with	an
	INTO		variable.

"remove-unnecessary-calculations"	rule

The	AQL	optimizer	rule	"remove-unnecessary-calculations"	now	fires	in	more	cases	than	in	previous	versions.	This	rule	removes
calculations	from	execution	plans,	and	by	having	less	calculations	done,	a	query	may	execute	faster	or	requires	less	memory.

The	rule	will	now	remove	calculations	that	are	used	exactly	once	in	other	expressions	(e.g.		LET	a	=	doc	RETURN	a.value)	and
calculations,	or	calculations	that	are	just	references	to	other	variables	(e.g.		LET	a	=	b).

"optimize-traversals"	rule

The	AQL	optimizer	rule	"merge-traversal-filter"	was	renamed	to	"optimize-traversals".	The	rule	will	remove	unused	edge	and	path	result
variables	from	the	traversal	in	case	they	are	specified	in	the		FOR		section	of	the	traversal,	but	not	referenced	later	in	the	query.	This	saves
constructing	edges	and	paths	results	that	are	not	used	later.

AQL	now	uses	VelocyPack	internally	for	storing	intermediate	values.	For	many	value	types	it	can	now	get	away	without	extra	memory
allocations	and	less	internal	conversions.	Values	can	be	passed	into	internal	AQL	functions	without	copying	them.	This	can	lead	to
reduced	query	execution	times	for	queries	that	use	C++-based	AQL	functions.

"replace-or-with-in"	and	"use-index-for-sort"	rules

These	rules	now	fire	in	some	additional	cases,	which	allows	simplifying	index	lookup	conditions	and	removing	SortNodes	from	execution
plans.

Cluster	state	management

The	cluster's	internal	state	information	is	now	also	managed	by	ArangoDB	instances.	Earlier	versions	relied	on	third	party	software	being
installed	for	the	storing	the	cluster	state.	The	state	is	managed	by	dedicated	ArangoDB	instances,	which	can	be	started	in	a	special	agency
mode.	These	instances	can	operate	in	a	distributed	fashion.	They	will	automatically	elect	one	of	them	to	become	their	leader,	being
responsibile	for	storing	the	state	changes	sent	from	servers	in	the	cluster.	The	other	instances	will	automatically	follow	the	leader	and	will
transparently	stand	in	should	it	become	unavailable.	The	agency	instances	are	also	self-organizing:	they	will	continuously	probe	each
other	and	re-elect	leaders.	The	communication	between	the	agency	instances	use	the	consensus-based	RAFT	protocol.

The	operations	for	storing	and	retrieving	cluster	state	information	are	now	much	less	expensive	from	an	ArangoDB	cluster	node
perspective,	which	in	turn	allows	for	faster	cluster	operations	that	need	to	fetch	or	update	the	overall	cluster	state.

	_from		and	 	_to		attributes	of	edges	are	updatable	and	usable	in
indexes

In	ArangoDB	prior	to	3.0	the	attributes		_from		and		_to		of	edges	were	treated	specially	when	loading	or	storing	edges.	That	special
handling	led	to	these	attributes	being	not	as	flexible	as	regular	document	attributes.	For	example,	the		_from		and		_to		attribute	values	of
an	existing	edge	could	not	be	updated	once	the	edge	was	created.	Now	this	is	possible	via	the	single-document	APIs	and	via	AQL.

Additionally,	the		_from		and		_to		attributes	could	not	be	indexed	in	user-defined	indexes,	e.g.	to	make	each	combination	of		_from		and
	_to		unique.	Finally,	as		_from		and		_to		referenced	the	linked	collections	by	collection	id	and	not	by	collection	name,	their	meaning
became	unclear	once	a	referenced	collection	was	dropped.	The	collection	id	stored	in	edges	then	became	unusable,	and	when	accessing

Whats	New	in	3.0

517

such	edge	the	collection	name	part	of	it	was	always	translated	to		_undefined	.

In	ArangoDB	3.0,	the		_from		and		_to		values	of	edges	are	saved	as	regular	strings.	This	allows	using		_from		and		_to		in	user-defined
indexes.	Additionally,	this	allows	to	update	the		_from		and		_to		values	of	existing	edges.	Furthermore,	collections	referenced	by		_from	
and		_to		values	may	be	dropped	and	re-created	later.	Any		_from		and		_to		values	of	edges	pointing	to	such	dropped	collection	are
unaffected	by	the	drop	operation	now.

Unified	APIs	for	CRUD	operations

The	CRUD	APIs	for	documents	and	edge	have	been	unified.	Edges	can	now	be	inserted	and	modified	via	the	same	APIs	as	documents.
	_from		and		_to		attribute	values	can	be	passed	as	regular	document	attributes	now:

db.myedges.insert({	_from:	"myvertices/some",	_to:	"myvertices/other",	...	});

Passing		_from		and		_to		separately	as	it	was	required	in	earlier	versions	is	not	necessary	anymore	but	will	still	work:

db.myedges.insert("myvertices/some",	"myvertices/other",	{	...	});

The	CRUD	operations	now	also	support	batch	variants	that	works	on	arrays	of	documents/edges,	e.g.

db.myedges.insert([

		{	_from:	"myvertices/some",	_to:	"myvertices/other",	...	},

		{	_from:	"myvertices/who",	_to:	"myvertices/friend",	...	},

		{	_from:	"myvertices/one",	_to:	"myvertices/two",	...	},

]);

The	batch	variants	are	also	available	in	ArangoDB's	HTTP	API.	They	can	be	used	to	more	efficiently	carry	out	operations	with	multiple
documents	than	their	single-document	equivalents,	which	required	one	HTTP	request	per	operation.	With	the	batch	operations,	the
HTTP	request/response	overhead	can	be	amortized	across	multiple	operations.

Persistent	indexes

ArangoDB	3.0	provides	an	experimental	persistent	index	feature.	Persistent	indexes	store	the	index	values	on	disk	instead	of	in-memory
only.	This	means	the	indexes	do	not	need	to	be	rebuilt	in-memory	when	a	collection	is	loaded	or	reloaded,	which	should	improve
collection	loading	times.

The	persistent	indexes	in	ArangoDB	are	based	on	the	RocksDB	engine.	To	create	a	persistent	index	for	a	collection,	create	an	index	of
type	"rocksdb"	as	follows:

db.mycollection.ensureIndex({	type:	"rocksdb",	fields:	["fieldname"]});

The	persistent	indexes	are	sorted,	so	they	allow	equality	lookups	and	range	queries.	Note	that	the	feature	is	still	highly	experimental	and
has	some	known	deficiencies.	It	will	be	finalized	until	the	release	of	the	3.0	stable	version.

Upgraded	V8	version

The	V8	engine	that	is	used	inside	ArangoDB	to	execute	JavaScript	code	has	been	upgraded	from	version	4.3.61	to	5.0.71.39.	The	new
version	makes	several	more	ES6	features	available	by	default,	including

arrow	functions
computed	property	names
rest	parameters
array	destructuring
numeric	and	object	literals

Whats	New	in	3.0

518

Web	Admin	Interface

The	ArangoDB	3.0	web	interface	is	significantly	improved.	It	now	comes	with	a	more	responsive	design,	making	it	easier	to	use	on
different	devices.	Navigation	and	menus	have	been	simplified,	and	related	items	have	been	regrouped	to	stay	closer	together	and	allow
tighter	workflows.

The	AQL	query	editor	is	now	much	easier	to	use.	Multiple	queries	can	be	started	and	tracked	in	parallel,	while	results	of	earlier	queries
are	still	preserved.	Queries	still	running	can	be	canceled	directly	from	the	editor.	The	AQL	query	editor	now	allows	the	usage	of	bind
parameters	too,	and	provides	a	helper	for	finding	collection	names,	AQL	function	names	and	keywords	quickly.

The	web	interface	now	keeps	track	of	whether	the	server	is	offline	and	of	which	server-side	operations	have	been	started	and	are	still
running.	It	now	remains	usable	while	such	longer-running	operations	are	ongoing.	It	also	keeps	more	state	about	user's	choices	(e.g.
windows	sizes,	whether	the	tree	or	the	code	view	was	last	used	in	the	document	editor).

Cluster	statistics	are	now	integrated	into	the	web	interface	as	well.	Additionally,	a	menu	item	"Help	us"	has	been	added	to	easily	provide
the	ArangoDB	team	feedback	about	the	product.

The	frontend	may	now	be	mounted	behind	a	reverse	proxy	on	a	different	path.	For	this	to	work	the	proxy	should	send	a	X-Script-Name
header	containing	the	path.

A	backend	configuration	for	haproxy	might	look	like	this:

reqadd	X-Script-Name:\	/arangodb

The	frontend	will	recognize	the	subpath	and	produce	appropriate	links.	ArangoDB	will	only	accept	paths	from	trusted	frontend	proxies.
Trusted	proxies	may	be	added	on	startup:

--frontend.proxy-request-check	true	--frontend.trusted-proxy	192.168.1.117

--frontend.trusted-proxy	may	be	any	address	or	netmask.

To	disable	the	check	and	blindly	accept	any	x-script-name	set	--frontend.proxy-request-check	to	false.

Foxx	improvements

The	Foxx	framework	has	been	completely	rewritten	for	3.0	with	a	new,	simpler	and	more	familiar	API.	The	most	notable	changes	are:

Legacy	mode	for	2.8	services

Stuck	with	old	code?	You	can	continue	using	your	2.8-compatible	Foxx	services	with	3.0	by	adding		"engines":	{"arangodb":
"^2.8.0"}		(or	similar	version	ranges	that	exclude	3.0	and	up)	to	the	service	manifest.

No	more	global	variables	and	magical	comments

The		applicationContext		is	now		module.context	.	Instead	of	magical	comments	just	use	the		summary		and		description		methods
to	document	your	routes.

Repository	and	Model	have	been	removed

Instead	of	repositories	just	use	ArangoDB	collections	directly.	For	validation	simply	use	the	joi	schemas	(but	wrapped	in
	joi.object())	that	previously	lived	inside	the	model.	Collections	and	queries	return	plain	JavaScript	objects.

Controllers	have	been	replaced	with	nestable	routers

Create	routers	with		require('@arangodb/foxx/router')()	,	attach	them	to	your	service	with		module.context.use(router)	.	Because
routers	are	no	longer	mounted	automagically,	you	can	export	and	import	them	like	any	other	object.	Use		router.use('/path',
subRouter)		to	nest	routers	as	deeply	as	you	want.

Routes	can	be	named	and	reversed

No	more	memorizing	URLs:	add	a	name	to	your	route	like		router.get('/hello/:name',	function	()	{...},	'hello')		and	redirect	to
the	full	URL	with		res.redirect(req.resolve('hello',	{name:	'world'}))	.

Whats	New	in	3.0

519

Simpler	express-like	middleware

If	you	already	know	express,	this	should	be	familiar.	Here's	a	request	logger	in	three	lines	of	code:

router.use(function	(req,	res,	next)	{

		var	start	=	Date.now();

		try	{next();}

		finally	{console.log(`${req.method}	${req.url}	${res.statusCode}	${Date.now()	-	start}ms`);}

});

Sessions	and	auth	without	dependencies

To	make	it	easier	to	get	started,	the	functionality	previously	provided	by	the		simple-auth	,		oauth2	,		sessions-local		and
	sessions-jwt		services	have	been	moved	into	Foxx	as	the		@arangodb/foxx/auth	,		@arangodb/foxx/oauth2		and
	@arangodb/foxx/sessions		modules.

Logging

ArangoDB's	logging	is	now	grouped	into	topics.	The	log	verbosity	and	output	files	can	be	adjusted	per	log	topic.	For	example

--log.level	startup=trace	--log.level	queries=trace	--log.level	info

will	log	messages	concerning	startup	at	trace	level,	AQL	queries	at	trace	level	and	everything	else	at	info	level.		--log.level		can	be
specified	multiple	times	at	startup,	for	as	many	topics	as	needed.

Some	relevant	log	topics	available	in	3.0	are:

collector:	information	about	the	WAL	collector's	state
compactor:	information	about	the	collection	datafile	compactor
datafiles:	datafile-related	operations
mmap:	information	about	memory-mapping	operations	(including	msync)
queries:	executed	AQL	queries,	slow	queries
replication:	replication-related	info
requests:	HTTP	requests
startup:	information	about	server	startup	and	shutdown
threads:	information	about	threads

This	also	allows	directing	log	output	to	different	files	based	on	topics.	For	example,	to	log	all	AQL	queries	to	a	file	"queries.log"	one	can
use	the	options:

--log.level	queries=trace	--log.output	queries=file:///path/to/queries.log

To	additionally	log	HTTP	request	to	a	file	named	"requests.log"	add	the	options:

--log.level	requests=info	--log.output	requests=file:///path/to/requests.log

Build	system

ArangoDB	now	uses	the	cross-platform	build	system	CMake	for	all	its	builds.	Previous	versions	used	two	different	build	systems,
making	development	and	contributions	harder	than	necessary.	Now	the	build	system	is	unified,	and	all	targets	(Linux,	Windows,	MacOS)
are	built	from	the	same	set	of	build	instructions.

Documentation

The	documentation	has	been	enhanced	and	re-organized	to	be	more	intuitive.

Whats	New	in	3.0

520

A	new	introduction	for	beginners	should	bring	you	up	to	speed	with	ArangoDB	in	less	than	an	hour.	Additional	topics	have	been
introduced	and	will	be	extended	with	upcoming	releases.

The	topics	AQL	and	HTTP	API	are	now	separated	from	the	manual	for	better	searchability	and	less	confusion.	A	version	switcher
makes	it	easier	to	jump	to	the	version	of	the	docs	you	are	interested	in.

Whats	New	in	3.0

521

Incompatible	changes	in	ArangoDB	3.0
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	3.0,	and	adjust	any	client	programs
if	necessary.

Build	system

Building	ArangoDB	3.0	from	source	now	requires	CMake.

The	pre-3.0	build	system	used	a	configure-based	approach.	The	steps	to	build	ArangoDB	2.8	from	source	code	were:

make	setup

./configure	<options>

make

These	steps	will	not	work	anymore,	as	ArangoDB	3.0	does	not	come	with	a	configure	script.

To	build	3.0	on	Linux,	create	a	separate	build	directory	first:

mkdir	-p	build

and	then	create	the	initial	build	scripts	once	using	CMake:

(cd	build	&&	cmake	<options>	..)

The	above	command	will	configure	the	build	and	check	for	the	required	dependencies.	If	everything	works	well	the	actual	build	can	be
started	with

(cd	build	&&	make)

The	binaries	for	the	ArangoDB	server	and	all	client	tools	will	then	be	created	inside	the		build		directory.	To	start	ArangoDB	locally
from	the		build		directory,	use

build/bin/arangod	<options>

Datafiles	and	datafile	names

ArangoDB	3.0	uses	a	new	VelocyPack-based	format	for	storing	data	in	WAL	logfiles	and	collection	datafiles.	The	file	format	is	not
compatible	with	the	files	used	in	prior	versions	of	ArangoDB.	That	means	datafiles	written	by	ArangoDB	3.0	cannot	be	used	in	earlier
versions	and	vice	versa.

The	pattern	for	collection	directory	names	was	changed	in	3.0	to	include	a	random	id	component	at	the	end.	The	new	pattern	is
	collection-<id>-<random>	,	where		<id>		is	the	collection	id	and		<random>		is	a	random	number.	Previous	versions	of	ArangoDB	used	a
pattern		collection-<id>		without	the	random	number.

User	Management
Unlike	ArangoDB	2.x,	ArangoDB	3.0	users	are	now	separated	from	databases,	and	you	can	grant	one	or	more	database	permissions	to	a
user.

If	you	want	to	mimic	the	behavior	of	ArangoDB,	you	should	name	your	users	like		username@dbname	.

Users	that	can	access	the	_system	database	are	allowed	to	manage	users	and	permissions	for	all	databases.

Incompatible	changes	in	3.0

522

Edges	and	edges	attributes

In	ArangoDB	prior	to	3.0	the	attributes		_from		and		_to		of	edges	were	treated	specially	when	loading	or	storing	edges.	That	special
handling	led	to	these	attributes	being	not	as	flexible	as	regular	document	attributes.	For	example,	the		_from		and		_to		attribute	values	of
an	existing	edge	could	not	be	updated	once	the	edge	was	created.	Additionally,	the		_from		and		_to		attributes	could	not	be	indexed	in
user-defined	indexes,	e.g.	to	make	each	combination	of		_from		and		_to		unique.	Finally,	as		_from		and		_to		referenced	the	linked
collections	by	collection	id	and	not	by	collection	name,	their	meaning	became	unclear	once	a	referenced	collection	was	dropped.	The
collection	id	stored	in	edges	then	became	unusable,	and	when	accessing	such	edge	the	collection	name	part	of	it	was	always	translated	to
	_undefined	.

In	ArangoDB	3.0,	the		_from		and		_to		values	of	edges	are	saved	as	regular	strings.	This	allows	using		_from		and		_to		in	user-defined
indexes.	Additionally	this	allows	updating	the		_from		and		_to		values	of	existing	edges.	Furthermore,	collections	referenced	by		_from	
and		_to		values	may	be	dropped	and	re-created	later.	Any		_from		and		_to		values	of	edges	pointing	to	such	dropped	collection	are
unaffected	by	the	drop	operation	now.	Also	note	that	renaming	the	collection	referenced	in		_from		and		_to		in	ArangoDB	2.8	also
relinked	the	edges.	In	3.0	the	edges	are	NOT	automatically	relinked	to	the	new	collection	anymore.

Documents
Documents	(in	contrast	to	edges)	cannot	contain	the	attributes		_from		or		_to		on	the	main	level	in	ArangoDB	3.0.	These	attributes	will
be	automatically	removed	when	saving	documents	(i.e.	non-edges).		_from		and		_to		can	be	still	used	in	sub-objects	inside	documents.

The		_from		and		_to		attributes	will	of	course	be	preserved	and	are	still	required	when	saving	edges.

AQL

Edges	handling

When	updating	or	replacing	edges	via	AQL,	any	modifications	to	the		_from		and		_to		attributes	of	edges	were	ignored	by	previous
versions	of	ArangoDB,	without	signaling	any	errors.	This	was	due	to	the		_from		and		_to		attributes	being	immutable	in	earlier	versions
of	ArangoDB.

From	3.0	on,	the		_from		and		_to		attributes	of	edges	are	mutable,	so	any	AQL	queries	that	modify	the		_from		or		_to		attribute	values
of	edges	will	attempt	to	actually	change	these	attributes.	Clients	should	be	aware	of	this	change	and	should	review	their	queries	that
modify	edges	to	rule	out	unintended	side-effects.

Additionally,	when	completely	replacing	the	data	of	existing	edges	via	the	AQL		REPLACE		operation,	it	is	now	required	to	specify	values
for	the		_from		and		_to		attributes,	as		REPLACE		requires	the	entire	new	document	to	be	specified.	If	either		_from		or		_to		are	missing
from	the	replacement	document,	an		REPLACE		operation	will	fail.

Graph	functions

In	version	3.0	all	former	graph	related	functions	have	been	removed	from	AQL	to	be	replaced	by	native	AQL	constructs.	These
constructs	allow	for	more	fine-grained	filtering	on	several	graph	levels.	Also	this	allows	the	AQL	optimizer	to	automatically	improve
these	queries	by	enhancing	them	with	appropriate	indexes.	We	have	created	recipes	to	upgrade	from	2.8	to	3.0	when	using	these
functions.

The	functions:

GRAPH_COMMON_NEIGHBORS
GRAPH_COMMON_PROPERTIES
GRAPH_DISTANCE_TO
GRAPH_EDGES
GRAPH_NEIGHBORS
GRAPH_TRAVERSAL
GRAPH_TRAVERSAL_TREE
GRAPH_SHORTEST_PATH
GRAPH_PATHS
GRAPH_VERTICES

Incompatible	changes	in	3.0

523

are	covered	in	Migrating	GRAPH_*	Functions	from	2.8	or	earlier	to	3.0

GRAPH_ABSOLUTE_BETWEENNESS
GRAPH_ABSOLUTE_CLOSENESS
GRAPH_ABSOLUTE_ECCENTRICITY
GRAPH_BETWEENNESS
GRAPH_CLOSENESS
GRAPH_DIAMETER
GRAPH_ECCENTRICITY
GRAPH_RADIUS

are	covered	in	Migrating	GRAPH_*	Measurements	from	2.8	or	earlier	to	3.0

EDGES
NEIGHBORS
PATHS
TRAVERSAL
TRAVERSAL_TREE

are	covered	in	Migrating	anonymous	graph	functions	from	2.8	or	earlier	to	3.0

Typecasting	functions

The	type	casting	applied	by	the		TO_NUMBER()		AQL	function	has	changed	as	follows:

string	values	that	do	not	contain	a	valid	numeric	value	are	now	converted	to	the	number		0	.	In	previous	versions	of	ArangoDB	such
string	values	were	converted	to	the	value		null	.
array	values	with	more	than	1	member	are	now	converted	to	the	number		0	.	In	previous	versions	of	ArangoDB	such	arrays	were
converted	to	the	value		null	.
objects	/	documents	are	now	converted	to	the	number		0	.	In	previous	versions	of	ArangoDB	objects	/	documents	were	converted	to
the	value		null	.

Additionally,	the		TO_STRING()		AQL	function	now	converts		null		values	into	an	empty	string	("")	instead	of	the	string		"null"	,
which	is	more	in	line	with		LENGTH(null)		returning		0		and	not		4		since	v2.6.

The	output	of		TO_STRING()		has	also	changed	for	arrays	and	objects	as	follows:

arrays	are	now	converted	into	their	JSON-stringify	equivalents,	e.g.

	[]		is	now	converted	to		[]	
	[1,	2,	3]		is	now	converted	to		[1,2,3]	
	["test",	1,	2]	is	now	converted	to	["test",1,2]`

Previous	versions	of	ArangoDB	converted	arrays	with	no	members	into	the	empty	string,	and	non-empty	arrays	into	a	comma-
separated	list	of	member	values,	without	the	surrounding	angular	brackets.	Additionally,	string	array	members	were	not	enclosed	in
quotes	in	the	result	string:

	[]		was	converted	to	``
	[1,	2,	3]		was	converted	to		1,2,3	
	["test",	1,	2]	was	converted	to	test,1,2`

objects	are	now	converted	to	their	JSON-stringify	equivalents,	e.g.

	{	}		is	converted	to		{}	
	{	a:	1,	b:	2	}		is	converted	to		{"a":1,"b":2}	
	{	"test"	:	"foobar"	}		is	converted	to		{"test":"foobar"}	

Previous	versions	of	ArangoDB	always	converted	objects	into	the	string		[object	Object]	

This	change	also	affects	other	parts	in	AQL	that	used		TO_STRING()		to	implicitly	cast	operands	to	strings.	It	also	affects	the	AQL
functions		CONCAT()		and		CONCAT_SEPARATOR()		which	treated	array	values	differently.	Previous	versions	of	ArangoDB	automatically
flattened	array	values	in	the	first	level	of	the	array,	e.g.		CONCAT([1,	2,	3,	[4,	5,	6]])		produced		1,2,3,4,5,6	.	Now	this	will	produce
	[1,2,3,[4,5,6]]	.	To	flatten	array	members	on	the	top	level,	you	can	now	use	the	more	explicit		CONCAT(FLATTEN([1,	2,	3,	[4,	5,	6]],
1))	.

Incompatible	changes	in	3.0

524

Arithmetic	operators

As	the	arithmetic	operations	in	AQL	implicitly	convert	their	operands	to	numeric	values	using		TO_NUMBER()	,	their	casting	behavior	has
also	changed	as	described	above.

Some	examples	of	the	changed	behavior:

	"foo"	+	1		produces		1		now.	In	previous	versions	this	produced		null	.
	[1,	2]	+	1		produces		1	.	In	previous	versions	this	produced		null	.
	1	+	"foo"	+	1´	produces	2	now.	In	previous	version	this	produced	1`.

Attribute	names	and	parameters

Previous	versions	of	ArangoDB	had	some	trouble	with	attribute	names	that	contained	the	dot	symbol	(.).	Some	code	parts	in	AQL
used	the	dot	symbol	to	split	an	attribute	name	into	sub-components,	so	an	attribute	named		a.b		was	not	completely	distinguishable
from	an	attribute		a		with	a	sub-attribute		b	.	This	inconsistent	behavior	sometimes	allowed	"hacks"	to	work	such	as	passing	sub-
attributes	in	a	bind	parameter	as	follows:

FOR	doc	IN	collection

		FILTER	doc.@name	==	1

		RETURN	doc

If	the	bind	parameter		@name		contained	the	dot	symbol	(e.g.		@bind		=		a.b	,	it	was	unclear	whether	this	should	trigger	sub-attribute
access	(i.e.		doc.a.b)	or	a	access	to	an	attribute	with	exactly	the	specified	name	(i.e.		doc["a.b"]).

ArangoDB	3.0	now	handles	attribute	names	containing	the	dot	symbol	properly,	and	sending	a	bind	parameter		@name		=		a.b		will	now
always	trigger	an	access	to	the	attribute		doc["a.b"]	,	not	the	sub-attribute		b		of		a		in		doc	.

For	users	that	used	the	"hack"	of	passing	bind	parameters	containing	dot	symbol	to	access	sub-attributes,	ArangoDB	3.0	allows
specifying	the	attribute	name	parts	as	an	array	of	strings,	e.g.		@name		=		["a",	"b"]	,	which	will	be	resolved	to	the	sub-attribute	access
	doc.a.b		when	the	query	is	executed.

Keywords

	LIKE		is	now	a	keyword	in	AQL.	Using		LIKE		in	either	case	as	an	attribute	or	collection	name	in	AQL	queries	now	requires	quoting.

	SHORTEST_PATH		is	now	a	keyword	in	AQL.	Using		SHORTEST_PATH		in	either	case	as	an	attribute	or	collection	name	in	AQL	queries	now
requires	quoting.

Subqueries

Queries	that	contain	subqueries	that	contain	data-modification	operations	such	as		INSERT	,		UPDATE	,		REPLACE	,		UPSERT		or		REMOVE	
will	now	refuse	to	execute	if	the	collection	affected	by	the	subquery's	data-modification	operation	is	read-accessed	in	an	outer	scope	of
the	query.

For	example,	the	following	query	will	refuse	to	execute	as	the	collection		myCollection		is	modified	in	the	subquery	but	also	read-
accessed	in	the	outer	scope:

FOR	doc	IN	myCollection

		LET	changes	=	(

				FOR	what	IN	myCollection

						FILTER	what.value	==	1

						REMOVE	what	IN	myCollection

)

		RETURN	doc

It	is	still	possible	to	write	to	collections	from	which	data	is	read	in	the	same	query,	e.g.

FOR	doc	IN	myCollection

		FILTER	doc.value	==	1

		REMOVE	doc	IN	myCollection

Incompatible	changes	in	3.0

525

and	to	modify	data	in	different	collection	via	subqueries.

Other	changes

The	AQL	optimizer	rule	"merge-traversal-filter"	that	already	existed	in	3.0	was	renamed	to	"optimize-traversals".	This	should	be	of	no
relevance	to	client	applications	except	if	they	programatically	look	for	applied	optimizer	rules	in	the	explain	out	of	AQL	queries.

The	order	of	results	created	by	the	AQL	functions		VALUES()		and		ATTRIBUTES()		was	never	guaranteed	and	it	only	had	the	"correct"
ordering	by	accident	when	iterating	over	objects	that	were	not	loaded	from	the	database.	As	some	of	the	function	internals	have	changed,
the	"correct"	ordering	will	not	appear	anymore,	and	still	no	result	order	is	guaranteed	by	these	functions	unless	the		sort		parameter	is
specified	(for	the		ATTRIBUTES()		function).

Upgraded	V8	version

The	V8	engine	that	is	used	inside	ArangoDB	to	execute	JavaScript	code	has	been	upgraded	from	version	4.3.61	to	5.0.71.39.	The	new
version	should	be	mostly	compatible	to	the	old	version,	but	there	may	be	subtle	differences,	including	changes	of	error	message	texts
thrown	by	the	engine.	Furthermore,	some	V8	startup	parameters	have	changed	their	meaning	or	have	been	removed	in	the	new	version.
This	is	only	relevant	when	ArangoDB	or	ArangoShell	are	started	with	a	custom	value	for	the		--javascript.v8-options		startup	option.

Among	others,	the	following	V8	options	change	in	the	new	version	of	ArangoDB:

	--es_staging	:	in	2.8	it	had	the	meaning		enable	all	completed	harmony	features	,	in	3.0	the	option	means		enable	test-worthy
harmony	features	(for	internal	use	only)	

	--strong_this	:	this	option	wasn't	present	in	2.8.	In	3.0	it	means		don't	allow	'this'	to	escape	from	constructors		and	defaults	to
true.

	--harmony_regexps	:	this	options	means		enable	"harmony	regular	expression	extensions"		and	changes	its	default	value	from	false
to	true

	--harmony_proxies	:	this	options	means		enable	"harmony	proxies"		and	changes	its	default	value	from	false	to	true

	--harmony_reflect	:	this	options	means		enable	"harmony	Reflect	API"		and	changes	its	default	value	from	false	to	true

	--harmony_sloppy	:	this	options	means		enable	"harmony	features	in	sloppy	mode"		and	changes	its	default	value	from	false	to	true

	--harmony_tostring	:	this	options	means		enable	"harmony	toString"		and	changes	its	default	value	from	false	to	true

	--harmony_unicode_regexps	:	this	options	means		enable	"harmony	unicode	regexps"		and	changes	its	default	value	from	false	to	true

	--harmony_arrays	,		--harmony_array_includes	,		--harmony_computed_property_names	,		--harmony_arrow_functions	,		--
harmony_rest_parameters	,		--harmony_classes	,		--harmony_object_literals	,		--harmony_numeric_literals	,		--harmony_unicode	:
these	option	have	been	removed	in	V8	5.

As	a	consequence	of	the	upgrade	to	V8	version	5,	the	implementation	of	the	JavaScript		Buffer		object	had	to	be	changed.	JavaScript
	Buffer		objects	in	ArangoDB	now	always	store	their	data	on	the	heap.	There	is	no	shared	pool	for	small	Buffer	values,	and	no	pointing
into	existing	Buffer	data	when	extracting	slices.	This	change	may	increase	the	cost	of	creating	Buffers	with	short	contents	or	when
peeking	into	existing	Buffers,	but	was	required	for	safer	memory	management	and	to	prevent	leaks.

JavaScript	API	changes

The	following	incompatible	changes	have	been	made	to	the	JavaScript	API	in	ArangoDB	3.0:

Foxx

The	Foxx	framework	has	been	completely	rewritten	for	3.0	with	a	new,	simpler	and	more	familiar	API.	To	make	Foxx	services	developed
for	2.8	or	earlier	ArangoDB	versions	run	in	3.0,	the	service's	manifest	file	needs	to	be	edited.

To	enable	the	legacy	mode	for	a	Foxx	service,	add		"engines":	{"arangodb":	"^2.8.0"}		(or	similar	version	ranges	that	exclude	3.0	and	up)
to	the	service	manifest	file	(named	"manifest.json",	located	in	the	service's	base	directory).

Incompatible	changes	in	3.0

526

Require

Modules	shipped	with	ArangoDB	can	now	be	required	using	the	pattern		@arangodb/<module>		instead	of		org/arangodb/<module>	,	e.g.

var	cluster	=	require("@arangodb/cluster");

The	old	format	can	still	be	used	for	compatibility:

var	cluster	=	require("org/arangodb/cluster");

ArangoDB	prior	to	version	3.0	allowed	a	transparent	use	of	CoffeeScript	source	files	with	the		require()		function.	Files	with	a	file
name	extension	of		coffee		were	automatically	sent	through	a	CoffeeScript	parser	and	transpiled	into	JavaScript	on-the-fly.	This	support
is	gone	with	ArangoDB	3.0.	To	run	any	CoffeeScript	source	files,	they	must	be	converted	to	JavaScript	by	the	client	application.

Response	object

The		@arangodb/request		response	object	now	stores	the	parsed	JSON	response	body	in	a	property		json		instead	of		body		when	the
request	was	made	using	the		json		option.	The		body		instead	contains	the	response	body	as	a	string.

Edges	API

When	completely	replacing	an	edge	via	a	collection's		replace()		function	the	replacing	edge	data	now	needs	to	contain	the		_from		and
	_to		attributes	for	the	new	edge.	Previous	versions	of	ArangoDB	did	not	require	the	edge	data	to	contain		_from		and		_to		attributes
when	replacing	an	edge,	since		_from		and		_to		values	were	immutable	for	existing	edges.

For	example,	the	following	call	worked	in	ArangoDB	2.8	but	will	fail	in	3.0:

db.edgeCollection.replace("myKey",	{	value:	"test"	});

To	make	this	work	in	ArangoDB	3.0,		_from		and		_to		need	to	be	added	to	the	replacement	data:

db.edgeCollection.replace("myKey",	{	_from:	"myVertexCollection/1",	_to:	"myVertexCollection/2",	value:	"test"	});

Note	that	this	only	affects	the		replace()		function	but	not		update()	,	which	will	only	update	the	specified	attributes	of	the	edge	and
leave	all	others	intact.

Additionally,	the	functions		edges()	,		outEdges()		and		inEdges()		with	an	array	of	edge	ids	will	now	make	the	edge	ids	unique	before
returning	the	connected	edges.	This	is	probably	desired	anyway,	as	results	will	be	returned	only	once	per	distinct	input	edge	id.	However,
it	may	break	client	applications	that	rely	on	the	old	behavior.

Databases	API

The		_listDatabases()		function	of	the		db		object	has	been	renamed	to		_databases()	,	making	it	consistent	with	the		_collections()	
function.	Also	the		_listEndpoints()		function	has	been	renamed	to		_endpoints()	.

Collection	API

Example	matching

The	collection	function		byExampleHash()		and		byExampleSkiplist()		have	been	removed	in	3.0.	Their	functionality	is	provided	by
collection's		byExample()		function,	which	will	automatically	use	a	suitable	index	if	present.

The	collection	function		byConditionSkiplist()		has	been	removed	in	3.0.	The	same	functionality	can	be	achieved	by	issuing	an	AQL
query	with	the	target	condition,	which	will	automatically	use	a	suitable	index	if	present.

Revision	id	handling

Incompatible	changes	in	3.0

527

The		exists()		method	of	a	collection	now	throws	an	exception	when	the	specified	document	exists	but	its	revision	id	does	not	match
the	revision	id	specified.	Previous	versions	of	ArangoDB	simply	returned		false		if	either	no	document	existed	with	the	specified	key	or
when	the	revision	id	did	not	match.	It	was	therefore	impossible	to	distinguish	these	two	cases	from	the	return	value	alone.	3.0	corrects
this.	Additionally,		exists()		in	previous	versions	always	returned	a	boolean	if	only	the	document	key	was	given.	3.0	now	returns	the
document's	meta-data,	which	includes	the	document's	current	revision	id.

Given	there	is	a	document	with	key		test		in	collection		myCollection	,	then	the	behavior	of	3.0	is	as	follows:

/*	test	if	document	exists.	this	returned	true	in	2.8	*/

db.myCollection.exists("test");

{

		"_key"	:	"test",

		"_id"	:	"myCollection/test",

		"_rev"	:	"9758059"

}

/*	test	if	document	exists.	this	returned	true	in	2.8	*/

db.myCollection.exists({	_key:	"test"	});

{

		"_key"	:	"test",

		"_id"	:	"myCollection/test",

		"_rev"	:	"9758059"

}

/*	test	if	document	exists.	this	also	returned	false	in	2.8	*/

db.myCollection.exists("foo");

false

/*	test	if	document	with	a	given	revision	id	exists.	this	returned	true	in	2.8	*/

db.myCollection.exists({	_key:	"test",	_rev:	"9758059"	});

{

		"_key"	:	"test",

		"_id"	:	"myCollection/test",

		"_rev"	:	"9758059"

}

/*	test	if	document	with	a	given	revision	id	exists.	this	returned	false	in	2.8	*/

db.myCollection.exists({	_key:	"test",	_rev:	"1234"	});

JavaScript	exception:	ArangoError	1200:	conflict

Cap	constraints

The	cap	constraints	feature	has	been	removed.	This	change	has	led	to	the	removal	of	the	collection	operations		first()		and		last()	,
which	were	internally	based	on	data	from	cap	constraints.

As	cap	constraints	have	been	removed	in	ArangoDB	3.0	it	is	not	possible	to	create	an	index	of	type	"cap"	with	a	collection's
	ensureIndex()		function.	The	dedicated	function		ensureCapConstraint()		has	also	been	removed	from	the	collection	API.

Graph	Blueprints	JS	Module

The	deprecated	module		graph-blueprints		has	been	deleted.	All	it's	features	are	covered	by	the		general-graph		module.

General	Graph	Fluent	AQL	interface

The	fluent	interface	has	been	removed	from	ArangoDB.	It's	features	were	completely	overlapping	with	"aqb"	which	comes	pre	installed
as	well.	Please	switch	to	AQB	instead.

Undocumented	APIs

The	undocumented	functions		BY_EXAMPLE_HASH()		and		BY_EXAMPLE_SKIPLIST()	,		BY_CONDITION_SKIPLIST	,		CPP_NEIGHBORS		and
	CPP_SHORTEST_PATH		have	been	removed.	These	functions	were	always	hidden	and	not	intended	to	be	part	of	the	public	JavaScript	API
for	collections.

HTTP	API	changes

Incompatible	changes	in	3.0

528

https://github.com/arangodb/aqbjs

CRUD	operations

The	following	incompatible	changes	have	been	made	to	the	HTTP	API	in	ArangoDB	3.0:

General

The	HTTP	insert	operations	for	single	documents	and	edges	(POST		/_api/document)	do	not	support	the	URL	parameter
"createCollection"	anymore.	In	previous	versions	of	ArangoDB	this	parameter	could	be	used	to	automatically	create	a	collection	upon
insertion	of	the	first	document.	It	is	now	required	that	the	target	collection	already	exists	when	using	this	API,	otherwise	it	will	return	an
HTTP	404	error.	The	same	is	true	for	the	import	API	at	POST		/_api/import	.

Collections	can	still	be	created	easily	via	a	separate	call	to	POST		/_api/collection		as	before.

The	"location"	HTTP	header	returned	by	ArangoDB	when	inserting	a	new	document	or	edge	now	always	contains	the	database	name.
This	was	also	the	default	behavior	in	previous	versions	of	ArangoDB,	but	it	could	be	overridden	by	clients	sending	the	HTTP	header		x-
arango-version:	1.4		in	the	request.	Clients	can	continue	to	send	this	header	to	ArangoDB	3.0,	but	the	header	will	not	influence	the
location	response	headers	produced	by	ArangoDB	3.0	anymore.

Additionally	the	CRUD	operations	APIs	do	not	return	an	attribute	"error"	in	the	response	body	with	an	attribute	value	of	"false"	in	case
an	operation	succeeded.

Revision	id	handling

The	operations	for	updating,	replacing	and	removing	documents	can	optionally	check	the	revision	number	of	the	document	to	be	updated,
replaced	or	removed	so	the	caller	can	ensure	the	operation	works	on	a	specific	version	of	the	document	and	there	are	no	lost	updates.

Previous	versions	of	ArangoDB	allowed	passing	the	revision	id	of	the	previous	document	either	in	the	HTTP	header		If-Match		or	in	the
URL	parameter		rev	.	For	example,	removing	a	document	with	a	specific	revision	id	could	be	achieved	as	follows:

curl	-X	DELETE	\

					"http://127.0.0.1:8529/_api/document/myCollection/myKey?rev=123"

ArangoDB	3.0	does	not	support	passing	the	revision	id	via	the	"rev"	URL	parameter	anymore.	Instead	the	previous	revision	id	must	be
passed	in	the	HTTP	header		If-Match	,	e.g.

curl	-X	DELETE	\

					--header	"If-Match:	'123'"	\

					"http://127.0.0.1:8529/_api/document/myCollection/myKey"

The	URL	parameter	"policy"	was	also	usable	in	previous	versions	of	ArangoDB	to	control	revision	handling.	Using	it	was	redundant	to
specifying	the	expected	revision	id	via	the	"rev"	parameter	or	"If-Match"	HTTP	header	and	therefore	support	for	the	"policy"	parameter
was	removed	in	3.0.

In	order	to	check	for	a	previous	revision	id	when	updating,	replacing	or	removing	documents	please	use	the		If-Match		HTTP	header	as
described	above.	When	no	revision	check	if	required	the	HTTP	header	can	be	omitted,	and	the	operations	will	work	on	the	current
revision	of	the	document,	regardless	of	its	revision	id.

All	documents	API

The	HTTP	API	for	retrieving	the	ids,	keys	or	URLs	of	all	documents	from	a	collection	was	previously	located	at	GET		/_api/document?
collection=...	.	This	API	was	moved	to	PUT		/_api/simple/all-keys		and	is	now	executed	as	an	AQL	query.	The	name	of	the
collection	must	now	be	passed	in	the	HTTP	request	body	instead	of	in	the	request	URL.	The	same	is	true	for	the	"type"	parameter,
which	controls	the	type	of	the	result	to	be	created.

Calls	to	the	previous	API	can	be	translated	as	follows:

old:	GET		/_api/document?collection=<collection>&type=<type>		without	HTTP	request	body
3.0:	PUT		/_api/simple/all-keys		with	HTTP	request	body		{"collection":"<collection>","type":"id"}	

The	result	format	of	this	API	has	also	changed	slightly.	In	previous	versions	calls	to	the	API	returned	a	JSON	object	with	a		documents	
attribute.	As	the	functionality	is	based	on	AQL	internally	in	3.0,	the	API	now	returns	a	JSON	object	with	a		result		attribute.

Incompatible	changes	in	3.0

529

Edges	API

CRUD	operations

The	API	for	documents	and	edges	have	been	unified	in	ArangoDB	3.0.	The	CRUD	operations	for	documents	and	edges	are	now	handled
by	the	same	endpoint	at		/_api/document	.	For	CRUD	operations	there	is	no	distinction	anymore	between	documents	and	edges	API-
wise.

That	means	CRUD	operations	concerning	edges	need	to	be	sent	to	the	HTTP	endpoint		/_api/document		instead	of		/_api/edge	.	Sending
requests	to		/_api/edge		will	result	in	an	HTTP	404	error	in	3.0.	The	following	methods	are	available	at		/_api/document		for	documents
and	edge:

HTTP	POST:	insert	new	document	or	edge
HTTP	GET:	fetch	an	existing	document	or	edge
HTTP	PUT:	replace	an	existing	document	or	edge
HTTP	PATCH:	partially	update	an	existing	document	or	edge
HTTP	DELETE:	remove	an	existing	document	or	edge

When	completely	replacing	an	edge	via	HTTP	PUT	please	note	that	the	replacing	edge	data	now	needs	to	contain	the		_from		and		_to	
attributes	for	the	edge.	Previous	versions	of	ArangoDB	did	not	require	sending		_from		and		_to		when	replacing	edges,	as		_from		and
	_to		values	were	immutable	for	existing	edges.

The		_from		and		_to		attributes	of	edges	now	also	need	to	be	present	inside	the	edges	objects	sent	to	the	server:

curl	-X	POST	\

					--data	'{"value":1,"_from":"myVertexCollection/1","_to":"myVertexCollection/2"}'	\

					"http://127.0.0.1:8529/_api/document?collection=myEdgeCollection"

Previous	versions	of	ArangoDB	required	the		_from		and		_to		attributes	of	edges	be	sent	separately	in	URL	parameter		from		and		to	:

curl	-X	POST	\

					--data	'{"value":1}'	\

					"http://127.0.0.1:8529/_api/edge?collection=e&from=myVertexCollection/1&to=myVertexCollection/2"

Querying	connected	edges

The	REST	API	for	querying	connected	edges	at	GET		/_api/edges/<collection>		will	now	make	the	edge	ids	unique	before	returning	the
connected	edges.	This	is	probably	desired	anyway	as	results	will	now	be	returned	only	once	per	distinct	input	edge	id.	However,	it	may
break	client	applications	that	rely	on	the	old	behavior.

Graph	API

Some	data-modification	operations	in	the	named	graphs	API	at		/_api/gharial		now	return	either	HTTP	202	(Accepted)	or	HTTP	201
(Created)	if	the	operation	succeeds.	Which	status	code	is	returned	depends	on	the		waitForSync		attribute	of	the	affected	collection.	In
previous	versions	some	of	these	operations	return	HTTP	200	regardless	of	the		waitForSync		value.

The	deprecated	graph	API		/_api/graph		has	been	removed.	All	it's	features	can	be	replaced	using		/_api/gharial		and	AQL	instead.

Simple	queries	API

The	REST	routes	PUT		/_api/simple/first		and		/_api/simple/last		have	been	removed	entirely.	These	APIs	were	responsible	for
returning	the	first-inserted	and	last-inserted	documents	in	a	collection.	This	feature	was	built	on	cap	constraints	internally,	which	have
been	removed	in	3.0.

Calling	one	of	these	endpoints	in	3.0	will	result	in	an	HTTP	404	error.

Indexes	API

Incompatible	changes	in	3.0

530

It	is	not	supported	in	3.0	to	create	an	index	with	type		cap		(cap	constraint)	in	3.0	as	the	cap	constraints	feature	has	bee	removed.
Calling	the	index	creation	endpoint	HTTP	API	POST		/_api/index?collection=...		with	an	index	type		cap		will	therefore	result	in	an
HTTP	400	error.

Log	entries	API

The	REST	route	HTTP	GET		/_admin/log		is	now	accessible	from	within	all	databases.	In	previous	versions	of	ArangoDB,	this	route
was	accessible	from	within	the		_system		database	only,	and	an	HTTP	403	(Forbidden)	was	thrown	by	the	server	for	any	access	from
within	another	database.

Figures	API

The	REST	route	HTTP	GET		/_api/collection/<collection>/figures		will	not	return	the	following	result	attributes	as	they	became
meaningless	in	3.0:

shapefiles.count
shapes.fileSize
shapes.count
shapes.size
attributes.count
attributes.size

Databases	and	Collections	APIs

When	creating	a	database	via	the	API	POST		/_api/database	,	ArangoDB	will	now	always	return	the	HTTP	status	code	202	(created)	if
the	operation	succeeds.	Previous	versions	of	ArangoDB	returned	HTTP	202	as	well,	but	this	behavior	was	changable	by	sending	an
HTTP	header		x-arango-version:	1.4	.	When	sending	this	header,	previous	versions	of	ArangoDB	returned	an	HTTP	status	code	200
(ok).	Clients	can	still	send	this	header	to	ArangoDB	3.0	but	this	will	not	influence	the	HTTP	status	code	produced	by	ArangoDB.

The	"location"	header	produced	by	ArangoDB	3.0	will	now	always	contain	the	database	name.	This	was	also	the	default	in	previous
versions	of	ArangoDB,	but	the	behavior	could	be	overridden	by	sending	the	HTTP	header		x-arango-version:	1.4	.	Clients	can	still	send
the	header,	but	this	will	not	make	the	database	name	in	the	"location"	response	header	disappear.

The	result	format	for	querying	all	collections	via	the	API	GET		/_api/collection		has	been	changed.

Previous	versions	of	ArangoDB	returned	an	object	with	an	attribute	named		collections		and	an	attribute	named		names	.	Both	contained
all	available	collections,	but		collections		contained	the	collections	as	an	array,	and		names		contained	the	collections	again,	contained	in
an	object	in	which	the	attribute	names	were	the	collection	names,	e.g.

{

		"collections":	[

				{"id":"5874437","name":"test","isSystem":false,"status":3,"type":2},

				{"id":"17343237","name":"something","isSystem":false,"status":3,"type":2},

				...

],

		"names":	{

				"test":	{"id":"5874437","name":"test","isSystem":false,"status":3,"type":2},

				"something":	{"id":"17343237","name":"something","isSystem":false,"status":3,"type":2},

				...

		}

}

This	result	structure	was	redundant,	and	therefore	has	been	simplified	to	just

{

		"result":	[

				{"id":"5874437","name":"test","isSystem":false,"status":3,"type":2},

				{"id":"17343237","name":"something","isSystem":false,"status":3,"type":2},

				...

]

}

in	ArangoDB	3.0.

Incompatible	changes	in	3.0

531

Replication	APIs

The	URL	parameter	"failOnUnknown"	was	removed	from	the	REST	API	GET		/_api/replication/dump	.	This	parameter	controlled
whether	dumping	or	replicating	edges	should	fail	if	one	of	the	vertex	collections	linked	in	the	edge's		_from		or		_to		attributes	was	not
present	anymore.	In	this	case	the		_from		and		_to		values	could	not	be	translated	into	meaningful	ids	anymore.

There	were	two	ways	for	handling	this:

setting		failOnUnknown		to		true		caused	the	HTTP	request	to	fail,	leaving	error	handling	to	the	user
setting		failOnUnknown		to		false		caused	the	HTTP	request	to	continue,	translating	the	collection	name	part	in	the		_from		or		_to	
value	to		_unknown	.

In	ArangoDB	3.0	this	parameter	is	obsolete,	as		_from		and		_to		are	stored	as	self-contained	string	values	all	the	time,	so	they	cannot
get	invalid	when	referenced	collections	are	dropped.

The	result	format	of	the	API	GET		/_api/replication/logger-follow		has	changed	slightly	in	the	following	aspects:

documents	and	edges	are	reported	in	the	same	way.	The	type	for	document	insertions/updates	and	edge	insertions/updates	is	now
always		2300	.	Previous	versions	of	ArangoDB	returned	a		type		value	of		2300		for	documents	and		2301		for	edges.
records	about	insertions,	updates	or	removals	of	documents	and	edges	do	not	have	the		key		and		rev		attributes	on	the	top-level
anymore.	Instead,		key		and		rev		can	be	accessed	by	peeking	into	the		_key		and		_rev		attributes	of	the		data		sub-attributes	of
the	change	record.

The	same	is	true	for	the	collection-specific	changes	API	GET		/_api/replication/dump	.

User	management	APIs

The	REST	API	endpoint	POST		/_api/user		for	adding	new	users	now	requires	the	request	to	contain	a	JSON	object	with	an	attribute
named		user	,	containing	the	name	of	the	user	to	be	created.	Previous	versions	of	ArangoDB	also	checked	this	attribute,	but	additionally
looked	for	an	attribute		username		if	the		user		attribute	did	not	exist.

Undocumented	APIs

The	following	undocumented	HTTP	REST	endpoints	have	been	removed	from	ArangoDB's	REST	API:

	/_open/cerberus		and		/_system/cerberus	:	these	endpoints	were	intended	for	some	ArangoDB-internal	applications	only
PUT		/_api/simple/by-example-hash	,	PUT		/_api/simple/by-example-skiplist		and	PUT		/_api/simple/by-condition-skiplist	:
these	methods	were	documented	in	early	versions	of	ArangoDB	but	have	been	marked	as	not	intended	to	be	called	by	end	users
since	ArangoDB	version	2.3.	These	methods	should	not	have	been	part	of	any	ArangoDB	manual	since	version	2.4.
	/_api/structure	:	an	older	unfinished	and	unpromoted	API	for	data	format	and	type	checks,	superseded	by	Foxx	applications.

Administration	APIs

	/_admin/shutdown		now	needs	to	be	called	with	the	HTTP	DELETE	method

Handling	of	CORS	requests

It	can	now	be	controlled	in	detail	for	which	origin	hosts	CORS	(Cross-origin	resource	sharing)	requests	with	credentials	will	be	allowed.
ArangoDB	3.0	provides	the	startup	option		--http.trusted-origin		that	can	be	used	to	specify	one	or	many	origins	from	which	CORS
requests	are	treated	as	"trustworthy".

The	option	can	be	specified	multiple	times,	once	per	trusted	origin,	e.g.

--http.trusted-origin	http://127.0.0.1:8529	--http.trusted-origin	https://127.0.0.1:8599

This	will	make	the	ArangoDB	server	respond	to	CORS	requests	from	these	origins	with	an		Access-Control-Allow-Credentials		HTTP
header	with	a	value	of		true	.	Web	browsers	can	inspect	this	header	and	can	allow	passing	ArangoDB	web	interface	credentials	(if	stored
in	the	browser)	to	the	requesting	site.	ArangoDB	will	not	forward	or	provide	any	credentials.

Incompatible	changes	in	3.0

532

Setting	this	option	is	only	required	if	applications	on	other	hosts	need	to	access	the	ArangoDB	web	interface	or	other	HTTP	REST	APIs
from	a	web	browser	with	the	same	credentials	that	the	user	has	entered	when	logging	into	the	web	interface.	When	a	web	browser	finds
the		Access-Control-Allow-Credentials		HTTP	response	header,	it	may	forward	the	credentials	entered	into	the	browser	for	the
ArangoDB	web	interface	login	to	the	other	site.

This	is	a	potential	security	issue,	so	there	are	no	trusted	origins	by	default.	It	may	be	required	to	set	some	trusted	origins	if	you're
planning	to	issue	AJAX	requests	to	ArangoDB	from	other	sites	from	the	browser,	with	the	credentials	entered	during	the	ArangoDB
interface	login	(i.e.	single	sign-on).	If	such	functionality	is	not	used,	the	option	should	not	be	set.

To	specify	a	trusted	origin,	specify	the	option	once	per	trusted	origin	as	shown	above.	Note	that	the	trusted	origin	values	specified	in
this	option	will	be	compared	bytewise	with	the		Origin		HTTP	header	value	sent	by	clients,	and	only	exact	matches	will	pass.

There	is	also	the	wildcard		all		for	enabling	CORS	access	from	all	origins	in	a	test	or	development	setup:

--http.trusted-origin	all

Setting	this	option	will	lead	to	the	ArangoDB	server	responding	with	an		Access-Control-Allow-Credentials:	true		HTTP	header	to	all
incoming	CORS	requests.

Command-line	options
Quite	a	few	startup	options	in	ArangoDB	2	were	double	negations	(like		--server.disable-authentication	false).	In	ArangoDB	3	these
are	now	expressed	as	positives	(e.	g.		--server.authentication).	Also	the	options	between	the	ArangoDB	server	and	its	client	tools	have
being	unified.	For	example,	the	logger	options	are	now	the	same	for	the	server	and	the	client	tools.	Additionally	many	options	have	been
moved	into	more	appropriate	topic	sections.

Renamed	options

The	following	options	have	been	available	before	3.0	and	have	changed	their	name	in	3.0:

	--server.disable-authentication		was	renamed	to		--server.authentication	.	Note	that	the	meaning	of	the	option		--
server.authentication		is	the	opposite	of	the	previous		--server.disable-authentication	.
	--server.disable-authentication-unix-sockets		was	renamed	to		--server.authentication-unix-sockets	.	Note	that	the	meaning	of
the	option		--server.authentication-unix-sockets		is	the	opposite	of	the	previous		--server.disable-authentication-unix-sockets	.
	--server.authenticate-system-only		was	renamed	to		--server.authentication-system-only	.	The	meaning	of	the	option	in
unchanged.
	--server.disable-statistics		was	renamed	to		--server.statistics	.	Note	that	the	meaning	of	the	option		--server.statistics		is
the	opposite	of	the	previous		--server.disable-statistics	.
	--server.cafile		was	renamed	to		--ssl.cafile	.	The	meaning	of	the	option	is	unchanged.
	--server.keyfile		was	renamed	to		--ssl.keyfile	.	The	meaning	of	the	option	is	unchanged.
	--server.ssl-cache		was	renamed	to		--ssl.session-cache	.	The	meaning	of	the	option	is	unchanged.
	--server.ssl-cipher-list		was	renamed	to		--ssl.cipher-list	.	The	meaning	of	the	option	is	unchanged.
	--server.ssl-options		was	renamed	to		--ssl.options	.	The	meaning	of	the	option	is	unchanged.
	--server.ssl-protocol		was	renamed	to		--ssl.protocol	.	The	meaning	of	the	option	is	unchanged.
	--server.backlog-size		was	renamed	to		--tcp.backlog-size	.	The	meaning	of	the	option	is	unchanged.
	--server.reuse-address		was	renamed	to		--tcp.reuse-address	.	The	meaning	of	the	option	is	unchanged.
	--server.disable-replication-applier		was	renamed	to		--database.replication-applier	.	The	meaning	of	the	option		--
database.replication-applier		is	the	opposite	of	the	previous		--server.disable-replication-applier	.
	--server.allow-method-override		was	renamed	to		--http.allow-method-override	.	The	meaning	of	the	option	is	unchanged.
	--server.hide-product-header		was	renamed	to		--http.hide-product-header	.	The	meaning	of	the	option	is	unchanged.
	--server.keep-alive-timeout		was	renamed	to		--http.keep-alive-timeout	.	The	meaning	of	the	option	is	unchanged.
	--server.foxx-queues		was	renamed	to		--foxx.queues	.	The	meaning	of	the	option	is	unchanged.
	--server.foxx-queues-poll-interval		was	renamed	to		--foxx.queues-poll-interval	.	The	meaning	of	the	option	is	unchanged.
	--no-server		was	renamed	to		--server.rest-server	.	Note	that	the	meaning	of	the	option		--server.rest-server		is	the	opposite
of	the	previous		--no-server	.
	--database.query-cache-mode		was	renamed	to		--query.cache-mode	.	The	meaning	of	the	option	is	unchanged.
	--database.query-cache-max-results		was	renamed	to		--query.cache-entries	.	The	meaning	of	the	option	is	unchanged.

Incompatible	changes	in	3.0

533

	--database.disable-query-tracking		was	renamed	to		--query.tracking	.	The	meaning	of	the	option		--query.tracking		is	the
opposite	of	the	previous		--database.disable-query-tracking	.
	--log.tty		was	renamed	to		--log.foreground-tty	.	The	meaning	of	the	option	is	unchanged.
	--upgrade		has	been	renamed	to		--database.auto-upgrade	.	In	contrast	to	2.8	this	option	now	requires	a	boolean	parameter.	To
actually	perform	an	automatic	database	upgrade	at	startup	use		--database.auto-upgrade	true	.	To	not	perform	it,	use		--
database.auto-upgrade	false	.
	--check-version		has	been	renamed	to		--database.check-version	.
	--temp-path		has	been	renamed	to		--temp.path	.

Log	verbosity,	topics	and	output	files

Logging	now	supports	log	topics.	You	can	control	these	by	specifying	a	log	topic	in	front	of	a	log	level	or	an	output.	For	example

		--log.level	startup=trace	--log.level	info

will	log	messages	concerning	startup	at	trace	level,	everything	else	at	info	level.		--log.level		can	be	specified	multiple	times	at	startup,
for	as	many	topics	as	needed.

Some	relevant	log	topics	available	in	3.0	are:

collector:	information	about	the	WAL	collector's	state
compactor:	information	about	the	collection	datafile	compactor
datafiles:	datafile-related	operations
mmap:	information	about	memory-mapping	operations
performance:	some	performance-related	information
queries:	executed	AQL	queries
replication:	replication-related	info
requests:	HTTP	requests
startup:	information	about	server	startup	and	shutdown
threads:	information	about	threads

The	new	log	option		--log.output	<definition>		allows	directing	the	global	or	per-topic	log	output	to	different	outputs.	The	output
definition	""	can	be	one	of

"-"	for	stdin
"+"	for	stderr
"syslog://"
"syslog:///"
"file://"

The	option	can	be	specified	multiple	times	in	order	to	configure	the	output	for	different	log	topics.	To	set	up	a	per-topic	output
configuration,	use		--log.output	<topic>=<definition>	,	e.g.

queries=file://queries.txt

logs	all	queries	to	the	file	"queries.txt".

The	old	option		--log.file		is	still	available	in	3.0	for	convenience	reasons.	In	3.0	it	is	a	shortcut	for	the	more	general	option		--
log.output	file://filename	.

The	old	option		--log.requests-file		is	still	available	in	3.0.	It	is	now	a	shortcut	for	the	more	general	option		--log.output
requests=file://...	.

The	old	option		--log.performance		is	still	available	in	3.0.	It	is	now	a	shortcut	for	the	more	general	option		--log.level
performance=trace	.

Removed	options	for	logging

The	options		--log.content-filter		and		--log.source-filter		have	been	removed.	They	have	most	been	used	during	ArangoDB's
internal	development.

Incompatible	changes	in	3.0

534

The	syslog-related	options		--log.application		and		--log.facility		have	been	removed.	They	are	superseded	by	the	more	general		--
log.output		option	which	can	also	handle	syslog	targets.

Removed	other	options

The	option		--server.default-api-compatibility		was	present	in	earlier	version	of	ArangoDB	to	control	various	aspects	of	the	server
behavior,	e.g.	HTTP	return	codes	or	the	format	of	HTTP	"location"	headers.	Client	applications	could	send	an	HTTP	header	"x-arango-
version"	with	a	version	number	to	request	the	server	behavior	of	a	certain	ArangoDB	version.

This	option	was	only	honored	in	a	handful	of	cases	(described	above)	and	was	removed	in	3.0	because	the	changes	in	server	behavior
controlled	by	this	option	were	changed	even	before	ArangoDB	2.0.	This	should	have	left	enough	time	for	client	applications	to	adapt	to
the	new	behavior,	making	the	option	superfluous	in	3.0.

Thread	options

The	options		--server.threads		and		--scheduler.threads		now	have	a	default	value	of		0	.	When		--server.threads		is	set	to		0		on
startup,	the	suitable	number	of	threads	will	be	determined	by	ArangoDB	by	asking	the	OS	for	the	number	of	available	CPUs	and	using
that	as	a	baseline.	If	the	number	of	CPUs	is	lower	than	4,	ArangoDB	will	still	start	4	dispatcher	threads.	When		--scheduler.threads		is
set	to		0	,	then	ArangoDB	will	automatically	determine	the	number	of	scheduler	threads	to	start.	This	will	normally	create	2	scheduler
threads.

If	the	exact	number	of	threads	needs	to	be	set	by	the	admin,	then	it	is	still	possible	to	set		--server.threads		and		--scheduler.threads	
to	non-zero	values.	ArangoDB	will	use	these	values	and	start	that	many	threads	(note	that	some	threads	may	be	created	lazily	so	they
may	not	be	present	directly	after	startup).

The	number	of	V8	JavaScript	contexts	to	be	created	(--javascript.v8-contexts)	now	has	a	default	value	of		0		too,	meaning	that
ArangoDB	will	create	as	many	V8	contexts	as	there	will	be	dispatcher	threads	(controlled	by	the		--server.threads		option).	Setting	this
option	to	a	non-zero	value	will	create	exactly	as	many	V8	contexts	as	specified.

Setting	these	options	explicitly	to	non-zero	values	may	be	beneficial	in	environments	that	have	few	resources	(processing	time,	maximum
thread	count,	available	memory).

Authentication
The	default	value	for		--server.authentication		is	now		true		in	the	configuration	files	shipped	with	ArangoDB.	This	means	the	server
will	be	started	with	authentication	enabled	by	default,	requiring	all	client	connections	to	provide	authentication	data	when	connecting	to
ArangoDB	APIs.	Previous	ArangoDB	versions	used	the	setting		--server.disable-authentication	true	,	effectively	disabling
authentication	by	default.

The	default	value	for		--server.authentication-system-only		is	now		true		in	ArangoDB.	That	means	that	Foxx	applications	running	in
ArangoDB	will	be	public	accessible	(at	least	they	will	not	use	ArangoDB's	builtin	authentication	mechanism).	Only	requests	to
ArangoDB	APIs	at	URL	path	prefixes		/_api/		and		/_admin		will	require	authentication.	To	change	that,	and	use	the	builtin
authentication	mechanism	for	Foxx	applications	too,	set		--server.authentication-system-only		to		false	,	and	make	sure	to	have	the
option		--server.authentication		set	to		true		as	well.

Though	enabling	the	authentication	is	recommended	for	production	setups,	it	may	be	overkill	in	a	development	environment.	To	turn	off
authentication,	the	option		--server.authentication		can	be	set	to		false		in	ArangoDB's	configuration	file	or	on	the	command-line.

Web	Admin	Interface

The	JavaScript	shell	has	been	removed	from	ArangoDB's	web	interface.	The	functionality	the	shell	provided	is	still	fully	available	in	the
ArangoShell	(arangosh)	binary	shipped	with	ArangoDB.

ArangoShell	and	client	tools

Incompatible	changes	in	3.0

535

The	ArangoShell	(arangosh)	and	the	other	client	tools	bundled	with	ArangoDB	can	only	connect	to	an	ArangoDB	server	of	version	3.0	or
higher.	They	will	not	connect	to	an	ArangoDB	2.8.	This	is	because	the	server	HTTP	APIs	have	changed	between	2.8	and	3.0,	and	all
client	tools	uses	these	APIs.

In	order	to	connect	to	earlier	versions	of	ArangoDB	with	the	client	tools,	an	older	version	of	the	client	tools	needs	to	be	kept	installed.

The	preferred	name	for	the	template	string	generator	function		aqlQuery		is	now		aql		and	is	automatically	available	in	arangosh.
Elsewhere,	it	can	be	loaded	like		const	aql	=	require('@arangodb').aql	.

Command-line	options	added

All	client	tools	in	3.0	provide	an	option		--server.max-packet-size		for	controlling	the	maximum	size	of	HTTP	packets	to	be	handled	by
the	client	tools.	The	default	value	is	128	MB,	as	in	previous	versions	of	ArangoDB.	In	contrast	to	previous	versions	in	which	the	value
was	hard-coded,	the	option	is	now	configurable.	It	can	be	increased	to	make	the	client	tools	handle	very	large	HTTP	result	messages	sent
by	the	server.

Command-line	options	changed

For	all	client	tools,	the	option		--server.disable-authentication		was	renamed	to		--server.authentication	.	Note	that	the	meaning	of
the	option		--server.authentication		is	the	opposite	of	the	previous		--server.disable-authentication	.

The	option		--server.ssl-protocol		was	renamed	to		--ssl.protocol	.	The	meaning	of	the	option	is	unchanged.

The	command-line	option		--quiet		was	removed	from	all	client	tools	except	arangosh	because	it	had	no	effect	in	them.

Arangobench

In	order	to	make	its	purpose	more	apparent	the	former		arangob		client	tool	has	been	renamed	to		arangobench		in	3.0.

Miscellaneous	changes
The	checksum	calculation	algorithm	for	the		collection.checksum()		method	and	its	corresponding	REST	API	GET
	/_api/collection/<collection</checksum		has	changed	in	3.0.	Checksums	calculated	in	3.0	will	differ	from	checksums	calculated	with	2.8
or	before.

The	ArangoDB	server	in	3.0	does	not	read	a	file		ENDPOINTS		containing	a	list	of	additional	endpoints	on	startup.	In	2.8	this	file	was
automatically	read	if	present	in	the	database	directory.

The	names	of	the	sub-threads	started	by	ArangoDB	have	changed	in	3.0.	This	is	relevant	on	Linux	only,	where	threads	can	be	named	and
thread	names	may	be	visible	to	system	tools	such	as	top	or	monitoring	solutions.

Incompatible	changes	in	3.0

536

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.8.	ArangoDB	2.8	also	contains	several
bugfixes	that	are	not	listed	here.	For	a	list	of	bugfixes,	please	consult	the	CHANGELOG.

AQL	improvements

AQL	Graph	Traversals	/	Pattern	Matching

AQL	offers	a	new	feature	to	traverse	over	a	graph	without	writing	JavaScript	functions	but	with	all	the	other	features	you	know	from
AQL.	For	this	purpose,	a	special	version	of		FOR	variableName	IN	expression		has	been	introduced.

This	special	version	has	the	following	format:		FOR	vertex-variable,	edge-variable,	path-variable	IN	traversal-expression	,	where
	traversal-expression		has	the	following	format:		[depth]	direction	start-vertex	graph-definition		with	the	following	input
parameters:

depth	(optional):	defines	how	many	steps	are	executed.	The	value	can	either	be	an	integer	value	(e.g.		3)	or	a	range	of	integer	values
(e.g.		1..5).	The	default	is	1.
direction:	defines	which	edge	directions	are	followed.	Can	be	either		OUTBOUND	,		INBOUND		or		ANY	.
start-vertex:	defines	where	the	traversal	is	started.	Must	be	an		_id		value	or	a	document.
graph-definition:	defines	which	edge	collections	are	used	for	the	traversal.	Must	be	either		GRAPH	graph-name		for	graphs	created	with
the	graph-module,	or	a	list	of	edge	collections		edge-col1,	edge-col2,	..	edge-colN	.

The	three	output	variables	have	the	following	semantics:

vertex-variable:	The	last	visited	vertex.
edge-variable:	The	last	visited	edge	(optional).
path-variable:	The	complete	path	from	start-vertex	to	vertex-variable	(optional).

The	traversal	statement	can	be	used	in	the	same	way	as	the	original		FOR	variableName	IN	expression	,	and	can	be	combined	with	filters
and	other	AQL	constructs.

As	an	example	one	can	now	find	the	friends	of	a	friend	for	a	certain	user	with	this	AQL	statement:

FOR	foaf,	e,	path	IN	2	ANY	@startUser	GRAPH	"relations"

		FILTER	path.edges[0].type	==	"friend"

		FILTER	path.edges[1].type	==	"friend"

		FILTER	foaf._id	!=	@startUser

		RETURN	DISTINCT	foaf

Optimizer	rules	have	been	implemented	to	gain	performance	of	the	traversal	statement.	These	rules	move	filter	statements	into	the
traversal	statement	s.t.	paths	which	can	never	pass	the	filter	are	not	emitted	to	the	variables.

As	an	example	take	the	query	above	and	assume	there	are	edges	that	do	not	have		type	==	"friend"	.	If	in	the	first	edge	step	there	is	such
a	non-friend	edge	the	second	steps	will	never	be	computed	for	these	edges	as	they	cannot	fulfill	the	filter	condition.

Array	Indexes

Hash	indexes	and	skiplist	indexes	can	now	optionally	be	defined	for	array	values	so	that	they	index	individual	array	members	instead	of
the	entire	array	value.

To	define	an	index	for	array	values,	the	attribute	name	is	extended	with	the	expansion	operator		[*]		in	the	index	definition.

Example:

db._create("posts");

db.posts.ensureHashIndex("tags[*]");

When	given	the	following	document

Whats	New	in	2.8

537

https://github.com/arangodb/arangodb/blob/devel/CHANGELOG

{

		"tags":	[

				"AQL",

				"ArangoDB",

				"Index"

]

}

this	index	will	now	contain	the	individual	values		"AQL"	,		"ArangoDB"		and		"Index"	.

Now	the	index	can	be	used	for	finding	all	documents	having		"ArangoDB"		somewhere	in	their		tags		array	using	the	following	AQL
query:

FOR	doc	IN	posts

		FILTER	"ArangoDB"	IN	doc.tags[*]

		RETURN	doc

It	is	also	possible	to	create	an	index	on	sub-attributes	of	array	values.	This	makes	sense	when	the	index	attribute	is	an	array	of	objects,
e.g.

db._drop("posts");

db._create("posts");

db.posts.ensureIndex({	type:	"hash",	fields:	["tags[*].name"]	});

db.posts.insert({	tags:	[{	name:	"AQL"	},	{	name:	"ArangoDB"	},	{	name:	"Index"	}]	});

db.posts.insert({	tags:	[{	name:	"AQL"	},	{	name:	"2.8"	}]	});

The	following	query	will	then	use	the	array	index:

FOR	doc	IN	posts

		FILTER	'AQL'	IN	doc.tags[*].name

		RETURN	doc

Array	values	will	automatically	be	de-duplicated	before	being	inserted	into	an	array	index.

Please	note	that	filtering	using	array	indexes	only	works	from	within	AQL	queries	and	only	if	the	query	filters	on	the	indexed	attribute
using	the		IN		operator.	The	other	comparison	operators	(==	,		!=	,		>	,		>=	,		<	,		<=)	currently	do	not	use	array	indexes.

Optimizer	improvements

The	AQL	query	optimizer	can	now	use	indexes	if	multiple	filter	conditions	on	attributes	of	the	same	collection	are	combined	with	logical
ORs,	and	if	the	usage	of	indexes	would	completely	cover	these	conditions.

For	example,	the	following	queries	can	now	use	two	independent	indexes	on		value1		and		value2		(the	latter	query	requires	that	the
indexes	are	skiplist	indexes	due	to	usage	of	the		<		and		>		comparison	operators):

FOR	doc	IN	collection	FILTER	doc.value1	==	42	||	doc.value2	==	23	RETURN	doc

FOR	doc	IN	collection	FILTER	doc.value1	<	42	||	doc.value2	>	23	RETURN	doc

The	new	optimizer	rule	"sort-in-values"	can	now	pre-sort	the	right-hand	side	operand	of		IN		and		NOT	IN		operators	so	the	operation
can	use	a	binary	search	with	logarithmic	complexity	instead	of	a	linear	search.	The	rule	will	be	applied	when	the	right-hand	side	operand
of	an		IN		or		NOT	IN		operator	in	a	filter	condition	is	a	variable	that	is	defined	in	a	different	loop/scope	than	the	operator	itself.
Additionally,	the	filter	condition	must	consist	of	solely	the		IN		or		NOT	IN		operation	in	order	to	avoid	any	side-effects.

The	rule	will	kick	in	for	a	queries	such	as	the	following:

LET	values	=	/*	some	runtime	expression	here	*/

FOR	doc	IN	collection

		FILTER	doc.value	IN	values

		RETURN	doc

It	will	not	be	applied	for	the	followig	queries,	because	the	right-hand	side	operand	of	the		IN		is	either	not	a	variable,	or	because	the
FILTER	condition	may	have	side	effects:

Whats	New	in	2.8

538

FOR	doc	IN	collection

		FILTER	doc.value	IN	/*	some	runtime	expression	here	*/

		RETURN	doc

LET	values	=	/*	some	runtime	expression	here	*/

FOR	doc	IN	collection

		FILTER	FUNCTION(doc.values)	==	23	&&	doc.value	IN	values

		RETURN	doc

AQL	functions	added

The	following	AQL	functions	have	been	added	in	2.8:

	POW(base,	exponent)	:	returns	the	base	to	the	exponent	exp

	UNSET_RECURSIVE(document,	attributename,	...)	:	recursively	removes	the	attributes	attributename	(can	be	one	or	many)	from
document	and	its	sub-documents.	All	other	attributes	will	be	preserved.	Multiple	attribute	names	can	be	specified	by	either	passing
multiple	individual	string	argument	names,	or	by	passing	an	array	of	attribute	names:

UNSET_RECURSIVE(doc,	'_id',	'_key',	'foo',	'bar')

UNSET_RECURSIVE(doc,	['_id',	'_key',	'foo',	'bar'])

	IS_DATESTRING(value)	:	returns	true	if	value	is	a	string	that	can	be	used	in	a	date	function.	This	includes	partial	dates	such	as	2015
or	2015-10	and	strings	containing	invalid	dates	such	as	2015-02-31.	The	function	will	return	false	for	all	non-string	values,	even	if
some	of	them	may	be	usable	in	date	functions.

Miscellaneous	improvements

the	ArangoShell	now	provides	the	convenience	function		db._explain(query)		for	retrieving	a	human-readable	explanation	of	AQL
queries.	This	function	is	a	shorthand	for		require("org/arangodb/aql/explainer").explain(query)	.

the	AQL	query	optimizer	now	automatically	converts		LENGTH(collection-name)		to	an	optimized	expression	that	returns	the
number	of	documents	in	a	collection.	Previous	versions	of	ArangoDB	returned	a	warning	when	using	this	expression	and	also
enumerated	all	documents	in	the	collection,	which	was	inefficient.

improved	performance	of	skipping	over	many	documents	in	an	AQL	query	when	no	indexes	and	no	filters	are	used,	e.g.

FOR	doc	IN	collection

		LIMIT	1000000,	10

		RETURN	doc

added	cluster	execution	site	info	in	execution	plan	explain	output	for	AQL	queries

for	30+	AQL	functions	there	is	now	an	additional	implementation	in	C++	that	removes	the	need	for	internal	data	conversion	when
the	function	is	called

the	AQL	editor	in	the	web	interface	now	supports	using	bind	parameters

Deadlock	detection

ArangoDB	2.8	now	has	an	automatic	deadlock	detection	for	transactions.

A	deadlock	is	a	situation	in	which	two	or	more	concurrent	operations	(user	transactions	or	AQL	queries)	try	to	access	the	same	resources
(collections,	documents)	and	need	to	wait	for	the	others	to	finish,	but	none	of	them	can	make	any	progress.

In	case	of	such	a	deadlock,	there	would	be	no	progress	for	any	of	the	involved	transactions,	and	none	of	the	involved	transactions	could
ever	complete.	This	is	completely	undesirable,	so	the	new	automatic	deadlock	detection	mechanism	in	ArangoDB	will	automatically	kick
in	and	abort	one	of	the	transactions	involved	in	such	a	deadlock.	Aborting	means	that	all	changes	done	by	the	transaction	will	be	rolled
back	and	error	29	(deadlock	detected)	will	be	thrown.

Whats	New	in	2.8

539

Client	code	(AQL	queries,	user	transactions)	that	accesses	more	than	one	collection	should	be	aware	of	the	potential	of	deadlocks	and
should	handle	the	error	29	(deadlock	detected)	properly,	either	by	passing	the	exception	to	the	caller	or	retrying	the	operation.

Replication

The	following	improvements	for	replication	have	been	made	in	2.8	(note:	most	of	them	have	been	backported	to	ArangoDB	2.7	as	well):

added		autoResync		configuration	parameter	for	continuous	replication.

When	set	to		true	,	a	replication	slave	will	automatically	trigger	a	full	data	re-synchronization	with	the	master	when	the	master
cannot	provide	the	log	data	the	slave	had	asked	for.	Note	that		autoResync		will	only	work	when	the	option		requireFromPresent		is
also	set	to		true		for	the	continuous	replication,	or	when	the	continuous	syncer	is	started	and	detects	that	no	start	tick	is	present.

Automatic	re-synchronization	may	transfer	a	lot	of	data	from	the	master	to	the	slave	and	may	be	expensive.	It	is	therefore	turned	off
by	default.	When	turned	off,	the	slave	will	never	perform	an	automatic	re-synchronization	with	the	master.

added		idleMinWaitTime		and		idleMaxWaitTime		configuration	parameters	for	continuous	replication.

These	parameters	can	be	used	to	control	the	minimum	and	maximum	wait	time	the	slave	will	(intentionally)	idle	and	not	poll	for
master	log	changes	in	case	the	master	had	sent	the	full	logs	already.	The		idleMaxWaitTime		value	will	only	be	used	when
	adapativePolling		is	set	to		true	.	When		adaptivePolling		is	disabled,	only		idleMinWaitTime		will	be	used	as	a	constant	time
span	in	which	the	slave	will	not	poll	the	master	for	further	changes.	The	default	values	are	0.5	seconds	for		idleMinWaitTime		and	2.5
seconds	for		idleMaxWaitTime	,	which	correspond	to	the	hard-coded	values	used	in	previous	versions	of	ArangoDB.

added		initialSyncMaxWaitTime		configuration	parameter	for	initial	and	continuous	replication

This	option	controls	the	maximum	wait	time	(in	seconds)	that	the	initial	synchronization	will	wait	for	a	response	from	the	master
when	fetching	initial	collection	data.	If	no	response	is	received	within	this	time	period,	the	initial	synchronization	will	give	up	and
fail.	This	option	is	also	relevant	for	continuous	replication	in	case	autoResync	is	set	to	true,	as	then	the	continuous	replication	may
trigger	a	full	data	re-synchronization	in	case	the	master	cannot	the	log	data	the	slave	had	asked	for.

HTTP	requests	sent	from	the	slave	to	the	master	during	initial	synchronization	will	now	be	retried	if	they	fail	with	connection
problems.

the	initial	synchronization	now	logs	its	progress	so	it	can	be	queried	using	the	regular	replication	status	check	APIs.

added		async		attribute	for		sync		and		syncCollection		operations	called	from	the	ArangoShell.	Setthing	this	attribute	to		true		will
make	the	synchronization	job	on	the	server	go	into	the	background,	so	that	the	shell	does	not	block.	The	status	of	the	started
asynchronous	synchronization	job	can	be	queried	from	the	ArangoShell	like	this:

/*	starts	initial	synchronization	*/

var	replication	=	require("org/arangodb/replication");

var	id	=	replication.sync({

		endpoint:	"tcp://master.domain.org:8529",

		username:	"myuser",

		password:	"mypasswd",

		async:	true

});

/*	now	query	the	id	of	the	returned	async	job	and	print	the	status	*/

print(replication.getSyncResult(id));

The	result	of		getSyncResult()		will	be		false		while	the	server-side	job	has	not	completed,	and	different	to		false		if	it	has
completed.	When	it	has	completed,	all	job	result	details	will	be	returned	by	the	call	to		getSyncResult()	.

the	web	admin	interface	dashboard	now	shows	a	server's	replication	status	at	the	bottom	of	the	page

Web	Admin	Interface

The	following	improvements	have	been	made	for	the	web	admin	interface:

the	AQL	editor	now	has	support	for	bind	parameters.	The	bind	parameter	values	can	be	edited	in	the	web	interface	and	saved	with	a
query	for	future	use.

Whats	New	in	2.8

540

the	AQL	editor	now	allows	canceling	running	queries.	This	can	be	used	to	cancel	long-running	queries	without	switching	to	the	query
management	section.

the	dashboard	now	provides	information	about	the	server's	replication	status	at	the	bottom	of	the	page.	This	can	be	used	to	track
either	the	status	of	a	one-time	synchronization	or	the	continuous	replication.

the	compaction	status	and	some	status	internals	about	collections	are	now	displayed	in	the	detail	view	for	a	collection	in	the	web
interface.	These	data	can	be	used	for	debugging	compaction	issues.

unloading	a	collection	via	the	web	interface	will	now	trigger	garbage	collection	in	all	v8	contexts	and	force	a	WAL	flush.	This
increases	the	chances	of	perfoming	the	unload	faster.

the	status	terminology	for	collections	for	which	an	unload	request	has	been	issued	via	the	web	interface	was	changed	from		in	the
process	of	being	unloaded		to		will	be	unloaded	.	This	is	more	accurate	as	the	actual	unload	may	be	postponed	until	later	if	there
are	still	references	pointing	to	data	in	the	collection.

Foxx	improvements
the	module	resolution	used	by		require		now	behaves	more	like	in	node.js

the		org/arangodb/request		module	now	returns	response	bodies	for	error	responses	by	default.	The	old	behavior	of	not	returning
bodies	for	error	responses	can	be	re-enabled	by	explicitly	setting	the	option		returnBodyOnError		to		false	

Miscellaneous	changes

The	startup	option		--server.hide-product-header		can	be	used	to	make	the	server	not	send	the	HTTP	response	header		"Server:
ArangoDB"		in	its	HTTP	responses.	This	can	be	used	to	conceal	the	server	make	from	HTTP	clients.	By	default,	the	option	is	turned	off
so	the	header	is	still	sent	as	usual.

arangodump	and	arangorestore	now	have	better	error	reporting.	Additionally,	arangodump	will	now	fail	by	default	when	trying	to	dump
edges	that	refer	to	already	dropped	collections.	This	can	be	circumvented	by	specifying	the	option		--force	true		when	invoking
arangodump.

arangoimp	now	provides	an	option		--create-collection-type		to	specify	the	type	of	the	collection	to	be	created	when		--create-
collection		is	set	to		true	.	Previously		--create-collection		always	created	document	collections	and	the	creation	of	edge	collections
was	not	possible.

Whats	New	in	2.8

541

Incompatible	changes	in	ArangoDB	2.8
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	2.8,	and	adjust	any	client	programs
if	necessary.

AQL

Keywords	added

The	following	AQL	keywords	were	added	in	ArangoDB	2.8:

	GRAPH	

	OUTBOUND	

	INBOUND	

	ANY	

	ALL	

	NONE	

	AGGREGATE	

Usage	of	these	keywords	for	collection	names,	variable	names	or	attribute	names	in	AQL	queries	will	not	be	possible	without	quoting.
For	example,	the	following	AQL	query	will	still	work	as	it	uses	a	quoted	collection	name	and	a	quoted	attribute	name:

FOR	doc	IN	`OUTBOUND`

		RETURN	doc.`any`

Changed	behavior

The	AQL	functions		NEAR		and		WITHIN		now	have	stricter	validations	for	their	input	parameters		limit	,		radius		and		distance	.	They
may	now	throw	exceptions	when	invalid	parameters	are	passed	that	may	have	not	led	to	exceptions	in	previous	versions.

Additionally,	the	expansion	([*])	operator	in	AQL	has	changed	its	behavior	when	handling	non-array	values:

In	ArangoDB	2.8,	calling	the	expansion	operator	on	a	non-array	value	will	always	return	an	empty	array.	Previous	versions	of	ArangoDB
expanded	non-array	values	by	calling	the		TO_ARRAY()		function	for	the	value,	which	for	example	returned	an	array	with	a	single	value	for
boolean,	numeric	and	string	input	values,	and	an	array	with	the	object's	values	for	an	object	input	value.	This	behavior	was	inconsistent
with	how	the	expansion	operator	works	for	the	array	indexes	in	2.8,	so	the	behavior	is	now	unified:

if	the	left-hand	side	operand	of		[*]		is	an	array,	the	array	will	be	returned	as	is	when	calling		[*]		on	it
if	the	left-hand	side	operand	of		[*]		is	not	an	array,	an	empty	array	will	be	returned	by		[*]	

AQL	queries	that	rely	on	the	old	behavior	can	be	changed	by	either	calling		TO_ARRAY		explicitly	or	by	using	the		[*]		at	the	correct
position.

The	following	example	query	will	change	its	result	in	2.8	compared	to	2.7:

LET	values	=	"foo"	RETURN	values[*]				

In	2.7	the	query	has	returned	the	array		["foo"]	,	but	in	2.8	it	will	return	an	empty	array		[]	.	To	make	it	return	the	array		["foo"
]		again,	an	explicit		TO_ARRAY		function	call	is	needed	in	2.8	(which	in	this	case	allows	the	removal	of	the		[*]		operator	altogether).	This
also	works	in	2.7:

LET	values	=	"foo"	RETURN	TO_ARRAY(values)

Another	example:

LET	values	=	[{	name:	"foo"	},	{	name:	"bar"	}]

RETURN	values[*].name[*]

Incompatible	changes	in	2.8

542

The	above	returned		[["foo"],	["bar"]]	in	2.7.	In	2.8	it	will	return	[[],	[]]	,	because	the	value	of	name`	is	not	an	array.
To	change	the	results	to	the	2.7	style,	the	query	can	be	changed	to

LET	values	=	[{	name:	"foo"	},	{	name:	"bar"	}]

RETURN	values[*	RETURN	TO_ARRAY(CURRENT.name)]

The	above	also	works	in	2.7.	The	following	types	of	queries	won't	change:

LET	values	=	[1,	2,	3]	RETURN	values[*]	

LET	values	=	[{	name:	"foo"	},	{	name:	"bar"	}]	RETURN	values[*].name

LET	values	=	[{	names:	["foo",	"bar"]	},	{	names:	["baz"]	}]	RETURN	values[*].names[*]

LET	values	=	[{	names:	["foo",	"bar"]	},	{	names:	["baz"]	}]	RETURN	values[*].names[**]

Deadlock	handling

Client	applications	should	be	prepared	to	handle	error	29	(deadlock	detected)	that	ArangoDB	may	now	throw	when	it	detects	a
deadlock	across	multiple	transactions.	When	a	client	application	receives	error	29,	it	should	retry	the	operation	that	failed.

The	error	can	only	occur	for	AQL	queries	or	user	transactions	that	involve	more	than	a	single	collection.

Optimizer

The	AQL	execution	node	type		IndexRangeNode		was	replaced	with	a	new	more	capable	execution	node	type		IndexNode	.	That	means	in
execution	plan	explain	output	there	will	be	no	more		IndexRangeNode	s	but	only		IndexNode	.	This	affects	explain	output	that	can	be
retrieved	via		require("org/arangodb/aql/explainer").explain(query)	,		db._explain(query)	,	and	the	HTTP	query	explain	API.

The	optimizer	rule	that	makes	AQL	queries	actually	use	indexes	was	also	renamed	from		use-index-range		to		use-indexes	.	Again	this
affects	explain	output	that	can	be	retrieved	via		require("org/arangodb/aql/explainer").explain(query)	,		db._explain(query)	,	and	the
HTTP	query	explain	API.

The	query	optimizer	rule		remove-collect-into		was	renamed	to		remove-collect-variables	.	This	affects	explain	output	that	can	be
retrieved	via		require("org/arangodb/aql/explainer").explain(query)	,		db._explain(query)	,	and	the	HTTP	query	explain	API.

HTTP	API

When	a	server-side	operation	got	canceled	due	to	an	explicit	client	cancel	request	via	HTTP		DELETE	/_api/job	,	previous	versions	of
ArangoDB	returned	an	HTTP	status	code	of	408	(request	timeout)	for	the	response	of	the	canceled	operation.

The	HTTP	return	code	408	has	caused	problems	with	some	client	applications.	Some	browsers	(e.g.	Chrome)	handled	a	408	response	by
resending	the	original	request,	which	is	the	opposite	of	what	is	desired	when	a	job	should	be	canceled.

Therefore	ArangoDB	will	return	HTTP	status	code	410	(gone)	for	canceled	operations	from	version	2.8	on.

Foxx

Model	and	Repository

Due	to	compatibility	issues	the	Model	and	Repository	types	are	no	longer	implemented	as	ES2015	classes.

The	pre-2.7	"extend"	style	subclassing	is	supported	again	and	will	not	emit	any	deprecation	warnings.

var	Foxx	=	require('org/arangodb/foxx');

var	MyModel	=	Foxx.Model.extend({

		//	...

		schema:	{/*	...	*/}

});

Module	resolution

Incompatible	changes	in	2.8

543

The	behavior	of	the	JavaScript	module	resolution	used	by	the		require		function	has	been	modified	to	improve	compatibility	with
modules	written	for	Node.js.

Specifically

absolute	paths	(e.g.		/some/absolute/path)	are	now	always	interpreted	as	absolute	file	system	paths,	relative	to	the	file	system	root

global	names	(e.g.		global/name)	are	now	first	intepreted	as	references	to	modules	residing	in	a	relevant		node_modules		folder,	a
built-in	module	or	a	matching	document	in	the	internal		_modules		collection,	and	only	resolved	to	local	file	paths	if	no	other	match	is
found

Previously	the	two	formats	were	treated	interchangeably	and	would	be	resolved	to	local	file	paths	first,	leading	to	problems	when	local
files	used	the	same	names	as	other	modules	(e.g.	a	local	file		chai.js		would	cause	problems	when	trying	to	load	the		chai		module
installed	in		node_modules).

For	more	information	see	the	blog	announcement	of	this	change	and	the	upgrade	guide.

Module		org/arangodb/request	

The	module	now	always	returns	response	bodies,	even	for	error	responses.	In	versions	prior	to	2.8	the	module	would	silently	drop
response	bodies	if	the	response	header	indicated	an	error.

The	old	behavior	of	not	returning	bodies	for	error	responses	can	be	restored	by	explicitly	setting	the	option		returnBodyOnError		to
	false	:

let	response	=	request({

		//...

		returnBodyOnError:	false

});

Garbage	collection

The	V8	garbage	collection	strategy	was	slightly	adjusted	so	that	it	eventually	happens	in	all	V8	contexts	that	hold	V8	external	objects
(references	to	ArangoDB	documents	and	collections).	This	enables	a	better	cleanup	of	these	resources	and	prevents	other	processes	such
as	compaction	being	stalled	while	waiting	for	these	resources	to	be	released.

In	this	context	the	default	value	for	the	JavaScript	garbage	collection	frequency	(--javascript.gc-frequency)	was	also	increased	from	10
seconds	to	15	seconds,	as	less	internal	operations	in	ArangoDB	are	carried	out	in	JavaScript.

Client	tools

arangodump	will	now	fail	by	default	when	trying	to	dump	edges	that	refer	to	already	dropped	collections.	This	can	be	circumvented	by
specifying	the	option		--force	true		when	invoking	arangodump

Incompatible	changes	in	2.8

544

https://www.arangodb.com/2015/11/foxx-module-resolution-will-change-in-2-8/

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.7.	ArangoDB	2.7	also	contains	several
bugfixes	that	are	not	listed	here.	For	a	list	of	bugfixes,	please	consult	the	CHANGELOG.

Performance	improvements

Index	buckets

The	primary	indexes	and	hash	indexes	of	collections	can	now	be	split	into	multiple	index	buckets.	This	option	was	available	for	edge
indexes	only	in	ArangoDB	2.6.

A	bucket	can	be	considered	a	container	for	a	specific	range	of	index	values.	For	primary,	hash	and	edge	indexes,	determining	the
responsible	bucket	for	an	index	value	is	done	by	hashing	the	actual	index	value	and	applying	a	simple	arithmetic	operation	on	the	hash.

Because	an	index	value	will	be	present	in	at	most	one	bucket	and	buckets	are	independent,	using	multiple	buckets	provides	the	following
benefits:

initially	building	the	in-memory	index	data	can	be	parallelized	even	for	a	single	index,	with	one	thread	per	bucket	(or	with	threads
being	responsible	for	more	than	one	bucket	at	a	time).	This	can	help	reducing	the	loading	time	for	collections.

resizing	an	index	when	it	is	about	to	run	out	of	reserve	space	is	performed	per	bucket.	As	each	bucket	only	contains	a	fraction	of	the
entire	index,	resizing	and	rehashing	a	bucket	is	much	faster	and	less	intrusive	than	resizing	and	rehashing	the	entire	index.

When	creating	new	collections,	the	default	number	of	index	buckets	is		8		since	ArangoDB	2.7.	In	previous	versions,	the	default	value
was		1	.	The	number	of	buckets	can	also	be	adjusted	for	existing	collections	so	they	can	benefit	from	the	optimizations.	The	number	of
index	buckets	can	be	set	for	a	collection	at	any	time	by	using	a	collection's		properties		function:

				db.collection.properties({	indexBuckets:	16	});

The	number	of	index	buckets	must	be	a	power	of	2.

Please	note	that	for	building	the	index	data	for	multiple	buckets	in	parallel	it	is	required	that	a	collection	contains	a	significant	amount	of
documents	because	for	a	low	number	of	documents	the	overhead	of	parallelization	will	outweigh	its	benefits.	The	current	threshold	value
is	256k	documents,	but	this	value	may	change	in	future	versions	of	ArangoDB.	Additionally,	the	configuration	option		--database.index-
threads		will	determine	how	many	parallel	threads	may	be	used	for	building	the	index	data.

Faster	update	and	remove	operations	in	non-unique	hash	indexes

The	unique	hash	indexes	in	ArangoDB	provided	an	amortized	O(1)	lookup,	insert,	update	and	remove	performance.	Non-unique	hash
indexes	provided	amortized	O(1)	insert	performance,	but	had	worse	performance	for	update	and	remove	operations	for	non-unique
values.	For	documents	with	the	same	index	value,	they	maintained	a	list	of	collisions.	When	a	document	was	updated	or	removed,	that
exact	document	had	to	be	found	in	the	collisions	list	for	the	index	value.	While	getting	to	the	start	of	the	collisions	list	was	O(1),	scanning
the	list	had	O(n)	performance	in	the	worst	case	(with	n	being	the	number	of	documents	with	the	same	index	value).	Overall,	this	made
update	and	remove	operations	in	non-unique	hash	indexes	slow	if	the	index	contained	many	duplicate	values.

This	has	been	changed	in	ArangoDB	2.7	so	that	non-unique	hash	indexes	now	also	provide	update	and	remove	operations	with	an
amortized	complexity	of	O(1),	even	if	there	are	many	duplicates.

Resizing	non-unique	hash	indexes	now	also	doesn't	require	looking	into	the	document	data	(which	may	involve	a	disk	access)	because	the
index	maintains	some	internal	cache	value	per	document.	When	resizing	and	rehashing	the	index	(or	an	index	bucket),	the	index	will	first
compare	only	the	cache	values	before	peeking	into	the	actual	documents.	This	change	can	also	lead	to	reduced	index	resizing	times.

Throughput	enhancements

The	ArangoDB-internal	implementations	for	dispatching	requests,	keeping	statistics	and	assigning	V8	contexts	to	threads	have	been
improved	in	order	to	use	less	locks.	These	changes	allow	higher	concurrency	and	throughput	in	these	components,	which	can	also	make
the	server	handle	more	requests	in	a	given	period	of	time.

Whats	New	in	2.7

545

https://github.com/arangodb/arangodb/blob/devel/CHANGELOG

What	gains	can	be	expected	depends	on	which	operations	are	executed,	but	there	are	real-world	cases	in	which	throughput	increased	by
between	25	%	and	70	%	when	compared	to	2.6.

Madvise	hints

The	Linux	variant	for	ArangoDB	provides	the	OS	with	madvise	hints	about	index	memory	and	datafile	memory.	These	hints	can	speed
up	things	when	memory	is	tight,	in	particular	at	collection	load	time	but	also	for	random	accesses	later.	There	is	no	formal	guarantee	that
the	OS	actually	uses	the	madvise	hints	provided	by	ArangoDB,	but	actual	measurements	have	shown	improvements	for	loading	bigger
collections.

AQL	improvements

Additional	date	functions

ArangoDB	2.7	provides	several	extra	AQL	functions	for	date	and	time	calculation	and	manipulation.	These	functions	were	contributed	by
GitHub	users	@CoDEmanX	and	@friday.	A	big	thanks	for	their	work!

The	following	extra	date	functions	are	available	from	2.7	on:

	DATE_DAYOFYEAR(date)	:	Returns	the	day	of	year	number	of	date.	The	return	values	range	from	1	to	365,	or	366	in	a	leap	year
respectively.

	DATE_ISOWEEK(date)	:	Returns	the	ISO	week	date	of	date.	The	return	values	range	from	1	to	53.	Monday	is	considered	the	first	day
of	the	week.	There	are	no	fractional	weeks,	thus	the	last	days	in	December	may	belong	to	the	first	week	of	the	next	year,	and	the
first	days	in	January	may	be	part	of	the	previous	year's	last	week.

	DATE_LEAPYEAR(date)	:	Returns	whether	the	year	of	date	is	a	leap	year.

	DATE_QUARTER(date)	:	Returns	the	quarter	of	the	given	date	(1-based):

1:	January,	February,	March
2:	April,	May,	June
3:	July,	August,	September
4:	October,	November,	December

DATE_DAYS_IN_MONTH(date):	Returns	the	number	of	days	in	date's	month	(28..31).

	DATE_ADD(date,	amount,	unit)	:	Adds	amount	given	in	unit	to	date	and	returns	the	calculated	date.

unit	can	be	either	of	the	following	to	specify	the	time	unit	to	add	or	subtract	(case-insensitive):

y,	year,	years
m,	month,	months
w,	week,	weeks
d,	day,	days
h,	hour,	hours
i,	minute,	minutes
s,	second,	seconds
f,	millisecond,	milliseconds

amount	is	the	number	of	units	to	add	(positive	value)	or	subtract	(negative	value).

	DATE_SUBTRACT(date,	amount,	unit)	:	Subtracts	amount	given	in	unit	from	date	and	returns	the	calculated	date.

It	works	the	same	as		DATE_ADD()	,	except	that	it	subtracts.	It	is	equivalent	to	calling		DATE_ADD()		with	a	negative	amount,	except
that		DATE_SUBTRACT()		can	also	subtract	ISO	durations.	Note	that	negative	ISO	durations	are	not	supported	(i.e.	starting	with		-P	,
like		-P1Y).

	DATE_DIFF(date1,	date2,	unit,	asFloat)	:	Calculate	the	difference	between	two	dates	in	given	time	unit,	optionally	with	decimal
places.	Returns	a	negative	value	if	date1	is	greater	than	date2.

	DATE_COMPARE(date1,	date2,	unitRangeStart,	unitRangeEnd)	:	Compare	two	partial	dates	and	return	true	if	they	match,	false
otherwise.	The	parts	to	compare	are	defined	by	a	range	of	time	units.

Whats	New	in	2.7

546

https://www.arangodb.com/2015/08/throughput-enhancements/

The	full	range	is:	years,	months,	days,	hours,	minutes,	seconds,	milliseconds.	Pass	the	unit	to	start	from	as	unitRangeStart,	and	the
unit	to	end	with	as	unitRangeEnd.	All	units	in	between	will	be	compared.	Leave	out	unitRangeEnd	to	only	compare	unitRangeStart.

	DATE_FORMAT(date,	format)	:	Format	a	date	according	to	the	given	format	string.	It	supports	the	following	placeholders	(case-
insensitive):

%t:	timestamp,	in	milliseconds	since	midnight	1970-01-01
%z:	ISO	date	(0000-00-00T00:00:00.000Z)
%w:	day	of	week	(0..6)
%y:	year	(0..9999)
%yy:	year	(00..99),	abbreviated	(last	two	digits)
%yyyy:	year	(0000..9999),	padded	to	length	of	4
%yyyyyy:	year	(-009999	..	+009999),	with	sign	prefix	and	padded	to	length	of	6
%m:	month	(1..12)
%mm:	month	(01..12),	padded	to	length	of	2
%d:	day	(1..31)
%dd:	day	(01..31),	padded	to	length	of	2
%h:	hour	(0..23)
%hh:	hour	(00..23),	padded	to	length	of	2
%i:	minute	(0..59)
%ii:	minute	(00..59),	padded	to	length	of	2
%s:	second	(0..59)
%ss:	second	(00..59),	padded	to	length	of	2
%f:	millisecond	(0..999)
%fff:	millisecond	(000..999),	padded	to	length	of	3
%x:	day	of	year	(1..366)
%xxx:	day	of	year	(001..366),	padded	to	length	of	3
%k:	ISO	week	date	(1..53)
%kk:	ISO	week	date	(01..53),	padded	to	length	of	2
%l:	leap	year	(0	or	1)
%q:	quarter	(1..4)
%a:	days	in	month	(28..31)
%mmm:	abbreviated	English	name	of	month	(Jan..Dec)
%mmmm:	English	name	of	month	(January..December)
%www:	abbreviated	English	name	of	weekday	(Sun..Sat)
%wwww:	English	name	of	weekday	(Sunday..Saturday)
%&:	special	escape	sequence	for	rare	occasions
%%:	literal	%
%:	ignored

RETURN	DISTINCT

To	return	unique	values	from	a	query,	AQL	now	provides	the		DISTINCT		keyword.	It	can	be	used	as	a	modifier	for		RETURN		statements,
as	a	shorter	alternative	to	the	already	existing		COLLECT		statement.

For	example,	the	following	query	only	returns	distinct	(unique)		status		attribute	values	from	the	collection:

				FOR	doc	IN	collection

						RETURN	DISTINCT	doc.status

	RETURN	DISTINCT		is	not	allowed	on	the	top-level	of	a	query	if	there	is	no		FOR		loop	in	front	of	it.		RETURN	DISTINCT		is	allowed	in
subqueries.

	RETURN	DISTINCT		ensures	that	the	values	returned	are	distinct	(unique),	but	does	not	guarantee	any	order	of	results.	In	order	to	have
certain	result	order,	an	additional		SORT		statement	must	be	added	to	a	query.

Shorthand	object	notation

Whats	New	in	2.7

547

AQL	now	provides	a	shorthand	notation	for	object	literals	in	the	style	of	ES6	object	literals:

				LET	name	=	"Peter"

				LET	age	=	42

				RETURN	{	name,	age	}

This	is	equivalent	to	the	previously	available	canonical	form,	which	is	still	available	and	supported:

				LET	name	=	"Peter"

				LET	age	=	42

				RETURN	{	name	:	name,	age	:	age	}

Array	expansion	improvements

The	already	existing	[*]	operator	has	been	improved	with	optional	filtering	and	projection	and	limit	capabilities.

For	example,	consider	the	following	example	query	that	filters	values	from	an	array	attribute:

				FOR	u	IN	users

						RETURN	{

								name:	u.name,

								friends:	(

										FOR	f	IN	u.friends

												FILTER	f.age	>	u.age

												RETURN	f.name

)

						}

With	the	[*]	operator,	this	query	can	be	simplified	to

				FOR	u	IN	users	

						RETURN	{	name:	u.name,	friends:	u.friends[*	FILTER	CURRENT.age	>	u.age].name	}

The	pseudo-variable	CURRENT	can	be	used	to	access	the	current	array	element.	The		FILTER		condition	can	refer	to		CURRENT		or	any
variables	valid	in	the	outer	scope.

To	return	a	projection	of	the	current	element,	there	can	now	be	an	inline		RETURN	:

				FOR	u	IN	users	

						RETURN	u.friends[*	RETURN	CONCAT(CURRENT.name,	"	is	a	friend	of	",	u.name)]

which	is	the	simplified	variant	for:

				FOR	u	IN	users	

						RETURN	(

								FOR	friend	IN	u.friends

										RETURN	CONCAT(friend.name,	"	is	a	friend	of	",	u.name)

)

Array	contraction

In	order	to	collapse	(or	flatten)	results	in	nested	arrays,	AQL	now	provides	the	[**]	operator.	It	works	similar	to	the	[*]	operator,	but
additionally	collapses	nested	arrays.	How	many	levels	are	collapsed	is	determined	by	the	amount	of	*	characters	used.

For	example,	consider	the	following	query	that	produces	a	nested	result:

				FOR	u	IN	users	

						RETURN	u.friends[*].name

The	[**]	operator	can	now	be	applied	to	get	rid	of	the	nested	array	and	turn	it	into	a	flat	array.	We	simply	apply	the	[**]	on	the
previous	query	result:

Whats	New	in	2.7

548

				RETURN	(

						FOR	u	IN	users	RETURN	u.friends[*].name

)[**]

Template	query	strings

Assembling	query	strings	in	JavaScript	has	been	error-prone	when	using	simple	string	concatenation,	especially	because	plain	JavaScript
strings	do	not	have	multiline-support,	and	because	of	potential	parameter	injection	issues.	While	multiline	query	strings	can	be	assembled
with	ES6	template	strings	since	ArangoDB	2.5,	and	query	bind	parameters	are	there	since	ArangoDB	1.0	to	prevent	parameter	injection,
there	was	no	JavaScript-y	solution	to	combine	these.

ArangoDB	2.7	now	provides	an	ES6	template	string	generator	function	that	can	be	used	to	easily	and	safely	assemble	AQL	queries	from
JavaScript.	JavaScript	variables	and	expressions	can	be	used	easily	using	regular	ES6	template	string	substitutions:

				let	name	=	'test';

				let	attributeName	=	'_key';

				let	query	=	aqlQuery`FOR	u	IN	users	

						FILTER	u.name	==	${name}	

						RETURN	u.${attributeName}`;

				db._query(query);

This	is	more	legible	than	when	using	a	plain	JavaScript	string	and	also	does	not	require	defining	the	bind	parameter	values	separately:

				let	name	=	'test';

				let	attributeName	=	'_key';

				let	query	=	"FOR	u	IN	users	"	+

						"FILTER	u.name	==	@name	"	+	

						"RETURN	u.@attributeName";

				db._query(query,	{	

						name,	

						attributeName	

				});

The		aqlQuery		template	string	generator	will	also	handle	collection	objects	automatically:

				db._query(aqlQuery`FOR	u	IN	${	db.users	}	RETURN	u.name`);

Note	that	while	template	strings	are	available	in	the	JavaScript	functions	provided	to	build	queries,	they	aren't	a	feature	of	AQL	itself.
AQL	could	always	handle	multiline	query	strings	and	provided	bind	parameters	(@...)	for	separating	the	query	string	and	the
parameter	values.	The		aqlQuery		template	string	generator	function	will	take	care	of	this	separation,	too,	but	will	do	it	behind	the	scenes.

AQL	query	result	cache

The	AQL	query	result	cache	can	optionally	cache	the	complete	results	of	all	or	just	selected	AQL	queries.	It	can	be	operated	in	the
following	modes:

	off	:	the	cache	is	disabled.	No	query	results	will	be	stored
	on	:	the	cache	will	store	the	results	of	all	AQL	queries	unless	their		cache		attribute	flag	is	set	to		false	
	demand	:	the	cache	will	store	the	results	of	AQL	queries	that	have	their		cache		attribute	set	to		true	,	but	will	ignore	all	others

The	mode	can	be	set	at	server	startup	using	the		--database.query-cache-mode		configuration	option	and	later	changed	at	runtime.	The
default	value	is		off	,	meaning	that	the	query	result	cache	is	disabled.	This	is	because	the	cache	may	consume	additional	memory	to	keep
query	results,	and	also	because	it	must	be	invalidated	when	changes	happen	in	collections	for	which	results	have	been	cached.

The	query	result	cache	may	therefore	have	positive	or	negative	effects	on	query	execution	times,	depending	on	the	workload:	it	will	not
make	much	sense	turning	on	the	cache	in	write-only	or	write-mostly	scenarios,	but	the	cache	may	be	very	beneficial	in	case	workloads	are
read-only	or	read-mostly,	and	query	are	complex.

If	the	query	cache	is	operated	in		demand		mode,	it	can	be	controlled	per	query	if	the	cache	should	be	checked	for	a	result.

Whats	New	in	2.7

549

Miscellaneous	changes

Optimizer

The	AQL	optimizer	rule		patch-update-statements		has	been	added.	This	rule	can	optimize	certain	AQL	UPDATE	queries	that	update
documents	in	the	a	collection	that	they	also	iterate	over.

For	example,	the	following	query	reads	documents	from	a	collection	in	order	to	update	them:

				FOR	doc	IN	collection

						UPDATE	doc	WITH	{	newValue:	doc.oldValue	+	1	}	IN	collection

In	this	case,	only	a	single	collection	is	affected	by	the	query,	and	there	is	no	index	lookup	involved	to	find	the	to-be-updated	documents.
In	this	case,	the	UPDATE	query	does	not	require	taking	a	full,	memory-intensive	snapshot	of	the	collection,	but	it	can	be	performed	in
small	chunks.	This	can	lead	to	memory	savings	when	executing	such	queries.

Function	call	arguments	optimization

This	optimization	will	lead	to	arguments	in	function	calls	inside	AQL	queries	not	being	copied	but	being	passed	by	reference.	This	may
speed	up	calls	to	functions	with	bigger	argument	values	or	queries	that	call	AQL	functions	a	lot	of	times.

Web	Admin	Interface

The	web	interface	now	has	a	new	design.

The	"Applications"	tab	in	the	web	interfaces	has	been	renamed	to	"Services".

The	ArangoDB	API	documentation	has	been	moved	from	the	"Tools"	menu	to	the	"Links"	menu.	The	new	documentation	is	based	on
Swagger	2.0	and	opens	in	a	separate	web	page.

Foxx	improvements

ES2015	Classes

All	Foxx	constructors	have	been	replaced	with	ES2015	classes	and	can	be	extended	using	the	class	syntax.	The		extend		method	is	still
supported	at	the	moment	but	will	become	deprecated	in	ArangoDB	2.8	and	removed	in	ArangoDB	2.9.

Before:

var	Foxx	=	require('org/arangodb/foxx');

var	MyModel	=	Foxx.Model.extend({

		//	...

		schema:	{/*	...	*/}

});

After:

var	Foxx	=	require('org/arangodb/foxx');

class	MyModel	extends	Foxx.Model	{

		//	...

}

MyModel.prototype.schema	=	{/*	...	*/};

Confidential	configuration

It	is	now	possible	to	specify	configuration	options	with	the	type		password	.	The	password	type	is	equivalent	to	the	text	type	but	will
be	masked	in	the	web	frontend	to	prevent	accidental	exposure	of	confidential	options	like	API	keys	and	passwords	when	configuring
your	Foxx	application.

Whats	New	in	2.7

550

Dependencies

The	syntax	for	specifying	dependencies	in	manifests	has	been	extended	to	allow	specifying	optional	dependencies.	Unmet	optional
dependencies	will	not	prevent	an	app	from	being	mounted.	The	traditional	shorthand	syntax	for	specifying	non-optional	dependencies
will	still	be	supported	in	the	upcoming	versions	of	ArangoDB.

Before:

{

		...

		"dependencies":	{

				"notReallyNeeded":	"users:^1.0.0",

				"totallyNecessary":	"sessions:^1.0.0"

		}

}

After:

{

		"dependencies":	{

				"notReallyNeeded":	{

						"name":	"users",

						"version":	"^1.0.0",

						"required":	false

				},

				"totallyNecessary":	{

						"name":	"sessions",

						"version":	"^1.0.0"

				}

		}

}

Replication

The	existing	replication	HTTP	API	has	been	extended	with	methods	that	replication	clients	can	use	to	determine	whether	a	given	date,
identified	by	a	tick	value,	is	still	present	on	a	master	for	replication.	By	calling	these	APIs,	clients	can	make	an	informed	decision	about
whether	the	master	can	still	provide	all	missing	data	starting	from	the	point	up	to	which	the	client	had	already	synchronized.	This	can	be
helpful	in	case	a	replication	client	is	re-started	after	a	pause.

Master	servers	now	also	track	up	the	point	up	to	which	they	have	sent	changes	to	clients	for	replication.	This	information	can	be	used	to
determine	the	point	of	data	that	replication	clients	have	received	from	the	master,	and	if	and	how	far	approximately	they	lag	behind.

Finally,	restarting	the	replication	applier	on	a	slave	server	has	been	made	more	robust	in	case	the	applier	was	stopped	while	there	were
pending	transactions	on	the	master	server,	and	re-starting	the	replication	applier	needs	to	restore	the	state	of	these	transactions.

Client	tools

The	filenames	in	dumps	created	by	arangodump	now	contain	not	only	the	name	of	the	dumped	collection,	but	also	an	additional	32-digit
hash	value.	This	is	done	to	prevent	overwriting	dump	files	in	case-insensitive	file	systems	when	there	exist	multiple	collections	with	the
same	name	(but	with	different	cases).

For	example,	if	a	database	had	two	collections	test	and	Test,	previous	versions	of	arangodump	created	the	following	files:

	test.structure.json		and		test.data.json		for	collection	test
	Test.structure.json		and		Test.data.json		for	collection	Test

This	did	not	work	in	case-insensitive	filesystems,	because	the	files	for	the	second	collection	would	have	overwritten	the	files	of	the	first.
arangodump	in	2.7	will	create	the	unique	files	in	this	case,	by	appending	the	32-digit	hash	value	to	the	collection	name	in	all	case.	These
filenames	will	be	unambiguous	even	in	case-insensitive	filesystems.

Miscellaneous	changes

Whats	New	in	2.7

551

Better	control-C	support	in	arangosh

When	CTRL-C	is	pressed	in	arangosh,	it	will	now	abort	the	locally	running	command	(if	any).	If	no	command	was	running,	pressing
CTRL-C	will	print	a	 	̂ C		first.	Pressing	CTRL-C	again	will	then	quit	arangosh.

CTRL-C	can	also	be	used	to	reset	the	current	prompt	while	entering	complex	nested	objects	which	span	multiple	input	lines.

CTRL-C	support	has	been	added	to	the	ArangoShell	versions	built	with	Readline-support	(Linux	and	MacOS	only).	The	Windows
version	of	ArangoDB	uses	a	different	library	for	handling	input,	and	support	for	CTRL-C	has	not	been	added	there	yet.

Start	/	stop

Linux	startup	scripts	and	systemd	configuration	for	arangod	now	try	to	adjust	the	NOFILE	(number	of	open	files)	limits	for	the	process.
The	limit	value	is	set	to	131072	(128k)	when	ArangoDB	is	started	via	start/stop	commands.

This	will	prevent	arangod	running	out	of	available	file	descriptors	in	case	of	many	parallel	HTTP	connections	or	large	collections	with
many	datafiles.

Additionally,	when	ArangoDB	is	started/stopped	manually	via	the	start/stop	commands,	the	main	process	will	wait	for	up	to	10	seconds
after	it	forks	the	supervisor	and	arangod	child	processes.	If	the	startup	fails	within	that	period,	the	start/stop	script	will	fail	with	a	non-
zero	exit	code,	allowing	any	invoking	scripts	to	handle	this	error.	Previous	versions	always	returned	an	exit	code	of	0,	even	when	arangod
couldn't	be	started.

If	the	startup	of	the	supervisor	or	arangod	is	still	ongoing	after	10	seconds,	the	main	program	will	still	return	with	exit	code	0	in	order	to
not	block	any	scripts.	The	limit	of	10	seconds	is	arbitrary	because	the	time	required	for	an	arangod	startup	is	not	known	in	advance.

Non-sparse	logfiles

WAL	logfiles	and	datafiles	created	by	arangod	are	now	non-sparse.	This	prevents	SIGBUS	signals	being	raised	when	a	memory-mapped
region	backed	by	a	sparse	datafile	was	accessed	and	the	memory	region	was	not	actually	backed	by	disk,	for	example	because	the	disk	ran
out	of	space.

arangod	now	always	fully	allocates	the	disk	space	required	for	a	logfile	or	datafile	when	it	creates	one,	so	the	memory	region	can	always
be	backed	by	disk,	and	memory	can	be	accessed	without	SIGBUS	being	raised.

Whats	New	in	2.7

552

Incompatible	changes	in	ArangoDB	2.7
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	2.7,	and	adjust	any	client	programs
if	necessary.

AQL	changes

	DISTINCT		is	now	a	keyword	in	AQL.

AQL	queries	that	use		DISTINCT		(in	lower,	upper	or	mixed	case)	as	an	identifier	(i.e.	as	a	variable,	a	collection	name	or	a	function	name)
will	stop	working.	To	make	such	queries	working	again,	each	occurrence	of		DISTINCT		in	an	AQL	query	should	be	enclosed	in	backticks.
This	will	turn		DISTINCT		from	a	keyword	into	an	identifier	again.

The	AQL	function		SKIPLIST()		has	been	removed	in	ArangoDB	2.7.	This	function	was	deprecated	in	ArangoDB	2.6.	It	was	a	left-over
from	times	when	the	query	optimizer	wasn't	able	to	use	skiplist	indexes	together	with	filters,	skip	and	limit	values.	Since	this	issue	been
fixed	since	version	2.3,	there	is	no	AQL	replacement	function	for		SKIPLIST	.	Queries	that	use	the		SKIPLIST		function	can	be	fixed	by
using	the	usual	combination	of		FOR	,		FILTER		and		LIMIT	,	e.g.

				FOR	doc	IN	@@collection	

						FILTER	doc.value	>=	@value	

						SORT	doc.value	DESC	

						LIMIT	1	

						RETURN	doc

Foxx	changes

Bundling	and	compilation

The		assets		property	is	no	longer	supported	in	Foxx	manifests	and	is	scheduled	to	be	removed	in	a	future	version	of	ArangoDB.	The
	files		property	can	still	be	used	to	serve	static	assets	but	it	is	recommended	to	use	separate	tooling	to	compile	and	bundle	your	assets.

Manifest	scripts

The	properties		setup		and		teardown		have	been	moved	into	the		scripts		property	map:

Before:

{

		...

		"setup":	"scripts/setup.js",

		"teardown":	"scripts/teardown.js"

}

After:

{

		...

		"scripts":	{

				"setup":	"scripts/setup.js",

				"teardown":	"scripts/teardown.js"

		}

}

Foxx	Queues

Function-based	Foxx	Queue	job	types	are	no	longer	supported.	To	learn	about	how	you	can	use	the	new	script-based	job	types	follow
the	updated	recipe	in	the	cookbook.

Incompatible	changes	in	2.7

553

https://docs.arangodb.com/2.8/Cookbook/FoxxQueues.html

Foxx	Sessions

The		jwt		and		type		options	have	been	removed	from	the		activateSessions		API.

If	you	want	to	replicate	the	behavior	of	the		jwt		option	you	can	use	the	JWT	functions	in	the		crypto		module.	A	JWT-based	session
storage	that	doesn't	write	sessions	to	the	database	is	available	as	the	sessions-jwt	app	in	the	Foxx	app	store.

The	session	type	is	now	inferred	from	the	presence	of	the		cookie		or		header		options	(allowing	you	to	enable	support	for	both).	If	you
want	to	use	the	default	settings	for		cookie		or		header		you	can	pass	the	value		true		instead.

The		sessionStorageApp		option	has	been	removed	in	favour	of	the		sessionStorage		option.

Before:

var	Foxx	=	require('org/arangodb/foxx');

var	ctrl	=	new	Foxx.Controller(applicationContext);

ctrl.activateSessions({

		sessionStorageApp:	'some-sessions-app',

		type:	'cookie'

});

After:

ctrl.activateSessions({

		sessionStorage:	applicationContext.dependencies.sessions.sessionStorage,

		cookie:	true

});

Request	module

The	module		org/arangodb/request		uses	an	internal	library	function	for	sending	HTTP	requests.	This	library	functionally
unconditionally	set	an	HTTP	header		Accept-Encoding:	gzip		in	all	outgoing	HTTP	requests,	without	client	code	having	to	set	this	header
explicitly.

This	has	been	fixed	in	2.7,	so		Accept-Encoding:	gzip		is	not	set	automatically	anymore.	Additionally	the	header		User-Agent:	ArangoDB	
is	not	set	automatically	either.	If	client	applications	rely	on	these	headers	being	sent,	they	are	free	to	add	it	when	constructing	requests
using	the	request	module.

The		internal.download()		function	is	also	affected	by	this	change.	Again,	the	header	can	be	added	here	if	required	by	passing	it	via	a
	headers		sub-attribute	in	the	third	parameter	(options)	to	this	function.

arangodump	/	backups
The	filenames	in	dumps	created	by	arangodump	now	contain	not	only	the	name	of	the	dumped	collection,	but	also	an	additional	32-digit
hash	value.	This	is	done	to	prevent	overwriting	dump	files	in	case-insensitive	file	systems	when	there	exist	multiple	collections	with	the
same	name	(but	with	different	cases).

This	change	leads	to	changed	filenames	in	dumps	created	by	arangodump.	If	any	client	scripts	depend	on	the	filenames	in	the	dump
output	directory	being	equal	to	the	collection	name	plus	one	of	the	suffixes		.structure.json		and		.data.json	,	they	need	to	be	adjusted.

Starting	with	ArangoDB	2.7,	the	file	names	will	contain	an	underscore	plus	the	32-digit	MD5	value	(represented	in	hexadecimal	notation)
of	the	collection	name.

For	example,	when	arangodump	dumps	data	of	two	collections	test	and	Test,	the	filenames	in	previous	versions	of	ArangoDB	were:

	test.structure.json		(definitions	for	collection	test)
	test.data.json		(data	for	collection	test)
	Test.structure.json		(definitions	for	collection	Test)
	Test.data.json		(data	for	collection	Test)

In	2.7,	the	filenames	will	be:

	test_098f6bcd4621d373cade4e832627b4f6.structure.json		(definitions	for	collection	test)

Incompatible	changes	in	2.7

554

https://github.com/arangodb/foxx-sessions-jwt

	test_098f6bcd4621d373cade4e832627b4f6.data.json		(data	for	collection	test)
	Test_0cbc6611f5540bd0809a388dc95a615b.structure.json		(definitions	for	collection	Test)
	Test_0cbc6611f5540bd0809a388dc95a615b.data.json		(data	for	collection	Test)

Starting	/	stopping

When	starting	arangod,	the	server	will	now	drop	the	process	privileges	to	the	specified	values	in	options		--server.uid		and		--
server.gid		instantly	after	parsing	the	startup	options.

That	means	when	either		--server.uid		or		--server.gid		are	set,	the	privilege	change	will	happen	earlier.	This	may	prevent	binding	the
server	to	an	endpoint	with	a	port	number	lower	than	1024	if	the	arangodb	user	has	no	privileges	for	that.	Previous	versions	of	ArangoDB
changed	the	privileges	later,	so	some	startup	actions	were	still	carried	out	under	the	invoking	user	(i.e.	likely	root	when	started	via	init.d
or	system	scripts)	and	especially	binding	to	low	port	numbers	was	still	possible	there.

The	default	privileges	for	user	arangodb	will	not	be	sufficient	for	binding	to	port	numbers	lower	than	1024.	To	have	an	ArangoDB	2.7
bind	to	a	port	number	lower	than	1024,	it	needs	to	be	started	with	either	a	different	privileged	user,	or	the	privileges	of	the	arangodb	user
have	to	raised	manually	beforehand.

Additionally,	Linux	startup	scripts	and	systemd	configuration	for	arangod	now	will	adjust	the	NOFILE	(number	of	open	files)	limits	for
the	process.	The	limit	value	is	set	to	131072	(128k)	when	ArangoDB	is	started	via	start/stop	commands.	The	goal	of	this	change	is	to
prevent	arangod	from	running	out	of	available	file	descriptors	for	socket	connections	and	datafiles.

Connection	handling

arangod	will	now	actually	close	lingering	client	connections	when	idle	for	at	least	the	duration	specified	in	the		--server.keep-alive-
timeout		startup	option.

In	previous	versions	of	ArangoDB,	idle	connections	were	not	closed	by	the	server	when	the	timeout	was	reached	and	the	client	was	still
connected.	Now	the	connection	is	properly	closed	by	the	server	in	case	of	timeout.	Client	applications	relying	on	the	old	behavior	may
now	need	to	reconnect	to	the	server	when	their	idle	connections	time	out	and	get	closed	(note:	connections	being	idle	for	a	long	time	may
be	closed	by	the	OS	or	firewalls	anyway	-	client	applications	should	be	aware	of	that	and	try	to	reconnect).

Option	changes

Configure	options	removed

The	following	options	for		configure		have	been	removed	because	they	were	unused	or	exotic:

	--enable-timings	

	--enable-figures	

Startup	options	added

The	following	configuration	options	have	been	added	in	2.7:

	--database.query-cache-max-results	:	sets	the	maximum	number	of	results	in	AQL	query	result	cache	per	database
	--database.query-cache-mode	:	sets	the	mode	for	the	AQL	query	results	cache.	Possible	values	are		on	,		off		and		demand	.	The
default	value	is		off	

Miscellaneous	changes

Simple	queries

Many	simple	queries	provide	a		skip()		function	that	can	be	used	to	skip	over	a	certain	number	of	documents	in	the	result.	This	function
allowed	specifying	negative	offsets	in	previous	versions	of	ArangoDB.	Specifying	a	negative	offset	led	to	the	query	result	being	iterated
in	reverse	order,	so	skipping	was	performed	from	the	back	of	the	result.	As	most	simple	queries	do	not	provide	a	guaranteed	result	order,

Incompatible	changes	in	2.7

555

skipping	from	the	back	of	a	result	with	unspecific	order	seems	a	rather	exotic	use	case	and	was	removed	to	increase	consistency	with

AQL,	which	also	does	not	provide	negative	skip	values.

Negative	skip	values	were	deprecated	in	ArangoDB	2.6.

Tasks	API

The	undocumented	function		addJob()		has	been	removed	from	the		org/arangodb/tasks		module	in	ArangoDB	2.7.

Runtime	endpoints	manipulation	API

The	following	HTTP	REST	API	methods	for	runtime	manipulation	of	server	endpoints	have	been	removed	in	ArangoDB	2.7:

POST		/_api/endpoint	:	to	dynamically	add	an	endpoint	while	the	server	was	running
DELETE		/_api/endpoint	:	to	dynamically	remove	an	endpoint	while	the	server	was	running

This	change	also	affects	the	equivalent	JavaScript	endpoint	manipulation	methods	available	in	Foxx.	The	following	functions	have	been
removed	in	ArangoDB	2.7:

	db._configureEndpoint()	

	db._removeEndpoint()	

Incompatible	changes	in	2.7

556

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.6.	ArangoDB	2.6	also	contains	several
bugfixes	that	are	not	listed	here.	For	a	list	of	bugfixes,	please	consult	the	CHANGELOG.

APIs	added

Batch	document	removal	and	lookup	commands

The	following	commands	have	been	added	for		collection		objects:

collection.lookupByKeys(keys)
collection.removeByKeys(keys)

These	commands	can	be	used	to	perform	multi-document	lookup	and	removal	operations	efficiently	from	the	ArangoShell.	The	argument
to	these	operations	is	an	array	of	document	keys.

These	commands	can	also	be	used	via	the	HTTP	REST	API.	Their	endpoints	are:

PUT	/_api/simple/lookup-by-keys
PUT	/_api/simple/remove-by-keys

Collection	export	HTTP	REST	API

ArangoDB	now	provides	a	dedicated	collection	export	API,	which	can	take	snapshots	of	entire	collections	more	efficiently	than	the
general-purpose	cursor	API.	The	export	API	is	useful	to	transfer	the	contents	of	an	entire	collection	to	a	client	application.	It	provides
optional	filtering	on	specific	attributes.

The	export	API	is	available	at	endpoint		POST	/_api/export?collection=...	.	The	API	has	the	same	return	value	structure	as	the	already
established	cursor	API	(POST	/_api/cursor).

An	introduction	to	the	export	API	is	given	in	this	blog	post:	http://jsteemann.github.io/blog/2015/04/04/more-efficient-data-exports/

AQL	improvements

EDGES	AQL	Function

The	AQL	function	EDGES	got	a	new	fifth	optional	parameter,	which	must	be	an	object	if	specified.	Right	now	only	one	option	is
available	for	it:

	includeVertices		this	is	a	boolean	parameter	that	allows	to	modify	the	result	of		EDGES()	.	The	default	value	for		includeVertices	
is		false	,	which	does	not	have	any	effect.	Setting	it	to		true		will	modify	the	result,	such	that	also	the	connected	vertices	are
returned	along	with	the	edges:

{	vertex:	<vertexDocument>,	edge:	<edgeDocument>	}	

Subquery	optimizations	for	AQL	queries

This	optimization	avoids	copying	intermediate	results	into	subqueries	that	are	not	required	by	the	subquery.

A	brief	description	can	be	found	here:	http://jsteemann.github.io/blog/2015/05/04/subquery-optimizations/

Return	value	optimization	for	AQL	queries

This	optimization	avoids	copying	the	final	query	result	inside	the	query's	main		ReturnNode	.

A	brief	description	can	be	found	here:	http://jsteemann.github.io/blog/2015/05/04/return-value-optimization-for-aql/

Whats	New	in	2.6

557

https://github.com/arangodb/arangodb/blob/devel/CHANGELOG
http://jsteemann.github.io/blog/2015/04/04/more-efficient-data-exports/
http://jsteemann.github.io/blog/2015/05/04/subquery-optimizations/
http://jsteemann.github.io/blog/2015/05/04/return-value-optimization-for-aql/

Speed	up	AQL	queries	containing	big		IN		lists	for	index	lookups

	IN		lists	used	for	index	lookups	had	performance	issues	in	previous	versions	of	ArangoDB.	These	issues	have	been	addressed	in	2.6	so
using	bigger		IN		lists	for	filtering	is	much	faster.

A	brief	description	can	be	found	here:	http://jsteemann.github.io/blog/2015/05/07/in-list-improvements/

Added	alternative	implementation	for	AQL	COLLECT

The	alternative	method	uses	a	hash	table	for	grouping	and	does	not	require	its	input	elements	to	be	sorted.	It	will	be	taken	into	account
by	the	optimizer	for		COLLECT		statements	that	do	not	use	an		INTO		clause.

In	case	a		COLLECT		statement	can	use	the	hash	table	variant,	the	optimizer	will	create	an	extra	plan	for	it	at	the	beginning	of	the	planning
phase.	In	this	plan,	no	extra		SORT		node	will	be	added	in	front	of	the		COLLECT		because	the	hash	table	variant	of		COLLECT		does	not
require	sorted	input.	Instead,	a		SORT		node	will	be	added	after	it	to	sort	its	output.	This		SORT		node	may	be	optimized	away	again	in
later	stages.	If	the	sort	order	of	the	result	is	irrelevant	to	the	user,	adding	an	extra		SORT	null		after	a	hash		COLLECT		operation	will	allow
the	optimizer	to	remove	the	sorts	altogether.

In	addition	to	the	hash	table	variant	of		COLLECT	,	the	optimizer	will	modify	the	original	plan	to	use	the	regular		COLLECT		implementation.
As	this	implementation	requires	sorted	input,	the	optimizer	will	insert	a		SORT		node	in	front	of	the		COLLECT	.	This		SORT		node	may	be
optimized	away	in	later	stages.

The	created	plans	will	then	be	shipped	through	the	regular	optimization	pipeline.	In	the	end,	the	optimizer	will	pick	the	plan	with	the
lowest	estimated	total	cost	as	usual.	The	hash	table	variant	does	not	require	an	up-front	sort	of	the	input,	and	will	thus	be	preferred	over
the	regular		COLLECT		if	the	optimizer	estimates	many	input	elements	for	the		COLLECT		node	and	cannot	use	an	index	to	sort	them.

The	optimizer	can	be	explicitly	told	to	use	the	regular	sorted	variant	of		COLLECT		by	suffixing	a		COLLECT		statement	with		OPTIONS	{
"method"	:	"sorted"	}	.	This	will	override	the	optimizer	guesswork	and	only	produce	the	sorted	variant	of		COLLECT	.

A	blog	post	on	the	new		COLLECT		implementation	can	be	found	here:	http://jsteemann.github.io/blog/2015/04/22/collecting-with-a-hash-
table/

Simplified	return	value	syntax	for	data-modification	AQL	queries

ArangoDB	2.4	since	version	allows	to	return	results	from	data-modification	AQL	queries.	The	syntax	for	this	was	quite	limited	and
verbose:

FOR	i	IN	1..10

		INSERT	{	value:	i	}	IN	test

		LET	inserted	=	NEW

		RETURN	inserted

The		LET	inserted	=	NEW	RETURN	inserted		was	required	literally	to	return	the	inserted	documents.	No	calculations	could	be	made	using
the	inserted	documents.

This	is	now	more	flexible.	After	a	data-modification	clause	(e.g.		INSERT	,		UPDATE	,		REPLACE	,		REMOVE	,		UPSERT)	there	can	follow	any
number	of		LET		calculations.	These	calculations	can	refer	to	the	pseudo-values		OLD		and		NEW		that	are	created	by	the	data-modification
statements.

This	allows	returning	projections	of	inserted	or	updated	documents,	e.g.:

FOR	i	IN	1..10

		INSERT	{	value:	i	}	IN	test

		RETURN	{	_key:	NEW._key,	value:	i	}

Still	not	every	construct	is	allowed	after	a	data-modification	clause.	For	example,	no	functions	can	be	called	that	may	access	documents.

More	information	can	be	found	here:	http://jsteemann.github.io/blog/2015/03/27/improvements-for-data-modification-queries/

Added	AQL		UPSERT		statement

Whats	New	in	2.6

558

http://jsteemann.github.io/blog/2015/05/07/in-list-improvements/
http://jsteemann.github.io/blog/2015/04/22/collecting-with-a-hash-table/
http://jsteemann.github.io/blog/2015/03/27/improvements-for-data-modification-queries/

This	adds	an		UPSERT		statement	to	AQL	that	is	a	combination	of	both		INSERT		and		UPDATE		/		REPLACE	.	The		UPSERT		will	search	for	a
matching	document	using	a	user-provided	example.	If	no	document	matches	the	example,	the	insert	part	of	the		UPSERT		statement	will	be
executed.	If	there	is	a	match,	the	update	/	replace	part	will	be	carried	out:

UPSERT	{	page:	'index.html'	}															/*	search	example	*/

INSERT	{	page:	'index.html',	pageViews:	1	}	/*	insert	part	*/

UPDATE	{	pageViews:	OLD.pageViews	+	1	}					/*	update	part	*/

IN	pageViews

	UPSERT		can	be	used	with	an		UPDATE		or		REPLACE		clause.	The		UPDATE		clause	will	perform	a	partial	update	of	the	found	document,
whereas	the		REPLACE		clause	will	replace	the	found	document	entirely.	The		UPDATE		or		REPLACE		parts	can	refer	to	the	pseudo-value
	OLD	,	which	contains	all	attributes	of	the	found	document.

	UPSERT		statements	can	optionally	return	values.	In	the	following	query,	the	return	attribute		found		will	return	the	found	document
before	the		UPDATE		was	applied.	If	no	document	was	found,		found		will	contain	a	value	of		null	.	The		updated		result	attribute	will
contain	the	inserted	/	updated	document:

UPSERT	{	page:	'index.html'	}															/*	search	example	*/

INSERT	{	page:	'index.html',	pageViews:	1	}	/*	insert	part	*/

UPDATE	{	pageViews:	OLD.pageViews	+	1	}					/*	update	part	*/

IN	pageViews

RETURN	{	found:	OLD,	updated:	NEW	}

A	more	detailed	description	of		UPSERT		can	be	found	here:	http://jsteemann.github.io/blog/2015/03/27/preview-of-the-upsert-command/

Miscellaneous	changes

When	errors	occur	inside	AQL	user	functions,	the	error	message	will	now	contain	a	stacktrace,	indicating	the	line	of	code	in	which	the
error	occurred.	This	should	make	debugging	AQL	user	functions	easier.

Web	Admin	Interface
ArangoDB's	built-in	web	interface	now	uses	sessions.	Session	information	is	stored	in	cookies,	so	clients	using	the	web	interface	must
accept	cookies	in	order	to	use	it.

The	new	startup	option		--server.session-timeout		can	be	used	for	adjusting	the	session	lifetime.

The	AQL	editor	in	the	web	interface	now	provides	an	explain	functionality,	which	can	be	used	for	inspecting	and	performance-tuning
AQL	queries.	The	query	execution	time	is	now	also	displayed	in	the	AQL	editor.

Foxx	apps	that	require	configuration	or	are	missing	dependencies	are	now	indicated	in	the	app	overview	and	details.

Foxx	improvements

Configuration	and	Dependencies

Foxx	app	manifests	can	now	define	configuration	options,	as	well	as	dependencies	on	other	Foxx	apps.

An	introduction	to	Foxx	configurations	can	be	found	in	the	blog:	https://www.arangodb.com/2015/05/reusable-foxx-apps-with-
configurations/

And	the	blog	post	on	Foxx	dependencies	can	be	found	here:	https://www.arangodb.com/2015/05/foxx-dependencies-for-more-
composable-foxx-apps/

Mocha	Tests

You	can	now	write	tests	for	your	Foxx	apps	using	the	Mocha	testing	framework:	https://www.arangodb.com/2015/04/testing-foxx-mocha/

A	recipe	for	writing	tests	for	your	Foxx	apps	can	be	found	in	the	cookbook:	https://docs.arangodb.com/2.8/Cookbook/FoxxTesting.html

Whats	New	in	2.6

559

http://jsteemann.github.io/blog/2015/03/27/preview-of-the-upsert-command/
https://www.arangodb.com/2015/05/reusable-foxx-apps-with-configurations/
https://www.arangodb.com/2015/05/foxx-dependencies-for-more-composable-foxx-apps/
https://www.arangodb.com/2015/04/testing-foxx-mocha/
https://docs.arangodb.com/2.8/Cookbook/FoxxTesting.html

API	Documentation

The	API	documentation	has	been	updated	to	Swagger	2.	You	can	now	also	mount	API	documentation	in	your	own	Foxx	apps.

Also	see	the	blog	post	introducing	this	feature:	https://www.arangodb.com/2015/05/document-your-foxx-apps-with-swagger-2/

Custom	Scripts	and	Foxx	Queue

In	addition	to	the	existing	setup	and	teardown	scripts	you	can	now	define	custom	scripts	in	your	Foxx	manifest	and	invoke	these	using
the	web	admin	interface	or	the	Foxx	manager	CLI.	These	scripts	can	now	also	take	positional	arguments	and	export	return	values.

Job	types	for	the	Foxx	Queue	can	now	be	defined	as	a	script	name	and	app	mount	path	allowing	the	use	of	Foxx	scripts	as	job	types.
The	pre-2.6	job	types	are	known	to	cause	issues	when	restarting	the	server	and	are	error-prone;	we	strongly	recommended	converting
any	existing	job	types	to	the	new	format.

Client	tools

The	default	configuration	value	for	the	option		--server.request-timeout		was	increased	from	300	to	1200	seconds	for	all	client	tools
(arangosh,	arangoimp,	arangodump,	arangorestore).

The	default	configuration	value	for	the	option		--server.connect-timeout		was	increased	from	3	to	5	seconds	for	client	tools	(arangosh,
arangoimp,	arangodump,	arangorestore).

Arangorestore

The	option		--create-database		was	added	for	arangorestore.

Setting	this	option	to		true		will	now	create	the	target	database	if	it	does	not	exist.	When	creating	the	target	database,	the	username	and
passwords	passed	to	arangorestore	will	be	used	to	create	an	initial	user	for	the	new	database.

The	default	value	for	this	option	is		false	.

Arangoimp

Arangoimp	can	now	optionally	update	or	replace	existing	documents,	provided	the	import	data	contains	documents	with		_key	
attributes.

Previously,	the	import	could	be	used	for	inserting	new	documents	only,	and	re-inserting	a	document	with	an	existing	key	would	have
failed	with	a	unique	key	constraint	violated	error.

The	behavior	of	arangoimp	(insert,	update,	replace	on	duplicate	key)	can	now	be	controlled	with	the	option		--on-duplicate	.	The	option
can	have	one	of	the	following	values:

	error	:	when	a	unique	key	constraint	error	occurs,	do	not	import	or	update	the	document	but	report	an	error.	This	is	the	default.

	update	:	when	a	unique	key	constraint	error	occurs,	try	to	(partially)	update	the	existing	document	with	the	data	specified	in	the
import.	This	may	still	fail	if	the	document	would	violate	secondary	unique	indexes.	Only	the	attributes	present	in	the	import	data
will	be	updated	and	other	attributes	already	present	will	be	preserved.	The	number	of	updated	documents	will	be	reported	in	the
	updated		attribute	of	the	HTTP	API	result.

	replace	:	when	a	unique	key	constraint	error	occurs,	try	to	fully	replace	the	existing	document	with	the	data	specified	in	the
import.	This	may	still	fail	if	the	document	would	violate	secondary	unique	indexes.	The	number	of	replaced	documents	will	be
reported	in	the		updated		attribute	of	the	HTTP	API	result.

	ignore	:	when	a	unique	key	constraint	error	occurs,	ignore	this	error.	There	will	be	no	insert,	update	or	replace	for	the	particular
document.	Ignored	documents	will	be	reported	separately	in	the		ignored		attribute	of	the	HTTP	API	result.

The	default	value	is		error	.

A	few	examples	for	using	arangoimp	with	the		--on-duplicate		option	can	be	found	here:
http://jsteemann.github.io/blog/2015/04/14/updating-documents-with-arangoimp/

Whats	New	in	2.6

560

https://www.arangodb.com/2015/05/document-your-foxx-apps-with-swagger-2/
http://jsteemann.github.io/blog/2015/04/14/updating-documents-with-arangoimp/

Miscellaneous	changes

Some	Linux-based	ArangoDB	packages	are	now	using	tcmalloc	for	memory	allocator.

Upgraded	ICU	library	to	version	54.	This	increases	performance	in	many	places.

Allow	to	split	an	edge	index	into	buckets	which	are	resized	individually.	The	default	value	is		1	,	resembling	the	pre-2.6	behavior.
Using	multiple	buckets	will	lead	to	the	index	entries	being	distributed	to	the	individual	buckets,	with	each	bucket	being	responsible
only	for	a	fraction	of	the	total	index	entries.	Using	multiple	buckets	may	lead	to	more	frequent	but	much	faster	index	bucket	resizes,
and	is	recommended	for	bigger	edge	collections.

Default	configuration	value	for	option		--server.backlog-size		was	changed	from	10	to	64.

Default	configuration	value	for	option		--database.ignore-datafile-errors		was	changed	from		true		to		false	

Document	keys	can	now	contain		@		and		.		characters

Fulltext	index	can	now	index	text	values	contained	in	direct	sub-objects	of	the	indexed	attribute.

Previous	versions	of	ArangoDB	only	indexed	the	attribute	value	if	it	was	a	string.	Sub-attributes	of	the	index	attribute	were	ignored
when	fulltext	indexing.

Now,	if	the	index	attribute	value	is	an	object,	the	object's	values	will	each	be	included	in	the	fulltext	index	if	they	are	strings.	If	the
index	attribute	value	is	an	array,	the	array's	values	will	each	be	included	in	the	fulltext	index	if	they	are	strings.

For	example,	with	a	fulltext	index	present	on	the		translations		attribute,	the	following	text	values	will	now	be	indexed:

var	c	=	db._create("example");

c.ensureFulltextIndex("translations");

c.insert({	translations:	{	en:	"fox",	de:	"Fuchs",	fr:	"renard",	ru:	"лиса"	}	});

c.insert({	translations:	"Fox	is	the	English	translation	of	the	German	word	Fuchs"	});

c.insert({	translations:	["ArangoDB",	"document",	"database",	"Foxx"]	});

c.fulltext("translations",	"лиса").toArray();							//	returns	only	first	document

c.fulltext("translations",	"Fox").toArray();								//	returns	first	and	second	documents

c.fulltext("translations",	"prefix:Fox").toArray();	//	returns	all	three	documents

Added	configuration	option		--server.foxx-queues-poll-interval	

This	startup	option	controls	the	frequency	with	which	the	Foxx	queues	manager	is	checking	the	queue	(or	queues)	for	jobs	to	be
executed.

The	default	value	is		1		second.	Lowering	this	value	will	result	in	the	queue	manager	waking	up	and	checking	the	queues	more
frequently,	which	may	increase	CPU	usage	of	the	server.	When	not	using	Foxx	queues,	this	value	can	be	raised	to	save	some	CPU
time.

Added	configuration	option		--server.foxx-queues	

This	startup	option	controls	whether	the	Foxx	queue	manager	will	check	queue	and	job	entries	in	the		_system		database	only.
Restricting	the	Foxx	queue	manager	to	the		_system		database	will	lead	to	the	queue	manager	having	to	check	only	the	queues
collection	of	a	single	database,	whereas	making	it	check	the	queues	of	all	databases	might	result	in	more	work	to	be	done	and	more
CPU	time	to	be	used	by	the	queue	manager.

Whats	New	in	2.6

561

Incompatible	changes	in	ArangoDB	2.6
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	2.6,	and	adjust	any	client	programs
if	necessary.

Requirements

ArangoDB's	built-in	web	interface	now	uses	cookies	for	session	management.	Session	information	ids	are	stored	in	cookies,	so	clients
using	the	web	interface	must	accept	cookies	in	order	to	log	in	and	use	it.

Foxx	changes

Foxx	Queues

Foxx	Queue	job	type	definitions	were	previously	based	on	functions	and	had	to	be	registered	before	use.	Due	to	changes	in	2.5	this
resulted	in	problems	when	restarting	the	server	or	defining	job	types	incorrectly.

Function-based	job	types	have	been	deprecated	in	2.6	and	will	be	removed	entirely	in	2.7.

In	order	to	convert	existing	function-based	job	types	to	the	new	script-based	job	types,	create	custom	scripts	in	your	Foxx	app	and
reference	them	by	their	name	and	the	mount	point	of	the	app	they	are	defined	in.	Official	job	types	from	the	Foxx	app	store	can	be
upgraded	by	upgrading	from	the	1.x	version	to	the	2.x	version	of	the	same	app.

In	order	to	upgrade	queued	jobs	to	the	new	job	types,	you	need	to	update	the		type		property	of	the	affected	jobs	in	the	database's
	_jobs		system	collection.	In	order	to	see	the	collection	in	the	web	interface	you	need	to	enable	the	collection	type	"System"	in	the
collection	list	options.

Example:

Before:		"type":	"mailer.postmark"	

After:		"type":	{"name":	"mailer",	"mount":	"/my-postmark-mailer"}	

Foxx	Sessions

The	options		jwt		and		type		of	the	controller	method		controller.activateSessions		have	been	deprecated	in	2.6	and	will	be	removed
entirely	in	2.7.

If	you	want	to	use	pure	JWT	sessions,	you	can	use	the		sessions-jwt		Foxx	app	from	the	Foxx	app	store.

If	you	want	to	use	your	own	JWT-based	sessions,	you	can	use	the	JWT	functions	in	the		crypto		module	directly.

Instead	of	using	the		type		option	you	can	just	use	the		cookie		and		header		options	on	their	own,	which	both	now	accept	the	value
	true		to	enable	them	with	their	default	configurations.

The	option		sessionStorageApp		has	been	renamed	to		sessionStorage		and	now	also	accepts	session	storages	directly.	The	old	option
	sessionStorageApp		will	be	removed	entirely	in	2.7.

Libraries

The	bundled	version	of	the		joi		library	used	in	Foxx	was	upgraded	to	version	6.0.8.	This	may	affect	Foxx	applications	that	depend	on
the	library.

AQL	changes

AQL	LENGTH	function

Incompatible	changes	in	2.6

562

The	return	value	of	the	AQL		LENGTH		function	was	changed	if		LENGTH		is	applied	on		null		or	a	boolean	value:

	LENGTH(null)		now	returns		0	.	In	previous	versions	of	ArangoDB,	this	returned		4	.

	LENGTH(false)		now	returns		0	.	In	previous	versions	of	ArangoDB,	the	return	value	was		5	.

	LENGTH(true)		now	returns		1	.	In	previous	versions	of	ArangoDB,	the	return	value	was		4	.

AQL	graph	functions

In	2.6	the	graph	functions	did	undergo	a	performance	lifting.	During	this	process	we	had	to	adopt	the	result	format	and	the	options	for
some	of	them.	Many	graph	functions	now	have	an	option		includeData		which	allows	to	trigger	if	the	result	of	this	function	should
contain	fully	extracted	documents		includeData:	true		or	only	the		_id		values		includeData:	false	.	In	most	use	cases	the		_id		is
sufficient	to	continue	and	the	extraction	of	data	is	an	unnecessary	operation.	The	AQL	functions	supporting	this	additional	option	are:

SHORTEST_PATH
NEIGHBORS
GRAPH_SHORTEST_PATH
GRAPH_NEIGHBORS
GRAPH_EDGES

Furthermore	the	result		SHORTEST_PATH		has	changed.	The	old	format	returned	a	list	of	all	vertices	on	the	path.	Optionally	it	could	include
each	sub-path	for	these	vertices.	All	of	the	documents	were	fully	extracted.	Example:

[

		{

				vertex:	{

						_id:	"vertex/1",

						_key:	"1",

						_rev:	"1234"

						name:	"Alice"

				},

				path:	{

						vertices:	[

								{

										_id:	"vertex/1",

										_key:	"1",

										_rev:	"1234"

										name:	"Alice"

								}

],

						edges:	[]

				}

		},

		{

				vertex:	{

						_id:	"vertex/2",

						_key:	"2",

						_rev:	"5678"

						name:	"Bob"

				},

				path:	{

						vertices:	[

								{

										_id:	"vertex/1",

										_key:	"1",

										_rev:	"1234"

										name:	"Alice"

								},	{

										_id:	"vertex/2",

										_key:	"2",

										_rev:	"5678"

										name:	"Bob"

								}

],

						edges:	[

								{

										_id:	"edge/1",

										_key:	"1",

										_rev:	"9876",

										type:	"loves"

Incompatible	changes	in	2.6

563

								}

]

				}

		}

]

The	new	version	is	more	compact.	Each		SHORTEST_PATH		will	only	return	one	document	having	the	attributes		vertices	,		edges	,
	distance	.	The		distance		is	computed	taking	into	account	the	given	weight.	Optionally	the	documents	can	be	extracted	with
	includeData:	true		Example:

{

		vertices:	[

				"vertex/1",

				"vertex/2"

],

		edges:	[

				"edge/1"

],

		distance:	1

}

The	next	function	that	returns	a	different	format	is		NEIGHBORS	.	Since	2.5	it	returned	an	object	with		edge		and		vertex		for	each
connected	edge.	Example:

[

		{

				vertex:	{

						_id:	"vertex/2",

						_key:	"2",

						_rev:	"5678"

						name:	"Bob"

				},

				edge:	{

						_id:	"edge/1",

						_key:	"1",

						_rev:	"9876",

						type:	"loves"

				}

		}	

]

With	2.6	it	will	only	return	the	vertex	directly,	again	using		includeData:	true	.	By	default	it	will	return	a	distinct	set	of	neighbors,	using
the	option		distinct:	false		will	include	the	same	vertex	for	each	edge	pointing	to	it.

Example:

[

		"vertex/2"

]

Function	and	API	changes

Graph	measurements	functions

All	graph	measurements	functions	in	JavaScript	module		general-graph		that	calculated	a	single	figure	previously	returned	an	array
containing	just	the	figure.	Now	these	functions	will	return	the	figure	directly	and	not	put	it	inside	an	array.

The	affected	functions	are:

	graph._absoluteEccentricity	

	graph._eccentricity	

	graph._absoluteCloseness	

	graph._closeness	

	graph._absoluteBetweenness	

Incompatible	changes	in	2.6

564

	graph._betweenness	

	graph._radius	

	graph._diameter	

Client	programs	calling	these	functions	should	be	adjusted	so	they	process	the	scalar	value	returned	by	the	function	instead	of	the
previous	array	value.

Cursor	API

A	batchSize	value		0		is	now	disallowed	when	calling	the	cursor	API	via	HTTP		POST	/_api/cursor	.

The	HTTP	REST	API		POST	/_api/cursor		does	not	accept	a		batchSize		parameter	value	of		0		any	longer.	A	batch	size	of	0	never
made	much	sense,	but	previous	versions	of	ArangoDB	did	not	check	for	this	value.	Now	creating	a	cursor	using	a		batchSize		value	0	will
result	in	an	HTTP	400	error	response.

Document	URLs	returned

The	REST	API	method	GET		/_api/document?collection=...		(that	method	will	return	partial	URLs	to	all	documents	in	the	collection)
will	now	properly	prefix	document	address	URLs	with	the	current	database	name.

Previous	versions	of	ArangoDB	returned	the	URLs	starting	with		/_api/		but	without	the	current	database	name,	e.g.
	/_api/document/mycollection/mykey	.	Starting	with	2.6,	the	response	URLs	will	include	the	database	name	as	well,	e.g.
	/_db/_system/_api/document/mycollection/mykey	.

Fulltext	indexing

Fulltext	indexes	will	now	also	index	text	values	contained	in	direct	sub-objects	of	the	indexed	attribute.

Previous	versions	of	ArangoDB	only	indexed	the	attribute	value	if	it	was	a	string.	Sub-attributes	of	the	index	attribute	were	ignored	when
fulltext	indexing.

Now,	if	the	index	attribute	value	is	an	object,	the	object's	values	will	each	be	included	in	the	fulltext	index	if	they	are	strings.	If	the	index
attribute	value	is	an	array,	the	array's	values	will	each	be	included	in	the	fulltext	index	if	they	are	strings.

Deprecated	server	functionality

Simple	queries

The	following	simple	query	functions	are	now	deprecated:

collection.near
collection.within
collection.geo
collection.fulltext
collection.range
collection.closedRange

This	also	lead	to	the	following	REST	API	methods	being	deprecated	from	now	on:

PUT	/_api/simple/near
PUT	/_api/simple/within
PUT	/_api/simple/fulltext
PUT	/_api/simple/range

It	is	recommended	to	replace	calls	to	these	functions	or	APIs	with	equivalent	AQL	queries,	which	are	more	flexible	because	they	can	be
combined	with	other	operations:

FOR	doc	IN	NEAR(@@collection,	@latitude,	@longitude,	@limit)	

		RETURN	doc

FOR	doc	IN	WITHIN(@@collection,	@latitude,	@longitude,	@radius,	@distanceAttributeName)

		RETURN	doc

Incompatible	changes	in	2.6

565

FOR	doc	IN	FULLTEXT(@@collection,	@attributeName,	@queryString,	@limit)	

		RETURN	doc

FOR	doc	IN	@@collection	

		FILTER	doc.value	>=	@left	&&	doc.value	<	@right	

		LIMIT	@skip,	@limit	

		RETURN	doc`

The	above	simple	query	functions	and	REST	API	methods	may	be	removed	in	future	versions	of	ArangoDB.

Using	negative	values	for		SimpleQuery.skip()		is	also	deprecated.	This	functionality	will	be	removed	in	future	versions	of	ArangoDB.

AQL	functions

The	AQL		SKIPLIST		function	has	been	deprecated	because	it	is	obsolete.

The	function	was	introduced	in	older	versions	of	ArangoDB	with	a	less	powerful	query	optimizer	to	retrieve	data	from	a	skiplist	index
using	a		LIMIT		clause.

Since	2.3	the	same	goal	can	be	achieved	by	using	regular	AQL	constructs,	e.g.

FOR	doc	IN	@@collection	

		FILTER	doc.value	>=	@value	

		SORT	doc.value

		LIMIT	1	

		RETURN	doc

Startup	option	changes

Options	added

The	following	configuration	options	have	been	added	in	2.6:

	--server.session-timeout	:	allows	controlling	the	timeout	of	user	sessions	in	the	web	interface.	The	value	is	specified	in	seconds.

	--server.foxx-queues	:	controls	whether	the	Foxx	queue	manager	will	check	queue	and	job	entries.	Disabling	this	option	can	reduce
server	load	but	will	prevent	jobs	added	to	Foxx	queues	from	being	processed	at	all.

The	default	value	is		true	,	enabling	the	Foxx	queues	feature.

	--server.foxx-queues-poll-interval	:	allows	adjusting	the	frequency	with	which	the	Foxx	queues	manager	is	checking	the	queue	(or
queues)	for	jobs	to	be	executed.

The	default	value	is		1		second.	Lowering	this	value	will	result	in	the	queue	manager	waking	up	and	checking	the	queues	more
frequently,	which	may	increase	CPU	usage	of	the	server.

Note:	this	option	only	has	an	effect	when		--server.foxx-queues		is	not	set	to		false	.

Options	removed

The	following	configuration	options	have	been	removed	in	2.6.:

	--log.severity	:	the	docs	for		--log.severity		mentioned	lots	of	severities	(e.g.		exception	,		technical	,		functional	,
	development)	but	only	a	few	severities	(e.g.		all	,		human)	were	actually	used,	with		human		being	the	default	and		all		enabling
the	additional	logging	of	incoming	requests.

The	option	pretended	to	control	a	lot	of	things	which	it	actually	didn't.	Additionally,	the	option		--log.requests-file		was	around
for	a	long	time	already,	also	controlling	request	logging.

Because	the		--log.severity		option	effectively	did	not	control	that	much,	it	was	removed.	A	side	effect	of	removing	the	option	is
that	2.5	installations	started	with	option		--log.severity	all		will	not	log	requests	after	the	upgrade	to	2.6.	This	can	be	adjusted	by
setting	the		--log.requests-file		option	instead.

Incompatible	changes	in	2.6

566

Default	values	changed

The	default	values	for	the	following	options	have	changed	in	2.6:

	--database.ignore-datafile-errors	:	the	default	value	for	this	option	was	changed	from		true		to		false	.

If	the	new	default	value	of		false		is	used,	then	arangod	will	refuse	loading	collections	that	contain	datafiles	with	CRC	mismatches
or	other	errors.	A	collection	with	datafile	errors	will	then	become	unavailable.	This	prevents	follow	up	errors	from	happening.

The	only	way	to	access	such	collection	is	to	use	the	datafile	debugger	(arango-dfdb)	and	try	to	repair	or	truncate	the	datafile	with	it.

	--server.request-timeout	:	the	default	value	was	increased	from	300	to	1200	seconds	for	all	client	tools	(arangosh,	arangoimp,
arangodump,	arangorestore).

	--server.connect-timeout	:	the	default	value	was	increased	from	3	to	5	seconds	for	all	client	tools	(arangosh,	arangoimp,
arangodump,	arangorestore).

Incompatible	changes	in	2.6

567

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.5.	ArangoDB	2.5	also	contains	several
bugfixes	that	are	not	listed	here.	For	a	list	of	bugfixes,	please	consult	the	CHANGELOG.

V8	version	upgrade

The	built-in	version	of	V8	has	been	upgraded	from	3.29.54	to	3.31.74.1.	This	allows	activating	additional	ES6	(also	dubbed	Harmony	or
ES.next)	features	in	ArangoDB,	both	in	the	ArangoShell	and	the	ArangoDB	server.	They	can	be	used	for	scripting	and	in	server-side
actions	such	as	Foxx	routes,	traversals	etc.

The	following	additional	ES6	features	become	available	in	ArangoDB	2.5	by	default:

iterators	and	generators
template	strings
enhanced	object	literals
enhanced	numeric	literals
block	scoping	with		let		and	constant	variables	using		const		(note:	constant	variables	require	using	strict	mode,	too)
additional	string	methods	(such	as		startsWith	,		repeat		etc.)

Index	improvements

Sparse	hash	and	skiplist	indexes

Hash	and	skiplist	indexes	can	optionally	be	made	sparse.	Sparse	indexes	exclude	documents	in	which	at	least	one	of	the	index	attributes	is
either	not	set	or	has	a	value	of		null	.

As	such	documents	are	excluded	from	sparse	indexes,	they	may	contain	fewer	documents	than	their	non-sparse	counterparts.	This
enables	faster	indexing	and	can	lead	to	reduced	memory	usage	in	case	the	indexed	attribute	does	occur	only	in	some,	but	not	all	documents
of	the	collection.	Sparse	indexes	will	also	reduce	the	number	of	collisions	in	non-unique	hash	indexes	in	case	non-existing	or	optional
attributes	are	indexed.

In	order	to	create	a	sparse	index,	an	object	with	the	attribute		sparse		can	be	added	to	the	index	creation	commands:

db.collection.ensureHashIndex(attributeName,	{	sparse:	true	});	

db.collection.ensureHashIndex(attributeName1,	attributeName2,	{	sparse:	true	});	

db.collection.ensureUniqueConstraint(attributeName,	{	sparse:	true	});	

db.collection.ensureUniqueConstraint(attributeName1,	attributeName2,	{	sparse:	true	});	

db.collection.ensureSkiplist(attributeName,	{	sparse:	true	});	

db.collection.ensureSkiplist(attributeName1,	attributeName2,	{	sparse:	true	});	

db.collection.ensureUniqueSkiplist(attributeName,	{	sparse:	true	});	

db.collection.ensureUniqueSkiplist(attributeName1,	attributeName2,	{	sparse:	true	});

Note	that	in	place	of	the	above	specialized	index	creation	commands,	it	is	recommended	to	use	the	more	general	index	creation	command
	ensureIndex	:

db.collection.ensureIndex({	type:	"hash",	sparse:	true,	unique:	true,	fields:	[attributeName]	});

db.collection.ensureIndex({	type:	"skiplist",	sparse:	false,	unique:	false,	fields:	["a",	"b"]	});

When	not	explicitly	set,	the		sparse		attribute	defaults	to		false		for	new	hash	or	skiplist	indexes.

This	causes	a	change	in	behavior	when	creating	a	unique	hash	index	without	specifying	the	sparse	flag:	in	2.4,	unique	hash	indexes	were
implicitly	sparse,	always	excluding		null		values.	There	was	no	option	to	control	this	behavior,	and	sparsity	was	neither	supported	for
non-unique	hash	indexes	nor	skiplists	in	2.4.	This	implicit	sparsity	of	unique	hash	indexes	was	considered	an	inconsistency,	and	therefore
the	behavior	was	cleaned	up	in	2.5.	As	of	2.5,	indexes	will	only	be	created	sparse	if	sparsity	is	explicitly	requested.	Existing	unique	hash
indexes	from	2.4	or	before	will	automatically	be	migrated	so	they	are	still	sparse	after	the	upgrade	to	2.5.

Whats	New	in	2.5

568

https://github.com/arangodb/arangodb/blob/devel/CHANGELOG

Geo	indexes	are	implicitly	sparse,	meaning	documents	without	the	indexed	location	attribute	or	containing	invalid	location	coordinate
values	will	be	excluded	from	the	index	automatically.	This	is	also	a	change	when	compared	to	pre-2.5	behavior,	when	documents	with
missing	or	invalid	coordinate	values	may	have	caused	errors	on	insertion	when	the	geo	index'		unique		flag	was	set	and	its		ignoreNull	
flag	was	not.	This	was	confusing	and	has	been	rectified	in	2.5.	The	method		ensureGeoConstraint()		now	does	the	same	as
	ensureGeoIndex()	.	Furthermore,	the	attributes		constraint	,		unique	,		ignoreNull		and		sparse		flags	are	now	completely	ignored
when	creating	geo	indexes.

The	same	is	true	for	fulltext	indexes.	There	is	no	need	to	specify	non-uniqueness	or	sparsity	for	geo	or	fulltext	indexes.

As	sparse	indexes	may	exclude	some	documents,	they	cannot	be	used	for	every	type	of	query.	Sparse	hash	indexes	cannot	be	used	to	find
documents	for	which	at	least	one	of	the	indexed	attributes	has	a	value	of		null	.	For	example,	the	following	AQL	query	cannot	use	a
sparse	index,	even	if	one	was	created	on	attribute		attr	:

FOR	doc	In	collection	

		FILTER	doc.attr	==	null	

		RETURN	doc

If	the	lookup	value	is	non-constant,	a	sparse	index	may	or	may	not	be	used,	depending	on	the	other	types	of	conditions	in	the	query.	If
the	optimizer	can	safely	determine	that	the	lookup	value	cannot	be		null	,	a	sparse	index	may	be	used.	When	uncertain,	the	optimizer
will	not	make	use	of	a	sparse	index	in	a	query	in	order	to	produce	correct	results.

For	example,	the	following	queries	cannot	use	a	sparse	index	on		attr		because	the	optimizer	will	not	know	beforehand	whether	the
comparison	values	for		doc.attr		will	include		null	:

FOR	doc	In	collection	

		FILTER	doc.attr	==	SOME_FUNCTION(...)	

		RETURN	doc

FOR	other	IN	otherCollection	

		FOR	doc	In	collection	

				FILTER	doc.attr	==	other.attr	

				RETURN	doc

Sparse	skiplist	indexes	can	be	used	for	sorting	if	the	optimizer	can	safely	detect	that	the	index	range	does	not	include		null		for	any	of
the	index	attributes.

Selectivity	estimates

Indexes	of	type		primary	,		edge		and		hash		now	provide	selectivity	estimates.	These	will	be	used	by	the	AQL	query	optimizer	when
deciding	about	index	usage.	Using	selectivity	estimates	can	lead	to	faster	query	execution	when	more	selective	indexes	are	used.

The	selectivity	estimates	are	also	returned	by	the		GET	/_api/index		REST	API	method	in	a	sub-attribute		selectivityEstimate		for	each
index	that	supports	it.	This	attribute	will	be	omitted	for	indexes	that	do	not	provide	selectivity	estimates.	If	provided,	the	selectivity
estimate	will	be	a	numeric	value	between	0	and	1.

Selectivity	estimates	will	also	be	reported	in	the	result	of		collection.getIndexes()		for	all	indexes	that	support	this.	If	no	selectivity
estimate	can	be	determined	for	an	index,	the	attribute		selectivityEstimate		will	be	omitted	here,	too.

The	web	interface	also	shows	selectivity	estimates	for	each	index	that	supports	this.

Currently	the	following	index	types	can	provide	selectivity	estimates:

primary	index
edge	index
hash	index	(unique	and	non-unique)

No	selectivity	estimates	will	be	provided	for	indexes	when	running	in	cluster	mode.

AQL	Optimizer	improvements

Sort	removal

Whats	New	in	2.5

569

The	AQL	optimizer	rule	"use-index-for-sort"	will	now	remove	sorts	also	in	case	a	non-sorted	index	(e.g.	a	hash	index)	is	used	for	only
equality	lookups	and	all	sort	attributes	are	covered	by	the	equality	lookup	conditions.

For	example,	in	the	following	query	the	extra	sort	on		doc.value		will	be	optimized	away	provided	there	is	an	index	on		doc.value):

FOR	doc	IN	collection	

		FILTER	doc.value	==	1	

		SORT	doc.value	

		RETURN	doc

The	AQL	optimizer	rule	"use-index-for-sort"	now	also	removes	sort	in	case	the	sort	criteria	excludes	the	left-most	index	attributes,	but
the	left-most	index	attributes	are	used	by	the	index	for	equality-only	lookups.

For	example,	in	the	following	query	with	a	skiplist	index	on		value1	,		value2	,	the	sort	can	be	optimized	away:

FOR	doc	IN	collection	

		FILTER	doc.value1	==	1	

		SORT	doc.value2	

		RETURN	doc

Constant	attribute	propagation

The	new	AQL	optimizer	rule		propagate-constant-attributes		will	look	for	attributes	that	are	equality-compared	to	a	constant	value,	and
will	propagate	the	comparison	value	into	other	equality	lookups.	This	rule	will	only	look	inside		FILTER		conditions,	and	insert	constant
values	found	in		FILTER	s,	too.

For	example,	the	rule	will	insert		42		instead	of		i.value		in	the	second		FILTER		of	the	following	query:

FOR	i	IN	c1	

		FOR	j	IN	c2	

				FILTER	i.value	==	42	

				FILTER	j.value	==	i.value	

				RETURN	1

Interleaved	processing

The	optimizer	will	now	inspect	AQL	data-modification	queries	and	detect	if	the	query's	data-modification	part	can	run	in	lockstep	with
the	data	retrieval	part	of	the	query,	or	if	the	data	retrieval	part	must	be	executed	and	completed	first	before	the	data-modification	can
start.

Executing	both	data	retrieval	and	data-modification	in	lockstep	allows	using	much	smaller	buffers	for	intermediate	results,	reducing	the
memory	usage	of	queries.	Not	all	queries	are	eligible	for	this	optimization,	and	the	optimizer	will	only	apply	the	optimization	when	it
can	safely	detect	that	the	data-modification	part	of	the	query	will	not	modify	data	to	be	found	by	the	retrieval	part.

Query	execution	statistics

The		filtered		attribute	was	added	to	AQL	query	execution	statistics.	The	value	of	this	attribute	indicates	how	many	documents	were
filtered	by		FilterNode	s	in	the	AQL	query.	Note	that		IndexRangeNode	s	can	also	filter	documents	by	selecting	only	the	required	ranges
from	the	index.	The		filtered		value	will	not	include	the	work	done	by		IndexRangeNode	s,	but	only	the	work	performed	by
	FilterNode	s.

Language	improvements

Dynamic	attribute	names	in	AQL	object	literals

This	change	allows	using	arbitrary	expressions	to	construct	attribute	names	in	object	literals	specified	in	AQL	queries.	To	disambiguate
expressions	and	other	unquoted	attribute	names,	dynamic	attribute	names	need	to	be	enclosed	in	brackets	([and]).

Example:

Whats	New	in	2.5

570

FOR	i	IN	1..100

		RETURN	{	[CONCAT('value-of-',	i)]	:	i	}

AQL	functions

The	following	AQL	functions	were	added	in	2.5:

	MD5(value)	:	generates	an	MD5	hash	of		value	
	SHA1(value)	:	generates	an	SHA1	hash	of		value	
	RANDOM_TOKEN(length)	:	generates	a	random	string	value	of	the	specified	length

Simplify	Foxx	usage

Thanks	to	our	user	feedback	we	learned	that	Foxx	is	a	powerful,	yet	rather	complicated	concept.	With	2.5	we	made	it	less	complicated
while	keeping	all	its	strength.	That	includes	a	rewrite	of	the	documentation	as	well	as	some	code	changes	as	follows:

Moved	Foxx	applications	to	a	different	folder.

Until	2.4	foxx	apps	were	stored	in	the	following	folder	structure:		<app-path>/databases/<dbname>/<appname>:<appversion>	.	This	caused
some	trouble	as	apps	where	cached	based	on	name	and	version	and	updates	did	not	apply.	Also	the	path	on	filesystem	and	the	app's
access	URL	had	no	relation	to	one	another.	Now	the	path	on	filesystem	is	identical	to	the	URL	(except	the	appended	APP):		<app-
path>/_db/<dbname>/<mointpoint>/APP	

Rewrite	of	Foxx	routing

The	routing	of	Foxx	has	been	exposed	to	major	internal	changes	we	adjusted	because	of	user	feedback.	This	allows	us	to	set	the
development	mode	per	mountpoint	without	having	to	change	paths	and	hold	apps	at	separate	locations.

Foxx	Development	mode

The	development	mode	used	until	2.4	is	gone.	It	has	been	replaced	by	a	much	more	mature	version.	This	includes	the	deprecation	of	the
javascript.dev-app-path	parameter,	which	is	useless	since	2.5.	Instead	of	having	two	separate	app	directories	for	production	and
development,	apps	now	reside	in	one	place,	which	is	used	for	production	as	well	as	for	development.	Apps	can	still	be	put	into
development	mode,	changing	their	behavior	compared	to	production	mode.	Development	mode	apps	are	still	reread	from	disk	at	every
request,	and	still	they	ship	more	debug	output.

This	change	has	also	made	the	startup	options		--javascript.frontend-development-mode		and		--javascript.dev-app-path		obsolete.	The
former	option	will	not	have	any	effect	when	set,	and	the	latter	option	is	only	read	and	used	during	the	upgrade	to	2.5	and	does	not	have
any	effects	later.

Foxx	install	process

Installing	Foxx	apps	has	been	a	two	step	process:	import	them	into	ArangoDB	and	mount	them	at	a	specific	mountpoint.	These
operations	have	been	joined	together.	You	can	install	an	app	at	one	mountpoint,	that's	it.	No	fetch,	mount,	unmount,	purge	cycle
anymore.	The	commands	have	been	simplified	to	just:

install:	get	your	Foxx	app	up	and	running
uninstall:	shut	it	down	and	erase	it	from	disk

Foxx	error	output

Until	2.4	the	errors	produced	by	Foxx	were	not	optimal.	Often,	the	error	message	was	just		unable	to	parse	manifest		and	contained
only	an	internal	stack	trace.	In	2.5	we	made	major	improvements	there,	including	a	much	more	fine	grained	error	output	that	helps	you
debug	your	Foxx	apps.	The	error	message	printed	is	now	much	closer	to	its	source	and	should	help	you	track	it	down.

Also	we	added	the	default	handlers	for	unhandled	errors	in	Foxx	apps:

You	will	get	a	nice	internal	error	page	whenever	your	Foxx	app	is	called	but	was	not	installed	due	to	any	error

Whats	New	in	2.5

571

You	will	get	a	proper	error	message	when	having	an	uncaught	error	appears	in	any	app	route

In	production	mode	the	messages	above	will	NOT	contain	any	information	about	your	Foxx	internals	and	are	safe	to	be	exposed	to	third
party	users.	In	development	mode	the	messages	above	will	contain	the	stacktrace	(if	available),	making	it	easier	for	your	in-house	devs	to
track	down	errors	in	the	application.

Foxx	console

We	added	a		console		object	to	Foxx	apps.	All	Foxx	apps	now	have	a	console	object	implementing	the	familiar	Console	API	in	their
global	scope,	which	can	be	used	to	log	diagnostic	messages	to	the	database.	This	console	also	allows	to	read	the	error	output	of	one
specific	foxx.

Foxx	requests

We	added		org/arangodb/request		module,	which	provides	a	simple	API	for	making	HTTP	requests	to	external	services.	This	is	enables
Foxx	to	be	directly	part	of	a	micro	service	architecture.

Whats	New	in	2.5

572

Incompatible	changes	in	ArangoDB	2.5
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	2.5,	and	adjust	any	client	programs
if	necessary.

Changed	behavior

V8

The	V8	version	shipped	with	ArangoDB	was	upgraded	from	3.29.59	to	3.31.74.1.	This	leads	to	additional	ECMAScript	6	(ES6	or
"harmony")	features	being	enabled	by	default	in	ArangoDB's	scripting	environment.

Apart	from	that,	a	change	in	the	interpretation	of	command-line	options	by	V8	may	affect	users.	ArangoDB	passes	the	value	of	the
command-line	option		--javascript.v8-options		to	V8	and	leaves	interpretation	of	the	contents	to	V8.	For	example,	the	ArangoDB
option		--javascript.v8-options="--harmony"		could	be	used	to	tell	V8	to	enable	its	harmony	features.

In	ArangoDB	2.4,	the	following	harmony	options	were	made	available	by	V8:

--harmony_scoping	(enable	harmony	block	scoping)
--harmony_modules	(enable	harmony	modules	(implies	block	scoping))
--harmony_proxies	(enable	harmony	proxies)
--harmony_generators	(enable	harmony	generators)
--harmony_numeric_literals	(enable	harmony	numeric	literals	(0o77,	0b11))
--harmony_strings	(enable	harmony	string)
--harmony_arrays	(enable	harmony	arrays)
--harmony_arrow_functions	(enable	harmony	arrow	functions)
--harmony_classes	(enable	harmony	classes)
--harmony_object_literals	(enable	harmony	object	literal	extensions)
--harmony	(enable	all	harmony	features	(except	proxies))

There	was	the	option		--harmony	,	which	turned	on	almost	all	harmony	features.

In	ArangoDB	2.5,	V8	provides	the	following	harmony-related	options:

--harmony	(enable	all	completed	harmony	features)
--harmony_shipping	(enable	all	shipped	harmony	features)
--harmony_modules	(enable	"harmony	modules	(implies	block	scoping)"	(in	progress))
--harmony_arrays	(enable	"harmony	array	methods"	(in	progress))
--harmony_array_includes	(enable	"harmony	Array.prototype.includes"	(in	progress))
--harmony_regexps	(enable	"harmony	regular	expression	extensions"	(in	progress))
--harmony_arrow_functions	(enable	"harmony	arrow	functions"	(in	progress))
--harmony_proxies	(enable	"harmony	proxies"	(in	progress))
--harmony_sloppy	(enable	"harmony	features	in	sloppy	mode"	(in	progress))
--harmony_unicode	(enable	"harmony	unicode	escapes"	(in	progress))
--harmony_tostring	(enable	"harmony	toString")
--harmony_numeric_literals	(enable	"harmony	numeric	literals")
--harmony_strings	(enable	"harmony	string	methods")
--harmony_scoping	(enable	"harmony	block	scoping")
--harmony_classes	(enable	"harmony	classes	(implies	block	scoping	&	object	literal	extension)")
--harmony_object_literals	(enable	"harmony	object	literal	extensions")
--harmony_templates	(enable	"harmony	template	literals")

Note	that	there	are	extra	options	for	better	controlling	the	dedicated	features,	and	especially	that	the	meaning	of	the		--harmony		option
has	changed	from	enabling	all	harmony	features	to	all	completed	harmony	features!

Users	should	adjust	the	value	of		--javascript.v8-options		accordingly.

Please	note	that	incomplete	harmony	features	are	subject	to	change	in	future	V8	releases.

Incompatible	changes	in	2.5

573

Sparse	indexes

Hash	indexes	and	skiplist	indexes	can	now	be	created	in	a	sparse	variant.	When	not	explicitly	set,	the		sparse		attribute	defaults	to
	false		for	new	indexes.

This	causes	a	change	in	behavior	when	creating	a	unique	hash	index	without	specifying	the	sparse	flag.	The	unique	hash	index	will	be
created	in	a	non-sparse	variant	in	ArangoDB	2.5.

In	2.4	and	before,	unique	hash	indexes	were	implicitly	sparse,	always	excluding		null		values	from	the	index.	There	was	no	option	to
control	this	behavior,	and	sparsity	was	neither	supported	for	non-unique	hash	indexes	nor	skiplists	in	2.4.	This	implicit	sparsity	of	just
unique	hash	indexes	was	considered	an	inconsistency,	and	therefore	the	behavior	was	cleaned	up	in	2.5.

As	of	2.5,	hash	and	skiplist	indexes	will	only	be	created	sparse	if	sparsity	is	explicitly	requested.	This	may	require	a	change	in	index-
creating	client	code,	but	only	if	the	client	code	creates	unique	hash	indexes	and	if	they	are	still	intended	to	be	sparse.	In	this	case,	the
client	code	should	explicitly	set	the		sparse		flag	to		true		when	creating	a	unique	hash	index.

Existing	unique	hash	indexes	from	2.4	or	before	will	automatically	be	migrated	so	they	are	still	sparse	after	the	upgrade	to	2.5.	For	these
indexes,	the		sparse		attribute	will	be	populated	automatically	with	a	value	of		true	.

Geo	indexes	are	implicitly	sparse,	meaning	documents	without	the	indexed	location	attribute	or	containing	invalid	location	coordinate
values	will	be	excluded	from	the	index	automatically.	This	is	also	a	change	when	compared	to	pre-2.5	behavior,	when	documents	with
missing	or	invalid	coordinate	values	may	have	caused	errors	on	insertion	when	the	geo	index'		unique		flag	was	set	and	its		ignoreNull	
flag	was	not.

This	was	confusing	and	has	been	rectified	in	2.5.	The	method		ensureGeoConstraint()		now	does	the	same	as		ensureGeoIndex()	.
Furthermore,	the	attributes		constraint	,		unique	,		ignoreNull		and		sparse		flags	are	now	completely	ignored	when	creating	geo
indexes.	Client	index	creation	code	therefore	does	not	need	to	set	the		ignoreNull		or		constraint		attributes	when	creating	a	geo	index.

The	same	is	true	for	fulltext	indexes.	There	is	no	need	to	specify	non-uniqueness	or	sparsity	for	geo	or	fulltext	indexes.	They	will	always
be	non-unique	and	sparse.

Moved	Foxx	applications	to	a	different	folder.

Until	2.4	foxx	apps	were	stored	in	the	following	folder	structure:		<app-path>/databases/<dbname>/<appname>:<appversion>	.	This	caused
some	trouble	as	apps	where	cached	based	on	name	and	version	and	updates	did	not	apply.	Also	the	path	on	filesystem	and	the	app's
access	URL	had	no	relation	to	one	another.	Now	the	path	on	filesystem	is	identical	to	the	URL	(except	the	appended	APP):		<app-
path>/_db/<dbname>/<mointpoint>/APP	

Foxx	Development	mode

The	development	mode	used	until	2.4	is	gone.	It	has	been	replaced	by	a	much	more	mature	version.	This	includes	the	deprecation	of	the
javascript.dev-app-path	parameter,	which	is	useless	since	2.5.	Instead	of	having	two	separate	app	directories	for	production	and
development,	apps	now	reside	in	one	place,	which	is	used	for	production	as	well	as	for	development.	Apps	can	still	be	put	into
development	mode,	changing	their	behavior	compared	to	production	mode.	Development	mode	apps	are	still	reread	from	disk	at	every
request,	and	still	they	ship	more	debug	output.

This	change	has	also	made	the	startup	options		--javascript.frontend-development-mode		and		--javascript.dev-app-path		obsolete.	The
former	option	will	not	have	any	effect	when	set,	and	the	latter	option	is	only	read	and	used	during	the	upgrade	to	2.5	and	does	not	have
any	effects	later.

Foxx	install	process

Installing	Foxx	apps	has	been	a	two	step	process:	import	them	into	ArangoDB	and	mount	them	at	a	specific	mountpoint.	These
operations	have	been	joined	together.	You	can	install	an	app	at	one	mountpoint,	that's	it.	No	fetch,	mount,	unmount,	purge	cycle
anymore.	The	commands	have	been	simplified	to	just:

install:	get	your	Foxx	app	up	and	running
uninstall:	shut	it	down	and	erase	it	from	disk	Deprecated	features

Foxx:	method		Model#toJSONSchema(id)		is	deprecated,	it	will	raise	a	warning	if	you	use	it.	Please	use		Foxx.toJSONSchema(id,	model)	

Incompatible	changes	in	2.5

574

instead.

Removed	features

Startup	switch		--javascript.frontend-development-mode	:	Its	major	purpose	was	internal	development	anyway.	Now	the	web
frontend	can	be	set	to	development	mode	similar	to	any	other	foxx	app.
Startup	switch		--javascript.dev-app-path	:	Was	used	for	the	development	mode	of	Foxx.	This	is	integrated	with	the	normal	app-
path	now	and	can	be	triggered	on	app	level.	The	second	app-path	is	superfluous.
Foxx:		controller.collection	:	Please	use		appContext.collection		instead.
Foxx:		FoxxRepository.modelPrototype	:	Please	use		FoxxRepository.model		instead.
Foxx:		Model.extend({},	{attributes:	{}})	:	Please	use		Model.extend({schema:	{}})		instead.
Foxx:		requestContext.bodyParam(paramName,	description,	Model)	:	Please	use		requestContext.bodyParam(paramName,	options)	
instead.
Foxx:		requestContext.queryParam({type:	string})	:	Please	use		requestContext.queryParam({type:	joi})		instead.
Foxx:		requestContext.pathParam({type:	string})	:	Please	use		requestContext.pathParam({type:	joi})		instead.
Graph:	The	modules		org/arangodb/graph		and		org/arangodb/graph-blueprint	:	Please	use	module		org/arangodb/general-graph	
instead.	NOTE:	This	does	not	mean	we	do	not	support	blueprints	any	more.	General	graph	covers	everything	the	graph--blueprint
did,	plus	many	more	features.
General-Graph:	In	the	module		org/arangodb/general-graph		the	functions		_undirectedRelation		and		_directedRelation		are	no
longer	available.	Both	functions	have	been	unified	to		_relation	.

Incompatible	changes	in	2.5

575

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.4.	ArangoDB	2.4	also	contains	several
bugfixes	that	are	not	listed	here.	For	a	list	of	bugfixes,	please	consult	the	CHANGELOG.

V8	version	upgrade

The	built-in	version	of	V8	has	been	upgraded	from	3.16.14	to	3.29.59.	This	activates	several	ES6	(also	dubbed	Harmony	or	ES.next)
features	in	ArangoDB,	both	in	the	ArangoShell	and	the	ArangoDB	server.	They	can	be	used	for	scripting	and	in	server-side	actions	such
as	Foxx	routes,	traversals	etc.

The	following	ES6	features	are	available	in	ArangoDB	2.4	by	default:

iterators
the		of		operator
symbols
predefined	collections	types	(Map,	Set	etc.)
typed	arrays

Many	other	ES6	features	are	disabled	by	default,	but	can	be	made	available	by	starting	arangod	or	arangosh	with	the	appropriate	options:

arrow	functions
proxies
generators
String,	Array,	and	Number	enhancements
constants
enhanced	object	and	numeric	literals

To	activate	all	these	ES6	features	in	arangod	or	arangosh,	start	it	with	the	following	options:

arangosh	--javascript.v8-options="--harmony	--harmony_generators"

More	details	on	the	available	ES6	features	can	be	found	in	this	blog.

FoxxGenerator
ArangoDB	2.4	is	shipped	with	FoxxGenerator,	a	framework	for	building	standardized	Hypermedia	APIs	easily.	The	generated	APIs	can
be	consumed	with	client	tools	that	understand	Siren.

Hypermedia	is	the	simple	idea	that	our	HTTP	APIs	should	have	links	between	their	endpoints	in	the	same	way	that	our	web	sites	have
links	between	them.	FoxxGenerator	is	based	on	the	idea	that	you	can	represent	an	API	as	a	statechart:	Every	endpoint	is	a	state	and	the
links	are	the	transitions	between	them.	Using	your	description	of	states	and	transitions,	it	can	then	create	an	API	for	you.

The	FoxxGenerator	can	create	APIs	based	on	a	semantic	description	of	entities	and	transitions.	A	blog	series	on	the	use	cases	and	how	to
use	the	Foxx	generator	is	here:

part	1
part	2
part	3

A	cookbook	recipe	for	getting	started	with	FoxxGenerator	is	here.

AQL	improvements

Optimizer	improvements

Whats	New	in	2.4

576

https://github.com/arangodb/arangodb/blob/devel/CHANGELOG
https://jsteemann.github.io/blog/2014/12/19/using-es6-features-in-arangodb/
https://github.com/kevinswiber/siren
https://www.arangodb.com/2014/11/26/building-hypermedia-api-json
https://www.arangodb.com/2014/12/02/building-hypermedia-apis-design
https://www.arangodb.com/2014/12/08/building-hypermedia-apis-foxxgenerator
https://docs.arangodb.com/2.8/Cookbook/FoxxGeneratorFirstSteps.html

The	AQL	optimizer	has	been	enhanced	to	use	of	indexes	in	queries	in	several	additional	cases.	Filters	containing	the		IN		operator	can
now	make	use	of	indexes,	and	multiple	OR-	or	AND-combined	filter	conditions	can	now	also	use	indexes	if	the	filter	conditions	refer	to
the	same	indexed	attribute.

Here	are	a	few	examples	of	queries	that	can	now	use	indexes	but	couldn't	before:

FOR	doc	IN	collection

		FILTER	doc.indexedAttribute	==	1	||	doc.indexedAttribute	>	99

		RETURN	doc

FOR	doc	IN	collection

		FILTER	doc.indexedAttribute	IN	[3,	42]	||	doc.indexedAttribute	>	99

		RETURN	doc

FOR	doc	IN	collection

		FILTER	(doc.indexedAttribute	>	2	&&	doc.indexedAttribute	<	10)	||

									(doc.indexedAttribute	>	23	&&	doc.indexedAttribute	<	42)

		RETURN	doc

Additionally,	the	optimizer	rule		remove-filter-covered-by-index		has	been	added.	This	rule	removes	FilterNodes	and	CalculationNodes
from	an	execution	plan	if	the	filter	condition	is	already	covered	by	a	previous	IndexRangeNode.	Removing	the	filter's	CalculationNode
and	the	FilterNode	itself	will	speed	up	query	execution	because	the	query	requires	less	computation.

Furthermore,	the	new	optimizer	rule		remove-sort-rand		will	remove	a		SORT	RAND()		statement	and	move	the	random	iteration	into	the
appropriate		EnumerateCollectionNode	.	This	is	usually	more	efficient	than	individually	enumerating	and	sorting.

Data-modification	queries	returning	documents

	INSERT	,		REMOVE	,		UPDATE		or		REPLACE		queries	now	can	optionally	return	the	documents	inserted,	removed,	updated,	or	replaced.	This
is	helpful	for	tracking	the	auto-generated	attributes	(e.g.		_key	,		_rev)	created	by	an		INSERT		and	in	a	lot	of	other	situations.

In	order	to	return	documents	from	a	data-modification	query,	the	statement	must	immediately	be	immediately	followed	by	a		LET	
statement	that	assigns	either	the	pseudo-value		NEW		or		OLD		to	a	variable.	This		LET		statement	must	be	followed	by	a		RETURN	
statement	that	returns	the	variable	introduced	by		LET	:

FOR	i	IN	1..100

		INSERT	{	value:	i	}	IN	test	LET	inserted	=	NEW	RETURN	inserted

FOR	u	IN	users

		FILTER	u.status	==	'deleted'

		REMOVE	u	IN	users	LET	removed	=	OLD	RETURN	removed

FOR	u	IN	users

		FILTER	u.status	==	'not	active'

		UPDATE	u	WITH	{	status:	'inactive'	}	IN	users	LET	updated	=	NEW	RETURN	updated

	NEW		refers	to	the	inserted	or	modified	document	revision,	and		OLD		refers	to	the	document	revision	before	update	or	removal.		INSERT	
statements	can	only	refer	to	the		NEW		pseudo-value,	and		REMOVE		operations	only	to		OLD	.		UPDATE		and		REPLACE		can	refer	to	either.

In	all	cases	the	full	documents	will	be	returned	with	all	their	attributes,	including	the	potentially	auto-generated	attributes	such	as		_id	,
	_key	,	or		_rev		and	the	attributes	not	specified	in	the	update	expression	of	a	partial	update.

Language	improvements

	COUNT		clause

An	optional		COUNT		clause	was	added	to	the		COLLECT		statement.	The		COUNT		clause	allows	for	more	efficient	counting	of	values.

In	previous	versions	of	ArangoDB	one	had	to	write	the	following	to	count	documents:

RETURN	LENGTH	(

		FOR	doc	IN	collection

		FILTER	...some	condition...

		RETURN	doc

)

Whats	New	in	2.4

577

With	the		COUNT		clause,	the	query	can	be	modified	to

FOR	doc	IN	collection

		FILTER	...some	condition...

		COLLECT	WITH	COUNT	INTO	length

		RETURN	length

The	latter	query	will	be	much	more	efficient	because	it	will	not	produce	any	intermediate	results	with	need	to	be	shipped	from	a
subquery	into	the		LENGTH		function.

The		COUNT		clause	can	also	be	used	to	count	the	number	of	items	in	each	group:

FOR	doc	IN	collection

		FILTER	...some	condition...

		COLLECT	group	=	doc.group	WITH	COUNT	INTO	length

		return	{	group:	group,	length:	length	}

	COLLECT		modifications

In	ArangoDB	2.4,		COLLECT		operations	can	be	made	more	efficient	if	only	a	small	fragment	of	the	group	values	is	needed	later.	For	these
cases,		COLLECT		provides	an	optional	conversion	expression	for	the		INTO		clause.	This	expression	controls	the	value	that	is	inserted	into
the	array	of	group	values.	It	can	be	used	for	projections.

The	following	query	only	copies	the		dateRegistered		attribute	of	each	document	into	the	groups,	potentially	saving	a	lot	of	memory	and
computation	time	compared	to	copying		doc		completely:

FOR	doc	IN	collection

		FILTER	...some	condition...

		COLLECT	group	=	doc.group	INTO	dates	=	doc.dateRegistered

		return	{	group:	group,	maxDate:	MAX(dates)	}

Compare	this	to	the	following	variant	of	the	query,	which	was	the	only	way	to	achieve	the	same	result	in	previous	versions	of
ArangoDB:

FOR	doc	IN	collection

		FILTER	...some	condition...

		COLLECT	group	=	doc.group	INTO	dates

		return	{	group:	group,	maxDate:	MAX(dates[*].doc.dateRegistered)	}

The	above	query	will	need	to	copy	the	full		doc		attribute	into	the		lengths		variable,	whereas	the	new	variant	will	only	copy	the
	dateRegistered		attribute	of	each		doc	.

Subquery	syntax

In	previous	versions	of	ArangoDB,	subqueries	required	extra	parentheses	around	them,	and	this	caused	confusion	when	subqueries	were
used	as	function	parameters.	For	example,	the	following	query	did	not	work:

LET	values	=	LENGTH(

		FOR	doc	IN	collection	RETURN	doc

)

but	had	to	be	written	as	follows:

LET	values	=	LENGTH((

		FOR	doc	IN	collection	RETURN	doc

))

This	was	unintuitive	and	is	fixed	in	version	2.4	so	that	both	variants	of	the	query	are	accepted	and	produce	the	same	result.

Web	interface

Whats	New	in	2.4

578

The		Applications		tab	for	Foxx	applications	in	the	web	interface	has	got	a	complete	redesign.

It	will	now	only	show	applications	that	are	currently	running	in	ArangoDB.	For	a	selected	application,	a	new	detailed	view	has	been
created.	This	view	provides	a	better	overview	of	the	app,	e.g.:

author
license
version
contributors
download	links
API	documentation

Installing	a	new	Foxx	application	on	the	server	is	made	easy	using	the	new		Add	application		button.	The		Add	application		dialog
provides	all	the	features	already	available	in	the		foxx-manager		console	application	plus	some	more:

install	a	Foxx	application	from	Github
install	a	Foxx	application	from	a	zip	file
install	a	Foxx	application	from	ArangoDB's	application	store
create	a	new	Foxx	application	from	scratch:	this	feature	uses	a	generator	to	create	a	Foxx	application	with	pre-defined	CRUD
methods	for	a	given	list	of	collections.	The	generated	Foxx	app	can	either	be	downloaded	as	a	zip	file	or	be	installed	on	the	server.
Starting	with	a	new	Foxx	app	has	never	been	easier.

Miscellaneous	improvements

Default	endpoint	is	127.0.0.1

The	default	endpoint	for	the	ArangoDB	server	has	been	changed	from		0.0.0.0		to		127.0.0.1	.	This	will	make	new	ArangoDB
installations	unaccessible	from	clients	other	than	localhost	unless	the	configuration	is	changed.	This	is	a	security	precaution	measure	that
has	been	requested	as	a	feature	a	lot	of	times.

If	you	are	the	development	option		--enable-relative	,	the	endpoint	will	still	be		0.0.0.0	.

System	collections	in	replication

By	default,	system	collections	are	now	included	in	replication	and	all	replication	API	return	values.	This	will	lead	to	user	accounts	and
credentials	data	being	replicated	from	master	to	slave	servers.	This	may	overwrite	slave-specific	database	users.

If	this	is	undesired,	the		_users		collection	can	be	excluded	from	replication	easily	by	setting	the		includeSystem		attribute	to		false		in
the	following	commands:

replication.sync({	includeSystem:	false	});
replication.applier.properties({	includeSystem:	false	});

This	will	exclude	all	system	collections	(including		_aqlfunctions	,		_graphs		etc.)	from	the	initial	synchronization	and	the	continuous
replication.

If	this	is	also	undesired,	it	is	also	possible	to	specify	a	list	of	collections	to	exclude	from	the	initial	synchronization	and	the	continuous
replication	using	the		restrictCollections		attribute,	e.g.:

require("org/arangodb/replication").applier.properties({	

		includeSystem:	true,

		restrictType:	"exclude",

		restrictCollections:	["_users",	"_graphs",	"foo"]	

});

Whats	New	in	2.4

579

Incompatible	changes	in	ArangoDB	2.4
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	2.4,	and	adjust	any	client	programs
if	necessary.

Changed	behavior

V8	upgrade

The	bundled	V8	version	has	been	upgraded	from	3.16.14	to	3.29.59.

The	new	version	provides	better	error	checking,	which	can	lead	to	subtle	changes	in	the	execution	of	JavaScript	code.

The	following	code,	though	nonsense,	runs	without	error	in	2.3	and	2.4	when	strict	mode	is	not	enabled:

(function	()	{	

		a	=	true;	

		a.foo	=	1;	

})();

When	enabling	strict	mode,	the	function	will	throw	an	error	in	2.4	but	not	in	2.3:

(function	()	{	

		"use	strict";	

		a	=	true;	

		a.foo	=	1;	

})();

TypeError:	Cannot	assign	to	read	only	property	'foo'	of	true

Though	this	is	a	change	in	behavior	it	can	be	considered	an	improvement.	The	new	version	actually	uncovers	an	error	that	went
undetected	in	the	old	version.

Error	messages	have	also	changed	slightly	in	the	new	version.	Applications	that	rely	on	the	exact	error	messages	of	the	JavaScript	engine
may	need	to	be	adjusted	so	they	look	for	the	updated	error	messages.

Default	endpoint

The	default	endpoint	for	arangod	is	now		127.0.0.1	.

This	change	will	modify	the	IP	address	ArangoDB	listens	on	to	127.0.0.1	by	default.	This	will	make	new	ArangoDB	installations
unaccessible	from	clients	other	than	localhost	unless	the	configuration	is	changed.	This	is	a	security	feature.

To	make	ArangoDB	accessible	from	any	client,	change	the	server's	configuration	(--server.endpoint)	to	either		tcp://0.0.0.0:8529		or
the	server's	publicly	visible	IP	address.

Replication

System	collections	are	now	included	in	the	replication	and	all	replication	API	return	values	by	default.

This	will	lead	to	user	accounts	and	credentials	data	being	replicated	from	master	to	slave	servers.	This	may	overwrite	slave-specific
database	users.

This	may	be	considered	a	feature	or	an	anti-feature,	so	it	is	configurable.

If	replication	of	system	collections	is	undesired,	they	can	be	excluded	from	replication	by	setting	the		includeSystem		attribute	to		false	
in	the	following	commands:

initial	synchronization:		replication.sync({	includeSystem:	false	})	
continuous	replication:		replication.applier.properties({	includeSystem:	false	})	

Incompatible	changes	in	2.4

580

This	will	exclude	all	system	collections	(including		_aqlfunctions	,		_graphs		etc.)	from	the	initial	synchronization	and	the	continuous
replication.

If	this	is	also	undesired,	it	is	also	possible	to	specify	a	list	of	collections	to	exclude	from	the	initial	synchronization	and	the	continuous
replication	using	the		restrictCollections		attribute,	e.g.:

require("org/arangodb/replication").applier.properties({	

		includeSystem:	true,

		restrictType:	"exclude",

		restrictCollections:	["_users",	"_graphs",	"foo"]	

});

The	above	example	will	in	general	include	system	collections,	but	will	exclude	the	specified	three	collections	from	continuous	replication.

The	HTTP	REST	API	methods	for	fetching	the	replication	inventory	and	for	dumping	collections	also	support	the		includeSystem	
control	flag	via	a	URL	parameter	of	the	same	name.

Build	process	changes

Several	options	for	the		configure		command	have	been	removed	in	2.4.	The	options

	--enable-all-in-one-v8	

	--enable-all-in-one-icu	

	--enable-all-in-one-libev	

	--with-libev=DIR	

	--with-libev-lib=DIR	

	--with-v8=DIR	

	--with-v8-lib=DIR	

	--with-icu-config=FILE	

are	not	available	anymore	because	the	build	process	will	always	use	the	bundled	versions	of	the	libraries.

When	building	ArangoDB	from	source	in	a	directory	that	already	contained	a	pre-2.4	version,	it	will	be	necessary	to	run	a		make
superclean		command	once	and	a	full	rebuild	afterwards:

git	pull

make	superclean

make	setup

./configure	<options	go	here>

make

Miscellaneous	changes
As	a	consequence	of	global	renaming	in	the	codebase,	the	option		mergeArrays		has	been	renamed	to		mergeObjects	.	This	option	controls
whether	JSON	objects	will	be	merged	on	an	update	operation	or	overwritten.	The	default	has	been,	and	still	is,	to	merge.	Not	specifying
the	parameter	will	lead	to	a	merge,	as	it	has	been	the	behavior	in	ArangoDB	ever	since.

This	affects	the	HTTP	REST	API	method	PATCH		/_api/document/collection/key	.	Its	optional	URL	parameter		mergeArrays		for	the
option	has	been	renamed	to		mergeObjects	.

The	AQL		UPDATE		statement	is	also	affected,	as	its	option		mergeArrays		has	also	been	renamed	to		mergeObjects	.	The	2.3	query

UPDATE	doc	IN	collection	WITH	{	...	}	IN	collection	OPTIONS	{	mergeArrays:	false	}

should	thus	be	rewritten	to	the	following	in	2.4:

UPDATE	doc	IN	collection	WITH	{	...	}	IN	collection	OPTIONS	{	mergeObjects:	false	}

Deprecated	features

Incompatible	changes	in	2.4

581

For		FoxxController		objects,	the	method		collection()		is	deprecated	and	will	be	removed	in	future	version	of	ArangoDB.	Using	this
method	will	issue	a	warning.	Please	use		applicationContext.collection()		instead.

For		FoxxRepository		objects,	the	property		modelPrototype		is	now	deprecated.	Using	it	will	issue	a	warning.	Please	use
	FoxxRepository.model		instead.

In		FoxxController		/		RequestContext	,	calling	method		bodyParam()		with	three	arguments	is	deprecated.	Please	use
	.bodyParam(paramName,	options)		instead.

In		FoxxController		/		RequestContext		calling	method		queryParam({type:	string})		is	deprecated.	Please	use
	requestContext.queryParam({type:	joi})		instead.

In		FoxxController		/		RequestContext		calling	method		pathParam({type:	string})		is	deprecated.	Please	use
	requestContext.pathParam({type:	joi})		instead.

For		FoxxModel	,	calling		Model.extend({},	{attributes:	{}})		is	deprecated.	Please	use		Model.extend({schema:	{}})		instead.

In	module		org/arangodb/general-graph	,	the	functions		_undirectedRelation()		and		_directedRelation()		are	deprecated	and	will	be
removed	in	a	future	version	of	ArangoDB.	Both	functions	have	been	unified	to		_relation()	.

The	modules		org/arangodb/graph		and		org/arangodb/graph-blueprint		are	deprecated.	Please	use	module		org/arangodb/general-graph	
instead.

The	HTTP	REST	API		_api/graph		and	all	its	methods	are	deprecated.	Please	use	the	general	graph	API		_api/gharial		instead.

Removed	features

The	following	replication-related	JavaScript	methods	became	obsolete	in	ArangoDB	2.2	and	have	been	removed	in	ArangoDB	2.4:

	require("org/arangodb/replication").logger.start()	

	require("org/arangodb/replication").logger.stop()	

	require("org/arangodb/replication").logger.properties()	

The	REST	API	methods	for	these	functions	have	also	been	removed	in	ArangoDB	2.4:

HTTP	PUT		/_api/replication/logger-start	
HTTP	PUT		/_api/replication/logger-stop	
HTTP	GET		/_api/replication/logger-config	
HTTP	PUT		/_api/replication/logger-config	

Client	applications	that	call	one	of	these	methods	should	be	adjusted	by	removing	the	calls	to	these	methods.	This	shouldn't	be
problematic	as	these	methods	have	been	no-ops	since	ArangoDB	2.2	anyway.

Incompatible	changes	in	2.4

582

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.3.	ArangoDB	2.3	also	contains	several
bugfixes	that	are	not	listed	here.

AQL	improvements

Framework	improvements

AQL	queries	are	now	sent	through	a	query	optimizer	framework	before	execution.	The	query	optimizer	framework	will	first	convert	the
internal	representation	of	the	query,	the	abstract	syntax	tree,	into	an	initial	execution	plan.

The	execution	plan	is	then	send	through	optimizer	rules	that	may	directly	modify	the	plan	in	place	or	create	a	new	variant	of	the	plan.
New	plans	might	again	be	optimized,	allowing	the	optimizer	to	carry	out	several	optimizations.

After	creating	plans,	the	optimizer	will	estimate	the	costs	for	each	plan	and	pick	the	plan	with	the	lowest	cost	(termed	the	optimal	plan)
for	the	actual	query	execution.

With	the		explain()		method	of		ArangoStatement		users	can	check	which	execution	plan	the	optimizer	pick	or	retrieve	a	list	of	other
plans	that	optimizer	did	not	choose.	The	plan	will	reveal	many	details	about	which	indexes	are	used	etc.		explain()		will	also	return	the
of	optimizer	rules	applied	so	users	can	validate	whether	or	not	a	query	allows	using	a	specific	optimization.

Execution	of	AQL	queries	has	been	rewritten	in	C++,	allowing	many	queries	to	avoid	the	conversion	of	documents	between	ArangoDB's
internal	low-level	data	structure	and	the	V8	object	representation	format.

The	framework	for	optimizer	rules	is	now	also	generally	cluster-aware,	allowing	specific	optimizations	for	queries	that	run	in	a	cluster.
Additionally,	the	optimizer	was	designed	to	be	extensible	in	order	to	add	more	optimizations	in	the	future.

Language	improvements

Alternative	operator	syntax

ArangoDB	2.3	allows	to	use	the	following	alternative	forms	for	the	logical	operators:

	AND	:	logical	and
	OR	:	logical	or
	NOT	:	negation

This	new	syntax	is	just	an	alternative	to	the	old	syntax,	allowing	easier	migration	from	SQL.	The	old	syntax	is	still	fully	supported	and
will	be:

	&&	:	logical	and
	||	:	logical	or
	!	:	negation

	NOT	IN		operator

AQL	now	has	a	dedicated		NOT	IN		operator.

Previously,	a		NOT	IN		was	only	achievable	by	writing	a	negated		IN		condition:

FOR	i	IN	...	FILTER	!	(i	IN	[23,	42])	...

In	ArangoDB	2.3,	the	same	result	can	now	alternatively	be	achieved	by	writing	the	more	intuitive	variant:

FOR	i	IN	...	FILTER	i	NOT	IN	[23,	42]	...

Improvements	of	built-in	functions

Whats	New	in	2.3

583

The	following	AQL	string	functions	have	been	added:

	LTRIM(value,	characters)	:	left-trims	a	string	value
	RTRIM(value,	characters)	:	right-trims	a	string	value
	FIND_FIRST(value,	search,	start,	end)	:	finds	the	first	occurrence	of	a	search	string
	FIND_LAST(value,	search,	start,	end)	:	finds	the	last	occurrence	of	a	search	string
	SPLIT(value,	separator,	limit)	:	splits	a	string	into	an	array,	using	a	separator
	SUBSTITUTE(value,	search,	replace,	limit)	:	replaces	characters	or	strings	inside	another

The	following	other	AQL	functions	have	been	added:

	VALUES(document)	:	returns	the	values	of	an	object	as	an	array	(this	is	the	counterpart	to	the	already	existing		ATTRIBUTES		function)
	ZIP(attributes,	values)	:	returns	an	object	constructed	from	attributes	and	values	passed	in	separate	parameters
	PERCENTILE(values,	n,	method)	:	returns	the	nths	percentile	of	the	values	provided,	using	rank	or	interpolation	method

The	already	existing	functions		CONCAT		and		CONCAT_SEPARATOR		now	support	array	arguments,	e.g.:

/*	"foobarbaz"	*/

CONCAT(['foo',	'bar',	'baz'])

/*	"foo,bar,baz"	*/

CONCAT_SEPARATOR(",	",	['foo',	'bar',	'baz'])

AQL	queries	throw	less	exceptions

In	previous	versions	of	ArangoDB,	AQL	queries	aborted	with	an	exception	in	many	situations	and	threw	a	runtime	exception.	For
example,	exceptions	were	thrown	when	trying	to	find	a	value	using	the		IN		operator	in	a	non-array	element,	when	trying	to	use	non-
boolean	values	with	the	logical	operands		&&		or		||		or		!	,	when	using	non-numeric	values	in	arithmetic	operations,	when	passing
wrong	parameters	into	functions	etc.

The	fact	that	many	AQL	operators	could	throw	exceptions	led	to	a	lot	of	questions	from	users,	and	a	lot	of	more-verbose-than-necessary
queries.	For	example,	the	following	query	failed	when	there	were	documents	that	did	not	have	a		topics		attribute	at	all:

FOR	doc	IN	mycollection

		FILTER	doc.topics	IN	["something",	"whatever"]

		RETURN	doc

This	forced	users	to	rewrite	the	query	as	follows:

FOR	doc	IN	mycollection

		FILTER	IS_LIST(doc.topics)	&&	doc.topics	IN	["something",	"whatever"]

		RETURN	doc

In	ArangoDB	2.3	this	has	been	changed	to	make	AQL	easier	to	use.	The	change	provides	an	extra	benefit,	and	that	is	that	non-throwing
operators	allow	the	query	optimizer	to	perform	much	more	transformations	in	the	query	without	changing	its	overall	result.

Here	is	a	summary	of	changes:

when	a	non-array	value	is	used	on	the	right-hand	side	of	the		IN		operator,	the	result	will	be		false		in	ArangoDB	2.3,	and	no
exception	will	be	thrown.
the	boolean	operators		&&		and		||		do	not	throw	in	ArangoDB	2.3	if	any	of	the	operands	is	not	a	boolean	value.	Instead,	they	will
perform	an	implicit	cast	of	the	values	to	booleans.	Their	result	will	be	as	follows:

	lhs	&&	rhs		will	return		lhs		if	it	is		false		or	would	be		false		when	converted	into	a	boolean.	If		lhs		is		true		or	would
be		true		when	converted	to	a	boolean,		rhs		will	be	returned.
	lhs	||	rhs		will	return		lhs		if	it	is		true		or	would	be		true		when	converted	into	a	boolean.	If		lhs		is		false		or	would	be
	false		when	converted	to	a	boolean,		rhs		will	be	returned.
	!	value		will	return	the	negated	value	of		value		converted	into	a	boolean

the	arithmetic	operators	(+	,		-	,		*	,		/	,		%)	can	be	applied	to	any	value	and	will	not	throw	exceptions	when	applied	to	non-
numeric	values.	Instead,	any	value	used	in	these	operators	will	be	casted	to	a	numeric	value	implicitly.	If	no	numeric	result	can	be
produced	by	an	arithmetic	operator,	it	will	return		null		in	ArangoDB	2.3.	This	is	also	true	for	division	by	zero.
passing	arguments	of	invalid	types	into	AQL	functions	does	not	throw	a	runtime	exception	in	most	cases,	but	may	produce	runtime

Whats	New	in	2.3

584

warnings.	Built-in	AQL	functions	that	receive	invalid	arguments	will	then	return		null	.

Performance	improvements

Non-unique	hash	indexes

The	performance	of	insertion	into	non-unique	hash	indexes	has	been	improved	significantly.	This	fixes	performance	problems	in	case
attributes	were	indexes	that	contained	only	very	few	distinct	values,	or	when	most	of	the	documents	did	not	even	contain	the	indexed
attribute.	This	also	fixes	problems	when	loading	collections	with	such	indexes.

The	insertion	time	now	scales	linearly	with	the	number	of	documents	regardless	of	the	cardinality	of	the	indexed	attribute.

Reverse	iteration	over	skiplist	indexes

AQL	queries	can	now	use	a	sorted	skiplist	index	for	reverse	iteration.	This	allows	several	queries	to	run	faster	than	in	previous	versions
of	ArangoDB.

For	example,	the	following	AQL	query	can	now	use	the	index	on		doc.value	:

FOR	doc	IN	mycollection

		FILTER	doc.value	>	23

		SORT	doc.values	DESC

		RETURN	doc

Previous	versions	of	ArangoDB	did	not	use	the	index	because	of	the	descending	(DESC)	sort.

Additionally,	the	new	AQL	optimizer	can	use	an	index	for	sorting	now	even	if	the	AQL	query	does	not	contain	a		FILTER		statement.
This	optimization	was	not	available	in	previous	versions	of	ArangoDB.

Added	basic	support	for	handling	binary	data	in	Foxx

Buffer	objects	can	now	be	used	when	setting	the	response	body	of	any	Foxx	action.	This	allows	Foxx	actions	to	return	binary	data.

Requests	with	binary	payload	can	be	processed	in	Foxx	applications	by	using	the	new	method		res.rawBodyBuffer()	.	This	will	return
the	unparsed	request	body	as	a	Buffer	object.

There	is	now	also	the	method		req.requestParts()		available	in	Foxx	to	retrieve	the	individual	components	of	a	multipart	HTTP	request.
That	can	be	used	for	example	to	process	file	uploads.

Additionally,	the		res.send()		method	has	been	added	as	a	convenience	method	for	returning	strings,	JSON	objects	or	Buffers	from	a
Foxx	action.	It	provides	some	auto-detection	based	on	its	parameter	value:

res.send("<p>some	HTML</p>");		//	returns	an	HTML	string

res.send({	success:	true	});			//	returns	a	JSON	object

res.send(new	Buffer("some	binary	data"));		//	returns	binary	data

The	convenience	method		res.sendFile()		can	now	be	used	to	return	the	contents	of	a	file	from	a	Foxx	action.	They	file	may	contain
binary	data:

res.sendFile(applicationContext.foxxFilename("image.png"));

The	filesystem	methods		fs.write()		and		fs.readBuffer()		can	be	used	to	work	with	binary	data,	too:

	fs.write()		will	perform	an	auto-detection	of	its	second	parameter's	value	so	it	works	with	Buffer	objects:

fs.write(filename,	"some	data");		//	saves	a	string	value	in	file

fs.write(filename,	new	Buffer("some	binary	data"));		//	saves	(binary)	contents	of	a	buffer

	fs.readBuffer()		has	been	added	as	a	method	to	read	the	contents	of	an	arbitrary	file	into	a	Buffer	object.

Whats	New	in	2.3

585

Web	interface

Batch	document	removal	and	move	functionality	has	been	added	to	the	web	interface,	making	it	easier	to	work	with	multiple	documents
at	once.	Additionally,	basic	JSON	import	and	export	tools	have	been	added.

Command-line	options	added

The	command-line	option		--javascript.v8-contexts		was	added	to	arangod	to	provide	better	control	over	the	number	of	V8	contexts
created	in	arangod.

Previously,	the	number	of	V8	contexts	arangod	created	at	startup	was	equal	to	the	number	of	server	threads	(as	specified	by	option		--
server.threads).

In	some	situations	it	may	be	more	sensible	to	create	different	amounts	of	threads	and	V8	contexts.	This	is	because	each	V8	contexts
created	will	consume	memory	and	requires	CPU	resources	for	periodic	garbage	collection.	Contrary,	server	threads	do	not	have	such	high
memory	or	CPU	footprint.

If	the	option		--javascript.v8-contexts		is	not	specified,	the	number	of	V8	contexts	created	at	startup	will	remain	equal	to	the	number	of
server	threads.	Thus	no	change	in	configuration	is	required	to	keep	the	same	behavior	as	in	previous	ArangoDB	versions.

The	command-line	option		--log.use-local-time		was	added	to	print	dates	and	times	in	ArangoDB's	log	in	the	server-local	timezone
instead	of	UTC.	If	it	is	not	set,	the	timezone	will	default	to	UTC.

The	option		--backslash-escape		has	been	added	to	arangoimp.	Specifying	this	option	will	use	the	backslash	as	the	escape	character	for
literal	quotes	when	parsing	CSV	files.	The	escape	character	for	literal	quotes	is	still	the	double	quote	character.

Miscellaneous	improvements

ArangoDB's	built-in	HTTP	server	now	supports	HTTP	pipelining.

The	ArangoShell	tutorial	from	the	arangodb.com	website	is	now	integrated	into	the	ArangoDB	shell.

Powerful	Foxx	Enhancements
With	the	new	job	queue	feature	you	can	run	async	jobs	to	communicate	with	external	services,	Foxx	queries	make	writing	complex
AQL	queries	much	easier	and	Foxx	sessions	will	handle	the	authentication	and	session	hassle	for	you.

Foxx	Queries

Writing	long	AQL	queries	in	JavaScript	can	quickly	become	unwieldy.	As	of	2.3	ArangoDB	bundles	the	ArangoDB	Query	Builder
module	that	provides	a	JavaScript	API	for	writing	complex	AQL	queries	without	string	concatenation.	All	built-in	functions	that	accept
AQL	strings	now	support	query	builder	instances	directly.	Additionally	Foxx	provides	a	method		Foxx.createQuery		for	creating
parametrized	queries	that	can	return	Foxx	models	or	apply	arbitrary	transformations	to	the	query	results.

Foxx	Sessions

The	session	functionality	in	Foxx	has	been	completely	rewritten.	The	old		activateAuthentication		API	is	still	supported	but	may	be
deprecated	in	the	future.	The	new		activateSessions		API	supports	cookies	or	configurable	headers,	provides	optional	JSON	Web	Token
and	cryptographic	signing	support	and	uses	the	new	sessions	Foxx	app.

ArangoDB	2.3	provides	Foxx	apps	for	user	management	and	salted	hash-based	authentication	which	can	be	replaced	with	or
supplemented	by	alternative	implementations.	For	an	example	app	using	both	the	built-in	authentication	and	OAuth2	see	the	Foxx
Sessions	Example	app.

Foxx	Queues

Foxx	now	provides	async	workers	via	the	Foxx	Queues	API.	Jobs	enqueued	in	a	job	queue	will	be	executed	asynchronously	outside	of
the	request/response	cycle	of	Foxx	controllers	and	can	be	used	to	communicate	with	external	services	or	perform	tasks	that	take	a	long
time	to	complete	or	may	require	multiple	attempts.

Whats	New	in	2.3

586

https://npmjs.org/package/aqb
https://github.com/arangodb/foxx-sessions-example

Jobs	can	be	scheduled	in	advance	or	set	to	be	executed	immediately,	the	number	of	retry	attempts,	the	retry	delay	as	well	as	success	and
failure	handlers	can	be	defined	for	each	job	individually.	Job	types	that	integrate	various	external	services	for	transactional	e-mails,	logging
and	user	tracking	can	be	found	in	the	Foxx	app	registry.

Misc

The	request	and	response	objects	in	Foxx	controllers	now	provide	methods	for	reading	and	writing	raw	cookies	and	signed	cookies.

Mounted	Foxx	apps	will	now	be	loaded	when	arangod	starts	rather	than	at	the	first	database	request.	This	may	result	in	slightly	slower
start	up	times	(but	a	faster	response	for	the	first	request).

Whats	New	in	2.3

587

Incompatible	changes	in	ArangoDB	2.3
It	is	recommended	to	check	the	following	list	of	incompatible	changes	before	upgrading	to	ArangoDB	2.3,	and	adjust	any	client	programs
if	necessary.

Configuration	file	changes

Threads	and	contexts

The	number	of	server	threads	specified	is	now	the	minimum	of	threads	started.	There	are	situation	in	which	threads	are	waiting	for	results
of	distributed	database	servers.	In	this	case	the	number	of	threads	is	dynamically	increased.

With	ArangoDB	2.3,	the	number	of	server	threads	can	be	configured	independently	of	the	number	of	V8	contexts.	The	configuration
option		--javascript.v8-contexts		was	added	to	arangod	to	provide	better	control	over	the	number	of	V8	contexts	created	in	arangod.

Previously,	the	number	of	V8	contexts	arangod	created	at	startup	was	equal	to	the	number	of	server	threads	(as	specified	by	option		--
server.threads).

In	some	situations	it	may	be	more	sensible	to	create	different	amounts	of	threads	and	V8	contexts.	This	is	because	each	V8	contexts
created	will	consume	memory	and	requires	CPU	resources	for	periodic	garbage	collection.	Contrary,	server	threads	do	not	have	such	high
memory	or	CPU	footprint.

If	the	option		--javascript.v8-contexts		is	not	specified,	the	number	of	V8	contexts	created	at	startup	will	remain	equal	to	the	number	of
server	threads.	Thus	no	change	in	configuration	is	required	to	keep	the	same	behavior	as	in	previous	ArangoDB	versions.

If	you	are	using	the	default	config	files	or	merge	them	with	your	local	config	files,	please	review	if	the	default	number	of	server	threads	is
okay	in	your	environment.	Additionally	you	should	verify	that	the	number	of	V8	contexts	created	(as	specified	in	option		--
javascript.v8-contexts)	is	okay.

Syslog

The	command-line	option		--log.syslog		was	used	in	previous	versions	of	ArangoDB	to	turn	logging	to	syslog	on	or	off:	when	setting	to
a	non-empty	string,	syslog	logging	was	turned	on,	otherwise	turned	off.	When	syslog	logging	was	turned	on,	logging	was	done	with	the
application	name	specified	in		--log.application	,	which	defaulted	to		triagens	.	There	was	also	a	command-line	option		--
log.hostname		which	could	be	set	but	did	not	have	any	effect.

This	behavior	turned	out	to	be	unintuitive	and	was	changed	in	2.3	as	follows:

the	command-line	option		--log.syslog		is	deprecated	and	does	not	have	any	effect	when	starting	ArangoDB.
to	turn	on	syslog	logging	in	2.3,	the	option		--log.facility		has	to	be	set	to	a	non-empty	string.	The	value	for		facility		is	OS-
dependent	(possible	values	can	be	found	in		/usr/include/syslog.h		or	the	like	-		user		should	be	available	on	many	systems).
the	default	value	for		--log.application		has	been	changed	from		triagens		to		arangod	.
the	command-line	option		--log.hostname		is	deprecated	and	does	not	have	any	effect	when	starting	ArangoDB.	Instead,	the	host
name	will	be	set	by	syslog	automatically.
when	logging	to	syslog,	ArangoDB	now	omits	the	datetime	prefix	and	the	process	id,	because	they'll	be	added	by	syslog
automatically.

AQL

AQL	queries	throw	less	exceptions

ArangoDB	2.3	contains	a	completely	rewritten	AQL	query	optimizer	and	execution	engine.	This	means	that	AQL	queries	will	be
executed	with	a	different	engine	than	in	ArangoDB	2.2	and	earlier.	Parts	of	AQL	queries	might	be	executed	in	different	order	than	before
because	the	AQL	optimizer	has	more	freedom	to	move	things	around	in	a	query.

Incompatible	changes	in	2.3

588

In	previous	versions	of	ArangoDB,	AQL	queries	aborted	with	an	exception	in	many	situations	and	threw	a	runtime	exception.	Exceptions
were	thrown	when	trying	to	find	a	value	using	the		IN		operator	in	a	non-array	element,	when	trying	to	use	non-boolean	values	with	the
logical	operands		&&		or		||		or		!	,	when	using	non-numeric	values	in	arithmetic	operations,	when	passing	wrong	parameters	into
functions	etc.

In	ArangoDB	2.3	this	has	been	changed	in	many	cases	to	make	AQL	more	user-friendly	and	to	allow	the	optimization	to	perform	much
more	query	optimizations.

Here	is	a	summary	of	changes:

when	a	non-array	value	is	used	on	the	right-hand	side	of	the		IN		operator,	the	result	will	be		false		in	ArangoDB	2.3,	and	no
exception	will	be	thrown.
the	boolean	operators		&&		and		||		do	not	throw	in	ArangoDB	2.3	if	any	of	the	operands	is	not	a	boolean	value.	Instead,	they	will
perform	an	implicit	cast	of	the	values	to	booleans.	Their	result	will	be	as	follows:

	lhs	&&	rhs		will	return		lhs		if	it	is		false		or	would	be		false		when	converted	into	a	boolean.	If		lhs		is		true		or	would
be		true		when	converted	to	a	boolean,		rhs		will	be	returned.
	lhs	||	rhs		will	return		lhs		if	it	is		true		or	would	be		true		when	converted	into	a	boolean.	If		lhs		is		false		or	would	be
	false		when	converted	to	a	boolean,		rhs		will	be	returned.
	!	value		will	return	the	negated	value	of		value		converted	into	a	boolean

the	arithmetic	operators	(+	,		-	,		*	,		/	,		%)	can	be	applied	to	any	value	and	will	not	throw	exceptions	when	applied	to	non-
numeric	values.	Instead,	any	value	used	in	these	operators	will	be	casted	to	a	numeric	value	implicitly.	If	no	numeric	result	can	be
produced	by	an	arithmetic	operator,	it	will	return		null		in	ArangoDB	2.3.	This	is	also	true	for	division	by	zero.
passing	arguments	of	invalid	types	into	AQL	functions	does	not	throw	a	runtime	exception	in	most	cases,	but	may	produce	runtime
warnings.	Built-in	AQL	functions	that	receive	invalid	arguments	will	then	return		null	.

Nested	FOR	loop	execution	order

The	query	optimizer	in	2.3	may	permute	the	order	of	nested		FOR		loops	in	AQL	queries,	provided	that	exchanging	the	loops	will	not
alter	a	query	result.	However,	a	change	in	the	order	of	returned	values	is	allowed	because	no	sort	order	is	guaranteed	by	AQL	(and	was
never)	unless	an	explicit		SORT		statement	is	used	in	a	query.

Changed	return	values	of	ArangoQueryCursor.getExtra()

The	return	value	of		ArangoQueryCursor.getExtra()		has	been	changed	in	ArangoDB	2.3.	It	now	contains	a		stats		attribute	with
statistics	about	the	query	previously	executed.	It	also	contains	a		warnings		attribute	with	warnings	that	happened	during	query
execution.	The	return	value	structure	has	been	unified	in	2.3	for	both	read-only	and	data-modification	queries.

The	return	value	looks	like	this	for	a	read-only	query:

arangosh>	stmt	=	db._createStatement("FOR	i	IN	mycollection	RETURN	i");	stmt.execute().getExtra()

{	

		"stats"	:	{	

				"writesExecuted"	:	0,	

				"writesIgnored"	:	0,	

				"scannedFull"	:	2600,	

				"scannedIndex"	:	0	

		},	

		"warnings"	:	[]	

}

For	data-modification	queries,	ArangoDB	2.3	returns	a	result	with	the	same	structure:

arangosh>	stmt	=	db._createStatement("FOR	i	IN	xx	REMOVE	i	IN	xx");	stmt.execute().getExtra()

{	

		"stats"	:	{	

				"writesExecuted"	:	2600,	

				"writesIgnored"	:	0,	

				"scannedFull"	:	2600,	

				"scannedIndex"	:	0	

		},	

		"warnings"	:	[]	

}

Incompatible	changes	in	2.3

589

In	ArangoDB	2.2,	the	return	value	of		ArangoQueryCursor.getExtra()		was	empty	for	read-only	queries	and	contained	an	attribute
	operations		with	two	sub-attributes	for	data-modification	queries:

arangosh>	stmt	=	db._createStatement("FOR	i	IN	mycollection	RETURN	i");	stmt.execute().getExtra()

{	

}

arangosh>	stmt	=	db._createStatement("FOR	i	IN	mycollection	REMOVE	i	IN	mycollection");	stmt.execute().getExtra()

{	

		"operations"	:	{	

				"executed"	:	2600,	

				"ignored"	:	0	

		}	

}

Changed	return	values	in	HTTP	method		POST	/_api/cursor	

The	previously	mentioned	change	also	leads	to	the	statistics	being	returned	in	the	HTTP	REST	API	method		POST	/_api/cursor	.
Previously,	the	return	value	contained	an	optional		extra		attribute	that	was	filled	only	for	data-modification	queries	and	in	some	other
cases	as	follows:

{

		"result"	:	[],

		"hasMore"	:	false,

		"extra"	:	{

				"operations"	:	{

						"executed"	:	2600,

						"ignored"	:	0

				}

		}

}

With	the	changed	result	structure	in	ArangoDB	2.3,	the		extra		attribute	in	the	result	will	look	like	this:

{	

		"result"	:	[],

		"hasMore"	:	false,

		"extra"	:	{

				"stats"	:	{

						"writesExecuted"	:	2600,

						"writesIgnored"	:	0,

						"scannedFull"	:	0,

						"scannedIndex"	:	0

				},

				"warnings"	:	[]

		}

}

If	the	query	option		fullCount		is	requested,	the		fullCount		result	value	will	also	be	returned	inside	the		stats		attribute	of	the		extra	
attribute,	and	not	directly	as	an	attribute	inside	the		extra		attribute	as	in	2.2.	Note	that	a		fullCount		will	only	be	present	in
	extra	.	stats		if	it	was	requested	as	an	option	for	the	query.

The	result	in	ArangoDB	2.3	will	also	contain	a		warnings		attribute	with	the	array	of	warnings	that	happened	during	query	execution.

Changed	return	values	in	ArangoStatement.explain()

The	return	value	of		ArangoStatement.explain()		has	changed	significantly	in	ArangoDB	2.3.	The	new	return	value	structure	is	not
compatible	with	the	structure	returned	by	2.2.

In	ArangoDB	2.3,	the	full	execution	plan	for	an	AQL	query	is	returned	alongside	all	applied	optimizer	rules,	optimization	warnings	etc.	It
is	also	possible	to	have	the	optimizer	return	all	execution	plans.	This	required	a	new	data	structure.

Client	programs	that	use		ArangoStatement.explain()		or	the	HTTP	REST	API	method		POST	/_api/explain		may	need	to	be	adjusted	to
use	the	new	return	format.

Incompatible	changes	in	2.3

590

The	return	value	of		ArangoStatement.parse()		has	been	extended	in	ArangoDB	2.3.	In	addition	to	the	existing	attributes,	ArangoDB	2.3
will	also	return	an		ast		attribute	containing	the	abstract	syntax	tree	of	the	statement.	This	extra	attribute	can	safely	be	ignored	by	client
programs.

Variables	not	updatable	in	queries

Previous	versions	of	ArangoDB	allowed	the	modification	of	variables	inside	AQL	queries,	e.g.

LET	counter	=	0

FOR	i	IN	1..10	

		LET	counter	=	counter	+	1

		RETURN	counter

While	this	is	admittedly	a	convenient	feature,	the	new	query	optimizer	design	did	not	allow	to	keep	it.	Additionally,	updating	variables
inside	a	query	would	prevent	a	lot	of	optimizations	to	queries	that	we	would	like	the	optimizer	to	make.	Additionally,	updating	variables
in	queries	that	run	on	different	nodes	in	a	cluster	would	like	cause	non-deterministic	behavior	because	queries	are	not	executed	linearly.

Changed	return	value	of		TO_BOOL	

The	AQL	function		TO_BOOL		now	always	returns	true	if	its	argument	is	an	array	or	an	object.	In	previous	versions	of	ArangoDB,	the
function	returned	false	for	empty	arrays	or	for	objects	without	attributes.

Changed	return	value	of		TO_NUMBER	

The	AQL	function		TO_NUMBER		now	returns	null	if	its	argument	is	an	object	or	an	array	with	more	than	one	member.	In	previous	version
of	ArangoDB,	the	return	value	in	these	cases	was	0.		TO_NUMBER		will	return	0	for	empty	array,	and	the	numeric	equivalent	of	the	array
member's	value	for	arrays	with	a	single	member.

New	AQL	keywords

The	following	keywords	have	been	added	to	AQL	in	ArangoDB	2.3:

NOT
AND
OR

Unquoted	usage	of	these	keywords	for	attribute	names	in	AQL	queries	will	likely	fail	in	ArangoDB	2.3.	If	any	such	attribute	name	needs
to	be	used	in	a	query,	it	should	be	enclosed	in	backticks	to	indicate	the	usage	of	a	literal	attribute	name.

Removed	features

Bitarray	indexes

Bitarray	indexes	were	only	half-way	documented	and	integrated	in	previous	versions	of	ArangoDB	so	their	benefit	was	limited.	The
support	for	bitarray	indexes	has	thus	been	removed	in	ArangoDB	2.3.	It	is	not	possible	to	create	indexes	of	type	"bitarray"	with
ArangoDB	2.3.

When	a	collection	is	opened	that	contains	a	bitarray	index	definition	created	with	a	previous	version	of	ArangoDB,	ArangoDB	will	ignore
it	and	log	the	following	warning:

index	type	'bitarray'	is	not	supported	in	this	version	of	ArangoDB	and	is	ignored	

Future	versions	of	ArangoDB	may	automatically	remove	such	index	definitions	so	the	warnings	will	eventually	disappear.

Other	removed	features

The	HTTP	REST	API	method	at		POST	/_admin/modules/flush		has	been	removed.

Incompatible	changes	in	2.3

591

Known	issues

In	ArangoDB	2.3.0,	AQL	queries	containing	filter	conditions	with	an	IN	expression	will	not	yet	use	an	index:

FOR	doc	IN	collection	FILTER	doc.indexedAttribute	IN	[...]	RETURN	doc

FOR	doc	IN	collection

		FILTER	doc.indexedAttribute	IN	[...]

		RETURN	doc

We’re	currently	working	on	getting	the	IN	optimizations	done,	and	will	ship	them	in	a	2.3	maintenance	release	soon	(e.g.	2.3.1	or	2.3.2).

Incompatible	changes	in	2.3

592

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.2.	ArangoDB	2.2	also	contains	several
bugfixes	that	are	not	listed	here.

AQL	improvements

Data	modification	AQL	queries

Up	to	including	version	2.1,	AQL	supported	data	retrieval	operations	only.	Starting	with	ArangoDB	version	2.2,	AQL	also	supports	the
following	data	modification	operations:

INSERT:	insert	new	documents	into	a	collection
UPDATE:	partially	update	existing	documents	in	a	collection
REPLACE:	completely	replace	existing	documents	in	a	collection
REMOVE:	remove	existing	documents	from	a	collection

Data-modification	operations	are	normally	combined	with	other	AQL	statements	such	as	FOR	loops	and	FILTER	conditions	to
determine	the	set	of	documents	to	operate	on.	For	example,	the	following	query	will	find	all	documents	in	collection	users	that	match	a
specific	condition	and	set	their	status	variable	to	inactive:

FOR	u	IN	users

		FILTER	u.status	==	'not	active'

		UPDATE	u	WITH	{	status:	'inactive'	}	IN	users

The	following	query	copies	all	documents	from	collection	users	into	collection	backup:

FOR	u	IN	users

		INSERT	u	IN	backup

And	this	query	removes	documents	from	collection	backup:

FOR	doc	IN	backup

		FILTER	doc.lastModified	<	DATE_NOW()	-	3600

		REMOVE	doc	IN	backup

For	more	information	on	data-modification	queries,	please	refer	to	Data	modification	queries.

Updatable	variables

Previously,	the	value	of	a	variable	assigned	in	an	AQL	query	with	the		LET		keyword	was	not	updatable	in	an	AQL	query.	This
prevented	statements	like	the	following	from	being	executable:

LET	sum	=	0

FOR	v	IN	values

		SORT	v.year

		LET	sum	=	sum	+	v.value

		RETURN	{	year:	v.year,	value:	v.value,	sum:	sum	}

Other	AQL	improvements

added	AQL	TRANSLATE	function

This	function	can	be	used	to	perform	lookups	from	static	objects,	e.g.

LET	countryNames	=	{	US:	"United	States",	UK:	"United	Kingdom",	FR:	"France"	}

RETURN	TRANSLATE("FR",	countryNames)	

Whats	New	in	2.2

593

LET	lookup	=	{	foo:	"foo-replacement",	bar:	"bar-replacement",	baz:	"baz-replacement"	}

RETURN	TRANSLATE("foobar",	lookup,	"not	contained!")

Write-ahead	log
All	write	operations	in	an	ArangoDB	server	will	now	be	automatically	logged	in	the	server's	write-ahead	log.	The	write-ahead	log	is	a	set
of	append-only	logfiles,	and	it	is	used	in	case	of	a	crash	recovery	and	for	replication.

Data	from	the	write-ahead	log	will	eventually	be	moved	into	the	journals	or	datafiles	of	collections,	allowing	the	server	to	remove	older
write-ahead	logfiles.

Cross-collection	transactions	in	ArangoDB	should	benefit	considerably	by	this	change,	as	less	writes	than	in	previous	versions	are
required	to	ensure	the	data	of	multiple	collections	are	atomically	and	durably	committed.	All	data-modifying	operations	inside
transactions	(insert,	update,	remove)	will	write	their	operations	into	the	write-ahead	log	directly	now.	In	previous	versions,	such
operations	were	buffered	until	the	commit	or	rollback	occurred.	Transactions	with	multiple	operations	should	therefore	require	less
physical	memory	than	in	previous	versions	of	ArangoDB.

The	data	in	the	write-ahead	log	can	also	be	used	in	the	replication	context.	In	previous	versions	of	ArangoDB,	replicating	from	a	master
required	turning	on	a	special	replication	logger	on	the	master.	The	replication	logger	caused	an	extra	write	operation	into	the	_replication
system	collection	for	each	actual	write	operation.	This	extra	write	is	now	superfluous.	Instead,	slaves	can	read	directly	from	the	master's
write-ahead	log	to	get	informed	about	most	recent	data	changes.	This	removes	the	need	to	store	data-modification	operations	in	the
_replication	collection	altogether.

For	the	configuration	of	the	write-ahead	log,	please	refer	to	Write-ahead	log	options.

The	introduction	of	the	write-ahead	log	also	removes	the	need	to	configure	and	start	the	replication	logger	on	a	master.	Though	the
replication	logger	object	is	still	available	in	ArangoDB	2.2	to	ensure	API	compatibility,	starting,	stopping,	or	configuring	it	will	have	no
effect.

Performance	improvements
Removed	sorting	of	attribute	names	when	in	collection	shaper

In	previous	versions	of	ArangoDB,	adding	a	document	with	previously	not-used	attribute	names	caused	a	full	sort	of	all	attribute
names	used	in	the	collection.	The	sorting	was	done	to	ensure	fast	comparisons	of	attribute	names	in	some	rare	edge	cases,	but	it
considerably	slowed	down	inserts	into	collections	with	many	different	or	even	unique	attribute	names.

Specialized	primary	index	implementation	to	allow	faster	hash	table	rebuilding	and	reduce	lookups	in	datafiles	for	the	actual	value	of
	_key	.	This	also	reduces	the	amount	of	random	memory	accesses	for	primary	index	inserts.

Reclamation	of	index	memory	when	deleting	last	document	in	collection

Deleting	documents	from	a	collection	did	not	lead	to	index	sizes	being	reduced.	Instead,	the	index	memory	was	kept	allocated	and	re-
used	later	when	a	collection	was	refilled	with	new	documents.	Now,	index	memory	of	primary	indexes	and	hash	indexes	is	reclaimed
instantly	when	the	last	document	in	a	collection	is	removed.

Prevent	buffering	of	long	print	results	in	arangosh's	and	arangod's	print	command

This	change	will	emit	buffered	intermediate	print	results	and	discard	the	output	buffer	to	quickly	deliver	print	results	to	the	user,
and	to	prevent	constructing	very	large	buffers	for	large	results.

Miscellaneous	improvements

Added		insert		method	as	an	alias	for		save	.	Documents	can	now	be	inserted	into	a	collection	using	either	method:

db.test.save({	foo:	"bar"	});	

db.test.insert({	foo:	"bar"	});	

Cleanup	of	options	for	data-modification	operations

Whats	New	in	2.2

594

Many	of	the	data-modification	operations	had	signatures	with	many	optional	bool	parameters,	e.g.:

db.test.update("foo",	{	bar:	"baz"	},	true,	true,	true)

db.test.replace("foo",	{	bar:	"baz"	},	true,	true)

db.test.remove("foo",	true,	true)

db.test.save({	bar:	"baz"	},	true)

Such	long	parameter	lists	were	unintuitive	and	hard	to	use	when	only	one	of	the	optional	parameters	should	have	been	set.

To	make	the	APIs	more	usable,	the	operations	now	understand	the	following	alternative	signature:

collection.update(key,	update-document,	options)

collection.replace(key,	replacement-document,	options)

collection.remove(key,	options)

collection.save(document,	options)

Examples:

db.test.update("foo",	{	bar:	"baz"	},	{	overwrite:	true,	keepNull:	true,	waitForSync:	true	})

db.test.replace("foo",	{	bar:	"baz"	},	{	overwrite:	true,	waitForSync:	true	})

db.test.remove("foo",	{	overwrite:	true,	waitForSync:	true	})

db.test.save({	bar:	"baz"	},	{	waitForSync:	true	})

Added		--overwrite		option	to	arangoimp

This	allows	removing	all	documents	in	a	collection	before	importing	into	it	using	arangoimp.

Honor	startup	option		--server.disable-statistics		when	deciding	whether	or	not	to	start	periodic	statistics	collection	jobs

Previously,	the	statistics	collection	jobs	were	started	even	if	the	server	was	started	with	the		--server.disable-statistics		flag	being
set	to		true	.	Now	if	the	option	is	set	to		true	,	no	statistics	will	be	collected	on	the	server.

Disallow	storing	of	JavaScript	objects	that	contain	JavaScript	native	objects	of	type		Date	,		Function	,		RegExp		or		External	,	e.g.

db.test.save({	foo:	/bar/	});

db.test.save({	foo:	new	Date()	});

This	will	now	print

Error:	<data>	cannot	be	converted	into	JSON	shape:	could	not	shape	document

Previously,	objects	of	these	types	were	silently	converted	into	an	empty	object	(i.e.		{	})	and	no	warning	was	issued.

To	store	such	objects	in	a	collection,	explicitly	convert	them	into	strings	like	this:

db.test.save({	foo:	String(/bar/)	});

db.test.save({	foo:	String(new	Date())	});

Removed	features

MRuby	integration	for	arangod

ArangoDB	had	an	experimental	MRuby	integration	in	some	of	the	publish	builds.	This	wasn't	continuously	developed,	and	so	it	has	been
removed	in	ArangoDB	2.2.

This	change	has	led	to	the	following	startup	options	being	superfluous:

	--ruby.gc-interval	

	--ruby.action-directory	

	--ruby.modules-path	

	--ruby.startup-directory	

Whats	New	in	2.2

595

Specifying	these	startup	options	will	do	nothing	in	ArangoDB	2.2,	so	using	these	options	should	be	avoided	from	now	on	as	they	might
be	removed	in	a	future	version	of	ArangoDB.

Removed	startup	options

The	following	startup	options	have	been	removed	in	ArangoDB	2.2.	Specifying	them	in	the	server's	configuration	file	will	not	produce	an
error	to	make	migration	easier.	Still,	usage	of	these	options	should	be	avoided	as	they	will	not	have	any	effect	and	might	fully	be	removed
in	a	future	version	of	ArangoDB:

	--database.remove-on-drop	

	--database.force-sync-properties	

	--random.no-seed	

	--ruby.gc-interval	

	--ruby.action-directory	

	--ruby.modules-path	

	--ruby.startup-directory	

	--server.disable-replication-logger	

Multi	Collection	Graphs

ArangoDB	is	a	multi	model	database	with	native	graph	support.	In	version	2.2	the	features	for	graphs	have	been	improved	by	integration
of	a	new	graph	module.	All	graphs	created	with	the	old	module	are	automatically	migrated	into	the	new	module	but	can	still	be	used	by
the	old	module.

New	graph	module

Up	to	including	version	2.1,	ArangoDB	offered	a	module	for	graphs	and	graph	operations.	This	module	allowed	you	to	use	exactly	one
edge	collection	together	with	one	vertex	collection	in	a	graph.	With	ArangoDB	version	2.2	this	graph	module	is	deprecated	and	a	new
graph	module	is	offered.	This	new	module	allows	to	combine	an	arbitrary	number	of	vertex	collections	and	edge	collections	in	the	same
graph.	For	each	edge	collection	a	list	of	collections	containing	source	vertices	and	a	list	of	collections	containing	target	vertices	can	be
defined.	If	an	edge	is	stored	ArangoDB	checks	if	this	edge	is	valid	in	this	collection.	Furthermore	if	a	vertex	is	removed	from	one	of	the
collections	all	connected	edges	will	be	removed	as	well,	giving	the	guarantee	of	no	loose	ends	in	the	graphs.	The	layout	of	the	graph	can	be
modified	at	runtime	by	adding	or	removing	collections	and	changing	the	definitions	for	edge	collections.	All	operations	on	the	graph	level
are	transactional	by	default.

Graphs	in	AQL

Multi	collection	graphs	have	been	added	to	AQL	as	well.	Basic	functionality	(getting	vertices,	edges,	neighbors)	can	be	executed	using	the
entire	graph.	Also	more	advanced	features	like	shortest	path	calculations,	characteristic	factors	of	the	graph	or	traversals	have	been
integrated	into	AQL.	For	these	functions	all	graphs	created	with	the	graph	module	can	be	used.

Whats	New	in	2.2

596

Features	and	Improvements
The	following	list	shows	in	detail	which	features	have	been	added	or	improved	in	ArangoDB	2.1.	ArangoDB	2.1	also	contains	several
bugfixes	that	are	not	listed	here.

New	Edges	Index

The	edges	index	(used	to	store	connections	between	nodes	in	a	graph)	internally	uses	a	new	data	structure.	This	data	structure	improves
the	performance	when	populating	the	edge	index	(i.e.	when	loading	an	edge	collection).	For	large	graphs	loading	can	be	20	times	faster
than	with	ArangoDB	2.0.

Additionally,	the	new	index	fixes	performance	problems	that	occurred	when	many	duplicate		_from		or		_to		values	were	contained	in
the	index.	Furthermore,	the	new	index	supports	faster	removal	of	edges.

Finally,	when	loading	an	existing	collection	and	building	the	edges	index	for	the	collection,	less	memory	re-allocations	will	be	performed.

Overall,	this	should	considerably	speed	up	loading	edge	collections.

The	new	index	type	replaces	the	old	edges	index	type	automatically,	without	any	changes	being	required	by	the	end	user.

The	API	of	the	new	index	is	compatible	with	the	API	of	the	old	index.	Still	it	is	possible	that	the	new	index	returns	edges	in	a	different
order	than	the	old	index.	This	is	still	considered	to	be	compatible	because	the	old	index	had	never	guaranteed	any	result	order	either.

AQL	Improvements

AQL	offers	functionality	to	work	with	dates.	Dates	are	no	data	types	of	their	own	in	AQL	(neither	they	are	in	JSON,	which	is	often
used	as	a	format	to	ship	data	into	and	out	of	ArangoDB).	Instead,	dates	in	AQL	are	internally	represented	by	either	numbers
(timestamps)	or	strings.	The	date	functions	in	AQL	provide	mechanisms	to	convert	from	a	numeric	timestamp	to	a	string	representation
and	vice	versa.

There	are	two	date	functions	in	AQL	to	create	dates	for	further	use:

	DATE_TIMESTAMP(date)		Creates	a	UTC	timestamp	value	from		date	

	DATE_TIMESTAMP(year,	month,	day,	hour,	minute,	second,	millisecond)	:	Same	as	before,	but	allows	specifying	the	individual	date
components	separately.	All	parameters	after		day		are	optional.

	DATE_ISO8601(date)	:	Returns	an	ISO8601	datetime	string	from		date	.	The	datetime	string	will	always	use	UTC	time,	indicated	by
the		Z		at	its	end.

	DATE_ISO8601(year,	month,	day,	hour,	minute,	second,	millisecond)	:	same	as	before,	but	allows	specifying	the	individual	date
components	separately.	All	parameters	after		day		are	optional.

These	two	above	date	functions	accept	the	following	input	values:

numeric	timestamps,	indicating	the	number	of	milliseconds	elapsed	since	the	UNIX	epoch	(i.e.	January	1st	1970	00:00:00	UTC).	An
example	timestamp	value	is		1399472349522	,	which	translates	to		2014-05-07T14:19:09.522Z	.

datetime	strings	in	formats		YYYY-MM-DDTHH:MM:SS.MMM	,		YYYY-MM-DD	HH:MM:SS.MMM	,	or		YYYY-MM-DD	.	Milliseconds	are	always
optional.

A	timezone	difference	may	optionally	be	added	at	the	end	of	the	string,	with	the	hours	and	minutes	that	need	to	be	added	or
subtracted	to	the	datetime	value.	For	example,		2014-05-07T14:19:09+01:00		can	be	used	to	specify	a	one	hour	offset,	and		2014-05-
07T14:19:09+07:30		can	be	specified	for	seven	and	half	hours	offset.	Negative	offsets	are	also	possible.	Alternatively	to	an	offset,	a
	Z		can	be	used	to	indicate	UTC	/	Zulu	time.

An	example	value	is		2014-05-07T14:19:09.522Z		meaning	May	7th	2014,	14:19:09	and	522	milliseconds,	UTC	/	Zulu	time.	Another
example	value	without	time	component	is		2014-05-07Z	.

Please	note	that	if	no	timezone	offset	is	specified	in	a	datestring,	ArangoDB	will	assume	UTC	time	automatically.	This	is	done	to
ensure	portability	of	queries	across	servers	with	different	timezone	settings,	and	because	timestamps	will	always	be	UTC-based.

Whats	New	in	2.1

597

individual	date	components	as	separate	function	arguments,	in	the	following	order:

year
month
day
hour
minute
second
millisecond

All	components	following		day		are	optional	and	can	be	omitted.	Note	that	no	timezone	offsets	can	be	specified	when	using
separate	date	components,	and	UTC	/	Zulu	time	will	be	used.

The	following	calls	to		DATE_TIMESTAMP		are	equivalent	and	will	all	return		1399472349522	:

DATE_TIMESTAMP("2014-05-07T14:19:09.522")

DATE_TIMESTAMP("2014-05-07T14:19:09.522Z")

DATE_TIMESTAMP("2014-05-07	14:19:09.522")

DATE_TIMESTAMP("2014-05-07	14:19:09.522Z")

DATE_TIMESTAMP(2014,	5,	7,	14,	19,	9,	522)

DATE_TIMESTAMP(1399472349522)

The	same	is	true	for	calls	to		DATE_ISO8601		that	also	accepts	variable	input	formats:

DATE_ISO8601("2014-05-07T14:19:09.522Z")

DATE_ISO8601("2014-05-07	14:19:09.522Z")

DATE_ISO8601(2014,	5,	7,	14,	19,	9,	522)

DATE_ISO8601(1399472349522)

The	above	functions	are	all	equivalent	and	will	return		"2014-05-07T14:19:09.522Z"	.

The	following	date	functions	can	be	used	with	dates	created	by		DATE_TIMESTAMP		and		DATE_ISO8601	:

	DATE_DAYOFWEEK(date)	:	Returns	the	weekday	number	of		date	.	The	return	values	have	the	following	meanings:

0:	Sunday
1:	Monday
2:	Tuesday
3:	Wednesday
4:	Thursday
5:	Friday
6:	Saturday

	DATE_YEAR(date)	:	Returns	the	year	part	of		date		as	a	number.

	DATE_MONTH(date)	:	Returns	the	month	part	of		date		as	a	number.

	DATE_DAY(date)	:	Returns	the	day	part	of		date		as	a	number.

	DATE_HOUR(date)	:	Returns	the	hour	part	of		date		as	a	number.

	DATE_MINUTE(date)	:	Returns	the	minute	part	of		date		as	a	number.

	DATE_SECOND(date)	:	Returns	the	seconds	part	of		date		as	a	number.

	DATE_MILLISECOND(date)	:	Returns	the	milliseconds	part	of		date		as	a	number.

The	following	other	date	functions	are	also	available:

	DATE_NOW()	:	Returns	the	current	time	as	a	timestamp.

Note	that	this	function	is	evaluated	on	every	invocation	and	may	return	different	values	when	invoked	multiple	times	in	the	same
query.

The	following	other	AQL	functions	have	been	added	in	ArangoDB	2.1:

	FLATTEN	:	this	function	can	turn	an	array	of	sub-arrays	into	a	single	flat	array.	All	array	elements	in	the	original	array	will	be
expanded	recursively	up	to	a	configurable	depth.	The	expanded	values	will	be	added	to	the	single	result	array.

Whats	New	in	2.1

598

Example:

FLATTEN([1,	2,	[3,	4],	5,	[6,	7],	[8,	[9,	10]])

will	expand	the	sub-arrays	on	the	first	level	and	produce:

[1,	2,	3,	4,	5,	6,	7,	8,	[9,	10]]

To	fully	flatten	the	array,	the	maximum	depth	can	be	specified	(e.g.	with	a	value	of		2):

FLATTEN([1,	2,	[3,	4],	5,	[6,	7],	[8,	[9,	10]],	2)

This	will	fully	expand	the	sub-arrays	and	produce:

[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

	CURRENT_DATABASE	:	this	function	will	return	the	name	of	the	database	the	current	query	is	executed	in.

	CURRENT_USER	:	this	function	returns	the	name	of	the	current	user	that	is	executing	the	query.	If	authorization	is	turned	off	or	the
query	is	executed	outside	of	a	request	context,	no	user	is	present	and	the	function	will	return		null	.

Cluster	Dump	and	Restore

The	dump	and	restore	tools,	arangodump	and	arangorestore,	can	now	be	used	to	dump	and	restore	collections	in	a	cluster.	Additionally,
a	collection	dump	from	a	standalone	ArangoDB	server	can	be	imported	into	a	cluster,	and	vice	versa.

Web	Interface	Improvements

The	web	interface	in	version	2.1	has	a	more	compact	dashboard.	It	provides	charts	with	time-series	for	incoming	requests,	HTTP	transfer
volume	and	some	server	resource	usage	figures.

Additionally	it	provides	trend	indicators	(e.g.	15	min	averages)	and	distribution	charts	(aka	histogram)	for	some	figures.

Foxx	Improvements

To	easily	access	a	file	inside	the	directory	of	a	Foxx	application	from	within	Foxx,	Foxx's		applicationContext		now	provides	the
	foxxFilename()		function.	It	can	be	used	to	assemble	the	full	filename	of	a	file	inside	the	application's	directory.	The
	applicationContext		can	be	accessed	as	global	variable	from	any	module	within	a	Foxx	application.

The	filename	can	be	used	inside	Foxx	actions	or	setup	/	teardown	scripts,	e.g.	to	populate	a	Foxx	application's	collection	with	data.

The		require		function	now	also	prefers	local	modules	when	used	from	inside	a	Foxx	application.	This	allows	putting	modules	inside	the
Foxx	application	directory	and	requiring	them	easily.	It	also	allows	using	application-specific	versions	of	libraries	that	are	bundled	with
ArangoDB	(such	as	underscore.js).

Windows	Installer

The	Windows	installer	shipped	with	ArangoDB	now	supports	installation	of	ArangoDB	for	the	current	user	or	all	users,	with	the
required	privileges.	It	also	supports	the	installation	of	ArangoDB	as	a	service.

Fixes	for	32	bit	systems

Several	issues	have	been	fixed	that	occurred	only	when	using	ArangoDB	on	a	32	bits	operating	system,	specifically:

a	crash	in	a	third	party	component	used	to	manage	cluster	data

Whats	New	in	2.1

599

a	third	party	library	that	failed	to	initialize	on	32	bit	Windows,	making	arangod	and	arangosh	crash	immediately.

overflows	of	values	used	for	nanosecond-precision	timeouts:	these	overflows	have	led	to	invalid	values	being	passed	to	socket
operations,	making	them	fail	and	re-try	too	often

Updated	drivers

Several	drivers	for	ArangoDB	have	been	checked	for	compatibility	with	2.1.	The	current	list	of	drivers	with	compatibility	notes	can	be
found	online	here.

C++11	usage

We	have	moved	several	files	from	C	to	C++,	allowing	more	code	reuse	and	reducing	the	need	for	shipping	data	between	the	two.	We	have
also	decided	to	require	C++11	support	for	ArangoDB,	which	allows	us	to	use	some	of	the	simplifications,	features	and	guarantees	that
this	standard	has	in	stock.

That	also	means	a	compiler	with	C++11	support	is	required	to	build	ArangoDB	from	source.	For	instance	GNU	CC	of	at	least	version
4.8.

Miscellaneous	Improvements
Cancelable	asynchronous	jobs:	several	potentially	long-running	jobs	can	now	be	canceled	via	an	explicit	cancel	operation.	This
allows	stopping	long-running	queries,	traversals	or	scripts	without	shutting	down	the	complete	ArangoDB	process.	Job	cancelation
is	provided	for	asynchronously	executed	jobs	as	is	described	in	@ref	HttpJobCancel.

Server-side	periodic	task	management:	an	ArangoDB	server	now	provides	functionality	to	register	and	unregister	periodic	tasks.
Tasks	are	user-defined	JavaScript	actions	that	can	be	run	periodically	and	automatically,	independent	of	any	HTTP	requests.

The	following	task	management	functions	are	provided:

require("org/arangodb/tasks").register():	registers	a	periodic	task
require("org/arangodb/tasks").unregister():	unregisters	and	removes	a	periodic	task
require("org/arangodb/tasks").get():	retrieves	a	specific	tasks	or	all	existing	tasks

An	example	task	(to	be	executed	every	15	seconds)	can	be	registered	like	this:

var	tasks	=	require("org/arangodb/tasks");

tasks.register({

		name:	"this	is	an	example	task	with	parameters",

		period:	15,

		command:	function	(params)	{

				var	greeting	=	params.greeting;

				var	data	=	JSON.stringify(params.data);

				require('console').log('%s	from	parameter	task:	%s',	greeting,	data);

		},

		params:	{	greeting:	"hi",	data:	"how	are	you?"	}

});

Please	refer	to	the	section	@ref	Tasks	for	more	details.

The		figures		method	of	a	collection	now	returns	data	about	the	collection's	index	memory	consumption.	The	returned	value
	indexes.size		will	contain	the	total	amount	of	memory	acquired	by	all	indexes	of	the	collection.	This	figure	can	be	used	to	assess
the	memory	impact	of	indexes.

Capitalized	HTTP	response	headers:	from	version	2.1,	ArangoDB	will	return	capitalized	HTTP	headers	by	default,	e.g.		Content-
Length		instead	of		content-length	.	Though	the	HTTP	specification	states	that	headers	field	name	are	case-insensitive,	several	older
client	tools	rely	on	a	specific	case	in	HTTP	response	headers.	This	changes	make	ArangoDB	a	bit	more	compatible	with	those.

Simplified	usage	of		db._createStatement()	:	to	easily	run	an	AQL	query,	the	method		db._createStatement		now	allows	passing	the
AQL	query	as	a	string.	Previously	it	required	the	user	to	pass	an	object	with	a		query		attribute	(which	then	contained	the	query
string).

Whats	New	in	2.1

600

https://www.arangodb.org/driver

ArangoDB	now	supports	both	versions:

db._createStatement(queryString);

db._createStatement({	query:	queryString	});

Whats	New	in	2.1

601

Appendix
References:	Brief	overviews	over	interfaces	and	objects

db:	the		db		object
collection:	the		collection		object

JavaScript	Modules:	List	of	built-in	and	supported	JS	modules
Deprecated:	Features	that	are	considered	obsolete	and	may	get	removed	eventually
Error	codes	and	meanings:	List	of	all	possible	errors	that	can	be	encountered
Glossary:	Disambiguation	page

Appendix

602

References

References

603

The	"db"	Object
The		db		object	is	available	in	arangosh	by	default,	and	can	also	be	imported	and	used	in	Foxx	services.

db.name	returns	a	collection	object	for	the	collection	name.

The	following	methods	exists	on	the	_db	object:

Database

db._createDatabase(name,	options,	users)
db._databases()
db._dropDatabase(name,	options,	users)
db._useDatabase(name)

Indexes

db._index(index)
db._dropIndex(index)

Properties

db._id()
db._isSystem()
db._name()
db._path()
db._version()

Collection

db._collection(name)
db._create(name)
db._drop(name)
db._truncate(name)

AQL

db._createStatement(query)
db._query(query)
db._explain(query)

Document

db._document(object)
db._exists(object)
db._remove(selector)
db._replace(selector,data)
db._update(selector,data)

db

604

The	"collection"	Object
The	following	methods	exist	on	the	collection	object	(returned	by	db.name):

Collection

collection.checksum()
collection.count()
collection.drop()
collection.figures()
collection.load()
collection.properties()
collection.revision()
collection.rotate()
collection.toArray()
collection.truncate()
collection.type()
collection.unload()

Indexes

collection.dropIndex(index)
collection.ensureIndex(description)
collection.getIndexes(name)
collection.index(index)

Document

collection.all()
collection.any()
collection.closedRange(attribute,	left,	right)
collection.document(object)
collection.documents(keys)
collection.edges(vertex-id)
collection.exists(object)
collection.firstExample(example)
collection.inEdges(vertex-id)
collection.insert(data)
collection.edges(vertices)
collection.iterate(iterator,options)
collection.outEdges(vertex-id)
collection.queryByExample(example)
collection.range(attribute,	left,	right)
collection.remove(selector)
collection.removeByKeys(keys)
collection.rename()
collection.replace(selector,	data)
collection.replaceByExample(example,	data)
collection.save(data)
collection.update(selector,	data)
collection.updateByExample(example,	data)

collection

605

JavaScript	Modules
ArangoDB	uses	a	Node.js	compatible	module	system.	You	can	use	the	function	require	in	order	to	load	a	module	or	library.	It	returns	the
exported	variables	and	functions	of	the	module.

The	global	variables		global	,		process	,		console	,		Buffer	,		__filename		and		__dirname		are	available	throughout	ArangoDB	and
Foxx.

Node	compatibility	modules

ArangoDB	supports	a	number	of	modules	for	compatibility	with	Node.js,	including:

assert	implements	basic	assertion	and	testing	functions.

buffer	implements	a	binary	data	type	for	JavaScript.

console	is	a	well	known	logging	facility	to	all	the	JavaScript	developers.	ArangoDB	implements	most	of	the	Console	API,	with	the
exceptions	of	profile	and	count.

events	implements	an	event	emitter.

fs	provides	a	file	system	API	for	the	manipulation	of	paths,	directories,	files,	links,	and	the	construction	of	file	streams.	ArangoDB
implements	most	Filesystem/A	functions.

module	provides	direct	access	to	the	module	system.

path	implements	functions	dealing	with	filenames	and	paths.

punycode	implements	conversion	functions	for	punycode	encoding.

querystring	provides	utilities	for	dealing	with	query	strings.

stream	provides	a	streaming	interface.

string_decoder	implements	logic	for	decoding	buffers	into	strings.

url	provides	utilities	for	URL	resolution	and	parsing.

util	provides	general	utility	functions	like		format		and		inspect	.

Additionally	ArangoDB	provides	partial	implementations	for	the	following	modules:

	net	:	only		isIP	,		isIPv4		and		isIPv6	.

	process	:	only		env		and		cwd	;	stubs	for		argv	,		stdout.isTTY	,		stdout.write	,		nextTick	.

	timers	:	stubs	for		setImmediate	,		setTimeout	,		setInterval	,		clearImmediate	,		clearTimeout	,		clearInterval		and		ref	.

	tty	:	only		isatty		(always	returns		false).

	vm	:	only		runInThisContext	.

The	following	Node.js	modules	are	not	available	at	all:		child_process	,		cluster	,		constants	,		crypto		(but	see		@arangodb/crypto	
below),		dgram	,		dns	,		domain	,		http		(but	see		@arangodb/request		below),		https	,		os	,		sys	,		tls	,		v8	,		zlib	.

ArangoDB	Specific	Modules
There	are	a	large	number	of	ArangoDB-specific	modules	using	the		@arangodb		namespace,	mostly	for	internal	use	by	ArangoDB	itself.
The	following	however	are	noteworthy:

@arangodb	provides	direct	access	to	the	database	and	its	collections.

@arangodb/crypto	provides	various	cryptography	functions	including	hashing	algorithms.

JavaScript	Modules

606

http://nodejs.org/api/assert.html
http://nodejs.org/api/buffer.html
http://wiki.commonjs.org/wiki/Console
http://nodejs.org/api/events.html
http://wiki.commonjs.org/wiki/Filesystem/A
http://nodejs.org/api/modules.html
http://nodejs.org/api/path.html
http://nodejs.org/api/punycode.html
http://en.wikipedia.org/wiki/Punycode
http://nodejs.org/api/querystring.html
http://nodejs.org/api/stream.html
https://nodejs.org/api/string_decoder.html
http://nodejs.org/api/url.html
http://nodejs.org/api/util.html

@arangodb/request	provides	the	functionality	for	making	synchronous	HTTP/HTTPS	requests.

@arangodb/foxx	is	the	namespace	providing	the	various	building	blocks	of	the	Foxx	microservice	framework.

Bundled	NPM	Modules

The	following	NPM	modules	are	preinstalled:

aqb	is	the	ArangoDB	Query	Builder	and	can	be	used	to	construct	AQL	queries	with	a	chaining	JavaScript	API.

chai	is	a	full-featured	assertion	library	for	writing	JavaScript	tests.

dedent	is	a	simple	utility	function	for	formatting	multi-line	strings.

error-stack-parser	parses	stacktraces	into	a	more	useful	format.

graphql-sync	is	an	ArangoDB-compatible	GraphQL	server/schema	implementation.

highlight.js	is	an	HTML	syntax	highlighter.

i	(inflect)	is	a	utility	library	for	inflecting	(e.g.	pluralizing)	words.

iconv-lite	is	a	utility	library	for	converting	between	character	encodings

joi	is	a	validation	library	that	is	supported	throughout	the	Foxx	framework.

js-yaml	is	a	JavaScript	implementation	of	the	YAML	data	format	(a	partial	superset	of	JSON).

lodash	is	a	utility	belt	for	JavaScript	providing	various	useful	helper	functions.

minimatch	is	a	glob	matcher	for	matching	wildcards	in	file	paths.

qs	provides	utilities	for	dealing	with	query	strings	using	a	different	format	than	the	querystring	module.

semver	is	a	utility	library	for	handling	semver	version	numbers.

sinon	is	a	mocking	library	for	writing	test	stubs,	mocks	and	spies.

timezone	is	a	library	for	converting	date	time	values	between	formats	and	timezones.

JavaScript	Modules

607

https://www.npmjs.com
https://github.com/arangodb/aqbjs
http://chaijs.com
https://github.com/dmnd/dedent
http://www.stacktracejs.com
https://github.com/arangodb/graphql-sync
https://highlightjs.org
https://github.com/pksunkara/inflect
https://github.com/ashtuchkin/iconv-lite
https://github.com/hapijs/joi
https://github.com/nodeca/js-yaml
https://lodash.com
https://github.com/isaacs/minimatch
https://github.com/hapijs/qs
https://github.com/npm/node-semver
http://sinonjs.org
https://github.com/bigeasy/timezone

ArangoDB	Module
	const	arangodb	=	require('@arangodb')	

Note:	This	module	should	not	be	confused	with	the		arangojs		JavaScript	driver	which	can	be	used	to	access	ArangoDB	from	outside	the
database.	Although	the	APIs	share	similarities	and	the	functionality	overlaps,	the	two	are	not	compatible	with	each	other	and	can	not	be
used	interchangeably.

The	 	db		object
	arangodb.db	

The		db		object	represents	the	current	database	and	lets	you	access	collections	and	run	queries.	For	more	information	see	the	db	object
reference.

Examples

const	db	=	require('@arangodb').db;

const	thirteen	=	db._query('RETURN	5	+	8').next();

The	 	aql		template	string	handler
	arangodb.aql	

The		aql		function	is	a	JavaScript	template	string	handler.	It	can	be	used	to	write	complex	AQL	queries	as	multi-line	strings	without
having	to	worry	about	bindVars	and	the	distinction	between	collections	and	regular	parameters.

To	use	it	just	prefix	a	JavaScript	template	string	(the	ones	with	backticks	instead	of	quotes)	with	its	import	name	(e.g.		aql)	and	pass	in
variables	like	you	would	with	a	regular	template	string.	The	string	will	automatically	be	converted	into	an	object	with		query		and
	bindVars		attributes	which	you	can	pass	directly	to		db._query		to	execute.	If	you	pass	in	a	collection	it	will	be	automatically	recognized
as	a	collection	reference	and	handled	accordingly.

To	find	out	more	about	AQL	see	the	AQL	documentation.

Examples

const	aql	=	require('@arangodb').aql;

const	filterValue	=	23;

const	mydata	=	db._collection('mydata');

const	result	=	db._query(aql`

		FOR	d	IN	${mydata}

		FILTER	d.num	>	${filterValue}

		RETURN	d

`).toArray();

The	 	errors		object
	arangodb.errors	

This	object	provides	useful	objects	for	each	error	code	ArangoDB	might	use	in		ArangoError		errors.	This	is	helpful	when	trying	to	catch
specific	errors	raised	by	ArangoDB,	e.g.	when	trying	to	access	a	document	that	does	not	exist.	Each	object	has	a		code		property
corresponding	to	the		errorNum		found	on		ArangoError		errors.

For	a	complete	list	of	the	error	names	and	codes	you	may	encounter	see	the	appendix	on	error	codes.

Examples

const	errors	=	require('@arangodb').errors;

@arangodb

608

https://github.com/arangodb/arangojs

try	{

		someCollection.document('does-not-exist');

}	catch	(e)	{

		if	(e.isArangoError	&&	e.errorNum	===	errors.ERROR_ARANGO_DOCUMENT_NOT_FOUND.code)	{

				throw	new	Error('Document	does	not	exist');

		}

		throw	new	Error('Something	went	wrong');

}

The	 	time		function
	arangodb.time	

This	function	provides	the	current	time	in	seconds	as	a	floating	point	value	with	microsecond	precisison.

This	function	can	be	used	instead	of		Date.now()		when	additional	precision	is	needed.

Examples

const	time	=	require('@arangodb').time;

const	start	=	time();

db._query(someVerySlowQuery);

console.log(`Elapsed	time:	${time()	-	start}	secs`);

@arangodb

609

Console	Module
	global.console	===	require('console')	

Note:	You	don't	need	to	load	this	module	directly.	The		console		object	is	globally	defined	throughout	ArangoDB	and	provides	access	to
all	functions	in	this	module.

console.assert

	console.assert(expression,	format,	argument1,	...)	

Tests	that	an	expression	is	true.	If	not,	logs	a	message	and	throws	an	exception.

Examples

console.assert(value	===	"abc",	"expected:	value	===	abc,	actual:",	value);

console.debug

	console.debug(format,	argument1,	...)	

Formats	the	arguments	according	to	format	and	logs	the	result	as	debug	message.	Note	that	debug	messages	will	only	be	logged	if	the
server	is	started	with	log	levels	debug	or	trace.

String	substitution	patterns,	which	can	be	used	in	format.

%%s	string
%%d,	%%i	integer
%%f	floating	point	number
%%o	object	hyperlink

Examples

console.debug("%s",	"this	is	a	test");

console.dir

	console.dir(object)	

Logs	a	listing	of	all	properties	of	the	object.

Example	usage:

console.dir(myObject);

console.error
	console.error(format,	argument1,	...)	

Formats	the	arguments	according	to	@FA{format}	and	logs	the	result	as	error	message.

String	substitution	patterns,	which	can	be	used	in	format.

%%s	string
%%d,	%%i	integer
%%f	floating	point	number
%%o	object	hyperlink

Example	usage:

console.error("error	'%s':	%s",	type,	message);

console

610

console.getline

	console.getline()	

Reads	in	a	line	from	the	console	and	returns	it	as	string.

console.group
	console.group(format,	argument1,	...)	

Formats	the	arguments	according	to	format	and	logs	the	result	as	log	message.	Opens	a	nested	block	to	indent	all	future	messages	sent.
Call	groupEnd	to	close	the	block.	Representation	of	block	is	up	to	the	platform,	it	can	be	an	interactive	block	or	just	a	set	of	indented	sub
messages.

Example	usage:

console.group("user	attributes");

console.log("name",	user.name);

console.log("id",	user.id);

console.groupEnd();

console.groupCollapsed
	console.groupCollapsed(format,	argument1,	...)	

Same	as	console.group.

console.groupEnd

	console.groupEnd()	

Closes	the	most	recently	opened	block	created	by	a	call	to	group.

console.info
	console.info(format,	argument1,	...)	

Formats	the	arguments	according	to	format	and	logs	the	result	as	info	message.

String	substitution	patterns,	which	can	be	used	in	format.

%%s	string
%%d,	%%i	integer
%%f	floating	point	number
%%o	object	hyperlink

Example	usage:

console.info("The	%s	jumped	over	%d	fences",	animal,	count);

console.log

	console.log(format,	argument1,	...)	

Formats	the	arguments	according	to	format	and	logs	the	result	as	log	message.	This	is	an	alias	for	console.info.

console.time
	console.time(name)	

Creates	a	new	timer	under	the	given	name.	Call	timeEnd	with	the	same	name	to	stop	the	timer	and	log	the	time	elapsed.

Example	usage:

console.time("mytimer");

...

console

611

console.timeEnd("mytimer");	//	this	will	print	the	elapsed	time

console.timeEnd
	console.timeEnd(name)	

Stops	a	timer	created	by	a	call	to	time	and	logs	the	time	elapsed.

console.timeEnd

	console.trace()	

Logs	a	stack	trace	of	JavaScript	execution	at	the	point	where	it	is	called.

console.warn
	console.warn(format,	argument1,	...)	

Formats	the	arguments	according	to	format	and	logs	the	result	as	warn	message.

String	substitution	patterns,	which	can	be	used	in	format.

%%s	string
%%d,	%%i	integer
%%f	floating	point	number
%%o	object	hyperlink

console

612

Crypto	Module
	const	crypto	=	require('@arangodb/crypto')	

The	crypto	module	provides	implementations	of	various	hashing	algorithms	as	well	as	cryptography	related	functions.

Nonces

These	functions	deal	with	cryptographic	nonces.

createNonce

	crypto.createNonce():	string	

Creates	a	cryptographic	nonce.

Returns	the	created	nonce.

checkAndMarkNonce

	crypto.checkAndMarkNonce(nonce):	void	

Checks	and	marks	a	nonce.

Arguments

nonce:		string	

The	nonce	to	check	and	mark.

Returns	nothing.

Random	values

The	following	functions	deal	with	generating	random	values.

rand

	crypto.rand():	number	

Generates	a	random	integer	that	may	be	positive,	negative	or	even	zero.

Returns	the	generated	number.

genRandomAlphaNumbers

	crypto.genRandomAlphaNumbers(length):	string	

Generates	a	string	of	random	alpabetical	characters	and	digits.

Arguments

length:		number	

The	length	of	the	string	to	generate.

Returns	the	generated	string.

genRandomNumbers

	crypto.genRandomNumbers(length):	string	

Generates	a	string	of	random	digits.

crypto

613

Arguments

length:		number	

The	length	of	the	string	to	generate.

Returns	the	generated	string.

genRandomSalt

	crypto.genRandomSalt(length):	string	

Generates	a	string	of	random	(printable)	ASCII	characters.

Arguments

length:		number	

The	length	of	the	string	to	generate.

Returns	the	generated	string.

JSON	Web	Tokens	(JWT)

These	methods	implement	the	JSON	Web	Token	standard.

jwtEncode

	crypto.jwtEncode(key,	message,	algorithm):	string	

Generates	a	JSON	Web	Token	for	the	given	message.

Arguments

key:		string	|	null	

The	secret	cryptographic	key	to	be	used	to	sign	the	message	using	the	given	algorithm.	Note	that	this	function	will	raise	an	error	if
the	key	is	omitted	but	the	algorithm	expects	a	key,	and	also	if	the	algorithm	does	not	expect	a	key	but	a	key	is	provided	(e.g.	when
using		"none").

message:		string	

Message	to	be	encoded	as	JWT.	Note	that	the	message	will	only	be	base64-encoded	and	signed,	not	encrypted.	Do	not	store
sensitive	information	in	tokens	unless	they	will	only	be	handled	by	trusted	parties.

algorithm:		string	

Name	of	the	algorithm	to	use	for	signing	the	message,	e.g.		"HS512"	.

Returns	the	JSON	Web	Token.

jwtDecode

	crypto.jwtDecode(key,	token,	noVerify):	string	|	null	

Arguments

key:		string	|	null	

The	secret	cryptographic	key	that	was	used	to	sign	the	message	using	the	algorithm	indicated	by	the	token.	Note	that	this	function
will	raise	an	error	if	the	key	is	omitted	but	the	algorithm	expects	a	key.

If	the	algorithm	does	not	expect	a	key	but	a	key	is	provided,	the	token	will	fail	to	verify.

token:		string	

The	token	to	decode.

crypto

614

Note	that	the	function	will	raise	an	error	if	the	token	is	malformed	(e.g.	does	not	have	exactly	three	segments).

noVerify:		boolean		(Default:		false)

Whether	verification	should	be	skipped.	If	this	is	set	to		true		the	signature	of	the	token	will	not	be	verified.	Otherwise	the	function
will	raise	an	error	if	the	signature	can	not	be	verified	using	the	given	key.

Returns	the	decoded	JSON	message	or		null		if	no	token	is	provided.

jwtAlgorithms

A	helper	object	containing	the	supported	JWT	algorithms.	Each	attribute	name	corresponds	to	a	JWT		alg		and	the	value	is	an	object
with		sign		and		verify		methods.

jwtCanonicalAlgorithmName

	crypto.jwtCanonicalAlgorithmName(name):	string	

A	helper	function	that	translates	a	JWT		alg		value	found	in	a	JWT	header	into	the	canonical	name	of	the	algorithm	in		jwtAlgorithms	.
Raises	an	error	if	no	algorithm	with	a	matching	name	is	found.

Arguments

name:		string	

Algorithm	name	to	look	up.

Returns	the	canonical	name	for	the	algorithm.

Hashing	algorithms

md5
	crypto.md5(message):	string	

Hashes	the	given	message	using	the	MD5	algorithm.

Arguments

message:		string	

The	message	to	hash.

Returns	the	cryptographic	hash.

sha1

	crypto.sha1(message):	string	

Hashes	the	given	message	using	the	SHA-1	algorithm.

Arguments

message:		string	

The	message	to	hash.

Returns	the	cryptographic	hash.

sha224

	crypto.sha224(message):	string	

Hashes	the	given	message	using	the	SHA-224	algorithm.

Arguments

crypto

615

message:		string	

The	message	to	hash.

Returns	the	cryptographic	hash.

sha256
	crypto.sha256(message):	string	

Hashes	the	given	message	using	the	SHA-256	algorithm.

Arguments

message:		string	

The	message	to	hash.

Returns	the	cryptographic	hash.

sha384
	crypto.sha384(message):	string	

Hashes	the	given	message	using	the	SHA-384	algorithm.

Arguments

message:		string	

The	message	to	hash.

Returns	the	cryptographic	hash.

sha512

	crypto.sha512(message):	string	

Hashes	the	given	message	using	the	SHA-512	algorithm.

Arguments

message:		string	

The	message	to	hash.

Returns	the	cryptographic	hash.

Miscellaneous

constantEquals
	crypto.constantEquals(str1,	str2):	boolean	

Compares	two	strings.	This	function	iterates	over	the	entire	length	of	both	strings	and	can	help	making	certain	timing	attacks	harder.

Arguments

str1:		string	

The	first	string	to	compare.

str2:		string	

The	second	string	to	compare.

Returns		true		if	the	strings	are	equal,		false		otherwise.

pbkdf2

crypto

616

	crypto.pbkdf2(salt,	password,	iterations,	keyLength):	string	

Generates	a	PBKDF2-HMAC-SHA1	hash	of	the	given	password.

Arguments

salt:		string	

The	cryptographic	salt	to	hash	the	password	with.

password:		string	

The	message	or	password	to	hash.

iterations:		number	

The	number	of	iterations.	This	should	be	a	very	high	number.	OWASP	recommended	64000	iterations	in	2012	and	recommends
doubling	that	number	every	two	years.

When	using	PBKDF2	for	password	hashes	it	is	also	recommended	to	add	a	random	value	(typically	between	0	and	32000)	to	that
number	that	is	different	for	each	user.

keyLength:		number	

The	key	length.

Returns	the	cryptographic	hash.

hmac

	crypto.hmac(key,	message,	algorithm):	string	

Generates	an	HMAC	hash	of	the	given	message.

Arguments

key:		string	

The	cryptographic	key	to	use	to	hash	the	message.

message:		string	

The	message	to	hash.

algorithm:		string	

The	name	of	the	algorithm	to	use.

Returns	the	cryptographic	hash.

crypto

617

Filesystem	Module
	const	fs	=	require('fs')	

The	implementation	tries	to	follow	the	CommonJS	Filesystem/A/0	specification	where	possible.

Working	Directory

The	directory	functions	below	shouldn't	use	the	current	working	directory	of	the	server	like		.		or		./test	.	You	will	not	be	able	to	tell
whether	the	environment	the	server	is	running	in	will	permit	directory	listing,	reading	or	writing	of	files.

You	should	either	base	your	directories	with		getTempPath()	,	or	as	a	foxx	service	use	the	module.context.basePath.

Single	File	Directory	Manipulation

exists

checks	if	a	file	of	any	type	or	directory	exists		fs.exists(path)	

Returns	true	if	a	file	(of	any	type)	or	a	directory	exists	at	a	given	path.	If	the	file	is	a	broken	symbolic	link,	returns	false.

isFile

tests	if	path	is	a	file		fs.isFile(path)	

Returns	true	if	the	path	points	to	a	file.

isDirectory

tests	if	path	is	a	directory		fs.isDirectory(path)	

Returns	true	if	the	path	points	to	a	directory.

size

gets	the	size	of	a	file		fs.size(path)	

Returns	the	size	of	the	file	specified	by	path.

mtime

gets	the	last	modification	time	of	a	file		fs.mtime(filename)	

Returns	the	last	modification	date	of	the	specified	file.	The	date	is	returned	as	a	Unix	timestamp	(number	of	seconds	elapsed	since
January	1	1970).

pathSeparator
	fs.pathSeparator	

If	you	want	to	combine	two	paths	you	can	use	fs.pathSeparator	instead	of	/	or	\.

join

	fs.join(path,	filename)	

The	function	returns	the	combination	of	the	path	and	filename,	e.g.	fs.join(Hello/World,	foo.bar)	would	return	Hello/World/foo.bar.

getTempFile

fs

618

http://wiki.commonjs.org/wiki/Filesystem/A/0

returns	the	name	for	a	(new)	temporary	file		fs.getTempFile(directory,	createFile)	

Returns	the	name	for	a	new	temporary	file	in	directory	directory.	If	createFile	is	true,	an	empty	file	will	be	created	so	no	other	process
can	create	a	file	of	the	same	name.

Note:	The	directory	directory	must	exist.

getTempPath

returns	the	temporary	directory		fs.getTempPath()	

Returns	the	absolute	path	of	the	temporary	directory

makeAbsolute

makes	a	given	path	absolute		fs.makeAbsolute(path)	

Returns	the	given	string	if	it	is	an	absolute	path,	otherwise	an	absolute	path	to	the	same	location	is	returned.

chmod

sets	file	permissions	of	specified	files	(non	windows	only)		fs.exists(path)	

Returns	true	on	success.

list

returns	the	directory	listing		fs.list(path)	

The	functions	returns	the	names	of	all	the	files	in	a	directory,	in	lexically	sorted	order.	Throws	an	exception	if	the	directory	cannot	be
traversed	(or	path	is	not	a	directory).

Note:	this	means	that	list("x")	of	a	directory	containing	"a"	and	"b"	would	return	["a",	"b"],	not	["x/a",	"x/b"].

listTree

returns	the	directory	tree		fs.listTree(path)	

The	function	returns	an	array	that	starts	with	the	given	path,	and	all	of	the	paths	relative	to	the	given	path,	discovered	by	a	depth	first
traversal	of	every	directory	in	any	visited	directory,	reporting	but	not	traversing	symbolic	links	to	directories.	The	first	path	is	always
"" ,	the	path	relative	to	itself.

makeDirectory

creates	a	directory		fs.makeDirectory(path)	

Creates	the	directory	specified	by	path.

makeDirectoryRecursive

creates	a	directory		fs.makeDirectoryRecursive(path)	

Creates	the	directory	hierarchy	specified	by	path.

remove

removes	a	file		fs.remove(filename)	

Removes	the	file	filename	at	the	given	path.	Throws	an	exception	if	the	path	corresponds	to	anything	that	is	not	a	file	or	a	symbolic	link.
If	"path"	refers	to	a	symbolic	link,	removes	the	symbolic	link.

removeDirectory

fs

619

removes	an	empty	directory		fs.removeDirectory(path)	

Removes	a	directory	if	it	is	empty.	Throws	an	exception	if	the	path	is	not	an	empty	directory.

removeDirectoryRecursive

removes	a	directory		fs.removeDirectoryRecursive(path)	

Removes	a	directory	with	all	subelements.	Throws	an	exception	if	the	path	is	not	a	directory.

File	IO

read

reads	in	a	file		fs.read(filename)	

Reads	in	a	file	and	returns	the	content	as	string.	Please	note	that	the	file	content	must	be	encoded	in	UTF-8.

read64

reads	in	a	file	as	base64		fs.read64(filename)	

Reads	in	a	file	and	returns	the	content	as	string.	The	file	content	is	Base64	encoded.

readBuffer

reads	in	a	file		fs.readBuffer(filename)	

Reads	in	a	file	and	returns	its	content	in	a	Buffer	object.

readFileSync
	fs.readFileSync(filename,	encoding)	

Reads	the	contents	of	the	file	specified	in		filename	.	If		encoding		is	specified,	the	file	contents	will	be	returned	as	a	string.	Supported
encodings	are:

	utf8		or		utf-8	
	ascii	

	base64	

	ucs2		or		ucs-2	
	utf16le		or		utf16be	
	hex	

If	no		encoding		is	specified,	the	file	contents	will	be	returned	in	a	Buffer	object.

write

	fs.write(filename,	content)	

Writes	the	content	into	a	file.	Content	can	be	a	string	or	a	Buffer	object.	If	the	file	already	exists,	it	is	truncated.

writeFileSync

	fs.writeFileSync(filename,	content)	

This	is	an	alias	for		fs.write(filename,	content)	.

append
	fs.append(filename,	content)	

Writes	the	content	into	a	file.	Content	can	be	a	string	or	a	Buffer	object.	If	the	file	already	exists,	the	content	is	appended	at	the	end.

fs

620

Recursive	Manipulation

copyRecursive

copies	a	directory	structure		fs.copyRecursive(source,	destination)	

Copies	source	to	destination.	Exceptions	will	be	thrown	on:

Failure	to	copy	the	file
specifying	a	directory	for	destination	when	source	is	a	file
specifying	a	directory	as	source	and	destination

CopyFile

copies	a	file	into	a	target	file		fs.copyFile(source,	destination)	

Copies	source	to	destination.	If	Destination	is	a	directory,	a	file	of	the	same	name	will	be	created	in	that	directory,	else	the	copy	will	get
the	specified	filename.

move

renames	a	file		fs.move(source,	destination)	

Moves	source	to	destination.	Failure	to	move	the	file,	or	specifying	a	directory	for	destination	when	source	is	a	file	will	throw	an
exception.	Likewise,	specifying	a	directory	as	source	and	destination	will	fail.

ZIP

unzipFile

unzips	a	file		fs.unzipFile(filename,	outpath,	skipPaths,	overwrite,	password)	

Unzips	the	zip	file	specified	by	filename	into	the	path	specified	by	outpath.	Overwrites	any	existing	target	files	if	overwrite	is	set	to	true.

Returns	true	if	the	file	was	unzipped	successfully.

zipFile

zips	a	file		fs.zipFile(filename,	chdir,	files,	password)	

Stores	the	files	specified	by	files	in	the	zip	file	filename.	If	the	file	filename	already	exists,	an	error	is	thrown.	The	list	of	input	files	files
must	be	given	as	a	list	of	absolute	filenames.	If	chdir	is	not	empty,	the	chdir	prefix	will	be	stripped	from	the	filename	in	the	zip	file,	so
when	it	is	unzipped	filenames	will	be	relative.	Specifying	a	password	is	optional.

Returns	true	if	the	file	was	zipped	successfully.

fs

621

Request	Module
	const	request	=	require('@arangodb/request')	

The	request	module	provides	the	functionality	for	making	HTTP	requests.

Making	HTTP	requests

HTTP	method	helpers

In	addition	to	the	request	function	convenience	shorthands	are	available	for	each	HTTP	method	in	the	form	of,	i.e.:

	request.head(url,	options)	

	request.get(url,	options)	

	request.post(url,	options)	

	request.put(url,	options)	

	request.delete(url,	options)	

	request.patch(url,	options)	

These	are	equivalent	to	using	the	request	function	directly,	i.e.:

request[method](url,	options)

//	is	equivalent	to

request({method,	url,	...options});

For	example:

const	request	=	require('@arangodb/request');

request.get('http://localhost',	{headers:	{'x-session-id':	'keyboardcat'}});

//	is	equivalent	to

request({

		method:	'get',

		url:	'http://localhost',

		headers:	{'x-session-id':	'keyboardcat'}

});

The	request	function

The	request	function	can	be	used	to	make	HTTP	requests.

	request(options)	

Performs	an	HTTP	request	and	returns	a	Response	object.

Parameter

The	request	function	takes	the	following	options:

url	or	uri:	the	fully-qualified	URL	or	a	parsed	URL	from		url.parse	.
qs	(optional):	object	containing	querystring	values	to	be	appended	to	the	URL.
useQuerystring:	if		true	,	use		querystring		module	to	handle	querystrings,	otherwise	use		qs		module.	Default:		false	.
method	(optional):	HTTP	method	(case-insensitive).	Default:		"GET"	.
headers	(optional):	HTTP	headers	(case-insensitive).	Default:		{}	.
body	(optional):	request	body.	Must	be	a	string	or		Buffer	,	or	a	JSON	serializable	value	if	json	is		true	.
json:	if		true	,	body	will	be	serialized	to	a	JSON	string	and	the	Content-Type	header	will	be	set	to		"application/json"	.
Additionally	the	response	body	will	also	be	parsed	as	JSON	(unless	encoding	is	set	to		null).	Default:		false	.
form	(optional):	when	set	to	a	string	or	object	and	no	body	has	been	set,	body	will	be	set	to	a	querystring	representation	of	that	value
and	the	Content-Type	header	will	be	set	to		"application/x-www-form-urlencoded"	.	Also	see	useQuerystring.
auth	(optional):	an	object	with	the	properties	username	and	password	for	HTTP	Basic	authentication	or	the	property	bearer	for

request

622

HTTP	Bearer	token	authentication.

sslProtocol	(optional):	which	tls	version	should	be	used	to	connect	to	the	url.	The	default	is		4		which	is	TLS	1.0.	See	ssl	protocol
for	more	opitions.
followRedirect:	whether	HTTP	3xx	redirects	should	be	followed.	Default:		true	.
maxRedirects:	the	maximum	number	of	redirects	to	follow.	Default:		10	.
encoding:	encoding	to	be	used	for	the	response	body.	If	set	to		null	,	the	response	body	will	be	returned	as	a		Buffer	.	Default:
	"utf-8"	.
timeout:	number	of	milliseconds	to	wait	for	a	response	before	aborting	the	request.
returnBodyOnError:	whether	the	response	body	should	be	returned	even	when	the	server	response	indicates	an	error.	Default:
	true	.

The	function	returns	a	Response	object	with	the	following	properties:

rawBody:	the	raw	response	body	as	a		Buffer	.
body:	the	parsed	response	body.	If	encoding	was	not	set	to		null	,	this	is	a	string.	If	additionally	json	was	set	to		true		and	the
response	body	is	well-formed	JSON,	this	is	the	parsed	JSON	data.
headers:	an	object	containing	the	response	headers.	Otherwise	this	is	identical	to	rawBody.
statusCode	and	status:	the	HTTP	status	code	of	the	response,	e.g.		404	.
message:	the	HTTP	status	message	of	the	response,	e.g.		Not	Found	.

Forms

The	request	module	supports		application/x-www-form-urlencoded		(URL	encoded)	form	uploads:

const	request	=	require('@arangodb/request');

var	res	=	request.post('http://service.example/upload',	{form:	{key:	'value'}});

//	or

var	res	=	request.post({url:	'http://service.example/upload',	form:	{key:	'value'}});

//	or

var	res	=	request({

		method:	'post',

		url:	'http://service.example/upload',

		form:	{key:	'value'}

});

Form	data	will	be	encoded	using	the	qs	module	by	default.

If	you	want	to	use	the	querystring	module	instead,	simply	use	the	useQuerystring	option.

JSON

If	you	want	to	submit	JSON-serializable	values	as	request	bodies,	just	set	the	json	option:

const	request	=	require('@arangodb/request');

var	res	=	request.post('http://service.example/notify',	{body:	{key:	'value'},	json:	true});

//	or

var	res	=	request.post({url:	'http://service.example/notify',	body:	{key:	'value'},	json:	true});

//	or

var	res	=	request({

		method:	'post',

		url:	'http://service.example/notify',

		body:	{key:	'value'},

		json:	true

});

HTTP	authentication

The	request	module	supports	both	HTTP	Basic	authentication.	Just	pass	the	credentials	via	the	auth	option:

const	request	=	require('@arangodb/request');

var	res	=	request.get(

request

623

https://www.npmjs.com/package/qs
http://nodejs.org/api/querystring.html

		'http://service.example/secret',

		{auth:	{username:	'jcd',	password:	'bionicman'}}

);

//	or

var	res	=	request.get({

		url:	'http://service.example/secret',

		auth:	{username:	'jcd',	password:	'bionicman'}

});

//	or

var	res	=	request({

		method:	'get',

		url:	'http://service.example/secret',

		auth:	{username:	'jcd',	password:	'bionicman'}

});

Alternatively	you	can	supply	the	credentials	via	the	URL:

const	request	=	require('@arangodb/request');

var	username	=	'jcd';

var	password	=	'bionicman';

var	res	=	request.get(

		'http://'	+

		encodeURIComponent(username)	+

		':'	+

		encodeURIComponent(password)	+

		'@service.example/secret'

);

You	can	also	use	Bearer	token	authentication:

const	request	=	require('@arangodb/request');

var	res	=	request.get(

		'http://service.example/secret',

		{auth:	{bearer:	'keyboardcat'}}

);

//	or

var	res	=	request.get({

		url:	'http://service.example/secret',

		auth:	{bearer:	'keyboardcat'}

});

//	or

var	res	=	request({

		method:	'get',

		url:	'http://service.example/secret',

		auth:	{bearer:	'keyboardcat'}

});

request

624

Module	"actions"
	const	actions	=	require('@arangodb/actions')	

The	action	module	provides	the	infrastructure	for	defining	low-level	HTTP	actions.

If	you	want	to	define	HTTP	endpoints	in	ArangoDB	you	should	probably	use	the	Foxx	microservice	framework	instead.

Basics

Error	message

	actions.getErrorMessage(code)	

Returns	the	error	message	for	an	error	code.

Standard	HTTP	Result	Generators
	actions.defineHttp(options)	

Defines	a	new	action.	The	options	are	as	follows:

	options.url	

The	URL,	which	can	be	used	to	access	the	action.	This	path	might	contain	slashes.	Note	that	this	action	will	also	be	called,	if	a	url	is
given	such	that	options.url	is	a	prefix	of	the	given	url	and	no	longer	definition	matches.

	options.prefix	

If	false,	then	only	use	the	action	for	exact	matches.	The	default	is	true.

	options.callback(request,	response)	

The	request	argument	contains	a	description	of	the	request.	A	request	parameter	foo	is	accessible	as	request.parametrs.foo.	A	request
header	bar	is	accessible	as	request.headers.bar.	Assume	that	the	action	is	defined	for	the	url	/foo/bar	and	the	request	url	is
/foo/bar/hugo/egon.	Then	the	suffix	parts	["hugo",	"egon"]	are	availible	in	request.suffix.

The	callback	must	define	fill	the	response.

response.responseCode:	the	response	code
response.contentType:	the	content	type	of	the	response
response.body:	the	body	of	the	response

You	can	use	the	functions	ResultOk	and	ResultError	to	easily	generate	a	response.

Result	ok

	actions.resultOk(req,	res,	code,	result,	headers)	

The	function	defines	a	response.	code	is	the	status	code	to	return.	result	is	the	result	object,	which	will	be	returned	as	JSON	object	in	the
body.	headers	is	an	array	of	headers	to	returned.	The	function	adds	the	attribute	error	with	value	false	and	code	with	value	code	to	the
result.

Result	bad

	actions.resultBad(req,	res,	error-code,	msg,	headers)	

The	function	generates	an	error	response.

Result	not	found
	actions.resultNotFound(req,	res,	code,	msg,	headers)	

actions

625

The	function	generates	an	error	response.

Result	unsupported

	actions.resultUnsupported(req,	res,	headers)	

The	function	generates	an	error	response.

Result	error

actions.resultError(req,	res,	code,	errorNum,	errorMessage,	headers,	keyvals)*

The	function	generates	an	error	response.	The	response	body	is	an	array	with	an	attribute	errorMessage	containing	the	error	message
errorMessage,	error	containing	true,	code	containing	code,	errorNum	containing	errorNum,	and	errorMessage	containing	the	error
message	errorMessage.	keyvals	are	mixed	into	the	result.

Result	not	Implemented
	actions.resultNotImplemented(req,	res,	msg,	headers)	

The	function	generates	an	error	response.

Result	permanent	redirect

	actions.resultPermanentRedirect(req,	res,	options,	headers)	

The	function	generates	a	redirect	response.

Result	temporary	redirect
	actions.resultTemporaryRedirect(req,	res,	options,	headers)	

The	function	generates	a	redirect	response.

ArangoDB	Result	Generators

Collection	not	found
	actions.collectionNotFound(req,	res,	collection,	headers)	

The	function	generates	an	error	response.

Index	not	found

	actions.indexNotFound(req,	res,	collection,	index,	headers)	

The	function	generates	an	error	response.

Result	exception
	actions.resultException(req,	res,	err,	headers,	verbose)	

The	function	generates	an	error	response.	If	@FA{verbose}	is	set	to	true	or	not	specified	(the	default),	then	the	error	stack	trace	will	be
included	in	the	error	message	if	available.	If	@FA{verbose}	is	a	string	it	will	be	prepended	before	the	error	message	and	the	stacktrace
will	also	be	included.

actions

626

Queries	Module
	const	queries	=	require('@arangodb/aql/queries')	

The	query	module	provides	the	infrastructure	for	working	with	currently	running	AQL	queries	via	arangosh.

Properties

	queries.properties()		Returns	the	servers	current	query	tracking	configuration;	we	change	the	slow	query	threshold	to	get	better	results:

arangosh>	var	queries	=	require("@arangodb/aql/queries");

arangosh>	queries.properties();

arangosh>	queries.properties({slowQueryThreshold:	1});

show	execution	results

Currently	running	queries

We	create	a	task	that	spawns	queries,	so	we	have	nice	output.	Since	this	task	uses	resources,	you	may	want	to	increase		period		(and	not
forget	to	remove	it...	afterwards):

arangosh>	var	theQuery	=	'FOR	sleepLoooong	IN	1..5	LET	sleepLoooonger	=	SLEEP(1000)	RETURN	

sleepLoooong';

arangosh>	var	tasks	=	require("@arangodb/tasks");

arangosh>	tasks.register({

........>		id:	"mytask-1",

........>		name:	"this	is	a	sample	task	to	spawn	a	slow	aql	query",

........>		command:	"require('@arangodb').db._query('"	+	theQuery	+	"');"

........>	});

arangosh>	queries.current();

show	execution	results
The	function	returns	the	currently	running	AQL	queries	as	an	array.

Slow	queries
The	function	returns	the	last	AQL	queries	that	exceeded	the	slow	query	threshold	as	an	array:

arangosh>	queries.slow();

[]

Clear	slow	queries
Clear	the	list	of	slow	AQL	queries:

arangosh>	queries.clearSlow();

{	

		"code"	:	200	

}

arangosh>	queries.slow();

[]

queries

627

Kill
Kill	a	running	AQL	query:

arangosh>	var	runningQueries	=	queries.current().filter(function(query)	{

........>			return	query.query	===	theQuery;

........>	});

arangosh>	queries.kill(runningQueries[0].id);

{	

		"code"	:	200	

}

queries

628

Write-ahead	log
	const	wal	=	require('internal').wal	

This	module	provides	functionality	for	administering	the	write-ahead	logs.	Most	of	these	functions	only	return	sensible	values	when
invoked	with	the	mmfiles	engine	being	active.

Configuration

retrieves	the	configuration	of	the	write-ahead	log		internal.wal.properties()	

Retrieves	the	configuration	of	the	write-ahead	log.	The	result	is	a	JSON	array	with	the	following	attributes:

allowOversizeEntries:	whether	or	not	operations	that	are	bigger	than	a	single	logfile	can	be	executed	and	stored
logfileSize:	the	size	of	each	write-ahead	logfile
historicLogfiles:	the	maximum	number	of	historic	logfiles	to	keep
reserveLogfiles:	the	maximum	number	of	reserve	logfiles	that	ArangoDB	allocates	in	the	background
syncInterval:	the	interval	for	automatic	synchronization	of	not-yet	synchronized	write-ahead	log	data	(in	milliseconds)
throttleWait:	the	maximum	wait	time	that	operations	will	wait	before	they	get	aborted	if	case	of	write-throttling	(in	milliseconds)
throttleWhenPending:	the	number	of	unprocessed	garbage-collection	operations	that,	when	reached,	will	activate	write-throttling.	A
value	of	0	means	that	write-throttling	will	not	be	triggered.

Examples

arangosh>	require("internal").wal.properties();

show	execution	results
configures	the	write-ahead	log		internal.wal.properties(properties)	

Configures	the	behavior	of	the	write-ahead	log.	properties	must	be	a	JSON	JSON	object	with	the	following	attributes:

allowOversizeEntries:	whether	or	not	operations	that	are	bigger	than	a	single	logfile	can	be	executed	and	stored
logfileSize:	the	size	of	each	write-ahead	logfile
historicLogfiles:	the	maximum	number	of	historic	logfiles	to	keep
reserveLogfiles:	the	maximum	number	of	reserve	logfiles	that	ArangoDB	allocates	in	the	background
throttleWait:	the	maximum	wait	time	that	operations	will	wait	before	they	get	aborted	if	case	of	write-throttling	(in	milliseconds)
throttleWhenPending:	the	number	of	unprocessed	garbage-collection	operations	that,	when	reached,	will	activate	write-throttling.	A
value	of	0	means	that	write-throttling	will	not	be	triggered.

Specifying	any	of	the	above	attributes	is	optional.	Not	specified	attributes	will	be	ignored	and	the	configuration	for	them	will	not	be
modified.

Examples

arangosh>	require("internal").wal.properties({	

........>				allowOverSizeEntries:	true,

........>	logfileSize:	32	*	1024	*	1024	});

show	execution	results

Flushing

flushes	the	currently	open	WAL	logfile		internal.wal.flush(waitForSync,	waitForCollector)	

Flushes	the	write-ahead	log.	By	flushing	the	currently	active	write-ahead	logfile,	the	data	in	it	can	be	transferred	to	collection	journals	and
datafiles.	This	is	useful	to	ensure	that	all	data	for	a	collection	is	present	in	the	collection	journals	and	datafiles,	for	example,	when
dumping	the	data	of	a	collection.

Write-ahead	log

629

The	waitForSync	option	determines	whether	or	not	the	operation	should	block	until	the	not-yet	synchronized	data	in	the	write-ahead	log
was	synchronized	to	disk.

The	waitForCollector	operation	can	be	used	to	specify	that	the	operation	should	block	until	the	data	in	the	flushed	log	has	been	collected
by	the	write-ahead	log	garbage	collector.	Note	that	setting	this	option	to	true	might	block	for	a	long	time	if	there	are	long-running
transactions	and	the	write-ahead	log	garbage	collector	cannot	finish	garbage	collection.

Examples

arangosh>	require("internal").wal.flush();

Write-ahead	log

630

Task	Management
	const	tasks	=	require('@arangodb/tasks')	

Note:	If	you	are	trying	to	schedule	tasks	in	Foxx	you	should	consider	using	the	Foxx	queues	module	instead,	which	provides	a	more	high-
level	API	that	also	persists	tasks	across	reboots.

Introduction	to	Task	Management	in	ArangoDB

ArangoDB	can	execute	user-defined	JavaScript	functions	as	one-shot	or	periodic	tasks.	This	functionality	can	be	used	to	implement
timed	or	recurring	jobs	in	the	database.

Tasks	in	ArangoDB	consist	of	a	JavaScript	snippet	or	function	that	is	executed	when	the	task	is	scheduled.	A	task	can	be	a	one-shot	task
(meaning	it	is	run	once	and	not	repeated)	or	a	periodic	task	(meaning	that	it	is	re-scheduled	after	each	execution).	Tasks	can	have	optional
parameters,	which	are	defined	at	task	setup	time.	The	parameters	specified	at	task	setup	time	will	be	passed	as	arguments	to	the	task
whenever	it	gets	executed.	Periodic	Tasks	have	an	execution	frequency	that	needs	to	be	specified	when	the	task	is	set	up.	One-shot	tasks
have	a	configurable	delay	after	which	they'll	get	executed.

Tasks	will	be	executed	on	the	server	they	have	been	set	up	on.	Tasks	will	not	be	shipped	around	in	a	cluster.	A	task	will	be	executed	in
the	context	of	the	database	it	was	created	in.	However,	when	dropping	a	database,	any	tasks	that	were	created	in	the	context	of	this
database	will	remain	active.	It	is	therefore	sensible	to	first	unregister	all	active	tasks	for	a	database	before	dropping	the	database.

Tasks	registered	in	ArangoDB	will	be	executed	until	the	server	gets	shut	down	or	restarted.	After	a	restart	of	the	server,	any	user-defined
one-shot	or	periodic	tasks	will	be	lost.

Commands	for	Working	with	Tasks
ArangoDB	provides	the	following	commands	for	working	with	tasks.	All	commands	can	be	accessed	via	the	tasks	module,	which	can	be
loaded	like	this:

	require("@arangodb/tasks")	

Please	note	that	the	tasks	module	is	available	inside	the	ArangoDB	server	only.	It	cannot	be	used	from	the	ArangoShell	or	ArangoDB's
web	interface.

Register	a	task

To	register	a	task,	the	JavaScript	snippet	or	function	needs	to	be	specified	in	addition	to	the	execution	frequency.	Optionally,	a	task	can
have	an	id	and	a	name.	If	no	id	is	specified,	it	will	be	auto-assigned	for	a	new	task.	The	task	id	is	also	the	means	to	access	or	unregister	a
task	later.	Task	names	are	informational	only.	They	can	be	used	to	make	a	task	distinguishable	from	other	tasks	also	running	on	the	server.

The	following	server-side	commands	register	a	task.	The	command	to	be	executed	is	a	JavaScript	string	snippet	which	prints	a	message	to
the	server's	logfile:

const	tasks	=	require("@arangodb/tasks");

tasks.register({

		id:	"mytask-1",

		name:	"this	is	a	snippet	task",

		period:	15,

		command:	"require('console').log('hello	from	snippet	task');"

});

The	above	has	register	a	task	with	id	mytask-1,	which	will	be	executed	every	15	seconds	on	the	server.	The	task	will	write	a	log	message
whenever	it	is	invoked.

Tasks	can	also	be	set	up	using	a	JavaScript	callback	function	like	this:

Task	Management

631

const	tasks	=	require("@arangodb/tasks");

tasks.register({

		id:	"mytask-2",

		name:	"this	is	a	function	task",

		period:	15,

		command:	function	()	{

				require('console').log('hello	from	function	task');

		}

});

It	is	important	to	note	that	the	callback	function	is	late	bound	and	will	be	executed	in	a	different	context	than	in	the	creation	context.	The
callback	function	must	therefore	not	access	any	variables	defined	outside	of	its	own	scope.	The	callback	function	can	still	define	and	use
its	own	variables.

To	pass	parameters	to	a	task,	the	params	attribute	can	be	set	when	registering	a	task.	Note	that	the	parameters	are	limited	to	data	types
usable	in	JSON	(meaning	no	callback	functions	can	be	passed	as	parameters	into	a	task):

const	tasks	=	require("@arangodb/tasks");

tasks.register({

		id:	"mytask-3",

		name:	"this	is	a	parameter	task",

		period:	15,

		command:	function	(params)	{

				var	greeting	=	params.greeting;

				var	data	=	JSON.stringify(params.data);

				require('console').log('%s	from	parameter	task:	%s',	greeting,	data);

		},

		params:	{	greeting:	"hi",	data:	"how	are	you?"	}

});

Registering	a	one-shot	task	works	the	same	way,	except	that	the	period	attribute	must	be	omitted.	If	period	is	omitted,	then	the	task	will
be	executed	just	once.	The	task	invocation	delay	can	optionally	be	specified	with	the	offset	attribute:

const	tasks	=	require("@arangodb/tasks");

tasks.register({

		id:	"mytask-once",

		name:	"this	is	a	one-shot	task",

		offset:	10,

		command:	function	(params)	{

				require('console').log('you	will	see	me	just	once!');

		}

});

Note:	When	specifying	an	offset	value	of	0,	ArangoDB	will	internally	add	a	very	small	value	to	the	offset	so	will	be	slightly	greater	than
zero.

Unregister	a	task

After	a	task	has	been	registered,	it	can	be	unregistered	using	its	id:

const	tasks	=	require("@arangodb/tasks");

tasks.unregister("mytask-1");

Note	that	unregistering	a	non-existing	task	will	throw	an	exception.

List	all	tasks
To	get	an	overview	of	which	tasks	are	registered,	there	is	the	get	method.	If	the	get	method	is	called	without	any	arguments,	it	will	return
an	array	of	all	tasks:

Task	Management

632

const	tasks	=	require("@arangodb/tasks");

tasks.get();

If	get	is	called	with	a	task	id	argument,	it	will	return	information	about	this	particular	task:

const	tasks	=	require("@arangodb/tasks");

tasks.get("mytask-3");

The	created	attribute	of	a	task	reveals	when	a	task	was	created.	It	is	returned	as	a	Unix	timestamp.

Task	Management

633

Deprecated
Features	listed	in	this	section	should	no	longer	be	used,	because	they	are	considered	obsolete	and	may	get	removed	in	a	future	release.
They	are	currently	kept	for	backward	compatibility.	There	are	usually	better	alternatives	to	replace	the	old	features	with:

Simple	Queries:	Ideomatic	interface	in	arangosh	to	perform	trivial	queries.	They	are	superseded	by	AQL	queries,	which	can	also
be	run	in	arangosh.	AQL	is	a	language	on	its	own	and	way	more	powerful	than	Simple	Queries	could	ever	be.	In	fact,	the	(still
supported)	Simple	Queries	are	translated	internally	to	AQL,	then	the	AQL	query	is	optimized	and	run	against	the	database	in	recent
versions,	because	of	better	performance	and	reduced	maintenance	complexity.

Actions:	Snippets	of	JavaScript	code	on	the	server-side	for	minimal	custom	endpoints.	Since	the	Foxx	revamp	in	3.0,	it	became
really	easy	to	write	Foxx	Microservices,	which	allow	you	to	define	custom	endpoints	even	with	complex	business	logic.

Deprecated

634

Simple	Queries

It	is	recommended	to	use	AQL	instead.

Simple	queries	can	be	used	if	the	query	condition	is	straight	forward,	i.e.,	a	document	reference,	all	documents,	a	query-by-example,	or	a
simple	geo	query.	In	a	simple	query	you	can	specify	exactly	one	collection	and	one	query	criteria.	In	the	following	sections	we	describe
the	JavaScript	shell	interface	for	simple	queries,	which	you	can	use	within	the	ArangoDB	shell	and	within	actions	and	transactions.	For
other	languages	see	the	corresponding	language	API	documentation.

You	can	find	a	list	of	queries	at	Collection	Methods.

Simple	Queries

635

Sequential	Access	and	Cursors
If	a	query	returns	a	cursor,	then	you	can	use	hasNext	and	next	to	iterate	over	the	result	set	or	toArray	to	convert	it	to	an	array.

If	the	number	of	query	results	is	expected	to	be	big,	it	is	possible	to	limit	the	amount	of	documents	transferred	between	the	server	and	the
client	to	a	specific	value.	This	value	is	called	batchSize.	The	batchSize	can	optionally	be	set	before	or	when	a	simple	query	is	executed.	If
the	server	has	more	documents	than	should	be	returned	in	a	single	batch,	the	server	will	set	the	hasMore	attribute	in	the	result.	It	will	also
return	the	id	of	the	server-side	cursor	in	the	id	attribute	in	the	result.	This	id	can	be	used	with	the	cursor	API	to	fetch	any	outstanding
results	from	the	server	and	dispose	the	server-side	cursor	afterwards.

The	initial	batchSize	value	can	be	set	using	the	setBatchSize	method	that	is	available	for	each	type	of	simple	query,	or	when	the	simple
query	is	executed	using	its	execute	method.	If	no	batchSize	value	is	specified,	the	server	will	pick	a	reasonable	default	value.

Has	Next

checks	if	the	cursor	is	exhausted		cursor.hasNext()	

The	hasNext	operator	returns	true,	then	the	cursor	still	has	documents.	In	this	case	the	next	document	can	be	accessed	using	the	next
operator,	which	will	advance	the	cursor.

Examples

arangosh>	var	a	=	db.five.all();

arangosh>	while	(a.hasNext())	print(a.next());

show	execution	results

Next

returns	the	next	result	document		cursor.next()	

If	the	hasNext	operator	returns	true,	then	the	underlying	cursor	of	the	simple	query	still	has	documents.	In	this	case	the	next	document
can	be	accessed	using	the	next	operator,	which	will	advance	the	underlying	cursor.	If	you	use	next	on	an	exhausted	cursor,	then	undefined
is	returned.

Examples

arangosh>	db.five.all().next();

show	execution	results

Set	Batch	size

sets	the	batch	size	for	any	following	requests		cursor.setBatchSize(number)	

Sets	the	batch	size	for	queries.	The	batch	size	determines	how	many	results	are	at	most	transferred	from	the	server	to	the	client	in	one
chunk.

Get	Batch	size

returns	the	batch	size		cursor.getBatchSize()	

Returns	the	batch	size	for	queries.	If	the	returned	value	is	undefined,	the	server	will	determine	a	sensible	batch	size	for	any	following
requests.

Execute	Query

executes	a	query		query.execute(batchSize)	

Simple	Queries

636

Executes	a	simple	query.	If	the	optional	batchSize	value	is	specified,	the	server	will	return	at	most	batchSize	values	in	one	roundtrip.	The
batchSize	cannot	be	adjusted	after	the	query	is	first	executed.

Note:	There	is	no	need	to	explicitly	call	the	execute	method	if	another	means	of	fetching	the	query	results	is	chosen.	The	following	two
approaches	lead	to	the	same	result:

arangosh>	result	=	db.users.all().toArray();

arangosh>	q	=	db.users.all();	q.execute();	result	=	[];	while	(q.hasNext())	{	

result.push(q.next());	}

show	execution	results
The	following	two	alternatives	both	use	a	batchSize	and	return	the	same	result:

arangosh>	q	=	db.users.all();	q.setBatchSize(20);	q.execute();	while	(q.hasNext())	{	

print(q.next());	}

arangosh>	q	=	db.users.all();	q.execute(20);	while	(q.hasNext())	{	print(q.next());	}

show	execution	results

Dispose

disposes	the	result		cursor.dispose()	

If	you	are	no	longer	interested	in	any	further	results,	you	should	call	dispose	in	order	to	free	any	resources	associated	with	the	cursor.
After	calling	dispose	you	can	no	longer	access	the	cursor.

Count

counts	the	number	of	documents		cursor.count()	

The	count	operator	counts	the	number	of	document	in	the	result	set	and	returns	that	number.	The	count	operator	ignores	any	limits	and
returns	the	total	number	of	documents	found.

Note:	Not	all	simple	queries	support	counting.	In	this	case	null	is	returned.

	cursor.count(true)	

If	the	result	set	was	limited	by	the	limit	operator	or	documents	were	skiped	using	the	skip	operator,	the	count	operator	with	argument
true	will	use	the	number	of	elements	in	the	final	result	set	-	after	applying	limit	and	skip.

Note:	Not	all	simple	queries	support	counting.	In	this	case	null	is	returned.

Examples

Ignore	any	limit:

arangosh>	db.five.all().limit(2).count();

null

Counting	any	limit	or	skip:

arangosh>	db.five.all().limit(2).count(true);

2

Simple	Queries

637

Pagination

It	is	recommended	to	use	AQL	instead,	see	the	LIMIT	operation.

If,	for	example,	you	display	the	result	of	a	user	search,	then	you	are	in	general	not	interested	in	the	completed	result	set,	but	only	the	first
10	or	so	documents.	Or	maybe	the	next	10	documents	for	the	second	page.	In	this	case,	you	can	the	skip	and	limit	operators.	These
operators	work	like	LIMIT	in	MySQL.

skip	used	together	with	limit	can	be	used	to	implement	pagination.	The	skip	operator	skips	over	the	first	n	documents.	So,	in	order	to
create	result	pages	with	10	result	documents	per	page,	you	can	use	skip(n	*	10).limit(10)	to	access	the	10	documents	on	the	nth	page.
This	result	should	be	sorted,	so	that	the	pagination	works	in	a	predicable	way.

Limit

limit		query.limit(number)	

Limits	a	result	to	the	first	number	documents.	Specifying	a	limit	of	0	will	return	no	documents	at	all.	If	you	do	not	need	a	limit,	just	do
not	add	the	limit	operator.	The	limit	must	be	non-negative.

In	general	the	input	to	limit	should	be	sorted.	Otherwise	it	will	be	unclear	which	documents	will	be	included	in	the	result	set.

Examples

arangosh>	db.five.all().toArray();

arangosh>	db.five.all().limit(2).toArray();

show	execution	results

Skip

skip		query.skip(number)	

Skips	the	first	number	documents.	If	number	is	positive,	then	this	number	of	documents	are	skipped	before	returning	the	query	results.

In	general	the	input	to	skip	should	be	sorted.	Otherwise	it	will	be	unclear	which	documents	will	be	included	in	the	result	set.

Note:	using	negative	skip	values	is	deprecated	as	of	ArangoDB	2.6	and	will	not	be	supported	in	future	versions	of	ArangoDB.

Examples

arangosh>	db.five.all().toArray();

arangosh>	db.five.all().skip(3).toArray();

show	execution	results

Simple	Queries

638

Modification	Queries

It	is	recommended	to	use	AQL	instead,	see	Data	Modification	Queries.

ArangoDB	also	allows	removing,	replacing,	and	updating	documents	based	on	an	example	document.	Every	document	in	the	collection
will	be	compared	against	the	specified	example	document	and	be	deleted/replaced/	updated	if	all	attributes	match.

These	method	should	be	used	with	caution	as	they	are	intended	to	remove	or	modify	lots	of	documents	in	a	collection.

All	methods	can	optionally	be	restricted	to	a	specific	number	of	operations.	However,	if	a	limit	is	specific	but	is	less	than	the	number	of
matches,	it	will	be	undefined	which	of	the	matching	documents	will	get	removed/modified.	Remove	by	Example,	Replace	by	Example	and
Update	by	Example	are	described	with	examples	in	the	subchapter	Collection	Methods.

Simple	Queries

639

Geo	Queries

It	is	recommended	to	use	AQL	instead,	see	Geo	functions.

The	ArangoDB	allows	to	select	documents	based	on	geographic	coordinates.	In	order	for	this	to	work,	a	geo-spatial	index	must	be
defined.	This	index	will	use	a	very	elaborate	algorithm	to	lookup	neighbors	that	is	a	magnitude	faster	than	a	simple	R*	index.

In	general	a	geo	coordinate	is	a	pair	of	latitude	and	longitude,	which	must	both	be	specified	as	numbers.	A	geo	index	can	be	created	on
coordinates	that	are	stored	in	a	single	list	attribute	with	two	elements	like	[-10,	+30]	(latitude	first,	followed	by	longitude)	or	on
coordinates	stored	in	two	separate	attributes.

For	example,	to	index	the	following	documents,	an	index	can	be	created	on	the	position	attribute	of	the	documents:

db.test.save({	position:	[-10,	30]	});

db.test.save({	position:	[10,	45.5]	});

db.test.ensureIndex({	type:	"geo",	fields:	["position"]	});

If	coordinates	are	stored	in	two	distinct	attributes,	the	index	must	be	created	on	the	two	attributes:

db.test.save({	latitude:	-10,	longitude:	30	});

db.test.save({	latitude:	10,	longitude:	45.5	});

db.test.ensureIndex({	type:	"geo",	fields:	["latitude",	"longitude"]	});

In	order	to	find	all	documents	within	a	given	radius	around	a	coordinate	use	the	within	operator.	In	order	to	find	all	documents	near	a	given
document	use	the	near	operator.

It	is	possible	to	define	more	than	one	geo-spatial	index	per	collection.	In	this	case	you	must	give	a	hint	using	the	geo	operator	which	of
indexes	should	be	used	in	a	query.

Near

constructs	a	near	query	for	a	collection		collection.near(latitude,	longitude)	

The	returned	list	is	sorted	according	to	the	distance,	with	the	nearest	document	to	the	coordinate	(latitude,	longitude)	coming	first.	If	there
are	near	documents	of	equal	distance,	documents	are	chosen	randomly	from	this	set	until	the	limit	is	reached.	It	is	possible	to	change	the
limit	using	the	limit	operator.

In	order	to	use	the	near	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	then	one	geo-spatial	index,	you	can	use	the	geo	operator	to	select	a	particular	index.

Note:		near		does	not	support	negative	skips.	//	However,	you	can	still	use		limit		followed	to	skip.

	collection.near(latitude,	longitude).limit(limit)	

Limits	the	result	to	limit	documents	instead	of	the	default	100.

Note:	Unlike	with	multiple	explicit	limits,		limit		will	raise	the	implicit	default	limit	imposed	by		within	.

	collection.near(latitude,	longitude).distance()	

This	will	add	an	attribute		distance		to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document	in
meters.

	collection.near(latitude,	longitude).distance(name)	

This	will	add	an	attribute	name	to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document	in
meters.

Note:	this	method	is	not	yet	supported	by	the	RocksDB	storage	engine.

Simple	Queries

640

Note:	the	near	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of	ArangoDB.
The	preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	use	the	AQL	NEAR	function	in	an	AQL	query
as	follows:

FOR	doc	IN	NEAR(@@collection,	@latitude,	@longitude,	@limit)

				RETURN	doc

Examples

To	get	the	nearest	two	locations:

arangosh>	db.geo.ensureIndex({	type:	"geo",	fields:	["loc"]	});

arangosh>	for	(var	i	=	-90;		i	<=	90;		i	+=	10)	{

........>			for	(var	j	=	-180;	j	<=	180;	j	+=	10)	{

........>					db.geo.save({

........>								name	:	"Name/"	+	i	+	"/"	+	j,

........>								loc:	[i,	j]	});

........>	}	}

arangosh>	db.geo.near(0,	0).limit(2).toArray();

show	execution	results
If	you	need	the	distance	as	well,	then	you	can	use	the		distance		operator:

arangosh>	db.geo.ensureIndex({	type:	"geo",	fields:	["loc"]	});

arangosh>	for	(var	i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(var	j	=	-180;	j	<=	180;	j	+=	10)	{

........>					db.geo.save({

........>									name	:	"Name/"	+	i	+	"/"	+	j,

........>									loc:	[i,	j]	});

........>	}	}

arangosh>	db.geo.near(0,	0).distance().limit(2).toArray();

show	execution	results

Within

constructs	a	within	query	for	a	collection		collection.within(latitude,	longitude,	radius)	

This	will	find	all	documents	within	a	given	radius	around	the	coordinate	(latitude,	longitude).	The	returned	array	is	sorted	by	distance,
beginning	with	the	nearest	document.

In	order	to	use	the	within	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	then	one	geo-spatial	index,	you	can	use	the		geo		operator	to	select	a	particular	index.

	collection.within(latitude,	longitude,	radius).distance()	

This	will	add	an	attribute		_distance		to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document
in	meters.

	collection.within(latitude,	longitude,	radius).distance(name)	

This	will	add	an	attribute	name	to	all	documents	returned,	which	contains	the	distance	between	the	given	point	and	the	document	in
meters.

Note:	this	method	is	not	yet	supported	by	the	RocksDB	storage	engine.

Note:	the	within	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	retrieving	documents	from	a	collection	using	the	within	operator	is	to	use	the	AQL	WITHIN	function
in	an	AQL	query	as	follows:

FOR	doc	IN	WITHIN(@@collection,	@latitude,	@longitude,	@radius,	@distanceAttributeName)

Simple	Queries

641

				RETURN	doc

Examples

To	find	all	documents	within	a	radius	of	2000	km	use:

arangosh>	for	(var	i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(var	j	=	-180;	j	<=	180;	j	+=	10)	{

........>	db.geo.save({	name	:	"Name/"	+	i	+	"/"	+	j,	loc:	[i,	j]	});	}	}

arangosh>	db.geo.within(0,	0,	2000	*	1000).distance().toArray();

show	execution	results

Geo

constructs	a	geo	index	selection		collection.geo(location-attribute)	

Looks	up	a	geo	index	defined	on	attribute	location_attribute.

Returns	a	geo	index	object	if	an	index	was	found.	The		near		or		within		operators	can	then	be	used	to	execute	a	geo-spatial	query	on	this
particular	index.

This	is	useful	for	collections	with	multiple	defined	geo	indexes.

	collection.geo(location_attribute,	true)	

Looks	up	a	geo	index	on	a	compound	attribute	location_attribute.

Returns	a	geo	index	object	if	an	index	was	found.	The		near		or		within		operators	can	then	be	used	to	execute	a	geo-spatial	query	on	this
particular	index.

	collection.geo(latitude_attribute,	longitude_attribute)	

Looks	up	a	geo	index	defined	on	the	two	attributes	latitude_attribute	and	longitude-attribute.

Returns	a	geo	index	object	if	an	index	was	found.	The		near		or		within		operators	can	then	be	used	to	execute	a	geo-spatial	query	on	this
particular	index.

Note:	this	method	is	not	yet	supported	by	the	RocksDB	storage	engine.

Note:	the	geo	simple	query	helper	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	running	geo	queries	is	to	use	their	AQL	equivalents.

Examples

Assume	you	have	a	location	stored	as	list	in	the	attribute	home	and	a	destination	stored	in	the	attribute	work.	Then	you	can	use	the		geo	
operator	to	select	which	geo-spatial	attributes	(and	thus	which	index)	to	use	in	a		near		query.

arangosh>	for	(i	=	-90;		i	<=	90;		i	+=	10)	{

........>		for	(j	=	-180;		j	<=	180;		j	+=	10)	{

........>				db.complex.save({	name	:	"Name/"	+	i	+	"/"	+	j,

........>																						home	:	[i,	j],

........>																						work	:	[-i,	-j]	});

........>		}

........>	}

........>	

arangosh>	db.complex.near(0,	170).limit(5);

arangosh>	db.complex.ensureIndex({	type:	"geo",	fields:	["home"]	});

arangosh>	db.complex.near(0,	170).limit(5).toArray();

arangosh>	db.complex.geo("work").near(0,	170).limit(5);

arangosh>	db.complex.ensureIndex({	type:	"geo",	fields:	["work"]	});

arangosh>	db.complex.geo("work").near(0,	170).limit(5).toArray();

Simple	Queries

642

show	execution	results

Related	topics

Other	ArangoDB	geographic	features	are	described	in:

AQL	Geo	functions
Geo	indexes

Simple	Queries

643

Fulltext	queries

It	is	recommended	to	use	AQL	instead,	see	Fulltext	functions.

ArangoDB	allows	to	run	queries	on	text	contained	in	document	attributes.	To	use	this,	a	fulltext	index	must	be	defined	for	the	attribute	of
the	collection	that	contains	the	text.	Creating	the	index	will	parse	the	text	in	the	specified	attribute	for	all	documents	of	the	collection.
Only	documents	will	be	indexed	that	contain	a	textual	value	in	the	indexed	attribute.	For	such	documents,	the	text	value	will	be	parsed,
and	the	individual	words	will	be	inserted	into	the	fulltext	index.

When	a	fulltext	index	exists,	it	can	be	queried	using	a	fulltext	query.

Fulltext

queries	the	fulltext	index		collection.fulltext(attribute,	query)	

The	fulltext	simple	query	functions	performs	a	fulltext	search	on	the	specified	attribute	and	the	specified	query.

Details	about	the	fulltext	query	syntax	can	be	found	below.

Note:	the	fulltext	simple	query	function	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of
ArangoDB.	The	preferred	way	for	executing	fulltext	queries	is	to	use	an	AQL	query	using	the	FULLTEXT	AQL	function	as	follows:

FOR	doc	IN	FULLTEXT(@@collection,	@attributeName,	@queryString,	@limit)	

		RETURN	doc

Examples

arangosh>	db.emails.ensureFulltextIndex("content");

arangosh>	db.emails.save({	content:

........>	"Hello	Alice,	how	are	you	doing?	Regards,	Bob"});

arangosh>	db.emails.save({	content:

........>	"Hello	Charlie,	do	Alice	and	Bob	know	about	it?"});

arangosh>	db.emails.save({	content:	"I	think	they	don't	know.	Regards,	Eve"	});

arangosh>	db.emails.fulltext("content",	"charlie,|eve").toArray();

show	execution	results

Fulltext	Syntax:

In	the	simplest	form,	a	fulltext	query	contains	just	the	sought	word.	If	multiple	search	words	are	given	in	a	query,	they	should	be
separated	by	commas.	All	search	words	will	be	combined	with	a	logical	AND	by	default,	and	only	such	documents	will	be	returned	that
contain	all	search	words.	This	default	behavior	can	be	changed	by	providing	the	extra	control	characters	in	the	fulltext	query,	which	are:

+:	logical	AND	(intersection)
|:	logical	OR	(union)
-:	negation	(exclusion)

Examples:

"banana":	searches	for	documents	containing	"banana"
"banana,apple":	searches	for	documents	containing	both	"banana"	AND	"apple"
"banana,|orange":	searches	for	documents	containing	either	"banana"	OR	"orange"	OR	both
"banana,-apple":	searches	for	documents	that	contains	"banana"	but	NOT	"apple".

Logical	operators	are	evaluated	from	left	to	right.

Simple	Queries

644

Each	search	word	can	optionally	be	prefixed	with	complete:	or	prefix:,	with	complete:	being	the	default.	This	allows	searching	for
complete	words	or	for	word	prefixes.	Suffix	searches	or	any	other	forms	are	partial-word	matching	are	currently	not	supported.

Examples:

"complete:banana":	searches	for	documents	containing	the	exact	word	"banana"
"prefix:head":	searches	for	documents	with	words	that	start	with	prefix	"head"
"prefix:head,banana":	searches	for	documents	contain	words	starting	with	prefix	"head"	and	that	also	contain	the	exact	word
"banana".

Complete	match	and	prefix	search	options	can	be	combined	with	the	logical	operators.

Please	note	that	only	words	with	a	minimum	length	will	get	indexed.	This	minimum	length	can	be	defined	when	creating	the	fulltext	index.
For	words	tokenization,	the	libicu	text	boundary	analysis	is	used,	which	takes	into	account	the	default	as	defined	at	server	startup	(--
server.default-language	startup	option).	Generally,	the	word	boundary	analysis	will	filter	out	punctuation	but	will	not	do	much	more.

Especially	no	word	normalization,	stemming,	or	similarity	analysis	will	be	performed	when	indexing	or	searching.	If	any	of	these	features
is	required,	it	is	suggested	that	the	user	does	the	text	normalization	on	the	client	side,	and	provides	for	each	document	an	extra	attribute
containing	just	a	comma-separated	list	of	normalized	words.	This	attribute	can	then	be	indexed	with	a	fulltext	index,	and	the	user	can	send
fulltext	queries	for	this	index,	with	the	fulltext	queries	also	containing	the	stemmed	or	normalized	versions	of	words	as	required	by	the
user.

Simple	Queries

645

ArangoDB's	Actions

It	is	recommended	to	use	Foxx	instead.

Introduction	to	User	Actions

In	some	ways	the	communication	layer	of	the	ArangoDB	server	behaves	like	a	Web	server.	Unlike	a	Web	server,	it	normally	responds	to
HTTP	requests	by	delivering	JSON	objects.	Remember,	documents	in	the	database	are	just	JSON	objects.	So,	most	of	the	time	the
HTTP	response	will	contain	a	JSON	document	from	the	database	as	body.	You	can	extract	the	documents	stored	in	the	database	using
HTTP	GET.	You	can	store	documents	using	HTTP	POST.

However,	there	is	something	more.	You	can	write	small	snippets	-	so	called	actions	-	to	extend	the	database.	The	idea	of	actions	is	that
sometimes	it	is	better	to	store	parts	of	the	business	logic	within	ArangoDB.

The	simplest	example	is	the	age	of	a	person.	Assume	you	store	information	about	people	in	your	database.	It	is	an	anti-pattern	to	store
the	age,	because	it	changes	every	now	and	then.	Therefore,	you	normally	store	the	birthday	and	let	the	client	decide	what	to	do	with	it.
However,	if	you	have	many	different	clients,	it	might	be	easier	to	enrich	the	person	document	with	the	age	using	actions	once	on	the
server	side.

Or,	for	instance,	if	you	want	to	apply	some	statistics	to	large	data-sets	and	you	cannot	easily	express	this	as	query.	You	can	define	a
action	instead	of	transferring	the	whole	data	to	the	client	and	do	the	computation	on	the	client.

Actions	are	also	useful	if	you	want	to	restrict	and	filter	data	according	to	some	complex	permission	system.

The	ArangoDB	server	can	deliver	all	kinds	of	information,	JSON	being	only	one	possible	format.	You	can	also	generate	HTML	or	images.
However,	a	Web	server	is	normally	better	suited	for	the	task	as	it	also	implements	various	caching	strategies,	language	selection,
compression	and	so	on.	Having	said	that,	there	are	still	situations	where	it	might	be	suitable	to	use	the	ArangoDB	to	deliver	HTML	pages
-	static	or	dynamic.	A	simple	example	is	the	built-in	administration	interface.	You	can	access	it	using	any	modern	browser	and	there	is	no
need	for	a	separate	Apache	or	IIS.

In	general	you	will	use	Foxx	to	easily	extend	the	database	with	business	logic.	Foxx	provides	an	simple	to	use	interface	to	actions.

The	following	sections	will	explain	the	low-level	actions	within	ArangoDB	on	which	Foxx	is	built	and	show	how	to	define	them.	The
examples	start	with	delivering	static	HTML	pages	-	even	if	this	is	not	the	primary	use-case	for	actions.	The	later	sections	will	then	show
you	how	to	code	some	pieces	of	your	business	logic	and	return	JSON	objects.

The	interface	is	loosely	modeled	after	the	JavaScript	classes	for	HTTP	request	and	responses	found	in	node.js	and	the
middleware/routing	aspects	of	connect.js	and	express.js.

Note	that	unlike	node.js,	ArangoDB	is	multi-threaded	and	there	is	no	easy	way	to	share	state	between	queries	inside	the	JavaScript
engine.	If	such	state	information	is	required,	you	need	to	use	the	database	itself.

Actions

646

A	Hello	World	Example

The	client	API	or	browser	sends	a	HTTP	request	to	the	ArangoDB	server	and	the	server	returns	a	HTTP	response	to	the	client.	A	HTTP
request	consists	of	a	method,	normally	GET	or	POST	when	using	a	browser,	and	a	request	path	like	/hello/world.	For	a	real	Web	server
there	are	a	zillion	of	other	thing	to	consider,	we	will	ignore	this	for	the	moment.	The	HTTP	response	contains	a	content	type,	describing
how	to	interpret	the	returned	data,	and	the	data	itself.

In	the	following	example,	we	want	to	define	an	action	in	ArangoDB,	so	that	the	server	returns	the	HTML	document

<html>

		<body>

			Hello	World

		</body>

</html>

if	asked	GET	/hello/world.

The	server	needs	to	know	what	function	to	call	or	what	document	to	deliver	if	it	receives	a	request.	This	is	called	routing.	All	the	routing
information	of	ArangoDB	is	stored	in	a	collection	_routing.	Each	entry	in	this	collections	describes	how	to	deal	with	a	particular	request
path.

For	the	above	example,	add	the	following	document	to	the	_routing	collection:

arangosh>	db._routing.save({	

........>		url:	{	

........>				match:	"/hello/world"	

........>		},

........>		content:	{	

........>				contentType:	"text/html",	

........>				body:	"<html><body>Hello	World</body></html>"	

........>		}

........>	});

show	execution	results
In	order	to	activate	the	new	routing,	you	must	either	restart	the	server	or	call	the	internal	reload	function.

arangosh>	require("internal").reloadRouting()

Now	use	the	browser	and	access	http://	localhost:8529/hello/world

You	should	see	the	Hello	World	in	our	browser:

shell>	curl	--dump	-	http://localhost:8529/hello/world

HTTP/1.1	200	OK

content-type:	text/html

x-content-type-options:	nosniff

"Hello	World"

Matching	a	URL
There	are	a	lot	of	options	for	the	url	attribute.	If	you	define	different	routing	for	the	same	path,	then	the	following	simple	rule	is	applied
in	order	to	determine	which	match	wins:	If	there	are	two	matches,	then	the	more	specific	wins.	I.	e,	if	there	is	a	wildcard	match	and	an
exact	match,	the	exact	match	is	preferred.	If	there	is	a	short	and	a	long	match,	the	longer	match	wins.

Actions

647

Exact	Match

If	the	definition	is

{	

		url:	{	

				match:	"/hello/world"	

		}	

}

then	the	match	must	be	exact.	Only	the	request	for	/hello/world	will	match,	everything	else,	e.	g.	/hello/world/my	or	/hello/world2,	will	not
match.

The	following	definition	is	a	short-cut	for	an	exact	match.

{	

		url:	"/hello/world"	

}

Note:	While	the	two	definitions	will	result	in	the	same	URL	matching,	there	is	a	subtle	difference	between	them:

The	former	definition	(defining	url	as	an	object	with	a	match	attribute)	will	result	in	the	URL	being	accessible	via	all	supported	HTTP
methods	(e.g.	GET,	POST,	PUT,	DELETE,	...),	whereas	the	latter	definition	(providing	a	string	url	attribute)	will	result	in	the	URL	being
accessible	via	HTTP	GET	and	HTTP	HEAD	only,	with	all	other	HTTP	methods	being	disabled.	Calling	a	URL	with	an	unsupported	or
disabled	HTTP	method	will	result	in	an	HTTP	501	(not	implemented)	error.

Prefix	Match

If	the	definition	is

{	

		url:	{	

				match:	"/hello/world/*"	

		}	

}

then	the	match	can	be	a	prefix	match.	The	requests	for	/hello/world,	/hello/world/my,	and	/hello/world/how/are/you	will	all	match.
However	/hello/world2	does	not	match.	Prefix	matches	within	a	URL	part,	i.	e.	/hello/world*,	are	not	allowed.	The	wildcard	must	occur	at
the	end,	i.	e.

/hello/*/world	

is	also	disallowed.

If	you	define	two	routes

{	url:	{	match:	"/hello/world/*"	}	}

{	url:	{	match:	"/hello/world/emil"	}	}

then	the	second	route	will	be	used	for	/hello/world/emil	because	it	is	more	specific.

Parameterized	Match

A	parameterized	match	is	similar	to	a	prefix	match,	but	the	parameters	are	also	allowed	inside	the	URL	path.

If	the	definition	is

{	

		url:	{	

				match:	"/hello/:name/world"	

		}	

}

Actions

648

then	the	URL	must	have	three	parts,	the	first	part	being	hello	and	the	third	part	world.	For	example,	/hello/emil/world	will	match,	while
/hello/emil/meyer/world	will	not.

Constraint	Match

A	constraint	match	is	similar	to	a	parameterized	match,	but	the	parameters	can	carry	constraints.

If	the	definition	is

{	

		url:	{	

				match:	"/hello/:name/world",	

				constraint:	{	

						name:	"/[a-z]+/"	

				}	

		}

}

then	the	URL	must	have	three	parts,	the	first	part	being	hello	and	the	third	part	world.	The	second	part	must	be	all	lowercase.

It	is	possible	to	use	more	then	one	constraint	for	the	same	URL	part.

{	

		url:	{	

				match:	"/hello/:name|:id/world",

				constraint:	{	

						name:	"/[a-z]+/",	id:	"/[0-9]+/"	

				}	

		}

}

Optional	Match

An	optional	match	is	similar	to	a	parameterized	match,	but	the	last	parameter	is	optional.

If	the	definition	is

{	

		url:	{	

				match:	"/hello/:name?",	

				constraint:	{	

						name:	"/[a-z]+/"

				}	

		}

}

then	the	URL	/hello	and	/hello/emil	will	match.

If	the	definitions	are

{	url:	{	match:	"/hello/world"	}	}

{	url:	{	match:	"/hello/:name",	constraint:	{	name:	"/[a-z]+/"	}	}	}

{	url:	{	match:	"/hello/*"	}	}

then	the	URL	/hello/world	will	be	matched	by	the	first	route,	because	it	is	the	most	specific.	The	URL	/hello/you	will	be	matched	by	the
second	route,	because	it	is	more	specific	than	the	prefix	match.

Method	Restriction

You	can	restrict	the	match	to	specific	HTTP	methods.

If	the	definition	is

{	

		url:	{	

Actions

649

				match:	"/hello/world",	

				methods:	["post",	"put"]	

		}

}

then	only	HTTP	POST	and	PUT	requests	will	match.	Calling	with	a	different	HTTP	method	will	result	in	an	HTTP	501	error.

Please	note	that	if	url	is	defined	as	a	simple	string,	then	only	the	HTTP	methods	GET	and	HEAD	will	be	allowed,	an	all	other	methods
will	be	disabled:

{	

		url:	"/hello/world"	

}

More	on	Matching

Remember	that	the	more	specific	match	wins.

A	match	without	parameter	or	wildcard	is	more	specific	than	a	match	with	parameters	or	wildcard.
A	match	with	parameter	is	more	specific	than	a	match	with	a	wildcard.
If	there	is	more	than	one	parameter,	specificity	is	applied	from	left	to	right.

Consider	the	following	definitions

arangosh>	db._routing.save({	

........>		url:	{	match:	"/hello/world"	},

........>	content:	{	contentType:	"text/plain",	body:	"Match	No	1"}	});

arangosh>	db._routing.save({	

........>		url:	{	match:	"/hello/:name",	constraint:	{	name:	"/[a-z]+/"	}	},

........>	content:	{	contentType:	"text/plain",	body:	"Match	No	2"}	});

arangosh>	db._routing.save({	

........>		url:	{	match:	"/:something/world"	},

........>	content:	{	contentType:	"text/plain",	body:	"Match	No	3"}	});

arangosh>	db._routing.save({	

........>		url:	{	match:	"/hi/*"	},

........>	content:	{	contentType:	"text/plain",	body:	"Match	No	4"}	});

arangosh>	require("internal").reloadRouting()

show	execution	results
Then

shell>	curl	--dump	-	http://localhost:8529/hello/world

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"Match	No	1"

shell>	curl	--dump	-	http://localhost:8529/hello/emil

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"Match	No	2"

shell>	curl	--dump	-	http://localhost:8529/your/world

HTTP/1.1	200	OK

Actions

650

content-type:	text/plain

x-content-type-options:	nosniff

"Match	No	3"

shell>	curl	--dump	-	http://localhost:8529/hi/you

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"Match	No	4"

You	can	write	the	following	document	into	the	_routing	collection	to	test	the	above	examples.

{

		routes:	[

{	url:	{	match:	"/hello/world"	},	content:	"route	1"	},

{	url:	{	match:	"/hello/:name|:id",	constraint:	{	name:	"/[a-z]+/",	id:	"/[0-9]+/"	}	},	content:	"route	2"	},

{	url:	{	match:	"/:something/world"	},	content:	"route	3"	},

{	url:	{	match:	"/hello/*"	},	content:	"route	4"	},

]

}

Actions

651

A	Hello	World	Example	for	JSON

If	you	change	the	example	slightly,	then	a	JSON	object	will	be	delivered.

arangosh>	db._routing.save({	

........>		url:	"/hello/json",	

........>		content:	{	

........>		contentType:	"application/json",	

........>				body:	'{"hello"	:	"world"}'

........>		}

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results
Again	check	with	your	browser	or	cURL	http://localhost:8529/hello/json

Depending	on	your	browser	and	installed	add-ons	you	will	either	see	the	JSON	object	or	a	download	dialog.	If	your	browser	wants	to
open	an	external	application	to	display	the	JSON	object,	you	can	change	the	contentType	to	"text/plain" 	for	the	example.	This	makes	it
easier	to	check	the	example	using	a	browser.	Or	use	curl	to	access	the	server.

shell>	curl	--dump	-	http://localhost:8529/hello/json

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"hello"	:	"world"	

}

Delivering	Content

There	are	a	lot	of	different	ways	on	how	to	deliver	content.	We	have	already	seen	the	simplest	one,	where	static	content	is	delivered.	The
fun,	however,	starts	when	delivering	dynamic	content.

Static	Content

You	can	specify	a	body	and	a	content-type.

arangosh>	db._routing.save({

........>		url:	"/hello/contentType",

........>		content:	{

........>				contentType:	"text/html",

........>				body:	"<html><body>Hello	World</body></html>"

........>		}

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results

shell>	curl	--dump	-	http://localhost:8529/hello/contentType

Actions

652

http://localhost:8529/hello/json

HTTP/1.1	200	OK

content-type:	text/html

x-content-type-options:	nosniff

"Hello	World"

If	the	content	type	is	text/plain	then	you	can	use	the	short-cut

{	

		content:	"Hello	World"	

}

A	Simple	Action

The	simplest	dynamic	action	is:

{	

		action:	{	

				do:	"@arangodb/actions/echoRequest"	

		}	

}

It	is	not	advisable	to	store	functions	directly	in	the	routing	table.	It	is	better	to	call	functions	defined	in	modules.	In	the	above	example	the
function	can	be	accessed	from	JavaScript	as:

require("@arangodb/actions").echoRequest

The	function	echoRequest	is	pre-defined.	It	takes	the	request	objects	and	echos	it	in	the	response.

The	signature	of	such	a	function	must	be

function	(req,	res,	options,	next)

Examples

arangosh>	db._routing.save({	

........>				url:	"/hello/echo",

........>				action:	{	

........>				do:	"@arangodb/actions/echoRequest"	

........>		}	

........>	});

show	execution	results
Reload	the	routing	and	check	http://	127.0.0.1:8529/hello/echo

You	should	see	something	like

arangosh>	arango.GET("/hello/echo")

show	execution	results

The	request	might	contain	path,	prefix,	suffix,	and	urlParameters	attributes.	path	is	the	complete	path	as	supplied	by	the	user	and	always
available.	If	a	prefix	was	matched,	then	this	prefix	is	stored	in	the	attribute	prefix	and	the	remaining	URL	parts	are	stored	as	an	array	in
suffix.	If	one	or	more	parameters	were	matched,	then	the	parameter	values	are	stored	in	urlParameters.

Actions

653

For	example,	if	the	url	description	is

{	

		url:	{	

				match:	"/hello/:name/:action"	

		}	

}

and	you	request	the	path	/hello/emil/jump,	then	the	request	object	will	contain	the	following	attribute

urlParameters:	{	

		name:	"emil",	

		action:	"jump"	

}

Action	Controller

As	an	alternative	to	the	simple	action,	you	can	use	controllers.	A	controller	is	a	module,	defines	the	function	get,	put,	post,	delete,	head,
patch.	If	a	request	of	the	corresponding	type	is	matched,	the	function	will	be	called.

Examples

arangosh>	db._routing.save({	

........>		url:	"/hello/echo",

........>		action:	{	

........>				controller:	"@arangodb/actions/echoController"	

........>		}	

........>	});

show	execution	results
Reload	the	routing	and	check	http://	127.0.0.1:8529/hello/echo:

arangosh>	arango.GET("/hello/echo")

show	execution	results

Prefix	Action	Controller

The	controller	is	selected	when	the	definition	is	read.	There	is	a	more	flexible,	but	slower	and	maybe	insecure	variant,	the	prefix	controller.

Assume	that	the	url	is	a	prefix	match

{	

		url:	{	

				match:	/hello/*"	

		}	

}

You	can	use

{	

		action:	{	

				prefixController:	"@arangodb/actions"	

		}	

}

to	define	a	prefix	controller.	If	the	URL	/hello/echoController	is	given,	then	the	module	@arangodb/actions/echoController	is	used.

If	you	use	a	prefix	controller,	you	should	make	certain	that	no	unwanted	actions	are	available	under	the	prefix.

Actions

654

The	definition

{	

		action:	"@arangodb/actions"	

}

is	a	short-cut	for	a	prefix	controller	definition.

Function	Action

You	can	also	store	a	function	directly	in	the	routing	table.

Examples

arangosh>	db._routing.save({	

........>		url:	"/hello/echo",

........>		action:	{	

........>				callback:	"function(req,res)	{res.statusCode=200;	res.body='Hello'}"	

........>		}	

........>	});

show	execution	results

arangosh>	arango.GET("hello/echo")

arangosh>	db._query("FOR	route	IN	_routing	FILTER	route.url	==	'/hello/echo'	REMOVE	route	

in	_routing")

[object	ArangoQueryCursor,	count:	0,	cached:	false,	hasMore:	false]

arangosh>	require("internal").reloadRouting()

Requests	and	Responses

The	controller	must	define	handler	functions	which	take	a	request	object	and	fill	the	response	object.

A	very	simple	example	is	the	function	echoRequest	defined	in	the	module	@arangodb/actions.

function	(req,	res,	options,	next)	{

		var	result;

		result	=	{	request:	req,	options:	options	};

		res.responseCode	=	exports.HTTP_OK;

		res.contentType	=	"application/json";

		res.body	=	JSON.stringify(result);

}

Install	it	via:

arangosh>	db._routing.save({	

........>		url:	"/echo",

........>		action:	{	

........>				do:	"@arangodb/actions/echoRequest"	

........>		}

........>	})

show	execution	results
Reload	the	routing	and	check	http://	127.0.0.1:8529/hello/echo

You	should	see	something	like

Actions

655

arangosh>	arango.GET("/hello/echo")

arangosh>	db._query("FOR	route	IN	_routing	FILTER	route.url	==	'/hello/echo'	REMOVE	route	

in	_routing")

arangosh>	require("internal").reloadRouting()

show	execution	results
You	may	also	pass	options	to	the	called	function:

arangosh>	db._routing.save({	

........>		url:	"/echo",

........>		action:	{

........>				do:	"@arangodb/actions/echoRequest",

........>				options:	{	

........>						"Hello":	"World"	

........>				}

........>		}	

........>	});

show	execution	results
You	now	see	the	options	in	the	result:

arangosh>	arango.GET("/echo")

arangosh>	db._query("FOR	route	IN	_routing	FILTER	route.url	==	'/echo'	REMOVE	route	in	

_routing")

arangosh>	require("internal").reloadRouting()

show	execution	results

Actions

656

Modifying	Request	and	Response

As	we've	seen	in	the	previous	examples,	actions	get	called	with	the	request	and	response	objects	(named	req	and	res	in	the	examples)
passed	as	parameters	to	their	handler	functions.

The	req	object	contains	the	incoming	HTTP	request,	which	might	or	might	not	have	been	modified	by	a	previous	action	(if	actions	were
chained).

A	handler	can	modify	the	request	object	in	place	if	desired.	This	might	be	useful	when	writing	middleware	(see	below)	that	is	used	to
intercept	incoming	requests,	modify	them	and	pass	them	to	the	actual	handlers.

While	modifying	the	request	object	might	not	be	that	relevant	for	non-middleware	actions,	modifying	the	response	object	definitely	is.
Modifying	the	response	object	is	an	action's	only	way	to	return	data	to	the	caller	of	the	action.

We've	already	seen	how	to	set	the	HTTP	status	code,	the	content	type,	and	the	result	body.	The	res	object	has	the	following	properties
for	these:

contentType:	MIME	type	of	the	body	as	defined	in	the	HTTP	standard	(e.g.	text/html,	text/plain,	application/json,	...)
responsecode:	the	HTTP	status	code	of	the	response	as	defined	in	the	HTTP	standard.	Common	values	for	actions	that	succeed	are
200	or	201.	Please	refer	to	the	HTTP	standard	for	more	information.
body:	the	actual	response	data

To	set	or	modify	arbitrary	headers	of	the	response	object,	the	headers	property	can	be	used.	For	example,	to	add	a	user-defined	header	to
the	response,	the	following	code	will	do:

res.headers	=	res.headers	||	{	};	//	headers	might	or	might	not	be	present

res.headers['X-Test']	=	'someValue';	//	set	header	X-Test	to	"someValue"

This	will	set	the	additional	HTTP	header	X-Test	to	value	someValue.	Other	headers	can	be	set	as	well.	Note	that	ArangoDB	might	change
the	case	of	the	header	names	to	lower	case	when	assembling	the	overall	response	that	is	sent	to	the	caller.

It	is	not	necessary	to	explicitly	set	a	Content-Length	header	for	the	response	as	ArangoDB	will	calculate	the	content	length	automatically
and	add	this	header	itself.	ArangoDB	might	also	add	a	Connection	header	itself	to	handle	HTTP	keep-alive.

ArangoDB	also	supports	automatic	transformation	of	the	body	data	to	another	format.	Currently,	the	only	supported	transformations
are	base64-encoding	and	base64-decoding.	Using	the	transformations,	an	action	can	create	a	base64	encoded	body	and	still	let	ArangoDB
send	the	non-encoded	version,	for	example:

res.body	=	'VGhpcyBpcyBhIHRlc3Q=';

res.transformations	=	res.transformations	||	[];	//	initialize

res.transformations.push('base64decode');	//	will	base64	decode	the	response	body

When	ArangoDB	processes	the	response,	it	will	base64-decode	what's	in	res.body	and	set	the	HTTP	header	Content-Encoding:	binary.
The	opposite	can	be	achieved	with	the	base64encode	transformation:	ArangoDB	will	then	automatically	base64-encode	the	body	and	set
a	Content-Encoding:	base64	HTTP	header.

Writing	dynamic	action	handlers
To	write	your	own	dynamic	action	handlers,	you	must	put	them	into	modules.

Modules	are	a	means	of	organizing	action	handlers	and	making	them	loadable	under	specific	names.

To	start,	we'll	define	a	simple	action	handler	in	a	module	/ownTest:

arangosh>	db._modules.save({

........>		path:	"/db:/ownTest",

........>		content:

........>					"exports.do	=	function(req,	res,	options,	next)	{"+

........>					"		res.body	=	'test';"	+

Actions

657

........>					"		res.responseCode	=	200;"	+

........>					"		res.contentType	=	'text/plain';"	+

........>					"};"

........>	});

show	execution	results
This	does	nothing	but	register	a	do	action	handler	in	a	module	/ownTest.	The	action	handler	is	not	yet	callable,	but	must	be	mapped	to	a
route	first.	To	map	the	action	to	the	route	/ourtest,	execute	the	following	command:

arangosh>	db._routing.save({

........>		url:	"/ourtest",	

........>		action:	{

........>				controller:	"db://ownTest"

........>		}

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results
Now	use	the	browser	or	cURL	and	access	http://localhost:8529/ourtest	:

shell>	curl	--dump	-	http://localhost:8529/ourtest

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"test"

You	will	see	that	the	module's	do	function	has	been	executed.

A	Word	about	Caching
Sometimes	it	might	seem	that	your	change	do	not	take	effect.	In	this	case	the	culprit	could	be	the	routing	caches:

The	routing	cache	stores	the	routing	information	computed	from	the	_routing	collection.	Whenever	you	change	this	collection	manually,
you	need	to	call

arangosh>	require("internal").reloadRouting()

in	order	to	rebuild	the	cache.

Advanced	Usages
For	detailed	information	see	the	reference	manual.

Redirects

Use	the	following	for	a	permanent	redirect:

arangosh>	db._routing.save({

........>		url:	"/redirectMe",

........>		action:	{

........>				do:	"@arangodb/actions/redirectRequest",

........>				options:	{

Actions

658

http://localhost:8529/ourtest

........>						permanently:	true,

........>						destination:	"/somewhere.else/"

........>				}

........>		}

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results

shell>	curl	--dump	-	http://localhost:8529/redirectMe

HTTP/1.1	301	Moved	Permanently

x-content-type-options:	nosniff

content-type:	text/html

location:	/somewhere.else/

"<html><head><title>Moved</title></head><body><h1>Moved</h1><p>This	page	has	moved	to	/somewhere.else/.</p></body></html>"

Routing	Bundles

Instead	of	adding	all	routes	for	package	separately,	you	can	specify	a	bundle:

arangosh>	db._routing.save({

........>		routes:	[

........>				{

........>						url:	"/url1",

........>						content:	"route	1"

........>				},

........>				{

........>						url:	"/url2",

........>						content:	"route	2"

........>				},

........>				{

........>						url:	"/url3",

........>						content:	"route	3"

........>				}

........>]

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results

shell>	curl	--dump	-	http://localhost:8529/url2

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"route	2"

shell>	curl	--dump	-	http://localhost:8529/url3

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

Actions

659

"route	3"

The	advantage	is,	that	you	can	put	all	your	routes	into	one	document	and	use	a	common	prefix.

arangosh>	db._routing.save({

........>		urlPrefix:	"/test",

........>		routes:	[

........>				{

........>						url:	"/url1",

........>						content:	"route	1"

........>				},

........>				{

........>						url:	"/url2",

........>						content:	"route	2"

........>				},

........>				{

........>						url:	"/url3",

........>						content:	"route	3"

........>				}

........>]

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results
will	define	the	URL	/test/url1,	/test/url2,	and	/test/url3:

shell>	curl	--dump	-	http://localhost:8529/test/url1

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"route	1"

shell>	curl	--dump	-	http://localhost:8529/test/url2

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"route	2"

shell>	curl	--dump	-	http://localhost:8529/test/url3

HTTP/1.1	200	OK

content-type:	text/plain

x-content-type-options:	nosniff

"route	3"

Writing	Middleware

Assume,	you	want	to	log	every	request	in	your	namespace	to	the	console.	(if	ArangoDB	is	running	as	a	daemon,	this	will	end	up	in	the
logfile).	In	this	case	you	can	easily	define	an	action	for	the	URL	/subdirectory.	This	action	simply	logs	the	requests,	calls	the	next	in	line,
and	logs	the	response:

arangosh>	db._modules.save({

Actions

660

........>		path:	"/db:/OwnMiddlewareTest",

........>		content:

........>					"exports.logRequest	=	function	(req,	res,	options,	next)	{"	+

........>					"				console	=	require('console');	"	+	

........>					"				console.log('received	request:	%s',	JSON.stringify(req));"	+

........>					"				next();"	+

........>					"				console.log('produced	response:	%s',	JSON.stringify(res));"	+

........>					"};"

........>	});

show	execution	results
This	function	will	now	be	available	as	db://OwnMiddlewareTest/logRequest.	You	need	to	tell	ArangoDB	that	it	is	should	use	a	prefix
match	and	that	the	shortest	match	should	win	in	this	case:

arangosh>	db._routing.save({

........>		middleware:	[

........>				{

........>						url:	{

........>								match:	"/subdirectory/*"

........>						},

........>						action:	{

........>								do:	"db://OwnMiddlewareTest/logRequest"

........>						}

........>				}

........>]

........>	});

show	execution	results
When	you	call	next()	in	that	action,	the	next	specific	routing	will	be	used	for	the	original	URL.	Even	if	you	modify	the	URL	in	the	request
object	req,	this	will	not	cause	the	next()	to	jump	to	the	routing	defined	for	this	next	URL.	If	proceeds	occurring	the	origin	URL.	However,
if	you	use	next(true),	the	routing	will	stop	and	request	handling	is	started	with	the	new	URL.	You	must	ensure	that	next(true)	is	never
called	without	modifying	the	URL	in	the	request	object	req.	Otherwise	an	endless	loop	will	occur.

Now	we	add	some	other	simple	routings	to	test	all	this:

arangosh>	db._routing.save({

........>				url:	"/subdirectory/ourtest/1",

........>				action:	{

........>						do:	"@arangodb/actions/echoRequest"

........>				}

........>	});

arangosh>	db._routing.save({

........>				url:	"/subdirectory/ourtest/2",

........>				action:	{

........>						do:	"@arangodb/actions/echoRequest"

........>				}

........>	});

arangosh>	db._routing.save({

........>				url:	"/subdirectory/ourtest/3",

........>				action:	{

........>						do:	"@arangodb/actions/echoRequest"

........>				}

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results

Actions

661

Then	we	send	some	curl	requests	to	these	sample	routes:

shell>	curl	--dump	-	http://localhost:8529/subdirectory/ourtest/1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
and	the	console	(and	/	or	the	logfile)	will	show	requests	and	replies.	Note	that	logging	doesn't	warrant	the	sequence	in	which	these	lines
will	appear.

Application	Deployment
Using	single	routes	or	bundles	can	be	become	a	bit	messy	in	large	applications.	Kaerus	has	written	a	deployment	tool	in	node.js.

Note	that	there	is	also	Foxx	for	building	applications	with	ArangoDB.

Common	Pitfalls	when	using	Actions

Caching

If	you	made	any	changes	to	the	routing	but	the	changes	does	not	have	any	effect	when	calling	the	modified	actions	URL,	you	might	have
been	hit	by	some	caching	issues.

After	any	modification	to	the	routing	or	actions,	it	is	thus	recommended	to	make	the	changes	"live"	by	calling	the	following	functions
from	within	arangosh:

You	might	also	be	affected	by	client-side	caching.	Browsers	tend	to	cache	content	and	also	redirection	URLs.	You	might	need	to	clear	or
disable	the	browser	cache	in	some	cases	to	see	your	changes	in	effect.

Data	types

When	processing	the	request	data	in	an	action,	please	be	aware	that	the	data	type	of	all	query	parameters	is	string.	This	is	because	the
whole	URL	is	a	string	and	when	the	individual	parts	are	extracted,	they	will	also	be	strings.

For	example,	when	calling	the	URL	http://	localhost:8529/hello/world?value=5

the	parameter	value	will	have	a	value	of	(string)	5,	not	(number)	5.	This	might	be	troublesome	if	you	use	JavaScript's	===	operator	when
checking	request	parameter	values.

The	same	problem	occurs	with	incoming	HTTP	headers.	When	sending	the	following	header	from	a	client	to	ArangoDB

X-My-Value:	5

then	the	header	X-My-Value	will	have	a	value	of	(string)	5	and	not	(number)	5.

404	Not	Found

If	you	defined	a	URL	in	the	routing	and	the	URL	is	accessible	fine	via	HTTP	GET	but	returns	an	HTTP	501	(not	implemented)	for	other
HTTP	methods	such	as	POST,	PUT	or	DELETE,	then	you	might	have	been	hit	by	some	defaults.

By	default,	URLs	defined	like	this	(simple	string	url	attribute)	are	accessible	via	HTTP	GET	and	HEAD	only.	To	make	such	URLs
accessible	via	other	HTTP	methods,	extend	the	URL	definition	with	the	methods	attribute.

For	example,	this	definition	only	allows	access	via	GET	and	HEAD:

Actions

662

https://github.com/kaerus/arangodep

{

		url:	"/hello/world"

}

whereas	this	definition	allows	HTTP	GET,	POST,	and	PUT:

arangosh>	db._routing.save({

........>				url:	{

........>						match:	"/hello/world",

........>						methods:	["get",	"post",	"put"]

........>				},

........>				action:	{

........>						do:	"@arangodb/actions/echoRequest"

........>				}

........>	});

arangosh>	require("internal").reloadRouting()

show	execution	results

shell>	curl	--dump	-	http://localhost:8529/hello/world

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
The	former	definition	(defining	url	as	an	object	with	a	match	attribute)	will	result	in	the	URL	being	accessible	via	all	supported	HTTP
methods	(e.g.	GET,	POST,	PUT,	DELETE,	...),	whereas	the	latter	definition	(providing	a	string	url	attribute)	will	result	in	the	URL	being
accessible	via	HTTP	GET	and	HTTP	HEAD	only,	with	all	other	HTTP	methods	being	disabled.	Calling	a	URL	with	an	unsupported	or
disabled	HTTP	method	will	result	in	an	HTTP	404	error.

Actions

663

Error	codes	and	meanings

General	errors

0	-	ERROR_NO_ERROR
No	error	has	occurred.

1	-	ERROR_FAILED
Will	be	raised	when	a	general	error	occurred.

2	-	ERROR_SYS_ERROR
Will	be	raised	when	operating	system	error	occurred.

3	-	ERROR_OUT_OF_MEMORY
Will	be	raised	when	there	is	a	memory	shortage.

4	-	ERROR_INTERNAL
Will	be	raised	when	an	internal	error	occurred.

5	-	ERROR_ILLEGAL_NUMBER
Will	be	raised	when	an	illegal	representation	of	a	number	was	given.

6	-	ERROR_NUMERIC_OVERFLOW
Will	be	raised	when	a	numeric	overflow	occurred.

7	-	ERROR_ILLEGAL_OPTION
Will	be	raised	when	an	unknown	option	was	supplied	by	the	user.

8	-	ERROR_DEAD_PID
Will	be	raised	when	a	PID	without	a	living	process	was	found.

9	-	ERROR_NOT_IMPLEMENTED
Will	be	raised	when	hitting	an	unimplemented	feature.

10	-	ERROR_BAD_PARAMETER
Will	be	raised	when	the	parameter	does	not	fulfill	the	requirements.

11	-	ERROR_FORBIDDEN
Will	be	raised	when	you	are	missing	permission	for	the	operation.

12	-	ERROR_OUT_OF_MEMORY_MMAP
Will	be	raised	when	there	is	a	memory	shortage.

13	-	ERROR_CORRUPTED_CSV
Will	be	raised	when	encountering	a	corrupt	csv	line.

14	-	ERROR_FILE_NOT_FOUND
Will	be	raised	when	a	file	is	not	found.

15	-	ERROR_CANNOT_WRITE_FILE
Will	be	raised	when	a	file	cannot	be	written.

16	-	ERROR_CANNOT_OVERWRITE_FILE
Will	be	raised	when	an	attempt	is	made	to	overwrite	an	existing	file.

17	-	ERROR_TYPE_ERROR
Will	be	raised	when	a	type	error	is	unencountered.

18	-	ERROR_LOCK_TIMEOUT
Will	be	raised	when	there's	a	timeout	waiting	for	a	lock.

19	-	ERROR_CANNOT_CREATE_DIRECTORY
Will	be	raised	when	an	attempt	to	create	a	directory	fails.

Error	codes	and	meanings

664

20	-	ERROR_CANNOT_CREATE_TEMP_FILE
Will	be	raised	when	an	attempt	to	create	a	temporary	file	fails.

21	-	ERROR_REQUEST_CANCELED
Will	be	raised	when	a	request	is	canceled	by	the	user.

22	-	ERROR_DEBUG
Will	be	raised	intentionally	during	debugging.

25	-	ERROR_IP_ADDRESS_INVALID
Will	be	raised	when	the	structure	of	an	IP	address	is	invalid.

27	-	ERROR_FILE_EXISTS
Will	be	raised	when	a	file	already	exists.

28	-	ERROR_LOCKED
Will	be	raised	when	a	resource	or	an	operation	is	locked.

29	-	ERROR_DEADLOCK
Will	be	raised	when	a	deadlock	is	detected	when	accessing	collections.

30	-	ERROR_SHUTTING_DOWN
Will	be	raised	when	a	call	cannot	succeed	because	a	server	shutdown	is	already	in	progress.

31	-	ERROR_ONLY_ENTERPRISE
Will	be	raised	when	an	enterprise-feature	is	requested	from	the	community	edition.

32	-	ERROR_RESOURCE_LIMIT
Will	be	raised	when	the	resources	used	by	an	operation	exceed	the	configured	maximum	value.

HTTP	error	status	codes
400	-	ERROR_HTTP_BAD_PARAMETER
Will	be	raised	when	the	HTTP	request	does	not	fulfill	the	requirements.

401	-	ERROR_HTTP_UNAUTHORIZED
Will	be	raised	when	authorization	is	required	but	the	user	is	not	authorized.

403	-	ERROR_HTTP_FORBIDDEN
Will	be	raised	when	the	operation	is	forbidden.

404	-	ERROR_HTTP_NOT_FOUND
Will	be	raised	when	an	URI	is	unknown.

405	-	ERROR_HTTP_METHOD_NOT_ALLOWED
Will	be	raised	when	an	unsupported	HTTP	method	is	used	for	an	operation.

406	-	ERROR_HTTP_NOT_ACCEPTABLE
Will	be	raised	when	an	unsupported	HTTP	content	type	is	used	for	an	operation,	or	if	a	request	is	not	acceptable	for	a	leader	or
follower.

412	-	ERROR_HTTP_PRECONDITION_FAILED
Will	be	raised	when	a	precondition	for	an	HTTP	request	is	not	met.

500	-	ERROR_HTTP_SERVER_ERROR
Will	be	raised	when	an	internal	server	is	encountered.

503	-	ERROR_HTTP_SERVICE_UNAVAILABLE
Will	be	raised	when	a	service	is	temporarily	unavailable.

504	-	ERROR_HTTP_GATEWAY_TIMEOUT
Will	be	raised	when	a	service	contacted	by	ArangoDB	does	not	respond	in	a	timely	manner.

Error	codes	and	meanings

665

HTTP	processing	errors

600	-	ERROR_HTTP_CORRUPTED_JSON
Will	be	raised	when	a	string	representation	of	a	JSON	object	is	corrupt.

601	-	ERROR_HTTP_SUPERFLUOUS_SUFFICES
Will	be	raised	when	the	URL	contains	superfluous	suffices.

Internal	ArangoDB	storage	errors
For	errors	that	occur	because	of	a	programming	error.

1000	-	ERROR_ARANGO_ILLEGAL_STATE
Internal	error	that	will	be	raised	when	the	datafile	is	not	in	the	required	state.

1002	-	ERROR_ARANGO_DATAFILE_SEALED
Internal	error	that	will	be	raised	when	trying	to	write	to	a	datafile.

1004	-	ERROR_ARANGO_READ_ONLY
Internal	error	that	will	be	raised	when	trying	to	write	to	a	read-only	datafile	or	collection.

1005	-	ERROR_ARANGO_DUPLICATE_IDENTIFIER
Internal	error	that	will	be	raised	when	a	identifier	duplicate	is	detected.

1006	-	ERROR_ARANGO_DATAFILE_UNREADABLE
Internal	error	that	will	be	raised	when	a	datafile	is	unreadable.

1007	-	ERROR_ARANGO_DATAFILE_EMPTY
Internal	error	that	will	be	raised	when	a	datafile	is	empty.

1008	-	ERROR_ARANGO_RECOVERY
Will	be	raised	when	an	error	occurred	during	WAL	log	file	recovery.

1009	-	ERROR_ARANGO_DATAFILE_STATISTICS_NOT_FOUND
Will	be	raised	when	a	required	datafile	statistics	object	was	not	found.

External	ArangoDB	storage	errors

For	errors	that	occur	because	of	an	outside	event.

1100	-	ERROR_ARANGO_CORRUPTED_DATAFILE
Will	be	raised	when	a	corruption	is	detected	in	a	datafile.

1101	-	ERROR_ARANGO_ILLEGAL_PARAMETER_FILE
Will	be	raised	if	a	parameter	file	is	corrupted	or	cannot	be	read.

1102	-	ERROR_ARANGO_CORRUPTED_COLLECTION
Will	be	raised	when	a	collection	contains	one	or	more	corrupted	data	files.

1103	-	ERROR_ARANGO_MMAP_FAILED
Will	be	raised	when	the	system	call	mmap	failed.

1104	-	ERROR_ARANGO_FILESYSTEM_FULL
Will	be	raised	when	the	filesystem	is	full.

1105	-	ERROR_ARANGO_NO_JOURNAL
Will	be	raised	when	a	journal	cannot	be	created.

1106	-	ERROR_ARANGO_DATAFILE_ALREADY_EXISTS
Will	be	raised	when	the	datafile	cannot	be	created	or	renamed	because	a	file	of	the	same	name	already	exists.

1107	-	ERROR_ARANGO_DATADIR_LOCKED
Will	be	raised	when	the	database	directory	is	locked	by	a	different	process.

Error	codes	and	meanings

666

1108	-	ERROR_ARANGO_COLLECTION_DIRECTORY_ALREADY_EXISTS
Will	be	raised	when	the	collection	cannot	be	created	because	a	directory	of	the	same	name	already	exists.

1109	-	ERROR_ARANGO_MSYNC_FAILED
Will	be	raised	when	the	system	call	msync	failed.

1110	-	ERROR_ARANGO_DATADIR_UNLOCKABLE
Will	be	raised	when	the	server	cannot	lock	the	database	directory	on	startup.

1111	-	ERROR_ARANGO_SYNC_TIMEOUT
Will	be	raised	when	the	server	waited	too	long	for	a	datafile	to	be	synced	to	disk.

General	ArangoDB	storage	errors

For	errors	that	occur	when	fulfilling	a	user	request.

1200	-	ERROR_ARANGO_CONFLICT
Will	be	raised	when	updating	or	deleting	a	document	and	a	conflict	has	been	detected.

1201	-	ERROR_ARANGO_DATADIR_INVALID
Will	be	raised	when	a	non-existing	database	directory	was	specified	when	starting	the	database.

1202	-	ERROR_ARANGO_DOCUMENT_NOT_FOUND
Will	be	raised	when	a	document	with	a	given	identifier	or	handle	is	unknown.

1203	-	ERROR_ARANGO_COLLECTION_NOT_FOUND
Will	be	raised	when	a	collection	with	the	given	identifier	or	name	is	unknown.

1204	-	ERROR_ARANGO_COLLECTION_PARAMETER_MISSING
Will	be	raised	when	the	collection	parameter	is	missing.

1205	-	ERROR_ARANGO_DOCUMENT_HANDLE_BAD
Will	be	raised	when	a	document	handle	is	corrupt.

1206	-	ERROR_ARANGO_MAXIMAL_SIZE_TOO_SMALL
Will	be	raised	when	the	maximal	size	of	the	journal	is	too	small.

1207	-	ERROR_ARANGO_DUPLICATE_NAME
Will	be	raised	when	a	name	duplicate	is	detected.

1208	-	ERROR_ARANGO_ILLEGAL_NAME
Will	be	raised	when	an	illegal	name	is	detected.

1209	-	ERROR_ARANGO_NO_INDEX
Will	be	raised	when	no	suitable	index	for	the	query	is	known.

1210	-	ERROR_ARANGO_UNIQUE_CONSTRAINT_VIOLATED
Will	be	raised	when	there	is	a	unique	constraint	violation.

1211	-	ERROR_ARANGO_VIEW_NOT_FOUND
Will	be	raised	when	a	view	with	the	given	identifier	or	name	is	unknown.

1212	-	ERROR_ARANGO_INDEX_NOT_FOUND
Will	be	raised	when	an	index	with	a	given	identifier	is	unknown.

1213	-	ERROR_ARANGO_CROSS_COLLECTION_REQUEST
Will	be	raised	when	a	cross-collection	is	requested.

1214	-	ERROR_ARANGO_INDEX_HANDLE_BAD
Will	be	raised	when	a	index	handle	is	corrupt.

1216	-	ERROR_ARANGO_DOCUMENT_TOO_LARGE
Will	be	raised	when	the	document	cannot	fit	into	any	datafile	because	of	it	is	too	large.

Error	codes	and	meanings

667

1217	-	ERROR_ARANGO_COLLECTION_NOT_UNLOADED
Will	be	raised	when	a	collection	should	be	unloaded,	but	has	a	different	status.

1218	-	ERROR_ARANGO_COLLECTION_TYPE_INVALID
Will	be	raised	when	an	invalid	collection	type	is	used	in	a	request.

1219	-	ERROR_ARANGO_VALIDATION_FAILED
Will	be	raised	when	the	validation	of	an	attribute	of	a	structure	failed.

1220	-	ERROR_ARANGO_ATTRIBUTE_PARSER_FAILED
Will	be	raised	when	parsing	an	attribute	name	definition	failed.

1221	-	ERROR_ARANGO_DOCUMENT_KEY_BAD
Will	be	raised	when	a	document	key	is	corrupt.

1222	-	ERROR_ARANGO_DOCUMENT_KEY_UNEXPECTED
Will	be	raised	when	a	user-defined	document	key	is	supplied	for	collections	with	auto	key	generation.

1224	-	ERROR_ARANGO_DATADIR_NOT_WRITABLE
Will	be	raised	when	the	server's	database	directory	is	not	writable	for	the	current	user.

1225	-	ERROR_ARANGO_OUT_OF_KEYS
Will	be	raised	when	a	key	generator	runs	out	of	keys.

1226	-	ERROR_ARANGO_DOCUMENT_KEY_MISSING
Will	be	raised	when	a	document	key	is	missing.

1227	-	ERROR_ARANGO_DOCUMENT_TYPE_INVALID
Will	be	raised	when	there	is	an	attempt	to	create	a	document	with	an	invalid	type.

1228	-	ERROR_ARANGO_DATABASE_NOT_FOUND
Will	be	raised	when	a	non-existing	database	is	accessed.

1229	-	ERROR_ARANGO_DATABASE_NAME_INVALID
Will	be	raised	when	an	invalid	database	name	is	used.

1230	-	ERROR_ARANGO_USE_SYSTEM_DATABASE
Will	be	raised	when	an	operation	is	requested	in	a	database	other	than	the	system	database.

1231	-	ERROR_ARANGO_ENDPOINT_NOT_FOUND
Will	be	raised	when	there	is	an	attempt	to	delete	a	non-existing	endpoint.

1232	-	ERROR_ARANGO_INVALID_KEY_GENERATOR
Will	be	raised	when	an	invalid	key	generator	description	is	used.

1233	-	ERROR_ARANGO_INVALID_EDGE_ATTRIBUTE
will	be	raised	when	the	_from	or	_to	values	of	an	edge	are	undefined	or	contain	an	invalid	value.

1234	-	ERROR_ARANGO_INDEX_DOCUMENT_ATTRIBUTE_MISSING
Will	be	raised	when	an	attempt	to	insert	a	document	into	an	index	is	caused	by	in	the	document	not	having	one	or	more	attributes
which	the	index	is	built	on.

1235	-	ERROR_ARANGO_INDEX_CREATION_FAILED
Will	be	raised	when	an	attempt	to	create	an	index	has	failed.

1236	-	ERROR_ARANGO_WRITE_THROTTLE_TIMEOUT
Will	be	raised	when	the	server	is	write-throttled	and	a	write	operation	has	waited	too	long	for	the	server	to	process	queued
operations.

1237	-	ERROR_ARANGO_COLLECTION_TYPE_MISMATCH
Will	be	raised	when	a	collection	has	a	different	type	from	what	has	been	expected.

1238	-	ERROR_ARANGO_COLLECTION_NOT_LOADED
Will	be	raised	when	a	collection	is	accessed	that	is	not	yet	loaded.

Error	codes	and	meanings

668

1239	-	ERROR_ARANGO_DOCUMENT_REV_BAD
Will	be	raised	when	a	document	revision	is	corrupt	or	is	missing	where	needed.

Checked	ArangoDB	storage	errors

For	errors	that	occur	but	are	anticipated.

1300	-	ERROR_ARANGO_DATAFILE_FULL
Will	be	raised	when	the	datafile	reaches	its	limit.

1301	-	ERROR_ARANGO_EMPTY_DATADIR
Will	be	raised	when	encountering	an	empty	server	database	directory.

1302	-	ERROR_ARANGO_TRY_AGAIN
Will	be	raised	when	an	operation	should	be	retried.

1303	-	ERROR_ARANGO_BUSY
Will	be	raised	when	storage	engine	is	busy.

1304	-	ERROR_ARANGO_MERGE_IN_PROGRESS
Will	be	raised	when	storage	engine	has	a	datafile	merge	in	progress	and	cannot	complete	the	operation.

1305	-	ERROR_ARANGO_IO_ERROR
Will	be	raised	when	storage	engine	encounters	an	I/O	error.

ArangoDB	replication	errors

1400	-	ERROR_REPLICATION_NO_RESPONSE
Will	be	raised	when	the	replication	applier	does	not	receive	any	or	an	incomplete	response	from	the	master.

1401	-	ERROR_REPLICATION_INVALID_RESPONSE
Will	be	raised	when	the	replication	applier	receives	an	invalid	response	from	the	master.

1402	-	ERROR_REPLICATION_MASTER_ERROR
Will	be	raised	when	the	replication	applier	receives	a	server	error	from	the	master.

1403	-	ERROR_REPLICATION_MASTER_INCOMPATIBLE
Will	be	raised	when	the	replication	applier	connects	to	a	master	that	has	an	incompatible	version.

1404	-	ERROR_REPLICATION_MASTER_CHANGE
Will	be	raised	when	the	replication	applier	connects	to	a	different	master	than	before.

1405	-	ERROR_REPLICATION_LOOP
Will	be	raised	when	the	replication	applier	is	asked	to	connect	to	itself	for	replication.

1406	-	ERROR_REPLICATION_UNEXPECTED_MARKER
Will	be	raised	when	an	unexpected	marker	is	found	in	the	replication	log	stream.

1407	-	ERROR_REPLICATION_INVALID_APPLIER_STATE
Will	be	raised	when	an	invalid	replication	applier	state	file	is	found.

1408	-	ERROR_REPLICATION_UNEXPECTED_TRANSACTION
Will	be	raised	when	an	unexpected	transaction	id	is	found.

1410	-	ERROR_REPLICATION_INVALID_APPLIER_CONFIGURATION
Will	be	raised	when	the	configuration	for	the	replication	applier	is	invalid.

1411	-	ERROR_REPLICATION_RUNNING
Will	be	raised	when	there	is	an	attempt	to	perform	an	operation	while	the	replication	applier	is	running.

1412	-	ERROR_REPLICATION_APPLIER_STOPPED
Special	error	code	used	to	indicate	the	replication	applier	was	stopped	by	a	user.

Error	codes	and	meanings

669

1413	-	ERROR_REPLICATION_NO_START_TICK
Will	be	raised	when	the	replication	applier	is	started	without	a	known	start	tick	value.

1414	-	ERROR_REPLICATION_START_TICK_NOT_PRESENT
Will	be	raised	when	the	replication	applier	fetches	data	using	a	start	tick,	but	that	start	tick	is	not	present	on	the	logger	server
anymore.

ERROR_REPLICATION_WRONG_CHECKSUM_FORMAT,1415,"the	checksum	format	is	wrong",	"Will	be	raised	when	the	format
of	the	checksum	is	wrong")

1416	-	ERROR_REPLICATION_WRONG_CHECKSUM
Will	be	raised	when	a	new	born	follower	submits	a	wrong	checksum

1417	-	ERROR_REPLICATION_SHARD_NONEMPTY
Will	be	raised	when	a	shard	is	not	empty	and	the	follower	tries	a	shortcut

ArangoDB	cluster	errors
1450	-	ERROR_CLUSTER_NO_AGENCY
Will	be	raised	when	none	of	the	agency	servers	can	be	connected	to.

1451	-	ERROR_CLUSTER_NO_COORDINATOR_HEADER
Will	be	raised	when	a	DB	server	in	a	cluster	receives	a	HTTP	request	without	a	coordinator	header.

1452	-	ERROR_CLUSTER_COULD_NOT_LOCK_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	lock	the	Plan	hierarchy	in	the	agency.

1453	-	ERROR_CLUSTER_COLLECTION_ID_EXISTS
Will	be	raised	when	a	coordinator	in	a	cluster	tries	to	create	a	collection	and	the	collection	ID	already	exists.

1454	-	ERROR_CLUSTER_COULD_NOT_CREATE_COLLECTION_IN_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	create	an	entry	for	a	new	collection	in	the	Plan	hierarchy	in	the	agency.

1455	-	ERROR_CLUSTER_COULD_NOT_READ_CURRENT_VERSION
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	read	the	Version	entry	in	the	Current	hierarchy	in	the	agency.

1456	-	ERROR_CLUSTER_COULD_NOT_CREATE_COLLECTION
Will	be	raised	when	a	coordinator	in	a	cluster	notices	that	some	DBServers	report	problems	when	creating	shards	for	a	new
collection.

1457	-	ERROR_CLUSTER_TIMEOUT
Will	be	raised	when	a	coordinator	in	a	cluster	runs	into	a	timeout	for	some	cluster	wide	operation.

1458	-	ERROR_CLUSTER_COULD_NOT_REMOVE_COLLECTION_IN_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	remove	an	entry	for	a	collection	in	the	Plan	hierarchy	in	the	agency.

1459	-	ERROR_CLUSTER_COULD_NOT_REMOVE_COLLECTION_IN_CURRENT
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	remove	an	entry	for	a	collection	in	the	Current	hierarchy	in	the	agency.

1460	-	ERROR_CLUSTER_COULD_NOT_CREATE_DATABASE_IN_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	create	an	entry	for	a	new	database	in	the	Plan	hierarchy	in	the	agency.

1461	-	ERROR_CLUSTER_COULD_NOT_CREATE_DATABASE
Will	be	raised	when	a	coordinator	in	a	cluster	notices	that	some	DBServers	report	problems	when	creating	databases	for	a	new
cluster	wide	database.

1462	-	ERROR_CLUSTER_COULD_NOT_REMOVE_DATABASE_IN_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	remove	an	entry	for	a	database	in	the	Plan	hierarchy	in	the	agency.

1463	-	ERROR_CLUSTER_COULD_NOT_REMOVE_DATABASE_IN_CURRENT
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	remove	an	entry	for	a	database	in	the	Current	hierarchy	in	the	agency.

1464	-	ERROR_CLUSTER_SHARD_GONE
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	determine	the	shard	that	is	responsible	for	a	given	document.

Error	codes	and	meanings

670

1465	-	ERROR_CLUSTER_CONNECTION_LOST
Will	be	raised	when	a	coordinator	in	a	cluster	loses	an	HTTP	connection	to	a	DBserver	in	the	cluster	whilst	transferring	data.

1466	-	ERROR_CLUSTER_MUST_NOT_SPECIFY_KEY
Will	be	raised	when	a	coordinator	in	a	cluster	finds	that	the	_key	attribute	was	specified	in	a	sharded	collection	the	uses	not	only
_key	as	sharding	attribute.

1467	-	ERROR_CLUSTER_GOT_CONTRADICTING_ANSWERS
Will	be	raised	if	a	coordinator	in	a	cluster	gets	conflicting	results	from	different	shards,	which	should	never	happen.

1468	-	ERROR_CLUSTER_NOT_ALL_SHARDING_ATTRIBUTES_GIVEN
Will	be	raised	if	a	coordinator	tries	to	find	out	which	shard	is	responsible	for	a	partial	document,	but	cannot	do	this	because	not	all
sharding	attributes	are	specified.

1469	-	ERROR_CLUSTER_MUST_NOT_CHANGE_SHARDING_ATTRIBUTES
Will	be	raised	if	there	is	an	attempt	to	update	the	value	of	a	shard	attribute.

1470	-	ERROR_CLUSTER_UNSUPPORTED
Will	be	raised	when	there	is	an	attempt	to	carry	out	an	operation	that	is	not	supported	in	the	context	of	a	sharded	collection.

1471	-	ERROR_CLUSTER_ONLY_ON_COORDINATOR
Will	be	raised	if	there	is	an	attempt	to	run	a	coordinator-only	operation	on	a	different	type	of	node.

1472	-	ERROR_CLUSTER_READING_PLAN_AGENCY
Will	be	raised	if	a	coordinator	or	DBserver	cannot	read	the	Plan	in	the	agency.

1473	-	ERROR_CLUSTER_COULD_NOT_TRUNCATE_COLLECTION
Will	be	raised	if	a	coordinator	cannot	truncate	all	shards	of	a	cluster	collection.

1474	-	ERROR_CLUSTER_AQL_COMMUNICATION
Will	be	raised	if	the	internal	communication	of	the	cluster	for	AQL	produces	an	error.

1475	-	ERROR_ARANGO_DOCUMENT_NOT_FOUND_OR_SHARDING_ATTRIBUTES_CHANGED
Will	be	raised	when	a	document	with	a	given	identifier	or	handle	is	unknown,	or	if	the	sharding	attributes	have	been	changed	in	a
REPLACE	operation	in	the	cluster.

1476	-	ERROR_CLUSTER_COULD_NOT_DETERMINE_ID
Will	be	raised	if	a	cluster	server	at	startup	could	not	determine	its	own	ID	from	the	local	info	provided.

1477	-	ERROR_CLUSTER_ONLY_ON_DBSERVER
Will	be	raised	if	there	is	an	attempt	to	run	a	DBserver-only	operation	on	a	different	type	of	node.

1478	-	ERROR_CLUSTER_BACKEND_UNAVAILABLE
Will	be	raised	if	a	required	db	server	can't	be	reached.

1479	-	ERROR_CLUSTER_UNKNOWN_CALLBACK_ENDPOINT
An	endpoint	couldn't	be	found

1480	-	ERROR_CLUSTER_AGENCY_STRUCTURE_INVALID
The	structure	in	the	agency	is	invalid

1481	-	ERROR_CLUSTER_AQL_COLLECTION_OUT_OF_SYNC
Will	be	raised	if	a	collection	needed	during	query	execution	is	out	of	sync.	This	currently	can	only	happen	when	using	satellite
collections

1482	-	ERROR_CLUSTER_COULD_NOT_CREATE_INDEX_IN_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	create	an	entry	for	a	new	index	in	the	Plan	hierarchy	in	the	agency.

1483	-	ERROR_CLUSTER_COULD_NOT_DROP_INDEX_IN_PLAN
Will	be	raised	when	a	coordinator	in	a	cluster	cannot	remove	an	index	from	the	Plan	hierarchy	in	the	agency.

1484	-	ERROR_CLUSTER_CHAIN_OF_DISTRIBUTESHARDSLIKE
Will	be	raised	if	one	tries	to	create	a	collection	with	a	distributeShardsLike	attribute	which	points	to	another	collection	that	also	has
one.

Error	codes	and	meanings

671

1485	-	ERROR_CLUSTER_MUST_NOT_DROP_COLL_OTHER_DISTRIBUTESHARDSLIKE
Will	be	raised	if	one	tries	to	drop	a	collection	to	which	another	collection	points	with	its	distributeShardsLike	attribute.

1486	-	ERROR_CLUSTER_UNKNOWN_DISTRIBUTESHARDSLIKE
Will	be	raised	if	one	tries	to	create	a	collection	which	points	to	an	unknown	collection	in	its	distributeShardsLike	attribute.

1487	-	ERROR_CLUSTER_INSUFFICIENT_DBSERVERS
Will	be	raised	if	one	tries	to	create	a	collection	with	a	replicationFactor	greater	than	the	available	number	of	DBServers.

1488	-	ERROR_CLUSTER_COULD_NOT_DROP_FOLLOWER
Will	be	raised	if	a	follower	that	ought	to	be	dropped	could	not	be	dropped	in	the	agency	(under	Current).

1489	-	ERROR_CLUSTER_SHARD_LEADER_REFUSES_REPLICATION
Will	be	raised	if	a	replication	operation	is	refused	by	a	shard	leader.

1490	-	ERROR_CLUSTER_SHARD_FOLLOWER_REFUSES_OPERATION
Will	be	raised	if	a	non-replication	operation	is	refused	by	a	shard	follower.

1491	-	ERROR_CLUSTER_SHARD_LEADER_RESIGNED
Will	be	raised	if	a	non-replication	operation	is	refused	by	a	former	shard	leader	that	has	found	out	that	it	is	no	longer	the	leader.

1492	-	ERROR_CLUSTER_AGENCY_COMMUNICATION_FAILED
Will	be	raised	if	after	various	retries	an	agency	operation	could	not	be	performed	successfully.

1493	-	ERROR_CLUSTER_DISTRIBUTE_SHARDS_LIKE_REPLICATION_FACTOR
Will	be	raised	if	intended	replication	factor	does	not	match	that	of	the	prototype	shard	given	in	ditributeShardsLike	parameter.

1494	-	ERROR_CLUSTER_DISTRIBUTE_SHARDS_LIKE_NUMBER_OF_SHARDS
Will	be	raised	if	intended	number	of	shards	does	not	match	that	of	the	prototype	shard	given	in	ditributeShardsLike	parameter.

1495	-	ERROR_CLUSTER_LEADERSHIP_CHALLENGE_ONGOING
Will	be	raised	when	servers	are	currently	competing	for	leadership,	and	the	result	is	still	unknown.

1496	-	ERROR_CLUSTER_NOT_LEADER
Will	be	raised	when	an	operation	is	sent	to	a	non-leading	server.

ArangoDB	query	errors

1500	-	ERROR_QUERY_KILLED
Will	be	raised	when	a	running	query	is	killed	by	an	explicit	admin	command.

1501	-	ERROR_QUERY_PARSE
Will	be	raised	when	query	is	parsed	and	is	found	to	be	syntactically	invalid.

1502	-	ERROR_QUERY_EMPTY
Will	be	raised	when	an	empty	query	is	specified.

1503	-	ERROR_QUERY_SCRIPT
Will	be	raised	when	a	runtime	error	is	caused	by	the	query.

1504	-	ERROR_QUERY_NUMBER_OUT_OF_RANGE
Will	be	raised	when	a	number	is	outside	the	expected	range.

1510	-	ERROR_QUERY_VARIABLE_NAME_INVALID
Will	be	raised	when	an	invalid	variable	name	is	used.

1511	-	ERROR_QUERY_VARIABLE_REDECLARED
Will	be	raised	when	a	variable	gets	re-assigned	in	a	query.

1512	-	ERROR_QUERY_VARIABLE_NAME_UNKNOWN
Will	be	raised	when	an	unknown	variable	is	used	or	the	variable	is	undefined	the	context	it	is	used.

1521	-	ERROR_QUERY_COLLECTION_LOCK_FAILED
Will	be	raised	when	a	read	lock	on	the	collection	cannot	be	acquired.

Error	codes	and	meanings

672

1522	-	ERROR_QUERY_TOO_MANY_COLLECTIONS
Will	be	raised	when	the	number	of	collections	in	a	query	is	beyond	the	allowed	value.

1530	-	ERROR_QUERY_DOCUMENT_ATTRIBUTE_REDECLARED
Will	be	raised	when	a	document	attribute	is	re-assigned.

1540	-	ERROR_QUERY_FUNCTION_NAME_UNKNOWN
Will	be	raised	when	an	undefined	function	is	called.

1541	-	ERROR_QUERY_FUNCTION_ARGUMENT_NUMBER_MISMATCH
Will	be	raised	when	the	number	of	arguments	used	in	a	function	call	does	not	match	the	expected	number	of	arguments	for	the
function.

1542	-	ERROR_QUERY_FUNCTION_ARGUMENT_TYPE_MISMATCH
Will	be	raised	when	the	type	of	an	argument	used	in	a	function	call	does	not	match	the	expected	argument	type.

1543	-	ERROR_QUERY_INVALID_REGEX
Will	be	raised	when	an	invalid	regex	argument	value	is	used	in	a	call	to	a	function	that	expects	a	regex.

1550	-	ERROR_QUERY_BIND_PARAMETERS_INVALID
Will	be	raised	when	the	structure	of	bind	parameters	passed	has	an	unexpected	format.

1551	-	ERROR_QUERY_BIND_PARAMETER_MISSING
Will	be	raised	when	a	bind	parameter	was	declared	in	the	query	but	the	query	is	being	executed	with	no	value	for	that	parameter.

1552	-	ERROR_QUERY_BIND_PARAMETER_UNDECLARED
Will	be	raised	when	a	value	gets	specified	for	an	undeclared	bind	parameter.

1553	-	ERROR_QUERY_BIND_PARAMETER_TYPE
Will	be	raised	when	a	bind	parameter	has	an	invalid	value	or	type.

1560	-	ERROR_QUERY_INVALID_LOGICAL_VALUE
Will	be	raised	when	a	non-boolean	value	is	used	in	a	logical	operation.

1561	-	ERROR_QUERY_INVALID_ARITHMETIC_VALUE
Will	be	raised	when	a	non-numeric	value	is	used	in	an	arithmetic	operation.

1562	-	ERROR_QUERY_DIVISION_BY_ZERO
Will	be	raised	when	there	is	an	attempt	to	divide	by	zero.

1563	-	ERROR_QUERY_ARRAY_EXPECTED
Will	be	raised	when	a	non-array	operand	is	used	for	an	operation	that	expects	an	array	argument	operand.

1569	-	ERROR_QUERY_FAIL_CALLED
Will	be	raised	when	the	function	FAIL()	is	called	from	inside	a	query.

1570	-	ERROR_QUERY_GEO_INDEX_MISSING
Will	be	raised	when	a	geo	restriction	was	specified	but	no	suitable	geo	index	is	found	to	resolve	it.

1571	-	ERROR_QUERY_FULLTEXT_INDEX_MISSING
Will	be	raised	when	a	fulltext	query	is	performed	on	a	collection	without	a	suitable	fulltext	index.

1572	-	ERROR_QUERY_INVALID_DATE_VALUE
Will	be	raised	when	a	value	cannot	be	converted	to	a	date.

1573	-	ERROR_QUERY_MULTI_MODIFY
Will	be	raised	when	an	AQL	query	contains	more	than	one	data-modifying	operation.

1574	-	ERROR_QUERY_INVALID_AGGREGATE_EXPRESSION
Will	be	raised	when	an	AQL	query	contains	an	invalid	aggregate	expression.

1575	-	ERROR_QUERY_COMPILE_TIME_OPTIONS
Will	be	raised	when	an	AQL	data-modification	query	contains	options	that	cannot	be	figured	out	at	query	compile	time.

1576	-	ERROR_QUERY_EXCEPTION_OPTIONS
Will	be	raised	when	an	AQL	data-modification	query	contains	an	invalid	options	specification.

Error	codes	and	meanings

673

1577	-	ERROR_QUERY_COLLECTION_USED_IN_EXPRESSION
Will	be	raised	when	a	collection	is	used	as	an	operand	in	an	AQL	expression.

1578	-	ERROR_QUERY_DISALLOWED_DYNAMIC_CALL
Will	be	raised	when	a	dynamic	function	call	is	made	to	a	function	that	cannot	be	called	dynamically.

1579	-	ERROR_QUERY_ACCESS_AFTER_MODIFICATION
Will	be	raised	when	collection	data	are	accessed	after	a	data-modification	operation.

AQL	user	function	errors
1580	-	ERROR_QUERY_FUNCTION_INVALID_NAME
Will	be	raised	when	a	user	function	with	an	invalid	name	is	registered.

1581	-	ERROR_QUERY_FUNCTION_INVALID_CODE
Will	be	raised	when	a	user	function	is	registered	with	invalid	code.

1582	-	ERROR_QUERY_FUNCTION_NOT_FOUND
Will	be	raised	when	a	user	function	is	accessed	but	not	found.

1583	-	ERROR_QUERY_FUNCTION_RUNTIME_ERROR
Will	be	raised	when	a	user	function	throws	a	runtime	exception.

AQL	query	registry	errors

1590	-	ERROR_QUERY_BAD_JSON_PLAN
Will	be	raised	when	an	HTTP	API	for	a	query	got	an	invalid	JSON	object.

1591	-	ERROR_QUERY_NOT_FOUND
Will	be	raised	when	an	Id	of	a	query	is	not	found	by	the	HTTP	API.

1592	-	ERROR_QUERY_IN_USE
Will	be	raised	when	an	Id	of	a	query	is	found	by	the	HTTP	API	but	the	query	is	in	use.

ArangoDB	cursor	errors
1600	-	ERROR_CURSOR_NOT_FOUND
Will	be	raised	when	a	cursor	is	requested	via	its	id	but	a	cursor	with	that	id	cannot	be	found.

1601	-	ERROR_CURSOR_BUSY
Will	be	raised	when	a	cursor	is	requested	via	its	id	but	a	concurrent	request	is	still	using	the	cursor.

ArangoDB	transaction	errors

1650	-	ERROR_TRANSACTION_INTERNAL
Will	be	raised	when	a	wrong	usage	of	transactions	is	detected.	this	is	an	internal	error	and	indicates	a	bug	in	ArangoDB.

1651	-	ERROR_TRANSACTION_NESTED
Will	be	raised	when	transactions	are	nested.

1652	-	ERROR_TRANSACTION_UNREGISTERED_COLLECTION
Will	be	raised	when	a	collection	is	used	in	the	middle	of	a	transaction	but	was	not	registered	at	transaction	start.

1653	-	ERROR_TRANSACTION_DISALLOWED_OPERATION
Will	be	raised	when	a	disallowed	operation	is	carried	out	in	a	transaction.

1654	-	ERROR_TRANSACTION_ABORTED
Will	be	raised	when	a	transaction	was	aborted.

Error	codes	and	meanings

674

User	management	errors

1700	-	ERROR_USER_INVALID_NAME
Will	be	raised	when	an	invalid	user	name	is	used.

1701	-	ERROR_USER_INVALID_PASSWORD
Will	be	raised	when	an	invalid	password	is	used.

1702	-	ERROR_USER_DUPLICATE
Will	be	raised	when	a	user	name	already	exists.

1703	-	ERROR_USER_NOT_FOUND
Will	be	raised	when	a	user	name	is	updated	that	does	not	exist.

1704	-	ERROR_USER_CHANGE_PASSWORD
Will	be	raised	when	the	user	must	change	his	password.

1705	-	ERROR_USER_EXTERNAL
Will	be	raised	when	the	user	is	authenicated	by	an	external	server.

Service	management	errors	(legacy)

These	have	been	superceded	by	the	Foxx	management	errors	in	public	APIs.

1750	-	ERROR_SERVICE_INVALID_NAME
Will	be	raised	when	an	invalid	service	name	is	specified.

1751	-	ERROR_SERVICE_INVALID_MOUNT
Will	be	raised	when	an	invalid	mount	is	specified.

1752	-	ERROR_SERVICE_DOWNLOAD_FAILED
Will	be	raised	when	a	service	download	from	the	central	repository	failed.

1753	-	ERROR_SERVICE_UPLOAD_FAILED
Will	be	raised	when	a	service	upload	from	the	client	to	the	ArangoDB	server	failed.

LDAP	errors

1800	-	ERROR_LDAP_CANNOT_INIT
can	not	init	a	LDAP	connection

1801	-	ERROR_LDAP_CANNOT_SET_OPTION
can	not	set	a	LDAP	option

1802	-	ERROR_LDAP_CANNOT_BIND
can	not	bind	to	a	LDAP	server

1803	-	ERROR_LDAP_CANNOT_UNBIND
can	not	unbind	from	a	LDAP	server

1804	-	ERROR_LDAP_CANNOT_SEARCH
can	not	search	the	LDAP	server

1805	-	ERROR_LDAP_CANNOT_START_TLS
can	not	star	a	TLS	LDAP	session

1806	-	ERROR_LDAP_FOUND_NO_OBJECTS
LDAP	didn't	found	any	objects	with	the	specified	search	query

1807	-	ERROR_LDAP_NOT_ONE_USER_FOUND
LDAP	found	zero	ore	more	than	one	user

Error	codes	and	meanings

675

1808	-	ERROR_LDAP_USER_NOT_IDENTIFIED
LDAP	found	a	user,	but	its	not	the	desired	one

1820	-	ERROR_LDAP_INVALID_MODE
cant	distinguish	a	valid	mode	for	provided	ldap	configuration

Task	errors

1850	-	ERROR_TASK_INVALID_ID
Will	be	raised	when	a	task	is	created	with	an	invalid	id.

1851	-	ERROR_TASK_DUPLICATE_ID
Will	be	raised	when	a	task	id	is	created	with	a	duplicate	id.

1852	-	ERROR_TASK_NOT_FOUND
Will	be	raised	when	a	task	with	the	specified	id	could	not	be	found.

Graph	/	traversal	errors

1901	-	ERROR_GRAPH_INVALID_GRAPH
Will	be	raised	when	an	invalid	name	is	passed	to	the	server.

1902	-	ERROR_GRAPH_COULD_NOT_CREATE_GRAPH
Will	be	raised	when	an	invalid	name,	vertices	or	edges	is	passed	to	the	server.

1903	-	ERROR_GRAPH_INVALID_VERTEX
Will	be	raised	when	an	invalid	vertex	id	is	passed	to	the	server.

1904	-	ERROR_GRAPH_COULD_NOT_CREATE_VERTEX
Will	be	raised	when	the	vertex	could	not	be	created.

1905	-	ERROR_GRAPH_COULD_NOT_CHANGE_VERTEX
Will	be	raised	when	the	vertex	could	not	be	changed.

1906	-	ERROR_GRAPH_INVALID_EDGE
Will	be	raised	when	an	invalid	edge	id	is	passed	to	the	server.

1907	-	ERROR_GRAPH_COULD_NOT_CREATE_EDGE
Will	be	raised	when	the	edge	could	not	be	created.

1908	-	ERROR_GRAPH_COULD_NOT_CHANGE_EDGE
Will	be	raised	when	the	edge	could	not	be	changed.

1909	-	ERROR_GRAPH_TOO_MANY_ITERATIONS
Will	be	raised	when	too	many	iterations	are	done	in	a	graph	traversal.

1910	-	ERROR_GRAPH_INVALID_FILTER_RESULT
Will	be	raised	when	an	invalid	filter	result	is	returned	in	a	graph	traversal.

1920	-	ERROR_GRAPH_COLLECTION_MULTI_USE
an	edge	collection	may	only	be	used	once	in	one	edge	definition	of	a	graph.,

1921	-	ERROR_GRAPH_COLLECTION_USE_IN_MULTI_GRAPHS
is	already	used	by	another	graph	in	a	different	edge	definition.,

1922	-	ERROR_GRAPH_CREATE_MISSING_NAME
a	graph	name	is	required	to	create	a	graph.,

1923	-	ERROR_GRAPH_CREATE_MALFORMED_EDGE_DEFINITION
the	edge	definition	is	malformed.	It	has	to	be	an	array	of	objects.,

1924	-	ERROR_GRAPH_NOT_FOUND
a	graph	with	this	name	could	not	be	found.,

Error	codes	and	meanings

676

1925	-	ERROR_GRAPH_DUPLICATE
a	graph	with	this	name	already	exists.,

1926	-	ERROR_GRAPH_VERTEX_COL_DOES_NOT_EXIST
the	specified	vertex	collection	does	not	exist	or	is	not	part	of	the	graph.,

1927	-	ERROR_GRAPH_WRONG_COLLECTION_TYPE_VERTEX
the	collection	is	not	a	vertex	collection.,

1928	-	ERROR_GRAPH_NOT_IN_ORPHAN_COLLECTION
Vertex	collection	not	in	orphan	collection	of	the	graph.,

1929	-	ERROR_GRAPH_COLLECTION_USED_IN_EDGE_DEF
The	collection	is	already	used	in	an	edge	definition	of	the	graph.,

1930	-	ERROR_GRAPH_EDGE_COLLECTION_NOT_USED
The	edge	collection	is	not	used	in	any	edge	definition	of	the	graph.,

1931	-	ERROR_GRAPH_NOT_AN_ARANGO_COLLECTION
The	collection	is	not	an	ArangoCollection.,

1932	-	ERROR_GRAPH_NO_GRAPH_COLLECTION
collection	_graphs	does	not	exist.,

1933	-	ERROR_GRAPH_INVALID_EXAMPLE_ARRAY_OBJECT_STRING
Invalid	example	type.	Has	to	be	String,	Array	or	Object.,

1934	-	ERROR_GRAPH_INVALID_EXAMPLE_ARRAY_OBJECT
Invalid	example	type.	Has	to	be	Array	or	Object.,

1935	-	ERROR_GRAPH_INVALID_NUMBER_OF_ARGUMENTS
Invalid	number	of	arguments.	Expected:	,

1936	-	ERROR_GRAPH_INVALID_PARAMETER
Invalid	parameter	type.,

1937	-	ERROR_GRAPH_INVALID_ID
Invalid	id,

1938	-	ERROR_GRAPH_COLLECTION_USED_IN_ORPHANS
The	collection	is	already	used	in	the	orphans	of	the	graph.,

1939	-	ERROR_GRAPH_EDGE_COL_DOES_NOT_EXIST
the	specified	edge	collection	does	not	exist	or	is	not	part	of	the	graph.,

1940	-	ERROR_GRAPH_EMPTY
The	requested	graph	has	no	edge	collections.

Session	errors

1950	-	ERROR_SESSION_UNKNOWN
Will	be	raised	when	an	invalid/unknown	session	id	is	passed	to	the	server.

1951	-	ERROR_SESSION_EXPIRED
Will	be	raised	when	a	session	is	expired.

Simple	Client	errors
2000	-	SIMPLE_CLIENT_UNKNOWN_ERROR
This	error	should	not	happen.

2001	-	SIMPLE_CLIENT_COULD_NOT_CONNECT
Will	be	raised	when	the	client	could	not	connect	to	the	server.

Error	codes	and	meanings

677

2002	-	SIMPLE_CLIENT_COULD_NOT_WRITE
Will	be	raised	when	the	client	could	not	write	data.

2003	-	SIMPLE_CLIENT_COULD_NOT_READ
Will	be	raised	when	the	client	could	not	read	data.

Communicator	errors

2100	-	COMMUNICATOR_REQUEST_ABORTED
Request	was	aborted.

2101	-	COMMUNICATOR_DISABLED
Communication	was	disabled.

Foxx	management	errors
3000	-	ERROR_MALFORMED_MANIFEST_FILE
The	service	manifest	file	is	not	well-formed	JSON.

3001	-	ERROR_INVALID_SERVICE_MANIFEST
The	service	manifest	contains	invalid	values.

3002	-	ERROR_SERVICE_FILES_MISSING
The	service	folder	or	bundle	does	not	exist	on	this	server.

3003	-	ERROR_SERVICE_FILES_OUTDATED
The	local	service	bundle	does	not	match	the	checksum	in	the	database.

3004	-	ERROR_INVALID_FOXX_OPTIONS
The	service	options	contain	invalid	values.

3007	-	ERROR_INVALID_MOUNTPOINT
The	service	mountpath	contains	invalid	characters.

3009	-	ERROR_SERVICE_NOT_FOUND
No	service	found	at	the	given	mountpath.

3010	-	ERROR_SERVICE_NEEDS_CONFIGURATION
The	service	is	missing	configuration	or	dependencies.

3011	-	ERROR_SERVICE_MOUNTPOINT_CONFLICT
A	service	already	exists	at	the	given	mountpath.

3012	-	ERROR_SERVICE_MANIFEST_NOT_FOUND
The	service	directory	does	not	contain	a	manifest	file.

3013	-	ERROR_SERVICE_OPTIONS_MALFORMED
The	service	options	are	not	well-formed	JSON.

3014	-	ERROR_SERVICE_SOURCE_NOT_FOUND
The	source	path	does	not	match	a	file	or	directory.

3015	-	ERROR_SERVICE_SOURCE_ERROR
The	source	path	could	not	be	resolved.

3016	-	ERROR_SERVICE_UNKNOWN_SCRIPT
The	service	does	not	have	a	script	with	this	name.

JavaScript	module	loader	errors

Error	codes	and	meanings

678

3100	-	ERROR_MODULE_NOT_FOUND
The	module	path	could	not	be	resolved.

3101	-	ERROR_MODULE_SYNTAX_ERROR
The	module	could	not	be	parsed	because	of	a	syntax	error.

3103	-	ERROR_MODULE_FAILURE
Failed	to	invoke	the	module	in	its	context.

Enterprise	errors
4000	-	ERROR_NO_SMART_COLLECTION
The	requested	collection	needs	to	be	smart,	but	it	ain't

4001	-	ERROR_NO_SMART_GRAPH_ATTRIBUTE
The	given	document	does	not	have	the	smart	graph	attribute	set.

4002	-	ERROR_CANNOT_DROP_SMART_COLLECTION
This	smart	collection	cannot	be	dropped,	it	dictates	sharding	in	the	graph.

4003	-	ERROR_KEY_MUST_BE_PREFIXED_WITH_SMART_GRAPH_ATTRIBUTE
In	a	smart	vertex	collection	_key	must	be	prefixed	with	the	value	of	the	smart	graph	attribute.

4004	-	ERROR_ILLEGAL_SMART_GRAPH_ATTRIBUTE
The	given	smartGraph	attribute	is	illegal	and	connot	be	used	for	sharding.	All	system	attributes	are	forbidden.

Agency	errors

20001	-	ERROR_AGENCY_INQUIRY_SYNTAX
Inquiry	handles	a	list	of	string	clientIds:	[,...].

20011	-	ERROR_AGENCY_INFORM_MUST_BE_OBJECT
The	inform	message	in	the	agency	must	be	an	object.

20012	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_TERM
The	inform	message	in	the	agency	must	contain	a	uint	parameter	'term'.

20013	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_ID
The	inform	message	in	the	agency	must	contain	a	string	parameter	'id'.

20014	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_ACTIVE
The	inform	message	in	the	agency	must	contain	an	array	'active'.

20015	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_POOL
The	inform	message	in	the	agency	must	contain	an	object	'pool'.

20016	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_MIN_PING
The	inform	message	in	the	agency	must	contain	an	object	'min	ping'.

20017	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_MAX_PING
The	inform	message	in	the	agency	must	contain	an	object	'max	ping'.

20018	-	ERROR_AGENCY_INFORM_MUST_CONTAIN_TIMEOUT_MULT
The	inform	message	in	the	agency	must	contain	an	object	'timeoutMult'.

20020	-	ERROR_AGENCY_INQUIRE_CLIENT_ID_MUST_BE_STRING
Inquiry	by	clientId	failed

20021	-	ERROR_AGENCY_CANNOT_REBUILD_DBS
Will	be	raised	if	the	readDB	or	the	spearHead	cannot	be	rebuilt	from	the	replicated	log.

Supervision	errors

Error	codes	and	meanings

679

20501	-	ERROR_SUPERVISION_GENERAL_FAILURE
General	supervision	failure.

Dispatcher	errors

21001	-	ERROR_DISPATCHER_IS_STOPPING
Will	be	returned	if	a	shutdown	is	in	progress.

21002	-	ERROR_QUEUE_UNKNOWN
Will	be	returned	if	a	queue	with	this	name	does	not	exist.

21003	-	ERROR_QUEUE_FULL
Will	be	returned	if	a	queue	with	this	name	is	full.

Error	codes	and	meanings

680

Glossary

Collection

A	collection	consists	of	documents.	It	is	uniquely	identified	by	its	collection	identifier.	It	also	has	a	unique	name	that	clients	should	use	to
identify	and	access	it.	Collections	can	be	renamed.	It	will	change	the	collection	name,	but	not	the	collection	identifier.	Collections	contain
documents	of	a	specific	type.	There	are	currently	two	types:	document	(default)	and	edge.	The	type	is	specified	by	the	user	when	the
collection	is	created,	and	cannot	be	changed	later.

Collection	Identifier

A	collection	identifier	identifies	a	collection	in	a	database.	It	is	a	string	value	and	is	unique	within	the	database.	Up	to	including	ArangoDB
1.1,	the	collection	identifier	has	been	a	client's	primary	means	to	access	collections.	Starting	with	ArangoDB	1.2,	clients	should	instead
use	a	collection's	unique	name	to	access	a	collection	instead	of	its	identifier.

ArangoDB	currently	uses	64bit	unsigned	integer	values	to	maintain	collection	ids	internally.	When	returning	collection	ids	to	clients,
ArangoDB	will	put	them	into	a	string	to	ensure	the	collection	id	is	not	clipped	by	clients	that	do	not	support	big	integers.	Clients	should
treat	the	collection	ids	returned	by	ArangoDB	as	opaque	strings	when	they	store	or	use	it	locally.

Collection	Name

A	collection	name	identifies	a	collection	in	a	database.	It	is	a	string	and	is	unique	within	the	database.	Unlike	the	collection	identifier	it	is
supplied	by	the	creator	of	the	collection.	The	collection	name	must	consist	of	letters,	digits,	and	the	_	(underscore)	and	-	(dash)	characters
only.	Please	refer	to	NamingConventions	for	more	information	on	valid	collection	names.

Database

ArangoDB	can	handle	multiple	databases	in	the	same	server	instance.	Databases	can	be	used	to	logically	group	and	separate	data.	An
ArangoDB	database	consists	of	collections	and	dedicated	database-specific	worker	processes.

A	database	contains	its	own	collections	(which	cannot	be	accessed	from	other	databases),	Foxx	applications,	and	replication	loggers	and
appliers.	Each	ArangoDB	database	contains	its	own	system	collections	(e.g.	_users,	_replication,	...).

There	will	always	be	at	least	one	database	in	ArangoDB.	This	is	the	default	database,	named	_system.	This	database	cannot	be	dropped,
and	provides	special	operations	for	creating,	dropping,	and	enumerating	databases.	Users	can	create	additional	databases	and	give	them
unique	names	to	access	them	later.	Database	management	operations	cannot	be	initiated	from	out	of	user-defined	databases.

When	ArangoDB	is	accessed	via	its	HTTP	REST	API,	the	database	name	is	read	from	the	first	part	of	the	request	URI	path	(e.g.
/_db/_system/...).	If	the	request	URI	does	not	contain	a	database	name,	the	database	name	is	automatically	derived	from	the	endpoint.
Please	refer	to	DatabaseEndpoint	for	more	information.

Database	Name

A	single	ArangoDB	instance	can	handle	multiple	databases	in	parallel.	When	multiple	databases	are	used,	each	database	must	be	given	a
unique	name.	This	name	is	used	to	uniquely	identify	a	database.	The	default	database	in	ArangoDB	is	named	_system.

The	database	name	is	a	string	consisting	of	only	letters,	digits	and	the	_	(underscore)	and	-	(dash)	characters.	User-defined	database	names
must	always	start	with	a	letter.	Database	names	is	case-sensitive.

Database	Organization

A	single	ArangoDB	instance	can	handle	multiple	databases	in	parallel.	By	default,	there	will	be	at	least	one	database,	which	is	named
_system.

Databases	are	physically	stored	in	separate	sub-directories	underneath	the	database	directory,	which	itself	resides	in	the	instance's	data
directory.

Glossary

681

Each	database	has	its	own	sub-directory,	named	database-.	The	database	directory	contains	sub-directories	for	the	collections	of	the
database,	and	a	file	named	parameter.json.	This	file	contains	the	database	id	and	name.

In	an	example	ArangoDB	instance	which	has	two	databases,	the	filesystem	layout	could	look	like	this:

data/																					#	the	instance's	data	directory

		databases/														#	sub-directory	containing	all	databases'	data

				database-<id>/								#	sub-directory	for	a	single	database

						parameter.json						#	file	containing	database	id	and	name

						collection-<id>/				#	directory	containing	data	about	a	collection

				database-<id>/								#	sub-directory	for	another	database

						parameter.json						#	file	containing	database	id	and	name

						collection-<id>/				#	directory	containing	data	about	a	collection

						collection-<id>/				#	directory	containing	data	about	a	collection

Foxx	applications	are	also	organized	in	database-specific	directories	inside	the	application	path.	The	filesystem	layout	could	look	like
this:

apps/																			#	the	instance's	application	directory

		system/															#	system	applications	(can	be	ignored)

		_db/																		#	sub-directory	containing	database-specific	applications

				<database-name>/				#	sub-directory	for	a	single	database

						<mountpoint>/APP		#	sub-directory	for	a	single	application

						<mountpoint>/APP		#	sub-directory	for	a	single	application

				<database-name>/				#	sub-directory	for	another	database

						<mountpoint>/APP		#	sub-directory	for	a	single	application

Document

Documents	in	ArangoDB	are	JSON	objects.	These	objects	can	be	nested	(to	any	depth)	and	may	contain	arrays.	Each	document	is
uniquely	identified	by	its	document	handle.

Document	Etag

The	document	revision	(_rev		value)	enclosed	in	double	quotes.	The	revision	is	returned	by	several	HTTP	API	methods	in	the	Etag
HTTP	header.

Document	Handle

A	document	handle	uniquely	identifies	a	document	in	the	database.	It	is	a	string	and	consists	of	the	collection's	name	and	the	document
key	(_key		attribute)	separated	by	/.	The	document	handle	is	stored	in	a	document's		_id		attribute.

Document	Key

A	document	key	is	a	string	that	uniquely	identifies	a	document	in	a	given	collection.	It	can	and	should	be	used	by	clients	when	specific
documents	are	searched.	Document	keys	are	stored	in	the		_key		attribute	of	documents.	The	key	values	are	automatically	indexed	by
ArangoDB	in	a	collection's	primary	index.	Thus	looking	up	a	document	by	its	key	is	regularly	a	fast	operation.	The		_key		value	of	a
document	is	immutable	once	the	document	has	been	created.

By	default,	ArangoDB	will	auto-generate	a	document	key	if	no		_key		attribute	is	specified,	and	use	the	user-specified		_key		value
otherwise.

This	behavior	can	be	changed	on	a	per-collection	level	by	creating	collections	with	the		keyOptions		attribute.

Using		keyOptions		it	is	possible	to	disallow	user-specified	keys	completely,	or	to	force	a	specific	regime	for	auto-generating	the		_key	
values.

There	are	some	restrictions	for	user-defined	keys	(see	NamingConventions	for	document	keys).

Document	Revision

Glossary

682

As	ArangoDB	supports	MVCC,	documents	can	exist	in	more	than	one	revision.	The	document	revision	is	the	MVCC	token	used	to
identify	a	particular	revision	of	a	document.	It	is	a	string	value	currently	containing	an	integer	number	and	is	unique	within	the	list	of
document	revisions	for	a	single	document.	Document	revisions	can	be	used	to	conditionally	update,	replace	or	delete	documents	in	the
database.	In	order	to	find	a	particular	revision	of	a	document,	you	need	the	document	handle	and	the	document	revision.

The	document	revision	is	stored	in	the		_rev		attribute	of	a	document,	and	is	set	and	updated	by	ArangoDB	automatically.	The		_rev	
value	cannot	be	set	from	the	outside.

ArangoDB	currently	uses	64bit	unsigned	integer	values	to	maintain	document	revisions	internally.	When	returning	document	revisions	to
clients,	ArangoDB	will	put	them	into	a	string	to	ensure	the	revision	id	is	not	clipped	by	clients	that	do	not	support	big	integers.	Clients
should	treat	the	revision	id	returned	by	ArangoDB	as	an	opaque	string	when	they	store	or	use	it	locally.	This	will	allow	ArangoDB	to
change	the	format	of	revision	ids	later	if	this	should	be	required.	Clients	can	use	revisions	ids	to	perform	simple	equality/non-equality
comparisons	(e.g.	to	check	whether	a	document	has	changed	or	not),	but	they	should	not	use	revision	ids	to	perform	greater/less	than
comparisons	with	them	to	check	if	a	document	revision	is	older	than	one	another,	even	if	this	might	work	for	some	cases.

Edge

Edges	are	special	documents	used	for	connecting	other	documents	into	a	graph.	An	edge	describes	the	connection	between	two	documents
using	the	internal	attributes:		_from		and		_to	.	These	contain	document	handles,	namely	the	start-point	and	the	end-point	of	the	edge.

Edge	Collection

Edge	collections	are	collections	that	store	edges.

Edge	Definition

Edge	definitions	are	parts	of	the	definition	of		named	graphs	.	They	describe	which	edge	collections	connect	which	vertex	collections.

General	Graph

Module	maintaining	graph	setup	in	the		_graphs		collection	-	aka		named	graphs	.	Configures	which	edge	collections	relate	to	which	vertex
collections.	Ensures	graph	consistency	in	modification	queries.

Named	Graphs

Named	graphs	enforce	consistency	between	edge	collections	and	vertex	collections,	so	if	you	remove	a	vertex,	edges	pointing	to	it	will	be
removed	too.

Index

Indexes	are	used	to	allow	fast	access	to	documents	in	a	collection.	All	collections	have	a	primary	index,	which	is	the	document's	_key
attribute.	This	index	cannot	be	dropped	or	changed.

Edge	collections	will	also	have	an	automatically	created	edges	index,	which	cannot	be	modified.	This	index	provides	quick	access	to
documents	via	the		_from		and		_to		attributes.

Most	user-land	indexes	can	be	created	by	defining	the	names	of	the	attributes	which	should	be	indexed.	Some	index	types	allow	indexing
just	one	attribute	(e.g.	fulltext	index)	whereas	other	index	types	allow	indexing	multiple	attributes.

Indexing	the	system	attribute		_id		in	user-defined	indexes	is	not	supported	by	any	index	type.

Edges	Index

An	edges	index	is	automatically	created	for	edge	collections.	It	contains	connections	between	vertex	documents	and	is	invoked	when	the
connecting	edges	of	a	vertex	are	queried.	There	is	no	way	to	explicitly	create	or	delete	edges	indexes.

Fulltext	Index

Glossary

683

A	fulltext	index	can	be	used	to	find	words,	or	prefixes	of	words	inside	documents.	A	fulltext	index	can	be	defined	on	one	attribute	only,
and	will	include	all	words	contained	in	documents	that	have	a	textual	value	in	the	index	attribute.	Since	ArangoDB	2.6	the	index	will	also
include	words	from	the	index	attribute	if	the	index	attribute	is	an	array	of	strings,	or	an	object	with	string	value	members.

For	example,	given	a	fulltext	index	on	the		translations		attribute	and	the	following	documents,	then	searching	for		лиса		using	the
fulltext	index	would	return	only	the	first	document.	Searching	for	the	index	for	the	exact	string		Fox		would	return	the	first	two
documents,	and	searching	for		prefix:Fox		would	return	all	three	documents:

{	translations:	{	en:	"fox",	de:	"Fuchs",	fr:	"renard",	ru:	"лиса"	}	}

{	translations:	"Fox	is	the	English	translation	of	the	German	word	Fuchs"	}

{	translations:	["ArangoDB",	"document",	"database",	"Foxx"]	}

If	the	index	attribute	is	neither	a	string,	an	object	or	an	array,	its	contents	will	not	be	indexed.	When	indexing	the	contents	of	an	array
attribute,	an	array	member	will	only	be	included	in	the	index	if	it	is	a	string.	When	indexing	the	contents	of	an	object	attribute,	an	object
member	value	will	only	be	included	in	the	index	if	it	is	a	string.	Other	data	types	are	ignored	and	not	indexed.

Only	words	with	a	(specifiable)	minimum	length	are	indexed.	Word	tokenization	is	done	using	the	word	boundary	analysis	provided	by
libicu,	which	is	taking	into	account	the	selected	language	provided	at	server	start.	Words	are	indexed	in	their	lower-cased	form.	The	index
supports	complete	match	queries	(full	words)	and	prefix	queries.

Geo	Index

A	geo	index	is	used	to	find	places	on	the	surface	of	the	earth	fast.

Index	Handle

An	index	handle	uniquely	identifies	an	index	in	the	database.	It	is	a	string	and	consists	of	a	collection	name	and	an	index	identifier
separated	by	/.

Hash	Index

A	hash	index	is	used	to	find	documents	based	on	examples.	A	hash	index	can	be	created	for	one	or	multiple	document	attributes.

A	hash	index	will	only	be	used	by	queries	if	all	indexed	attributes	are	present	in	the	example	or	search	query,	and	if	all	attributes	are
compared	using	the	equality	(==	operator).	That	means	the	hash	index	does	not	support	range	queries.

A	unique	hash	index	has	an	amortized	complexity	of	O(1)	for	lookup,	insert,	update,	and	remove	operations.	The	non-unique	hash	index
is	similar,	but	amortized	lookup	performance	is	O(n),	with	n	being	the	number	of	index	entries	with	the	same	lookup	value.

Skiplist	Index

A	skiplist	is	a	sorted	index	type	that	can	be	used	to	find	ranges	of	documents.

Anonymous	Graphs

You	may	use	edge	collections	with	vertex	collections	without	the	graph	management	facilities.	However,	graph	consistency	is	not
enforced	by	these.	If	you	remove	vertices,	you	have	to	ensure	by	yourselves	edges	pointing	to	this	vertex	are	removed.	Anonymous
graphs	may	not	be	browsed	using	graph	viewer	in	the	webinterface.	This	may	be	faster	in	some	scenarios.

Glossary

684

	Introduction
	Getting Started
	Installing
	Linux
	Mac OS X
	Windows
	Compiling

	Authentication
	Accessing the Web Interface
	Coming from SQL

	Highlights
	Scalability
	Architecture
	Data models
	Limitations

	Data models & modeling
	Concepts
	Databases
	Working with Databases
	Notes about Databases

	Collections
	Collection Methods
	Database Methods

	Documents
	Basics and Terminology
	Collection Methods
	Database Methods

	Graphs, Vertices & Edges
	Naming Conventions
	Database Names
	Collection Names
	Document Keys
	Attribute Names

	Indexing
	Index Basics
	Which index to use when
	Index Utilization
	Working with Indexes
	Hash Indexes
	Skiplists
	Persistent
	Fulltext Indexes
	Geo Indexes
	Vertex Centric Indexes

	Graphs
	General Graphs
	Graph Management
	Graph Functions

	SmartGraphs
	SmartGraph Management

	Traversals
	Using Traversal Objects
	Example Data

	Working with Edges
	Pregel

	Foxx Microservices
	At a glance
	Getting started
	Service manifest
	Service context
	Configuration
	Dependencies
	Routers
	Endpoints
	Middleware
	Request
	Response

	Using GraphQL
	Sessions middleware
	Session storages
	Session transports

	Serving files
	Writing tests
	Cross Origin
	Scripts and queued jobs
	Migrating 2.x services
	Migrating from pre-2.8
	manifest.json
	applicationContext
	Repositories and Models
	Controllers
	Sessions
	Auth and OAuth2
	Foxx Queries

	Legacy compatibility mode
	User management
	Related modules
	Authentication
	OAuth 1.0a
	OAuth 2.0

	Transactions
	Transaction invocation
	Passing parameters
	Locking and isolation
	Durability
	Limitations

	Deployment
	Single instance
	Cluster
	Mesos, DC/OS
	Generic & Docker
	Advanced Topics

	Multiple Datacenters

	Administration
	Web Interface
	Dashboard
	Cluster
	Collections
	Document
	Queries
	Graphs
	Services
	Users
	Logs

	ArangoDB Shell
	Shell Output
	Configuration
	Details

	Arangoimp
	Arangodump
	Arangorestore
	Arangoexport
	Managing Users
	In Arangosh

	Server Configuration
	Operating System Configuration
	Managing Endpoints
	SSL Configuration
	LDAP Options
	Logging Options
	General Options
	Write-Ahead Log Options
	Compaction Options
	Cluster Options
	RocksDB Engine Options
	Hash Cache Options
	Asynchronous Tasks

	Durability
	Encryption
	Auditing
	Configuration
	Events

	Replication
	Asynchronous Replication
	Synchronous Replication
	Satellite Collections

	Sharding
	Upgrading
	Upgrading to 3.3
	Upgrading to 3.2
	Upgrading to 3.1
	Upgrading to 3.0
	Upgrading to 2.8
	Upgrading to 2.6
	Upgrading to 2.5
	Upgrading to 2.4
	Upgrading to 2.3
	Upgrading to 2.2

	Troubleshooting
	arangod
	Emergency Console
	Datafile Debugger
	Arangobench

	Architecture
	Write-ahead log
	Storage Engines

	Release notes
	Whats New in 3.3
	Incompatible changes in 3.3
	Whats New in 3.2
	Known Issues in 3.2
	Incompatible changes in 3.2
	Whats New in 3.1
	Incompatible changes in 3.1
	Whats New in 3.0
	Incompatible changes in 3.0
	Whats New in 2.8
	Incompatible changes in 2.8
	Whats New in 2.7
	Incompatible changes in 2.7
	Whats New in 2.6
	Incompatible changes in 2.6
	Whats New in 2.5
	Incompatible changes in 2.5
	Whats New in 2.4
	Incompatible changes in 2.4
	Whats New in 2.3
	Incompatible changes in 2.3
	Whats New in 2.2
	Whats New in 2.1

	Appendix
	References
	db
	collection

	JavaScript Modules
	@arangodb
	console
	crypto
	fs
	request
	actions
	queries
	Write-ahead log
	Task Management

	Deprecated
	Simple Queries
	Actions

	Error codes and meanings
	Glossary

