
        
            
                
            
        

    
        

    

    Table of Contents

    
        
            
            
    
        	
            
                
                    
                        Introduction
                    
                
                
                1.1
                
            
            
        

    
        	
            
                
                    
                        General HTTP Handling
                    
                
                
                1.2
                
            
            
        

    
        	
            
                
                    
                        HTTP Interface
                    
                
                
                1.3
                
            
            
        

    
        	
            
                
                    
                        Databases
                    
                
                
                1.4
                
            
            
            
                
    
        	
            
                
                    
                        To-Endpoint
                    
                
                
                1.4.1
                
            
            
        

    
        	
            
                
                    
                        Management
                    
                
                
                1.4.2
                
            
            
        

    
        	
            
                
                    
                        Notes on Databases
                    
                
                
                1.4.3
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Collections
                    
                
                
                1.5
                
            
            
            
                
    
        	
            
                
                    
                        Creating
                    
                
                
                1.5.1
                
            
            
        

    
        	
            
                
                    
                        Getting Information
                    
                
                
                1.5.2
                
            
            
        

    
        	
            
                
                    
                        Modifying
                    
                
                
                1.5.3
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Documents
                    
                
                
                1.6
                
            
            
            
                
    
        	
            
                
                    
                        Basics and Terminology
                    
                
                
                1.6.1
                
            
            
        

    
        	
            
                
                    
                        Working with Documents
                    
                
                
                1.6.2
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Edges
                    
                
                
                1.7
                
            
            
            
                
    
        	
            
                
                    
                        Address and Etag
                    
                
                
                1.7.1
                
            
            
        

    
        	
            
                
                    
                        Working with Edges
                    
                
                
                1.7.2
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        General Graph
                    
                
                
                1.8
                
            
            
            
                
    
        	
            
                
                    
                        Management
                    
                
                
                1.8.1
                
            
            
        

    
        	
            
                
                    
                        Vertices
                    
                
                
                1.8.2
                
            
            
        

    
        	
            
                
                    
                        Edges
                    
                
                
                1.8.3
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Traversals
                    
                
                
                1.9
                
            
            
        

    
        	
            
                
                    
                        AQL Query Cursors
                    
                
                
                1.10
                
            
            
            
                
    
        	
            
                
                    
                        Query Results
                    
                
                
                1.10.1
                
            
            
        

    
        	
            
                
                    
                        Accessing Cursors
                    
                
                
                1.10.2
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        AQL Queries
                    
                
                
                1.11
                
            
            
        

    
        	
            
                
                    
                        AQL Query Cache
                    
                
                
                1.12
                
            
            
        

    
        	
            
                
                    
                        AQL User Functions Management
                    
                
                
                1.13
                
            
            
        

    
        	
            
                
                    
                        Simple Queries
                    
                
                
                1.14
                
            
            
        

    
        	
            
                
                    
                        Async Result Handling
                    
                
                
                1.15
                
            
            
        

    
        	
            
                
                    
                        Bulk Import / Export
                    
                
                
                1.16
                
            
            
            
                
    
        	
            
                
                    
                        JSON Documents
                    
                
                
                1.16.1
                
            
            
        

    
        	
            
                
                    
                        Headers & Values
                    
                
                
                1.16.2
                
            
            
        

    
        	
            
                
                    
                        Batch Requests
                    
                
                
                1.16.3
                
            
            
        

    
        	
            
                
                    
                        Exporting data
                    
                
                
                1.16.4
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Indexes
                    
                
                
                1.17
                
            
            
            
                
    
        	
            
                
                    
                        Working with Indexes
                    
                
                
                1.17.1
                
            
            
        

    
        	
            
                
                    
                        Hash
                    
                
                
                1.17.2
                
            
            
        

    
        	
            
                
                    
                        Skiplist
                    
                
                
                1.17.3
                
            
            
        

    
        	
            
                
                    
                        Persistent
                    
                
                
                1.17.4
                
            
            
        

    
        	
            
                
                    
                        Geo
                    
                
                
                1.17.5
                
            
            
        

    
        	
            
                
                    
                        Fulltext
                    
                
                
                1.17.6
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Transactions
                    
                
                
                1.18
                
            
            
        

    
        	
            
                
                    
                        Replication
                    
                
                
                1.19
                
            
            
            
                
    
        	
            
                
                    
                        Replication Dump
                    
                
                
                1.19.1
                
            
            
        

    
        	
            
                
                    
                        Replication Logger
                    
                
                
                1.19.2
                
            
            
        

    
        	
            
                
                    
                        Replication Applier
                    
                
                
                1.19.3
                
            
            
        

    
        	
            
                
                    
                        Other Replication Commands
                    
                
                
                1.19.4
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        Sharding
                    
                
                
                1.20
                
            
            
        

    
        	
            
                
                    
                        Monitoring
                    
                
                
                1.21
                
            
            
        

    
        	
            
                
                    
                        Endpoints
                    
                
                
                1.22
                
            
            
        

    
        	
            
                
                    
                        Foxx Services
                    
                
                
                1.23
                
            
            
            
                
    
        	
            
                
                    
                        Management
                    
                
                
                1.23.1
                
            
            
        

    
        	
            
                
                    
                        Configuration
                    
                
                
                1.23.2
                
            
            
        

    
        	
            
                
                    
                        Miscellaneous
                    
                
                
                1.23.3
                
            
            
        

    

            

            
        

    
        	
            
                
                    
                        User Management
                    
                
                
                1.24
                
            
            
        

    
        	
            
                
                    
                        Tasks
                    
                
                
                1.25
                
            
            
        

    
        	
            
                
                    
                        Agency
                    
                
                
                1.26
                
            
            
        

    
        	
            
                
                    
                        Miscellaneous functions
                    
                
                
                1.27
                
            
            
        

    
        	
            
                
                    
                        Repair jobs
                    
                
                
                1.28
                
            
            
        

    


            
        

        
    







        
    



        

    
        Introduction

        
            ArangoDB v3.3.22 HTTP API Documentation

Welcome to the ArangoDB HTTP API documentation! This documentation is
for API developers. As a user or administrator of ArangoDB you should
not need the information provided herein.

In general, as a user of ArangoDB you will use one of the language
drivers.


        

    



        
    



        

    
        General HTTP Handling

        
            General HTTP Request Handling in ArangoDB

Protocol

ArangoDB exposes its API via HTTP, making the server accessible easily with
a variety of clients and tools (e.g. browsers, curl, telnet). The communication
can optionally be SSL-encrypted.

ArangoDB uses the standard HTTP methods (e.g. GET, POST, PUT, DELETE) plus
the PATCH method described in RFC 5789.

Most server APIs expect clients to send any payload data in JSON
format. Details on the expected format and JSON attributes can be found in the
documentation of the individual server methods.

Clients sending requests to ArangoDB must use either HTTP 1.0 or HTTP 1.1.
Other HTTP versions are not supported by ArangoDB and any attempt to send
a different HTTP version signature will result in the server responding with
an HTTP 505 (HTTP version not supported) error.

ArangoDB will always respond to client requests with HTTP 1.1. Clients
should therefore support HTTP version 1.1.

Clients are required to include the Content-Length HTTP header with the
correct content length in every request that can have a body (e.g. POST,
PUT or PATCH) request. ArangoDB will not process requests without a
Content-Length header - thus chunked transfer encoding for POST-documents
is not supported.

HTTP Keep-Alive

ArangoDB supports HTTP keep-alive. If the client does not send a Connection
header in its request, and the client uses HTTP version 1.1, ArangoDB will assume
the client wants to keep alive the connection.
If clients do not wish to use the keep-alive feature, they should
explicitly indicate that by sending a Connection: Close HTTP header in
the request.

ArangoDB will close connections automatically for clients that send requests
using HTTP 1.0, except if they send an Connection: Keep-Alive header.

The default Keep-Alive timeout can be specified at server start using the
--http.keep-alive-timeout parameter.

Establishing TCP connections is expensive, since it takes several ping pongs
between the communication parties. Therefore you can use connection keepalive
to send several HTTP request over one TCP-connection;
Each request is treated independently by definition. You can use this feature
to build up a so called connection pool with several established
connections in your client application, and dynamically re-use
one of those then idle connections for subsequent requests.

Blocking vs. Non-blocking HTTP Requests

ArangoDB supports both blocking and non-blocking HTTP requests.

ArangoDB is a multi-threaded server, allowing the processing of multiple
client requests at the same time. Request/response handling and the actual
work are performed on the server in parallel by multiple worker threads.

Still, clients need to wait for their requests to be processed by the server,
and thus keep one connection of a pool occupied.
By default, the server will fully process an incoming request and then return
the result to the client when the operation is finished. The client must
wait for the server's HTTP response before it can send additional requests over
the same connection. For clients that are single-threaded and/or are
blocking on I/O themselves, waiting idle for the server response may be
non-optimal.

To reduce blocking on the client side, ArangoDB offers a generic mechanism for
non-blocking, asynchronous execution: clients can add the
HTTP header x-arango-async: true to any of their requests, marking
them as to be executed asynchronously on the server. ArangoDB will put such
requests into an in-memory task queue and return an HTTP 202 (accepted)
response to the client instantly and thus finish this HTTP-request.
The server will execute the tasks from the queue asynchronously as fast
as possible, while clients can continue to do other work.
If the server queue is full (i.e. contains as many tasks as specified by the
option "--scheduler.maximal-queue-size"),
then the request will be rejected instantly with an HTTP 500 (internal
server error) response.

Asynchronous execution decouples the request/response handling from the actual
work to be performed, allowing fast server responses and greatly reducing wait
time for clients. Overall this allows for much higher throughput than if
clients would always wait for the server's response.

Keep in mind that the asynchronous execution is just "fire and forget".
Clients will get any of their asynchronous requests answered with a generic
HTTP 202 response. At the time the server sends this response, it does not
know whether the requested operation can be carried out successfully (the
actual operation execution will happen at some later point). Clients therefore
cannot make a decision based on the server response and must rely on their
requests being valid and processable by the server.

Additionally, the server's asynchronous task queue is an in-memory data
structure, meaning not-yet processed tasks from the queue might be lost in
case of a crash. Clients should therefore not use the asynchronous feature
when they have strict durability requirements or if they rely on the immediate
result of the request they send.

For details on the subsequent processing
read on under Async Result handling.

Authentication

Client authentication can be achieved by using the Authorization HTTP header in
client requests. ArangoDB supports authentication via HTTP Basic or JWT.

Authentication is turned on by default for all internal database APIs but turned off for custom Foxx apps.
To toggle authentication for incoming requests to the internal database APIs, use the option --server.authentication.
This option is turned on by default so authentication is required for the database APIs.

Please note that requests using the HTTP OPTIONS method will be answered by
ArangoDB in any case, even if no authentication data is sent by the client or if
the authentication data is wrong. This is required for handling CORS preflight
requests (see Cross Origin Resource Sharing requests).
The response to an HTTP OPTIONS request will be generic and not expose any private data.

There is an additional option to control authentication for custom Foxx apps. The option
--server.authentication-system-only
controls whether authentication is required only for requests to the internal database APIs and the admin interface.
It is turned on by default, meaning that other APIs (this includes custom Foxx apps) do not require authentication.

The default values allow exposing a public custom Foxx API built with ArangoDB to the outside
world without the need for HTTP authentication, but still protecting the usage of the
internal database APIs (i.e. /_api/, /_admin/) with HTTP authentication.

If the server is started with the --server.authentication-system-only option set
to false, all incoming requests will need HTTP authentication if the server is configured
to require HTTP authentication (i.e. --server.authentication true).
Setting the option to true will make the server require authentication only for requests to the
internal database APIs and will allow unauthenticated requests to all other URLs.

Here's a short summary:


	--server.authentication true --server.authentication-system-only true: this will require
authentication for all requests to the internal database APIs but not custom Foxx apps.
This is the default setting.

	--server.authentication true --server.authentication-system-only false: this will require
authentication for all requests (including custom Foxx apps).

	--server.authentication false: authentication disabled for all requests



Whenever authentication is required and the client has not yet authenticated,
ArangoDB will return HTTP 401 (Unauthorized). It will also send the WWW-Authenticate
response header, indicating that the client should prompt the user for username and
password if supported. If the client is a browser, then sending back this header will
normally trigger the display of the browser-side HTTP authentication dialog.
As showing the browser HTTP authentication dialog is undesired in AJAX requests,
ArangoDB can be told to not send the WWW-Authenticate header back to the client.
Whenever a client sends the X-Omit-WWW-Authenticate HTTP header (with an arbitrary value)
to ArangoDB, ArangoDB will only send status code 401, but no WWW-Authenticate header.
This allows clients to implement credentials handling and bypassing the browser's
built-in dialog.

Authentication via JWT

ArangoDB uses a standard JWT based authentication method. 
To authenticate via JWT you must first obtain a JWT token with a signature generated via HMAC with SHA-256. 
The secret may either be set using --server.jwt-secret or will be randomly generated upon server startup.

For more information on JWT please consult RFC7519 and https://jwt.io

User JWT-Token

To authenticate with a specific user you need to supply a JWT token containing
the preferred_username field with the username. 
You can either let ArangoDB generate this token for you via an API call
or you can generate it yourself (only if you know the JWT secret).

ArangoDB offers a REST API to generate user tokens for you if you know the username and password. 
To do so send a POST request to

/_open/auth

containing username and password JSON-encoded like so:

{"username":"root","password":"rootPassword"}

Upon success the endpoint will return a 200 OK and an answer containing the JWT in a JSON-
encoded object like so:

{"jwt":"eyJhbGciOiJIUzI1NiI..x6EfI"}

This JWT should then be used within the Authorization HTTP header in subsequent requests:

Authorization: bearer eyJhbGciOiJIUzI1NiI..x6EfI

Please note that the JWT will expire after 1 month and needs to be updated. We encode the expiration
date of the JWT token in the exp field in unix time.
Please note that all JWT tokens must contain the iss field with string value arangodb.
As an example the decoded JWT body would look like this:

{
"exp": 1540381557,
"iat": 1537789.55727901,
"iss": "arangodb",
"preferred_username": "root"
}


Superuser JWT-Token

To access specific internal APIs as well as Agency and DBServer instances a token generated via /open/auth is not 
good enough. For these special APIs you will need to generate a special JWT token which grants superuser access.
Note that using superuser access for normal database operations is NOT advised.

Note: It is only possible to generate this JWT token with the knowledge of the JWT secret.

Should you whish to generate the JWT token yourself with a tool of your choice, you need to include the correct body.
The body must contain the iss field with string value arangodb and the server_id field with an arbirtrary string identifier:

{
"exp": 1537900279,
"iat": 1537800279,
"iss": "arangodb",
"server_id": "myclient"
}


For example to generate a token via the jwtgen tool (note the lifetime of one hour):

jwtgen -s <my-secret> -e 3600 -v -a "HS256" -c 'iss=arangodb' -c 'server_id=myclient'
curl -v -H "Authorization: bearer $(jwtgen -s <my-secret> -e 3600 -a "HS256" -c 'iss=arangodb' -c 'server_id=myclient')" http://<database-ip>:8529/_api/version

Error Handling

The following should be noted about how ArangoDB handles client errors in its
HTTP layer:


	client requests using an HTTP version signature different than HTTP/1.0 or
HTTP/1.1 will get an HTTP 505 (HTTP version not supported) error in return.

	ArangoDB will reject client requests with a negative value in the
Content-Length request header with HTTP 411 (Length Required).

	Arangodb doesn't support POST with transfer-encoding: chunked which forbids
the Content-Length header above.

	the maximum URL length accepted by ArangoDB is 16K. Incoming requests with
longer URLs will be rejected with an HTTP 414 (Request-URI too long) error.

	if the client sends a Content-Length header with a value bigger than 0 for
an HTTP GET, HEAD, or DELETE request, ArangoDB will process the request, but
will write a warning to its log file.

	when the client sends a Content-Length header that has a value that is lower
than the actual size of the body sent, ArangoDB will respond with HTTP 400
(Bad Request).

	if clients send a Content-Length value bigger than the actual size of the
body of the request, ArangoDB will wait for about 90 seconds for the client to
complete its request. If the client does not send the remaining body data
within this time, ArangoDB will close the connection. Clients should avoid
sending such malformed requests as this will block one tcp connection,
and may lead to a temporary filedescriptor leak.

	when clients send a body or a Content-Length value bigger than the maximum
allowed value (512 MB), ArangoDB will respond with HTTP 413 (Request Entity
Too Large).

	if the overall length of the HTTP headers a client sends for one request
exceeds the maximum allowed size (1 MB), the server will fail with HTTP 431
(Request Header Fields Too Large).

	if clients request an HTTP method that is not supported by the server, ArangoDB
will return with HTTP 405 (Method Not Allowed). ArangoDB offers general
support for the following HTTP methods:


	GET

	POST

	PUT

	DELETE

	HEAD

	PATCH

	OPTIONS



Please note that not all server actions allow using all of these HTTP methods.
You should look up up the supported methods for each method you intend to use
in the manual.

Requests using any other HTTP method (such as for example CONNECT, TRACE etc.)
will be rejected by ArangoDB as mentioned before.





Cross-Origin Resource Sharing (CORS) requests

ArangoDB will automatically handle CORS requests as follows:

Preflight

When a browser is told to make a cross-origin request that includes explicit
headers, credentials or uses HTTP methods other than GET or POST, it will
first perform a so-called preflight request using the OPTIONS method.

ArangoDB will respond to OPTIONS requests with an HTTP 200 status response
with an empty body. Since preflight requests are not expected to include or
even indicate the presence of authentication credentials even when they will
be present in the actual request, ArangoDB does not enforce authentication for
OPTIONS requests even when authentication is enabled.

ArangoDB will set the following headers in the response:


	access-control-allow-credentials: will be set to false by default.
For details on when it will be set to true see the next section on cookies.



	access-control-allow-headers: will be set to the exect value of the
request's access-control-request-headers header or omitted if no such
header was sent in the request.



	access-control-allow-methods: will be set to a list of all supported HTTP
headers regardless of the target endpoint. In other words that a method is
listed in this header does not guarantee that it will be supported by the
endpoint in the actual request.



	access-control-allow-origin: will be set to the exact value of the
request's origin header.



	access-control-expose-headers: will be set to a list of response headers used
by the ArangoDB HTTP API.



	access-control-max-age: will be set to an implementation-specifc value.





Actual request

If a request using any other HTTP method than OPTIONS includes an origin header,
ArangoDB will add the following headers to the response:


	access-control-allow-credentials: will be set to false by default.
For details on when it will be set to true see the next section on cookies.



	access-control-allow-origin: will be set to the exact value of the
request's origin header.



	access-control-expose-headers: will be set to a list of response headers used
by the ArangoDB HTTP API.





When making CORS requests to endpoints of Foxx services, the value of the
access-control-expose-headers header will instead be set to a list of
response headers used in the response itself (but not including the
access-control- headers). Note that Foxx services may override this behaviour.

Cookies and authentication

In order for the client to be allowed to correctly provide authentication
credentials or handle cookies, ArangoDB needs to set the
access-control-allow-credentials response header to true instead of false.

ArangoDB will automatically set this header to true if the value of the
request's origin header matches a trusted origin in the http.trusted-origin
configuration option. To make ArangoDB trust a certain origin, you can provide
a startup option when running arangod like this:

--http.trusted-origin "http://localhost:8529"

To specify multiple trusted origins, the option can be specified multiple times.
Alternatively you can use the special value "*" to trust any origin:

--http.trusted-origin "*"

Note that browsers will not actually include credentials or cookies in cross-origin
requests unless explicitly told to do so:


	When using the Fetch API you need to set the
credentials option to include.

fetch("./", { credentials:"include" }).then(/* … */)




	When using XMLHttpRequest you need to set the
withCredentials option to true.

var xhr = new XMLHttpRequest();
xhr.open('GET', 'https://example.com/', true);
xhr.withCredentials = true;
xhr.send(null);




	When using jQuery you need to set the xhrFields option:

$.ajax({
   url: 'https://example.com',
   xhrFields: {
      withCredentials: true
   }
});






HTTP method overriding

ArangoDB provides a startup option --http.allow-method-override.
This option can be set to allow overriding the HTTP request method (e.g. GET, POST,
PUT, DELETE, PATCH) of a request using one of the following custom HTTP headers:


	x-http-method-override

	x-http-method

	x-method-override



This allows using HTTP clients that do not support all "common" HTTP methods such as
PUT, PATCH and DELETE. It also allows bypassing proxies and tools that would otherwise
just let certain types of requests (e.g. GET and POST) pass through.

Enabling this option may impose a security risk, so it should only be used in very
controlled environments. Thus the default value for this option is false (no method
overriding allowed). You need to enable it explicitly if you want to use this
feature.

Load-balancer support

When running in cluster mode, ArangoDB exposes some APIs which store request
state data on specific coordinator nodes, and thus subsequent requests which
require access to this state must be served by the coordinator node which owns
this state data. In order to support function behind a load-balancer, ArangoDB
can transparently forward requests within the cluster to the correct node. If a
request is forwarded, the response will contain the following custom HTTP header
whose value will be the ID of the node which actually answered the request:


	x-arango-request-served-by



The following APIs may use request forwarding:


	/_api/cursor



Note: since forwarding such requests require an additional cluster-internal HTTP
request, they should be avoided when possible for best performance. Typically
this is accomplished either by directing the requests to the correct coordinator
at a client-level or by enabling request "stickiness" on a load balancer. Since
these approaches are not always possible in a given environment, we support the
request forwarding as a fall-back solution.


        

    



        
    



        

    
        HTTP Interface

        
            HTTP Interface

Following you have ArangoDB's HTTP Interface for Documents, Databases, Edges and more.

There are also some examples provided for every API action. 

You may also use the interactive Swagger documentation in the
ArangoDB webinterface
to explore the API calls below.


        

    



        
    



        

    
        Databases

        
            HTTP Interface for Databases

Address of a Database

Any operation triggered via ArangoDB's HTTP REST API is executed in the context of exactly
one database. To explicitly specify the database in a request, the request URI must contain
the database name in front of the actual path:

http://localhost:8529/_db/mydb/...

where ... is the actual path to the accessed resource. In the example, the resource will be
accessed in the context of the database mydb. Actual URLs in the context of mydb could look
like this:

http://localhost:8529/_db/mydb/_api/version
http://localhost:8529/_db/mydb/_api/document/test/12345
http://localhost:8529/_db/mydb/myapp/get


        

    



        
    



        

    
        To-Endpoint

        
            Database-to-Endpoint Mapping

If a database name is present in the
URI as above, ArangoDB will consult the database-to-endpoint mapping for the current
endpoint, and validate if access to the database is allowed on the endpoint. 
If the endpoint is not restricted to an array of databases, ArangoDB will continue with the 
regular authentication procedure. If the endpoint is restricted to an array of specified databases,
ArangoDB will check if the requested database is in the array. If not, the request will be turned
down instantly. If yes, then ArangoDB will continue with the regular authentication procedure.

If the request URI was http:// localhost:8529/_db/mydb/..., then the request to mydb will be 
allowed (or disallowed) in the following situations: 

Endpoint-to-database mapping           Access to *mydb* allowed?
----------------------------           -------------------------
[ ]                                    yes
[ "_system" ]                          no 
[ "_system", "mydb" ]                  yes
[ "mydb" ]                             yes
[ "mydb", "_system" ]                  yes
[ "test1", "test2" ]                   no

In case no database name is specified in the request URI, ArangoDB will derive the database
name from the endpoint-to-database mapping of the endpoint 
the connection was coming in on. 

If the endpoint is not restricted to an array of databases, ArangoDB will assume the _system
database. If the endpoint is restricted to one or multiple databases, ArangoDB will assume
the first name from the array.

Following is an overview of which database name will be assumed for different endpoint-to-database
mappings in case no database name is specified in the URI:

Endpoint-to-database mapping           Database
----------------------------           --------
[ ]                                    _system
[ "_system" ]                          _system
[ "_system", "mydb" ]                  _system
[ "mydb" ]                             mydb
[ "mydb", "_system" ]                  mydb


        

    



        
    



        

    
        Management

        
            Database Management

This is an introduction to ArangoDB's HTTP interface for managing databases.

The HTTP interface for databases provides operations to create and drop
individual databases. These are mapped to the standard HTTP methods POST
and DELETE. There is also the GET method to retrieve an array of existing
databases.

Please note that all database management operations can only be accessed via
the default database (_system) and none of the other databases.

Managing Databases using HTTP


Information of the database

 retrieves information about the current database

GET /_api/database/current

Retrieves information about the current database

The response is a JSON object with the following attributes:


	name: the name of the current database



	id: the id of the current database



	path: the filesystem path of the current database



	isSystem: whether or not the current database is the _system database





Return Codes


	200:
is returned if the information was retrieved successfully.



	400:
is returned if the request is invalid.



	404:
is returned if the database could not be found.





Examples



shell> curl --dump - http://localhost:8529/_api/database/current

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : { 
    "name" : "_system", 
    "id" : "1", 
    "path" : "/tmp/arangosh_EcFtnK/tmp-21913-10480753/data/databases/database-1", 
    "isSystem" : true 
  } 
}





shell> curl --dump - http://localhost:8529/_api/database/current

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







List of accessible databases

 retrieves a list of all databases the current user can access

GET /_api/database/user

Retrieves the list of all databases the current user can access without
specifying a different username or password.

Return Codes


	200:
is returned if the list of database was compiled successfully.



	400:
is returned if the request is invalid.





Examples



shell> curl --dump - http://localhost:8529/_api/database/user

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : [ 
    "_system" 
  ] 
}





shell> curl --dump - http://localhost:8529/_api/database/user

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







List of databases

 retrieves a list of all existing databases

GET /_api/database

Retrieves the list of all existing databases

Note: retrieving the list of databases is only possible from within the _system database.

Note: You should use the GET user API to fetch the list of the available databases now.

Return Codes


	200:
is returned if the list of database was compiled successfully.



	400:
is returned if the request is invalid.



	403:
is returned if the request was not executed in the _system database.





Examples



shell> curl --dump - http://localhost:8529/_api/database

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : [ 
    "_system" 
  ] 
}





shell> curl --dump - http://localhost:8529/_api/database

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Create database

 creates a new database

POST /_api/database

A JSON object with these properties is required:


	name: Has to contain a valid database name.

	users: Has to be an array of user objects to initially create for the new database.
User information will not be changed for users that already exist.
If users is not specified or does not contain any users, a default user
root will be created with an empty string password. This ensures that the
new database will be accessible after it is created.
Each user object can contain the following attributes:
	username: Loginname of the user to be created

	passwd: The user password as a string. If not specified, it will default to an empty string.

	active: A flag indicating whether the user account should be activated or not.
The default value is true. If set to false, the user won't be able to
log into the database.

	extra: A JSON object with extra user information. The data contained in extra
will be stored for the user but not be interpreted further by ArangoDB.







Creates a new database

The response is a JSON object with the attribute result set to true.

Note: creating a new database is only possible from within the _system database.

Return Codes


	201:
is returned if the database was created successfully.



	400:
is returned if the request parameters are invalid or if a database with the
specified name already exists.



	403:
is returned if the request was not executed in the _system database.



	409:
is returned if a database with the specified name already exists.





Examples

Creating a database named example.



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/database <<EOF
{ 
  "name" : "example" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 201, 
  "result" : true 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/database <<EOF
{ 
  "name" : "example" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Creating a database named mydb with two users.



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/database <<EOF
{ 
  "name" : "mydb", 
  "users" : [ 
    { 
      "username" : "admin", 
      "passwd" : "secret", 
      "active" : true 
    }, 
    { 
      "username" : "tester", 
      "passwd" : "test001", 
      "active" : false 
    } 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 201, 
  "result" : true 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/database <<EOF
{ 
  "name" : "mydb", 
  "users" : [ 
    { 
      "username" : "admin", 
      "passwd" : "secret", 
      "active" : true 
    }, 
    { 
      "username" : "tester", 
      "passwd" : "test001", 
      "active" : false 
    } 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Drop database

 drop an existing database

DELETE /_api/database/{database-name}

Path Parameters


	database-name (required):
The name of the database



Drops the database along with all data stored in it.

Note: dropping a database is only possible from within the _system database.
The _system database itself cannot be dropped.

Return Codes


	200:
is returned if the database was dropped successfully.



	400:
is returned if the request is malformed.



	403:
is returned if the request was not executed in the _system database.



	404:
is returned if the database could not be found.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/database/example

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : true 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/database/example

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Notes on Databases

        
            Notes on Databases

Please keep in mind that each database contains its own system collections,
which need to set up when a database is created. This will make the creation
of a database take a while. Replication is configured on a per-database level,
meaning that any replication logging or applying for the a new database must
be configured explicitly after a new database has been created. Foxx applications
are also available only in the context of the database they have been installed
in. A new database will only provide access to the system applications shipped
with ArangoDB (that is the web interface at the moment) and no other Foxx
applications until they are explicitly installed for the particular database.

Database

ArangoDB can handle multiple databases in the same server instance. Databases can be used to logically group and separate data. An ArangoDB database consists of collections and dedicated database-specific worker processes.
A database contains its own collections (which cannot be accessed from other databases), Foxx applications and replication loggers and appliers. Each ArangoDB database contains its own system collections (e.g. _users, _graphs, ...).

There will always be at least one database in ArangoDB. This is the default database named _system. This database cannot be dropped and provides special operations for creating, dropping and enumerating databases. Users can create additional databases and give them unique names to access them later. Database management operations cannot be initiated from out of user-defined databases.

When ArangoDB is accessed via its HTTP REST API, the database name is read from the first part of the request URI path (e.g. /_db/_system/...). If the request URI does not contain a database name, the database name is automatically determined by the algorithm described in Database-to-Endpoint Mapping .

Database Name

A single ArangoDB instance can handle multiple databases in parallel. When multiple databases are used, each database must be given an unique name. This name is used to uniquely identify a database. The default database in ArangoDB is named system.
The database name is a string consisting of only letters, digits and the  (underscore) and - (dash) characters. User-defined database names must always start with a letter. Database names are case-sensitive.

Database Organization

A single ArangoDB instance can handle multiple databases in parallel. By default, there will be at least one database which is named _system.
Databases are physically stored in separate sub-directories underneath the database directory, which itself resides in the instance's data directory.

Each database has its own sub-directory, named database-. The database directory contains sub-directories for the collections of the database, and a file named parameter.json. This file contains the database id and name.

In an example ArangoDB instance which has two databases, the filesystem layout could look like this:

data/                     # the instance's data directory
  databases/              # sub-directory containing all databases' data
    database-<id>/        # sub-directory for a single database
      parameter.json      # file containing database id and name
      collection-<id>/    # directory containing data about a collection
    database-<id>/        # sub-directory for another database
      parameter.json      # file containing database id and name
      collection-<id>/    # directory containing data about a collection
      collection-<id>/    # directory containing data about a collection

Foxx applications are also organized in database-specific directories inside the application path. The filesystem layout could look like this:

apps/                   # the instance's application directory
  system/               # system applications (can be ignored)
  databases/            # sub-directory containing database-specific applications
    <database-name>/    # sub-directory for a single database
      <app-name>        # sub-directory for a single application
      <app-name>        # sub-directory for a single application
    <database-name>/    # sub-directory for another database
      <app-name>        # sub-directory for a single application
`


        

    



        
    



        

    
        Collections

        
            HTTP Interface for Collections

Collections

This is an introduction to ArangoDB's HTTP interface for collections.

Collection

A collection consists of documents. It is uniquely identified by its 
collection identifier.
It also has a unique name that clients should 
use to identify and access it. Collections can be renamed. This will 
change the collection name, but not the collection identifier.
Collections have a type that is specified by the user when the collection 
is created. There are currently two types: document and edge. The default 
type is document.

Collection Identifier

A collection identifier lets you refer to a collection in a database. 
It is a string value and is unique within the database. Up to including 
ArangoDB 1.1, the collection identifier has been a client's primary 
means to access collections. Starting with ArangoDB 1.2, clients should 
instead use a collection's unique name to access a collection instead of 
its identifier.
ArangoDB currently uses 64bit unsigned integer values to maintain 
collection ids internally. When returning collection ids to clients, 
ArangoDB will put them into a string to ensure the collection id is not 
clipped by clients that do not support big integers. Clients should treat 
the collection ids returned by ArangoDB as opaque strings when they store 
or use it locally.

Note: collection ids have been returned as integers up to including ArangoDB 1.1

Collection Name

A collection name identifies a collection in a database. It is a string 
and is unique within the database. Unlike the collection identifier it is 
supplied by the creator of the collection. The collection name must consist 
of letters, digits, and the _ (underscore) and - (dash) characters only. 
Please refer to Naming Conventions in ArangoDB for more information on valid 
collection names.

Key Generator

ArangoDB allows using key generators for each collection. Key generators 
have the purpose of auto-generating values for the _key attribute of a document 
if none was specified by the user. By default, ArangoDB will use the traditional 
key generator. The traditional key generator will auto-generate key values that 
are strings with ever-increasing numbers. The increment values it uses are 
non-deterministic.

Contrary, the auto increment key generator will auto-generate deterministic key 
values. Both the start value and the increment value can be defined when the 
collection is created. The default start value is 0 and the default increment 
is 1, meaning the key values it will create by default are:

1, 2, 3, 4, 5, ...

When creating a collection with the auto increment key generator and an increment of 5, the generated keys would be:

1, 6, 11, 16, 21, ...

The auto-increment values are increased and handed out on each document insert 
attempt. Even if an insert fails, the auto-increment value is never rolled back.
That means there may exist gaps in the sequence of assigned auto-increment values
if inserts fails.

The basic operations (create, read, update, delete) for documents are mapped
to the standard HTTP methods (POST, GET, PUT, DELETE). 

Address of a Collection

All collections in ArangoDB have an unique identifier and a unique
name. ArangoDB internally uses the collection's unique identifier to
look up collections. This identifier however is managed by ArangoDB
and the user has no control over it. In order to allow users use their
own names, each collection also has a unique name, which is specified
by the user.  To access a collection from the user perspective, the
collection name should be used, i.e.:

http://server:port/_api/collection/collection-name

For example: Assume that the collection identifier is 7254820 and
the collection name is demo, then the URL of that collection is:

http://localhost:8529/_api/collection/demo


        

    



        
    



        

    
        Creating

        
            Creating and Deleting Collections


Create collection

 creates a collection

POST /_api/collection

A JSON object with these properties is required:


	journalSize: The maximal size of a journal or datafile in bytes. The value 
must be at least 1048576 (1 MiB). (The default is a configuration parameter)
This option is meaningful for the MMFiles storage engine only.

	replicationFactor: (The default is 1): in a cluster, this attribute determines how many copies 
of each shard are kept on different DBServers. The value 1 means that only one 
copy (no synchronous replication) is kept. A value of k means that k-1 replicas 
are kept. Any two copies reside on different DBServers. Replication between them is 
synchronous, that is, every write operation to the "leader" copy will be replicated 
to all "follower" replicas, before the write operation is reported successful.
If a server fails, this is detected automatically and one of the servers holding 
copies take over, usually without an error being reported.

	keyOptions:
	allowUserKeys: if set to true, then it is allowed to supply own key values in the
_key attribute of a document. If set to false, then the key generator
will solely be responsible for generating keys and supplying own key values
in the _key attribute of documents is considered an error.

	type: specifies the type of the key generator. The currently available generators are
traditional and autoincrement.

	increment: increment value for autoincrement key generator. Not used for other key
generator types.

	offset: Initial offset value for autoincrement key generator.
Not used for other key generator types.





	name: The name of the collection.

	waitForSync: If true then the data is synchronized to disk before returning from a
document create, update, replace or removal operation. (default: false)

	doCompact: whether or not the collection will be compacted (default is true)
This option is meaningful for the MMFiles storage engine only.

	isVolatile: If true then the collection data is kept in-memory only and not made persistent.
Unloading the collection will cause the collection data to be discarded. Stopping
or re-starting the server will also cause full loss of data in the
collection. Setting this option will make the resulting collection be
slightly faster than regular collections because ArangoDB does not
enforce any synchronization to disk and does not calculate any CRC
checksums for datafiles (as there are no datafiles). This option 
should therefore be used for cache-type collections only, and not 
for data that cannot be re-created otherwise.
(The default is false)
This option is meaningful for the MMFiles storage engine only.

	shardKeys: (The default is [ "_key" ]): in a cluster, this attribute determines
which document attributes are used to determine the target shard for documents.
Documents are sent to shards based on the values of their shard key attributes.
The values of all shard key attributes in a document are hashed,
and the hash value is used to determine the target shard.
Note: Values of shard key attributes cannot be changed once set.
 This option is meaningless in a single server setup.

	numberOfShards: (The default is 1): in a cluster, this value determines the
number of shards to create for the collection. In a single
server setup, this option is meaningless.

	isSystem: If true, create a  system collection. In this case collection-name
should start with an underscore. End users should normally create non-system
collections only. API implementors may be required to create system
collections in very special occasions, but normally a regular collection will do.
(The default is false)

	type: (The default is 2): the type of the collection to create.
The following values for type are valid:
	2: document collection

	3: edges collection





	indexBuckets: The number of buckets into which indexes using a hash
table are split. The default is 16 and this number has to be a
power of 2 and less than or equal to 1024. 
For very large collections one should increase this to avoid long pauses 
when the hash table has to be initially built or resized, since buckets 
are resized individually and can be initially built in parallel. For 
example, 64 might be a sensible value for a collection with 100
000 000 documents. Currently, only the edge index respects this
value, but other index types might follow in future ArangoDB versions. 
Changes (see below) are applied when the collection is loaded the next 
time.
This option is meaningful for the MMFiles storage engine only.

	distributeShardsLike: (The default is ""): in an enterprise cluster, this attribute binds
the specifics of sharding  for the newly created collection to follow that of a
specified existing collection. 
Note: Using this parameter has consequences for the prototype
collection. It can no longer be dropped, before sharding imitating
collections are dropped. Equally, backups and restores of imitating
collections alone will generate warnings, which can be overridden,
about missing sharding prototype. 



Creates a new collection with a given name. The request must contain an
object with the following attributes.

Query Parameters


	waitForSyncReplication (optional):
Default is 1 which means the server will only report success back to the client
if all replicas have created the collection. Set to 0 if you want faster
server responses and don't care about full replication.



	enforceReplicationFactor (optional):
Default is 1 which means the server will check if there are enough replicas
available at creation time and bail out otherwise. Set to 0 to disable this
extra check.





Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : "testCollectionBasics" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "statusString" : "loaded", 
  "name" : "testCollectionBasics", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 0 
  }, 
  "type" : 2, 
  "indexBuckets" : 8, 
  "globallyUniqueId" : "h407686C16EDC/9861", 
  "doCompact" : true, 
  "waitForSync" : false, 
  "id" : "9861", 
  "isSystem" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false 
}
shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : "testCollectionEdges", 
  "type" : 3 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "statusString" : "loaded", 
  "name" : "testCollectionEdges", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 0 
  }, 
  "type" : 3, 
  "indexBuckets" : 8, 
  "globallyUniqueId" : "h407686C16EDC/9864", 
  "doCompact" : true, 
  "waitForSync" : false, 
  "id" : "9864", 
  "isSystem" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : "testCollectionBasics" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body








shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : "testCollectionUsers", 
  "keyOptions" : { 
    "type" : "autoincrement", 
    "increment" : 5, 
    "allowUserKeys" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "statusString" : "loaded", 
  "name" : "testCollectionUsers", 
  "keyOptions" : { 
    "type" : "autoincrement", 
    "allowUserKeys" : true, 
    "offset" : 0, 
    "increment" : 5, 
    "lastValue" : 0 
  }, 
  "type" : 2, 
  "indexBuckets" : 8, 
  "globallyUniqueId" : "h407686C16EDC/9869", 
  "doCompact" : true, 
  "waitForSync" : false, 
  "id" : "9869", 
  "isSystem" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : "testCollectionUsers", 
  "keyOptions" : { 
    "type" : "autoincrement", 
    "increment" : 5, 
    "allowUserKeys" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Drops a collection

 drops a collection

DELETE /_api/collection/{collection-name}

Path Parameters


	collection-name (required):
The name of the collection to drop.



Query Parameters


	isSystem (optional):
Whether or not the collection to drop is a system collection. This parameter
must be set to true in order to drop a system collection.



Drops the collection identified by collection-name.

If the collection was successfully dropped, an object is returned with
the following attributes:


	error: false



	id: The identifier of the dropped collection.





Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Using an identifier:



shell> curl -X DELETE --dump - http://localhost:8529/_api/collection/9873

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "code" : 200, 
  "error" : false, 
  "id" : "9873" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/collection/9873

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a name:



shell> curl -X DELETE --dump - http://localhost:8529/_api/collection/products1

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "code" : 200, 
  "error" : false, 
  "id" : "9877" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/collection/products1

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Dropping a system collection



shell> curl -X DELETE --dump - http://localhost:8529/_api/collection/_example?isSystem=true

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "code" : 200, 
  "error" : false, 
  "id" : "9881" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/collection/_example?isSystem=true

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Truncate collection

 truncates a collection

PUT /_api/collection/{collection-name}/truncate

Path Parameters


	collection-name (required):
The name of the collection.



Removes all documents from the collection, but leaves the indexes intact.

Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples



shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/truncate

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/truncate

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "name" : "products", 
  "type" : 2, 
  "globallyUniqueId" : "h407686C16EDC/10271", 
  "isSystem" : false, 
  "id" : "10271" 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/truncate

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/truncate


show response body







        

    



        
    



        

    
        Getting Information

        
            Getting Information about a Collection


Return information about a collection

 returns a collection

GET /_api/collection/{collection-name}

Path Parameters


	collection-name (required):
The name of the collection.



The result is an object describing the collection with the following
attributes:


	id: The identifier of the collection.



	name: The name of the collection.



	status: The status of the collection as number.


	1: new born collection

	2: unloaded

	3: loaded

	4: in the process of being unloaded

	5: deleted

	6: loading







Every other status indicates a corrupted collection.


	type: The type of the collection as number.


	2: document collection (normal case)

	3: edges collection





	isSystem: If true then the collection is a system collection.





Return Codes


	404:
If the collection-name is unknown, then a HTTP 404 is
returned.




Read properties of a collection

 reads the properties of the specified collection

GET /_api/collection/{collection-name}/properties

Path Parameters


	collection-name (required):
The name of the collection.



In addition to the above, the result will always contain the
waitForSync attribute, and the doCompact, journalSize, 
and isVolatile attributes for the MMFiles storage engine.
This is achieved by forcing a load of the underlying collection.


	waitForSync: If true then creating, changing or removing
documents will wait until the data has been synchronized to disk.



	doCompact: Whether or not the collection will be compacted.
This option is only present for the MMFiles storage engine.



	journalSize: The maximal size setting for journals / datafiles
in bytes.
This option is only present for the MMFiles storage engine.



	keyOptions: JSON object which contains key generation options:


	type: specifies the type of the key generator. The currently
available generators are traditional and autoincrement.

	allowUserKeys: if set to true, then it is allowed to supply
own key values in the _key attribute of a document. If set to
false, then the key generator is solely responsible for
generating keys and supplying own key values in the _key attribute
of documents is considered an error.





	isVolatile: If true then the collection data will be
kept in memory only and ArangoDB will not write or sync the data
to disk.
This option is only present for the MMFiles storage engine.





In a cluster setup, the result will also contain the following attributes:


	numberOfShards: the number of shards of the collection.



	shardKeys: contains the names of document attributes that are used to
determine the target shard for documents.



	replicationFactor: contains how many copies of each shard are kept on different DBServers.





Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples

Using an identifier:



shell> curl --dump - http://localhost:8529/_api/collection/10231/properties

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/10231/properties

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "statusString" : "loaded", 
  "name" : "products", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 0 
  }, 
  "type" : 2, 
  "indexBuckets" : 8, 
  "globallyUniqueId" : "h407686C16EDC/10231", 
  "doCompact" : true, 
  "waitForSync" : true, 
  "id" : "10231", 
  "isSystem" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false 
}





shell> curl --dump - http://localhost:8529/_api/collection/10231/properties

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/10231/properties


show response body






Using a name:



shell> curl --dump - http://localhost:8529/_api/collection/products/properties

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/properties

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "statusString" : "loaded", 
  "name" : "products", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 0 
  }, 
  "type" : 2, 
  "indexBuckets" : 8, 
  "globallyUniqueId" : "h407686C16EDC/10236", 
  "doCompact" : true, 
  "waitForSync" : true, 
  "id" : "10236", 
  "isSystem" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false 
}





shell> curl --dump - http://localhost:8529/_api/collection/products/properties

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/properties


show response body







Return number of documents in a collection

 Counts the documents in a collection

GET /_api/collection/{collection-name}/count

Path Parameters


	collection-name (required):
The name of the collection.



In addition to the above, the result also contains the number of documents.
Note that this will always load the collection into memory.


	count: The number of documents inside the collection.



Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples

Requesting the number of documents:



shell> curl --dump - http://localhost:8529/_api/collection/products/count

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/count

{ 
  "code" : 200, 
  "error" : false, 
  "statusString" : "loaded", 
  "name" : "products", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 10205 
  }, 
  "journalSize" : 33554432, 
  "isVolatile" : false, 
  "status" : 3, 
  "count" : 100, 
  "doCompact" : true, 
  "globallyUniqueId" : "h407686C16EDC/9903", 
  "type" : 2, 
  "indexBuckets" : 8, 
  "waitForSync" : true, 
  "id" : "9903", 
  "isSystem" : false 
}





shell> curl --dump - http://localhost:8529/_api/collection/products/count

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/count


show response body







Return statistics for a collection

 Fetch the statistics of a collection

GET /_api/collection/{collection-name}/figures

Path Parameters


	collection-name (required):
The name of the collection.



In addition to the above, the result also contains the number of documents
and additional statistical information about the collection.
Note : This will always load the collection into memory.

Note: collection data that are stored in the write-ahead log only are
not reported in the results. When the write-ahead log is collected, documents
might be added to journals and datafiles of the collection, which may modify
the figures of the collection.

Additionally, the filesizes of collection and index parameter JSON files are
not reported. These files should normally have a size of a few bytes
each. Please also note that the fileSize values are reported in bytes
and reflect the logical file sizes. Some filesystems may use optimisations
(e.g. sparse files) so that the actual physical file size is somewhat
different. Directories and sub-directories may also require space in the
file system, but this space is not reported in the fileSize results.

That means that the figures reported do not reflect the actual disk
usage of the collection with 100% accuracy. The actual disk usage of
a collection is normally slightly higher than the sum of the reported
fileSize values. Still the sum of the fileSize values can still be
used as a lower bound approximation of the disk usage.

HTTP 200

A json document with these Properties is returned:

Returns information about the collection:


	count: The number of documents currently present in the collection.

	journalSize: The maximal size of a journal or datafile in bytes.

	figures:
	datafiles:
	count: The number of datafiles.

	fileSize: The total filesize of datafiles (in bytes).





	uncollectedLogfileEntries: The number of markers in the write-ahead
log for this collection that have not been transferred to journals or datafiles.

	documentReferences: The number of references to documents in datafiles that JavaScript code 
currently holds. This information can be used for debugging compaction and 
unload issues.

	compactionStatus:
	message: The action that was performed when the compaction was last run for the collection. 
This information can be used for debugging compaction issues.

	time: The point in time the compaction for the collection was last executed. 
This information can be used for debugging compaction issues.





	compactors:
	count: The number of compactor files.

	fileSize: The total filesize of all compactor files (in bytes).





	dead:
	count: The number of dead documents. This includes document
versions that have been deleted or replaced by a newer version. Documents
deleted or replaced that are contained the write-ahead log only are not reported
in this figure.

	deletion: The total number of deletion markers. Deletion markers
only contained in the write-ahead log are not reporting in this figure.

	size: The total size in bytes used by all dead documents.





	indexes:
	count: The total number of indexes defined for the collection, including the pre-defined
indexes (e.g. primary index).

	size: The total memory allocated for indexes in bytes.





	readcache:
	count: The number of revisions of this collection stored in the document revisions cache.

	size: The memory used for storing the revisions of this collection in the document 
revisions cache (in bytes). This figure does not include the document data but 
only mappings from document revision ids to cache entry locations.





	waitingFor: An optional string value that contains information about which object type is at the 
head of the collection's cleanup queue. This information can be used for debugging 
compaction and unload issues.

	alive:
	count: The number of currently active documents in all datafiles
and journals of the collection. Documents that are contained in the
write-ahead log only are not reported in this figure.

	size: The total size in bytes used by all active documents of
the collection. Documents that are contained in the write-ahead log only are
not reported in this figure.





	lastTick: The tick of the last marker that was stored in a journal
of the collection. This might be 0 if the collection does not yet have
a journal.

	journals:
	count: The number of journal files.

	fileSize: The total filesize of all journal files (in bytes).





	revisions:
	count: The number of revisions of this collection managed by the storage engine.

	size: The memory used for storing the revisions of this collection in the storage 
engine (in bytes). This figure does not include the document data but only mappings 
from document revision ids to storage engine datafile positions.











Return Codes


	200:
Returns information about the collection:



Response Body


	count: The number of documents currently present in the collection.

	journalSize: The maximal size of a journal or datafile in bytes.

	figures:


	datafiles:
	count: The number of datafiles.

	fileSize: The total filesize of datafiles (in bytes).





	uncollectedLogfileEntries: The number of markers in the write-ahead
log for this collection that have not been transferred to journals or datafiles.

	lastTick: The tick of the last marker that was stored in a journal
of the collection. This might be 0 if the collection does not yet have
a journal.

	compactionStatus:
	message: The action that was performed when the compaction was last run for the collection. 
This information can be used for debugging compaction issues.

	time: The point in time the compaction for the collection was last executed. 
This information can be used for debugging compaction issues.





	dead:
	count: The number of dead documents. This includes document
versions that have been deleted or replaced by a newer version. Documents
deleted or replaced that are contained the write-ahead log only are not reported
in this figure.

	deletion: The total number of deletion markers. Deletion markers
only contained in the write-ahead log are not reporting in this figure.

	size: The total size in bytes used by all dead documents.





	compactors:
	count: The number of compactor files.

	fileSize: The total filesize of all compactor files (in bytes).





	readcache:
	count: The number of revisions of this collection stored in the document revisions cache.

	size: The memory used for storing the revisions of this collection in the document 
revisions cache (in bytes). This figure does not include the document data but 
only mappings from document revision ids to cache entry locations.





	waitingFor: An optional string value that contains information about which object type is at the 
head of the collection's cleanup queue. This information can be used for debugging 
compaction and unload issues.

	alive:
	count: The number of currently active documents in all datafiles
and journals of the collection. Documents that are contained in the
write-ahead log only are not reported in this figure.

	size: The total size in bytes used by all active documents of
the collection. Documents that are contained in the write-ahead log only are
not reported in this figure.





	documentReferences: The number of references to documents in datafiles that JavaScript code 
currently holds. This information can be used for debugging compaction and 
unload issues.

	indexes:
	count: The total number of indexes defined for the collection, including the pre-defined
indexes (e.g. primary index).

	size: The total memory allocated for indexes in bytes.





	journals:
	count: The number of journal files.

	fileSize: The total filesize of all journal files (in bytes).





	revisions:
	count: The number of revisions of this collection managed by the storage engine.

	size: The memory used for storing the revisions of this collection in the storage 
engine (in bytes). This figure does not include the document data but only mappings 
from document revision ids to storage engine datafile positions.









	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples

Using an identifier and requesting the figures of the collection:



shell> curl --dump - http://localhost:8529/_api/collection/products/figures

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/figures

{ 
  "code" : 200, 
  "error" : false, 
  "statusString" : "loaded", 
  "name" : "products", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 10214 
  }, 
  "journalSize" : 33554432, 
  "isVolatile" : false, 
  "isSystem" : false, 
  "status" : 3, 
  "count" : 1, 
  "figures" : { 
    "indexes" : { 
      "count" : 1, 
      "size" : 32128 
    }, 
    "documentReferences" : 1, 
    "waitingFor" : "document-reference", 
    "alive" : { 
      "count" : 0, 
      "size" : 0 
    }, 
    "dead" : { 
      "count" : 0, 
      "size" : 0, 
      "deletion" : 0 
    }, 
    "compactionStatus" : { 
      "message" : "skipped compaction because collection has no datafiles", 
      "time" : "2019-01-17T16:41:30Z", 
      "count" : 0, 
      "filesCombined" : 0, 
      "bytesRead" : 0, 
      "bytesWritten" : 0 
    }, 
    "datafiles" : { 
      "count" : 0, 
      "fileSize" : 0 
    }, 
    "journals" : { 
      "count" : 1, 
      "fileSize" : 33554432 
    }, 
    "compactors" : { 
      "count" : 0, 
      "fileSize" : 0 
    }, 
    "revisions" : { 
      "count" : 1, 
      "size" : 48192 
    }, 
    "lastTick" : 10216, 
    "uncollectedLogfileEntries" : 1 
  }, 
  "doCompact" : true, 
  "globallyUniqueId" : "h407686C16EDC/10210", 
  "type" : 2, 
  "indexBuckets" : 8, 
  "waitForSync" : false, 
  "id" : "10210" 
}





shell> curl --dump - http://localhost:8529/_api/collection/products/figures

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/figures


show response body







Return collection revision id

 Retrieve the collections revision id

GET /_api/collection/{collection-name}/revision

Path Parameters


	collection-name (required):
The name of the collection.



In addition to the above, the result will also contain the
collection's revision id. The revision id is a server-generated
string that clients can use to check whether data in a collection
has changed since the last revision check.


	revision: The collection revision id as a string.



Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples

Retrieving the revision of a collection



shell> curl --dump - http://localhost:8529/_api/collection/products/revision

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/revision

{ 
  "code" : 200, 
  "error" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false, 
  "isSystem" : false, 
  "waitForSync" : false, 
  "id" : "10241", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 0 
  }, 
  "revision" : "0", 
  "indexBuckets" : 8, 
  "type" : 2, 
  "statusString" : "loaded", 
  "name" : "products", 
  "globallyUniqueId" : "h407686C16EDC/10241", 
  "doCompact" : true, 
  "status" : 3 
}





shell> curl --dump - http://localhost:8529/_api/collection/products/revision

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/revision


show response body







Return checksum for the collection

 returns a checksum for the specified collection

GET /_api/collection/{collection-name}/checksum

Path Parameters


	collection-name (required):
The name of the collection.



Query Parameters


	withRevisions (optional):
Whether or not to include document revision ids in the checksum calculation.



	withData (optional):
Whether or not to include document body data in the checksum calculation.





Will calculate a checksum of the meta-data (keys and optionally revision ids) and
optionally the document data in the collection.

The checksum can be used to compare if two collections on different ArangoDB
instances contain the same contents. The current revision of the collection is
returned too so one can make sure the checksums are calculated for the same
state of data.

By default, the checksum will only be calculated on the _key system attribute
of the documents contained in the collection. For edge collections, the system
attributes _from and _to will also be included in the calculation.

By setting the optional query parameter withRevisions to true, then revision
ids (_rev system attributes) are included in the checksumming.

By providing the optional query parameter withData with a value of true,
the user-defined document attributes will be included in the calculation too.
Note: Including user-defined attributes will make the checksumming slower.

The response is a JSON object with the following attributes:


	checksum: The calculated checksum as a number.



	revision: The collection revision id as a string.





Note: this method is not available in a cluster.

Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples

Retrieving the checksum of a collection:



shell> curl --dump - http://localhost:8529/_api/collection/products/checksum

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/checksum

{ 
  "code" : 200, 
  "error" : false, 
  "globallyUniqueId" : "h407686C16EDC/9885", 
  "isSystem" : false, 
  "revision" : "_YDwuV5y--_", 
  "type" : 2, 
  "checksum" : "11259106965733238612", 
  "id" : "9885", 
  "name" : "products", 
  "status" : 3 
}





shell> curl --dump - http://localhost:8529/_api/collection/products/checksum

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/checksum


show response body






Retrieving the checksum of a collection including the collection data,
but not the revisions:



shell> curl --dump - http://localhost:8529/_api/collection/products/checksum?withRevisions=false&withData=true

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/checksum

{ 
  "code" : 200, 
  "error" : false, 
  "globallyUniqueId" : "h407686C16EDC/9894", 
  "isSystem" : false, 
  "revision" : "_YDwuV7C--_", 
  "type" : 2, 
  "checksum" : "12001662690719586452", 
  "id" : "9894", 
  "name" : "products", 
  "status" : 3 
}





shell> curl --dump - http://localhost:8529/_api/collection/products/checksum?withRevisions=false&withData=true

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/checksum


show response body







reads all collections

 returns all collections

GET /_api/collection

Query Parameters


	excludeSystem (optional):
Whether or not system collections should be excluded from the result.



Returns an object with an attribute collections containing an
array of all collection descriptions. The same information is also
available in the names as an object with the collection names
as keys.

By providing the optional query parameter excludeSystem with a value of
true, all system collections will be excluded from the response.

Return Codes


	200:
The list of collections



Examples

Return information about all collections:



shell> curl --dump - http://localhost:8529/_api/collection

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : [ 
    { 
      "id" : "28", 
      "name" : "_statisticsRaw", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_statisticsRaw" 
    }, 
    { 
      "id" : "62", 
      "name" : "_appbundles", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_appbundles" 
    }, 
    { 
      "id" : "26", 
      "name" : "_aqlfunctions", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_aqlfunctions" 
    }, 
    { 
      "id" : "13", 
      "name" : "_routing", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_routing" 
    }, 
    { 
      "id" : "98", 
      "name" : "animals", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : false, 
      "globallyUniqueId" : "h407686C16EDC/98" 
    }, 
    { 
      "id" : "6", 
      "name" : "_users", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_users" 
    }, 
    { 
      "id" : "57", 
      "name" : "_apps", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_apps" 
    }, 
    { 
      "id" : "33", 
      "name" : "_statistics", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_statistics" 
    }, 
    { 
      "id" : "2", 
      "name" : "_graphs", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_graphs" 
    }, 
    { 
      "id" : "39", 
      "name" : "_statistics15", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_statistics15" 
    }, 
    { 
      "id" : "44", 
      "name" : "_frontend", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_frontend" 
    }, 
    { 
      "id" : "46", 
      "name" : "_queues", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_queues" 
    }, 
    { 
      "id" : "11", 
      "name" : "_modules", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_modules" 
    }, 
    { 
      "id" : "48", 
      "name" : "_jobs", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : true, 
      "globallyUniqueId" : "_jobs" 
    }, 
    { 
      "id" : "92", 
      "name" : "demo", 
      "status" : 3, 
      "type" : 2, 
      "isSystem" : false, 
      "globallyUniqueId" : "h407686C16EDC/92" 
    } 
  ] 
}





shell> curl --dump - http://localhost:8529/_api/collection

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Modifying

        
            Modifying a Collection


Load collection

 loads a collection

PUT /_api/collection/{collection-name}/load

Path Parameters


	collection-name (required):
The name of the collection.



Loads a collection into memory. Returns the collection on success.

The request body object might optionally contain the following attribute:


	count: If set, this controls whether the return value should include
the number of documents in the collection. Setting count to
false may speed up loading a collection. The default value for
count is true.



On success an object with the following attributes is returned:


	id: The identifier of the collection.



	name: The name of the collection.



	count: The number of documents inside the collection. This is only
returned if the count input parameters is set to true or has
not been specified.



	status: The status of the collection as number.



	type: The collection type. Valid types are:


	2: document collection

	3: edges collection





	isSystem: If true then the collection is a system collection.





Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples



shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/load

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/load

{ 
  "code" : 200, 
  "error" : false, 
  "type" : 2, 
  "globallyUniqueId" : "h407686C16EDC/10247", 
  "count" : 0, 
  "status" : 3, 
  "id" : "10247", 
  "isSystem" : false, 
  "name" : "products" 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/load

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/load


show response body







Unload collection

 unloads a collection

PUT /_api/collection/{collection-name}/unload

Path Parameters


	collection-name (required):



Removes a collection from memory. This call does not delete any documents.
You can use the collection afterwards; in which case it will be loaded into
memory, again. On success an object with the following attributes is
returned:


	id: The identifier of the collection.



	name: The name of the collection.



	status: The status of the collection as number.



	type: The collection type. Valid types are:


	2: document collection

	3: edges collection





	isSystem: If true then the collection is a system collection.





Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples



shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/unload

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/unload

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 4, 
  "name" : "products", 
  "type" : 2, 
  "globallyUniqueId" : "h407686C16EDC/10276", 
  "isSystem" : false, 
  "id" : "10276" 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/unload

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/unload


show response body







Load Indexes into Memory

 Load Indexes into Memory

PUT /_api/collection/{collection-name}/loadIndexesIntoMemory

Path Parameters


	collection-name (required):



This route tries to cache all index entries
of this collection into the main memory.
Therefore it iterates over all indexes of the collection
and stores the indexed values, not the entire document data,
in memory.
All lookups that could be found in the cache are much faster
than lookups not stored in the cache so you get a nice performance boost.
It is also guaranteed that the cache is consistent with the stored data.

For the time being this function is only useful on RocksDB storage engine,
as in MMFiles engine all indexes are in memory anyways.

On RocksDB this function honors all memory limits, if the indexes you want
to load are smaller than your memory limit this function guarantees that most
index values are cached.
If the index is larger than your memory limit this function will fill up values
up to this limit and for the time being there is no way to control which indexes
of the collection should have priority over others.

On sucess this function returns an object with attribute result set to true

Return Codes


	200:
If the indexes have all been loaded



	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples



shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/loadIndexesIntoMemory

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/loadIndexesIntoMemory

{ 
  "code" : 200, 
  "error" : false, 
  "result" : true 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/collection/products/loadIndexesIntoMemory

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/loadIndexesIntoMemory


show response body







Change properties of a collection

 changes a collection

PUT /_api/collection/{collection-name}/properties

Path Parameters


	collection-name (required):
The name of the collection.



Changes the properties of a collection. Expects an object with the
attribute(s)


	waitForSync: If true then creating or changing a
document will wait until the data has been synchronized to disk.



	journalSize: The maximal size of a journal or datafile in bytes. 
The value must be at least 1048576 (1 MB). Note that when
changing the journalSize value, it will only have an effect for
additional journals or datafiles that are created. Already
existing journals or datafiles will not be affected.





On success an object with the following attributes is returned:


	id: The identifier of the collection.



	name: The name of the collection.



	waitForSync: The new value.



	journalSize: The new value.



	status: The status of the collection as number.



	type: The collection type. Valid types are:


	2: document collection

	3: edges collection





	isSystem: If true then the collection is a system collection.



	isVolatile: If true then the collection data will be
kept in memory only and ArangoDB will not write or sync the data
to disk.



	doCompact: Whether or not the collection will be compacted.



	keyOptions: JSON object which contains key generation options:


	type: specifies the type of the key generator. The currently
available generators are traditional and autoincrement.

	allowUserKeys: if set to true, then it is allowed to supply
own key values in the _key attribute of a document. If set to
false, then the key generator is solely responsible for
generating keys and supplying own key values in the _key attribute
of documents is considered an error.







Note: except for waitForSync, journalSize and name, collection
properties cannot be changed once a collection is created. To rename
a collection, the rename endpoint must be used.

Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products/properties <<EOF
{ 
  "waitForSync" : true 
}
EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/properties

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "statusString" : "loaded", 
  "name" : "products", 
  "keyOptions" : { 
    "type" : "traditional", 
    "allowUserKeys" : true, 
    "lastValue" : 0 
  }, 
  "type" : 2, 
  "indexBuckets" : 8, 
  "globallyUniqueId" : "h407686C16EDC/10258", 
  "doCompact" : true, 
  "waitForSync" : true, 
  "id" : "10258", 
  "isSystem" : false, 
  "journalSize" : 33554432, 
  "isVolatile" : false 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products/properties <<EOF
{ 
  "waitForSync" : true 
}
EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/properties


show response body







Rename collection

 renames a collection

PUT /_api/collection/{collection-name}/rename

Path Parameters


	collection-name (required):
The name of the collection to rename.



Renames a collection. Expects an object with the attribute(s)


	name: The new name.



It returns an object with the attributes


	id: The identifier of the collection.



	name: The new name of the collection.



	status: The status of the collection as number.



	type: The collection type. Valid types are:


	2: document collection

	3: edges collection





	isSystem: If true then the collection is a system collection.





If renaming the collection succeeds, then the collection is also renamed in 
all graph definitions inside the _graphs collection in the current database.

Note: this method is not available in a cluster.

Return Codes


	400:
If the collection-name is missing, then a HTTP 400 is
returned.



	404:
If the collection-name is unknown, then a HTTP 404
is returned.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products1/rename <<EOF
{ 
  "name" : "newname" 
}
EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products1/rename

{ 
  "code" : 200, 
  "error" : false, 
  "status" : 3, 
  "name" : "newname", 
  "type" : 2, 
  "globallyUniqueId" : "h407686C16EDC/10265", 
  "isSystem" : false, 
  "id" : "10265" 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products1/rename <<EOF
{ 
  "name" : "newname" 
}
EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products1/rename


show response body







Rotate journal of a collection

 rotates the journal of a collection

PUT /_api/collection/{collection-name}/rotate

Path Parameters


	collection-name (required):
The name of the collection.



Rotates the journal of a collection. The current journal of the collection will be closed
and made a read-only datafile. The purpose of the rotate method is to make the data in
the file available for compaction (compaction is only performed for read-only datafiles, and
not for journals).

Saving new data in the collection subsequently will create a new journal file
automatically if there is no current journal.

It returns an object with the attributes


	result: will be true if rotation succeeded



Note: this method is specific for the MMFiles storage engine, and there
it is not available in a cluster.

Return Codes


	400:
If the collection currently has no journal, HTTP 400 is returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Rotating the journal:



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products/rotate <<EOF
{ 
}
EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/rotate

{ 
  "code" : 200, 
  "error" : false, 
  "result" : true 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products/rotate <<EOF
{ 
}
EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
location: /_api/collection/products/rotate


show response body






Rotating if no journal exists:



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products/rotate <<EOF
{ 
}
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "no journal", 
  "code" : 400, 
  "errorNum" : 1105 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/collection/products/rotate <<EOF
{ 
}
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Documents

        
            HTTP Interface for Documents

In this chapter we describe the REST API of ArangoDB for documents.


	Basic approach

	Detailed API description




        

    



        
    



        

    
        Basics and Terminology

        
            Basics and Terminology

Documents, Keys, Handles and Revisions

Documents in ArangoDB are JSON objects. These objects can be nested (to
any depth) and may contain lists. Each document has a unique 
primary key which 
identifies it within its collection. Furthermore, each document is 
uniquely identified
by its document handle 
across all collections in the same database. Different revisions of
the same document (identified by its handle) can be distinguished by their 
document revision.
Any transaction only ever sees a single revision of a document.

Here is an example document:

{
  "_id" : "myusers/3456789",
  "_key" : "3456789",
  "_rev" : "14253647",
  "firstName" : "John",
  "lastName" : "Doe",
  "address" : {
    "street" : "Road To Nowhere 1",
    "city" : "Gotham"
  },
  "hobbies" : [
    {name: "swimming", howFavorite: 10},
    {name: "biking", howFavorite: 6},
    {name: "programming", howFavorite: 4}
  ]
}


All documents contain special attributes: the 
document handle is stored
as a string in _id, the
document's primary key in 
_key and the 
document revision in
_rev. The value of the _key attribute can be specified by the user when
creating a document. _id and _key values are immutable once the document
has been created. The _rev value is maintained by ArangoDB automatically.

Document Handle

A document handle uniquely identifies a document in the database. It
is a string and consists of the collection's name and the document key
(_key attribute) separated by /.

Document Key

A document key uniquely identifies a document in the collection it is
stored in. It can and should be used by clients when specific documents
are queried. The document key is stored in the _key attribute of
each document. The key values are automatically indexed by ArangoDB in
a collection's primary index. Thus looking up a document by its
key is a fast operation. The _key value of a document is
immutable once the document has been created. By default, ArangoDB will
auto-generate a document key if no _key attribute is specified, and use
the user-specified _key otherwise.

This behavior can be changed on a per-collection level by creating
collections with the keyOptions attribute.

Using keyOptions it is possible to disallow user-specified keys
completely, or to force a specific regime for auto-generating the _key
values.

Document Revision

As ArangoDB supports MVCC (Multiple Version Concurrency Control),
documents can exist in more than one
revision. The document revision is the MVCC token used to specify 
a particular revision of a document (identified by its _id). 
It is a string value currently
containing an integer number and is unique within the list of document
revisions for a single document. Document revisions can be used to
conditionally query, update, replace or delete documents in the database. In
order to find a particular revision of a document, you need the document
handle or key, and the document revision.

ArangoDB uses 64bit unsigned integer values to maintain
document revisions internally. When returning document revisions to
clients, ArangoDB will put them into a string to ensure the revision
is not clipped by clients that do not support big integers. Clients
should treat the revision returned by ArangoDB as an opaque string
when they store or use it locally. This will allow ArangoDB to change
the format of revisions later if this should be required. Clients can
use revisions to perform simple equality/non-equality comparisons
(e.g. to check whether a document has changed or not), but they should
not use revision ids to perform greater/less than comparisons with them
to check if a document revision is older than one another, even if this
might work for some cases.

Document Etag

ArangoDB tries to adhere to the existing HTTP standard as far as
possible. To this end, results of single document queries have the HTTP
header Etag set to the document revision enclosed in double quotes.

The basic operations (create, read, exists, replace, update, delete)
for documents are mapped to the standard HTTP methods (POST, GET,
HEAD, PUT, PATCH and DELETE).

If you modify a document, you can use the If-Match field to detect conflicts. 
The revision of a document can be checking using the HTTP method HEAD.

Multiple Documents in a single Request

Beginning with ArangoDB 3.0 the basic document API has been extended
to handle not only single documents but multiple documents in a single
request. This is crucial for performance, in particular in the cluster
situation, in which a single request can involve multiple network hops
within the cluster. Another advantage is that it reduces the overhead of
the HTTP protocol and individual network round trips between the client
and the server. The general idea to perform multiple document operations 
in a single request is to use a JSON array of objects in the place of a 
single document. As a consequence, document keys, handles and revisions
for preconditions have to be supplied embedded in the individual documents
given. Multiple document operations are restricted to a single document
or edge collections. 
See the API descriptions for details.

Note that the GET, HEAD and DELETE HTTP operations generally do
not allow to pass a message body. Thus, they cannot be used to perform
multiple document operations in one request. However, there are other
endpoints to request and delete multiple documents in one request.
FIXME: ADD SENSIBLE LINKS HERE.

URI of a Document

Any document can be retrieved using its unique URI:

http://server:port/_api/document/<document-handle>

For example, assuming that the document handle
is demo/362549736, then the URL of that document
is:

http://localhost:8529/_api/document/demo/362549736

The above URL schema does not specify a 
database name 
explicitly, so the 
default database _system will be used. 
To explicitly specify the database context, use
the following URL schema:

http://server:port/_db/<database-name>/_api/document/<document-handle>

Example:

http://localhost:8529/_db/mydb/_api/document/demo/362549736

Note: The following examples use the short URL format for brevity.

The document revision 
is returned in the "Etag" HTTP header when requesting a document.

If you obtain a document using GET and you want to check whether a 
newer revision
is available, then you can use the If-None-Match header. If the document is
unchanged, a HTTP 412 (precondition failed) error is returned.

If you want to query, replace, update or delete a document, then you
can use the If-Match header. If the document has changed, then the
operation is aborted and an HTTP 412 error is returned.


        

    



        
    



        

    
        Working with Documents

        
            Working with Documents using REST


Read document

 reads a single document

GET /_api/document/{document-handle}

Path Parameters


	document-handle (required):
The handle of the document.



Header Parameters


	If-None-Match (optional):
If the "If-None-Match" header is given, then it must contain exactly one
Etag. The document is returned, if it has a different revision than the
given Etag. Otherwise an HTTP 304 is returned.



	If-Match (optional):
If the "If-Match" header is given, then it must contain exactly one
Etag. The document is returned, if it has the same revision as the
given Etag. Otherwise a HTTP 412 is returned.





Returns the document identified by document-handle. The returned
document contains three special attributes: _id containing the document
handle, _key containing key which uniquely identifies a document
in a given collection and _rev containing the revision.

Return Codes


	200:
is returned if the document was found



	304:
is returned if the "If-None-Match" header is given and the document has
the same version



	404:
is returned if the document or collection was not found



	412:
is returned if an "If-Match" header is given and the found
document has a different version. The response will also contain the found
document's current revision in the _rev attribute. Additionally, the
attributes _id and _key will be returned.





Examples

Use a document handle:



shell> curl --dump - http://localhost:8529/_api/document/products/10691

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYuW--_"

{ 
  "_key" : "10691", 
  "_id" : "products/10691", 
  "_rev" : "_YDwuYuW--_", 
  "hello" : "world" 
}





shell> curl --dump - http://localhost:8529/_api/document/products/10691

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYuW--_"


show response body






Use a document handle and an Etag:



shell> curl --header 'If-None-Match: "_YDwuYyi--_"' --dump - http://localhost:8529/_api/document/products/10739








Unknown document handle:



shell> curl --dump - http://localhost:8529/_api/document/products/unknownhandle

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "collection not found: products", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl --dump - http://localhost:8529/_api/document/products/unknownhandle

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Changes in 3.0 from 2.8:

The rev query parameter has been withdrawn. The same effect can be
achieved with the If-Match HTTP header.


Read document header

 reads a single document head

HEAD /_api/document/{document-handle}

Path Parameters


	document-handle (required):
The handle of the document.



Header Parameters


	If-None-Match (optional):
If the "If-None-Match" header is given, then it must contain exactly one
Etag. If the current document revision is not equal to the specified Etag,
an HTTP 200 response is returned. If the current document revision is
identical to the specified Etag, then an HTTP 304 is returned.



	If-Match (optional):
If the "If-Match" header is given, then it must contain exactly one
Etag. The document is returned, if it has the same revision as the
given Etag. Otherwise a HTTP 412 is returned.





Like GET, but only returns the header fields and not the body. You
can use this call to get the current revision of a document or check if
the document was deleted.

Return Codes


	200:
is returned if the document was found



	304:
is returned if the "If-None-Match" header is given and the document has
the same version



	404:
is returned if the document or collection was not found



	412:
is returned if an "If-Match" header is given and the found
document has a different version. The response will also contain the found
document's current revision in the Etag header.





Examples



shell> curl -X HEAD --dump - http://localhost:8529/_api/document/products/10730








Changes in 3.0 from 2.8:

The rev query parameter has been withdrawn. The same effect can be
achieved with the If-Match HTTP header.


Read all documents

 reads all documents from collection

PUT /_api/simple/all-keys

Query Parameters


	collection (optional):
The name of the collection.
This parameter is only for an easier migration path from old versions.
In ArangoDB versions < 3.0, the URL path was /_api/document and
this was passed in via the query parameter "collection".
This combination was removed. The collection name can be passed to
/_api/simple/all-keys as body parameter (preferred) or as query parameter.



A JSON object with these properties is required:


	type: The type of the result. The following values are allowed:
	id: returns an array of document ids (_id attributes)

	key: returns an array of document keys (_key attributes)

	path: returns an array of document URI paths. This is the default.





	collection: The collection that should be queried



Returns an array of all keys, ids, or URI paths for all documents in the
collection identified by collection. The type of the result array is
determined by the type attribute.

Note that the results have no defined order and thus the order should
not be relied on.

Return Codes


	201:
All went well.



	404:
The collection does not exist.





Examples

Return all document paths



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all-keys <<EOF
{ 
  "collection" : "products" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    "/_db/_system/_api/document/products/10722", 
    "/_db/_system/_api/document/products/10715", 
    "/_db/_system/_api/document/products/10719" 
  ], 
  "hasMore" : false, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 3, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00015616416931152344 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all-keys <<EOF
{ 
  "collection" : "products" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Return all document keys



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all-keys <<EOF
{ 
  "collection" : "products", 
  "type" : "id" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    "products/10704", 
    "products/10707", 
    "products/10700" 
  ], 
  "hasMore" : false, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 3, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.0001392364501953125 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all-keys <<EOF
{ 
  "collection" : "products", 
  "type" : "id" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Collection does not exist



shell> curl --dump - http://localhost:8529/_api/document/doesnotexist

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "expecting GET /_api/document/<document-handle>", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl --dump - http://localhost:8529/_api/document/doesnotexist

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Changes in 3.0 from 2.8:

The collection name should now be specified in the URL path. The old
way with the URL path /_api/document and the required query parameter
collection still works.


Create document

 creates documents

POST /_api/document/{collection}

Path Parameters


	collection (required):
The collection in which the collection is to be created.



Request Body (required)

A JSON representation of a single document or of an array of documents.

Query Parameters


	collection (optional):
The name of the collection. This is only for backward compatibility.
In ArangoDB versions < 3.0, the URL path was /_api/document and
this query parameter was required. This combination still works, but
the recommended way is to specify the collection in the URL path.



	waitForSync (optional):
Wait until document has been synced to disk.



	returnNew (optional):
Additionally return the complete new document under the attribute new
in the result.



	silent (optional):
If set to true, an empty object will be returned as response. No meta-data 
will be returned for the created document. This option can be used to
save some network traffic.





Creates a new document from the document given in the body, unless there
is already a document with the _key given. If no _key is given, a new
unique _key is generated automatically.

The body can be an array of documents, in which case all
documents in the array are inserted with the same semantics as for a
single document. The result body will contain a JSON array of the
same length as the input array, and each entry contains the result
of the operation for the corresponding input. In case of an error
the entry is a document with attributes error set to true and
errorCode set to the error code that has happened.

Possibly given _id and _rev attributes in the body are always ignored,
the URL part or the query parameter collection respectively counts.

If the document was created successfully, then the Location header
contains the path to the newly created document. The Etag header field
contains the revision of the document. Both are only set in the single
document case.

If silent is not set to true, the body of the response contains a 
JSON object (single document case) with the following attributes:


	_id contains the document handle of the newly created document

	_key contains the document key

	_rev contains the document revision



In the multi case the body is an array of such objects.

If the collection parameter waitForSync is false, then the call
returns as soon as the document has been accepted. It will not wait
until the documents have been synced to disk.

Optionally, the query parameter waitForSync can be used to force
synchronization of the document creation operation to disk even in
case that the waitForSync flag had been disabled for the entire
collection. Thus, the waitForSync query parameter can be used to
force synchronization of just this specific operations. To use this,
set the waitForSync parameter to true. If the waitForSync
parameter is not specified or set to false, then the collection's
default waitForSync behavior is applied. The waitForSync query
parameter cannot be used to disable synchronization for collections
that have a default waitForSync value of true.

If the query parameter returnNew is true, then, for each
generated document, the complete new document is returned under
the new attribute in the result.

Return Codes


	201:
is returned if the documents were created successfully and
waitForSync was true.



	202:
is returned if the documents were created successfully and
waitForSync was false.



	400:
is returned if the body does not contain a valid JSON representation
of one document or an array of documents. The response body contains
an error document in this case.



	404:
is returned if the collection specified by collection is unknown.
The response body contains an error document in this case.



	409:
is returned in the single document case if a document with the
same qualifiers in an indexed attribute conflicts with an already
existing document and thus violates that unique constraint. The
response body contains an error document in this case. In the array
case only 201 or 202 is returned, but if an error occurred, the
additional HTTP header X-Arango-Error-Codes is set, which
contains a map of the error codes that occurred together with their
multiplicities, as in: 1205:10,1210:17 which means that in 10
cases the error 1205 "illegal document handle" and in 17 cases the
error 1210 "unique constraint violated" has happened.





Examples

Create a document in a collection named products. Note that the
revision identifier might or might not by equal to the auto-generated
key.



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYo6--_"
location: /_db/_system/_api/document/products/10653

{ 
  "_id" : "products/10653", 
  "_key" : "10653", 
  "_rev" : "_YDwuYo6--_" 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYo6--_"
location: /_db/_system/_api/document/products/10653


show response body






Create a document in a collection named products with a collection-level
waitForSync value of false.



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYmu--_"
location: /_db/_system/_api/document/products/10641

{ 
  "_id" : "products/10641", 
  "_key" : "10641", 
  "_rev" : "_YDwuYmu--_" 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYmu--_"
location: /_db/_system/_api/document/products/10641


show response body






Create a document in a collection with a collection-level waitForSync
value of false, but using the waitForSync query parameter.



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products?waitForSync=true <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYsq--_"
location: /_db/_system/_api/document/products/10683

{ 
  "_id" : "products/10683", 
  "_key" : "10683", 
  "_rev" : "_YDwuYsq--_" 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products?waitForSync=true <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYsq--_"
location: /_db/_system/_api/document/products/10683


show response body






Unknown collection name



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "collection not found: products", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ "Hello": "World" }
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Illegal document



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ 1: "World" }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "VPackError error: Expecting '\"' or '}'", 
  "code" : 400, 
  "errorNum" : 600 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
{ 1: "World" }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Insert multiple documents:



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products <<EOF
[{"Hello":"Earth"}, {"Hello":"Venus"}, {"Hello":"Mars"}]
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  { 
    "_id" : "products/10661", 
    "_key" : "10661", 
    "_rev" : "_YDwuYqe--_" 
  }, 
  { 
    "_id" : "products/10665", 
    "_key" : "10665", 
    "_rev" : "_YDwuYqe--B" 
  }, 
  { 
    "_id" : "products/10667", 
    "_key" : "10667", 
    "_rev" : "_YDwuYqe--D" 
  } 
]







Use of returnNew:



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products?returnNew=true <<EOF
{"Hello":"World"}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYre--_"
location: /_db/_system/_api/document/products/10675

{ 
  "_id" : "products/10675", 
  "_key" : "10675", 
  "_rev" : "_YDwuYre--_", 
  "new" : { 
    "_key" : "10675", 
    "_id" : "products/10675", 
    "_rev" : "_YDwuYre--_", 
    "Hello" : "World" 
  } 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/document/products?returnNew=true <<EOF
{"Hello":"World"}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYre--_"
location: /_db/_system/_api/document/products/10675


show response body






Changes in 3.0 from 2.8:

The collection name should now be specified in the URL path. The old
way with the URL path /_api/document and the required query parameter
collection still works. The possibility to insert multiple documents
with one operation is new and the query parameter returnNew has been added.


Replace document

 replaces a document

PUT /_api/document/{document-handle}

Request Body (required)

A JSON representation of a single document.

Path Parameters


	document-handle (required):
This URL parameter must be a document handle.



Query Parameters


	waitForSync (optional):
Wait until document has been synced to disk.



	ignoreRevs (optional):
By default, or if this is set to true, the _rev attributes in 
the given document is ignored. If this is set to false, then
the _rev attribute given in the body document is taken as a
precondition. The document is only replaced if the current revision
is the one specified.



	returnOld (optional):
Return additionally the complete previous revision of the changed 
document under the attribute old in the result.



	returnNew (optional):
Return additionally the complete new document under the attribute new
in the result.



	silent (optional):
If set to true, an empty object will be returned as response. No meta-data 
will be returned for the replaced document. This option can be used to
save some network traffic.





Header Parameters


	If-Match (optional):
You can conditionally replace a document based on a target revision id by
using the if-match HTTP header.



Replaces the document with handle  with the one in
the body, provided there is such a document and no precondition is
violated.

If the If-Match header is specified and the revision of the
document in the database is unequal to the given revision, the
precondition is violated.

If If-Match is not given and ignoreRevs is false and there
is a _rev attribute in the body and its value does not match
the revision of the document in the database, the precondition is
violated.

If a precondition is violated, an HTTP 412 is returned.

If the document exists and can be updated, then an HTTP 201 or
an HTTP 202 is returned (depending on waitForSync, see below),
the Etag header field contains the new revision of the document
and the Location header contains a complete URL under which the
document can be queried.

Optionally, the query parameter waitForSync can be used to force
synchronization of the document replacement operation to disk even in case
that the waitForSync flag had been disabled for the entire collection.
Thus, the waitForSync query parameter can be used to force synchronization
of just specific operations. To use this, set the waitForSync parameter
to true. If the waitForSync parameter is not specified or set to
false, then the collection's default waitForSync behavior is
applied. The waitForSync query parameter cannot be used to disable
synchronization for collections that have a default waitForSync value
of true.

If silent is not set to true, the body of the response contains a JSON 
object with the information about the handle and the revision. The attribute 
_id contains the known document-handle of the updated document, _key 
contains the key which uniquely identifies a document in a given collection, 
and the attribute _rev contains the new document revision.

If the query parameter returnOld is true, then
the complete previous revision of the document
is returned under the old attribute in the result.

If the query parameter returnNew is true, then
the complete new document is returned under
the new attribute in the result.

If the document does not exist, then a HTTP 404 is returned and the
body of the response contains an error document.

Return Codes


	201:
is returned if the document was replaced successfully and
waitForSync was true.



	202:
is returned if the document was replaced successfully and
waitForSync was false.



	400:
is returned if the body does not contain a valid JSON representation
of a document. The response body contains
an error document in this case.



	404:
is returned if the collection or the document was not found.



	412:
is returned if the precondition was violated. The response will
also contain the found documents' current revisions in the _rev
attributes. Additionally, the attributes _id and _key will be
returned.





Examples

Using a document handle



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/document/products/10748 <<EOF
{"Hello": "you"}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYzm--B"
location: /_db/_system/_api/document/products/10748

{ 
  "_id" : "products/10748", 
  "_key" : "10748", 
  "_rev" : "_YDwuYzm--B", 
  "_oldRev" : "_YDwuYzm--_" 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/document/products/10748 <<EOF
{"Hello": "you"}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYzm--B"
location: /_db/_system/_api/document/products/10748


show response body






Unknown document handle



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/document/products/10770 <<EOF
{}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "document not found", 
  "code" : 404, 
  "errorNum" : 1202 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/document/products/10770 <<EOF
{}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Produce a revision conflict



shell> curl -X PUT --header 'If-Match: "_YDwuY0q--B"' --data-binary @- --dump - http://localhost:8529/_api/document/products/10758 <<EOF
{"other":"content"}
EOF

HTTP/1.1 412 Precondition Failed
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuY0q--_"

{ 
  "error" : true, 
  "code" : 412, 
  "errorNum" : 1200, 
  "errorMessage" : "precondition failed", 
  "_id" : "products/10758", 
  "_key" : "10758", 
  "_rev" : "_YDwuY0q--_" 
}





shell> curl -X PUT --header 'If-Match: "_YDwuY0q--B"' --data-binary @- --dump - http://localhost:8529/_api/document/products/10758 <<EOF
{"other":"content"}
EOF

HTTP/1.1 412 Precondition Failed
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuY0q--_"


show response body






Changes in 3.0 from 2.8:

There are quite some changes in this in comparison to Version 2.8, but
few break existing usage:


	the rev query parameter is gone (was duplication of If-Match)

	the policy query parameter is gone (was non-sensical)

	the ignoreRevs query parameter is new, the default true gives 
the traditional behavior as in 2.8

	the returnNew and returnOld query parameters are new



There should be very few changes to behavior happening in real-world
situations or drivers. Essentially, one has to replace usage of the
rev query parameter by usage of the If-Match header. The non-sensical
combination of If-Match given and policy=last no longer works, but can
easily be achieved by leaving out the If-Match header.

The collection name should now be specified in the URL path. The old
way with the URL path /_api/document and the required query parameter
collection still works.


Replace documents

 replaces multiple documents

PUT /_api/document/{collection}

Request Body (required)

A JSON representation of an array of documents.

Path Parameters


	collection (required):
This URL parameter is the name of the collection in which the
documents are replaced.



Query Parameters


	waitForSync (optional):
Wait until the new documents have been synced to disk.



	ignoreRevs (optional):
By default, or if this is set to true, the _rev attributes in 
the given documents are ignored. If this is set to false, then
any _rev attribute given in a body document is taken as a
precondition. The document is only replaced if the current revision
is the one specified.



	returnOld (optional):
Return additionally the complete previous revision of the changed 
documents under the attribute old in the result.



	returnNew (optional):
Return additionally the complete new documents under the attribute new
in the result.





Replaces multiple documents in the specified collection with the
ones in the body, the replaced documents are specified by the _key
attributes in the body documents.

If ignoreRevs is false and there is a _rev attribute in a
document in the body and its value does not match the revision of
the corresponding document in the database, the precondition is
violated.

If the document exists and can be updated, then an HTTP 201 or
an HTTP 202 is returned (depending on waitForSync, see below).

Optionally, the query parameter waitForSync can be used to force
synchronization of the document replacement operation to disk even in case
that the waitForSync flag had been disabled for the entire collection.
Thus, the waitForSync query parameter can be used to force synchronization
of just specific operations. To use this, set the waitForSync parameter
to true. If the waitForSync parameter is not specified or set to
false, then the collection's default waitForSync behavior is
applied. The waitForSync query parameter cannot be used to disable
synchronization for collections that have a default waitForSync value
of true.

The body of the response contains a JSON array of the same length
as the input array with the information about the handle and the
revision of the replaced documents. In each entry, the attribute
_id contains the known document-handle of each updated document,
_key contains the key which uniquely identifies a document in a
given collection, and the attribute _rev contains the new document
revision. In case of an error or violated precondition, an error
object with the attribute error set to true and the attribute
errorCode set to the error code is built.

If the query parameter returnOld is true, then, for each
generated document, the complete previous revision of the document
is returned under the old attribute in the result.

If the query parameter returnNew is true, then, for each
generated document, the complete new document is returned under
the new attribute in the result.

Note that if any precondition is violated or an error occurred with
some of the documents, the return code is still 201 or 202, but
the additional HTTP header X-Arango-Error-Codes is set, which
contains a map of the error codes that occurred together with their
multiplicities, as in: 1200:17,1205:10 which means that in 17
cases the error 1200 "revision conflict" and in 10 cases the error
1205 "illegal document handle" has happened.

Return Codes


	201:
is returned if the documents were replaced successfully and
waitForSync was true.



	202:
is returned if the documents were replaced successfully and
waitForSync was false.



	400:
is returned if the body does not contain a valid JSON representation
of an array of documents. The response body contains
an error document in this case.



	404:
is returned if the collection was not found.





Changes in 3.0 from 2.8:

The multi document version is new in 3.0.


Update document

 updates a document

PATCH /_api/document/{document-handle}

Request Body (required)

A JSON representation of a document update as an object.

Path Parameters


	document-handle (required):
This URL parameter must be a document handle.



Query Parameters


	keepNull (optional):
If the intention is to delete existing attributes with the patch
command, the URL query parameter keepNull can be used with a value
of false. This will modify the behavior of the patch command to
remove any attributes from the existing document that are contained
in the patch document with an attribute value of null.



	mergeObjects (optional):
Controls whether objects (not arrays) will be merged if present in
both the existing and the patch document. If set to false, the
value in the patch document will overwrite the existing document's
value. If set to true, objects will be merged. The default is
true.



	waitForSync (optional):
Wait until document has been synced to disk.



	ignoreRevs (optional):
By default, or if this is set to true, the _rev attributes in 
the given document is ignored. If this is set to false, then
the _rev attribute given in the body document is taken as a
precondition. The document is only updated if the current revision
is the one specified.



	returnOld (optional):
Return additionally the complete previous revision of the changed 
document under the attribute old in the result.



	returnNew (optional):
Return additionally the complete new document under the attribute new
in the result.



	silent (optional):
If set to true, an empty object will be returned as response. No meta-data 
will be returned for the updated document. This option can be used to
save some network traffic.





Header Parameters


	If-Match (optional):
You can conditionally update a document based on a target revision id by
using the if-match HTTP header.



Partially updates the document identified by document-handle.
The body of the request must contain a JSON document with the
attributes to patch (the patch document). All attributes from the
patch document will be added to the existing document if they do not
yet exist, and overwritten in the existing document if they do exist
there.

Setting an attribute value to null in the patch document will cause a
value of null to be saved for the attribute by default.

If the If-Match header is specified and the revision of the
document in the database is unequal to the given revision, the
precondition is violated.

If If-Match is not given and ignoreRevs is false and there
is a _rev attribute in the body and its value does not match
the revision of the document in the database, the precondition is
violated.

If a precondition is violated, an HTTP 412 is returned.

If the document exists and can be updated, then an HTTP 201 or
an HTTP 202 is returned (depending on waitForSync, see below),
the Etag header field contains the new revision of the document
(in double quotes) and the Location header contains a complete URL
under which the document can be queried.

Optionally, the query parameter waitForSync can be used to force
synchronization of the updated document operation to disk even in case
that the waitForSync flag had been disabled for the entire collection.
Thus, the waitForSync query parameter can be used to force synchronization
of just specific operations. To use this, set the waitForSync parameter
to true. If the waitForSync parameter is not specified or set to
false, then the collection's default waitForSync behavior is
applied. The waitForSync query parameter cannot be used to disable
synchronization for collections that have a default waitForSync value
of true.

If silent is not set to true, the body of the response contains a JSON 
object with the information about the handle and the revision. The attribute 
_id contains the known document-handle of the updated document, _key 
contains the key which uniquely identifies a document in a given collection, 
and the attribute _rev contains the new document revision.

If the query parameter returnOld is true, then
the complete previous revision of the document
is returned under the old attribute in the result.

If the query parameter returnNew is true, then
the complete new document is returned under
the new attribute in the result.

If the document does not exist, then a HTTP 404 is returned and the
body of the response contains an error document.

Return Codes


	201:
is returned if the document was updated successfully and
waitForSync was true.



	202:
is returned if the document was updated successfully and
waitForSync was false.



	400:
is returned if the body does not contain a valid JSON representation
of a document. The response body contains
an error document in this case.



	404:
is returned if the collection or the document was not found.



	412:
is returned if the precondition was violated. The response will
also contain the found documents' current revisions in the _rev
attributes. Additionally, the attributes _id and _key will be
returned.





Examples

Patches an existing document with new content.



shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/document/products/10610 <<EOF
{ 
  "hello" : "world" 
}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYkq--B"
location: /_db/_system/_api/document/products/10610

{ 
  "_id" : "products/10610", 
  "_key" : "10610", 
  "_rev" : "_YDwuYkq--B", 
  "_oldRev" : "_YDwuYkq--_" 
}
shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/document/products/10610 <<EOF
{ 
  "numbers" : { 
    "one" : 1, 
    "two" : 2, 
    "three" : 3, 
    "empty" : null 
  } 
}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYku--_"
location: /_db/_system/_api/document/products/10610

{ 
  "_id" : "products/10610", 
  "_key" : "10610", 
  "_rev" : "_YDwuYku--_", 
  "_oldRev" : "_YDwuYkq--B" 
}
shell> curl --dump - http://localhost:8529/_api/document/products/10610

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYku--_"

{ 
  "_key" : "10610", 
  "_id" : "products/10610", 
  "_rev" : "_YDwuYku--_", 
  "one" : "world", 
  "hello" : "world", 
  "numbers" : { 
    "one" : 1, 
    "two" : 2, 
    "three" : 3, 
    "empty" : null 
  } 
}
shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/document/products/10610?keepNull=false <<EOF
{ 
  "hello" : null, 
  "numbers" : { 
    "four" : 4 
  } 
}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYk2--_"
location: /_db/_system/_api/document/products/10610

{ 
  "_id" : "products/10610", 
  "_key" : "10610", 
  "_rev" : "_YDwuYk2--_", 
  "_oldRev" : "_YDwuYku--_" 
}
shell> curl --dump - http://localhost:8529/_api/document/products/10610

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYk2--_"

{ 
  "_key" : "10610", 
  "_id" : "products/10610", 
  "_rev" : "_YDwuYk2--_", 
  "one" : "world", 
  "numbers" : { 
    "empty" : null, 
    "one" : 1, 
    "three" : 3, 
    "two" : 2, 
    "four" : 4 
  } 
}





shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/document/products/10610 <<EOF
{ 
  "hello" : "world" 
}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYkq--B"
location: /_db/_system/_api/document/products/10610


show response body






Merging attributes of an object using mergeObjects:



shell> curl --dump - http://localhost:8529/_api/document/products/10626

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYlu--_"

{ 
  "_key" : "10626", 
  "_id" : "products/10626", 
  "_rev" : "_YDwuYlu--_", 
  "inhabitants" : { 
    "china" : 1366980000, 
    "india" : 1263590000, 
    "usa" : 319220000 
  } 
}
shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/document/products/10626?mergeObjects=true <<EOF
{ 
  "inhabitants" : { 
    "indonesia" : 252164800, 
    "brazil" : 203553000 
  } 
}
EOF

shell> curl --dump - http://localhost:8529/_api/document/products/10626

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYly--_"

{ 
  "_key" : "10626", 
  "_id" : "products/10626", 
  "_rev" : "_YDwuYly--_", 
  "inhabitants" : { 
    "china" : 1366980000, 
    "india" : 1263590000, 
    "usa" : 319220000, 
    "indonesia" : 252164800, 
    "brazil" : 203553000 
  } 
}
shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/document/products/10626?mergeObjects=false <<EOF
{ 
  "inhabitants" : { 
    "pakistan" : 188346000 
  } 
}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYl6--_"
location: /_db/_system/_api/document/products/10626

{ 
  "_id" : "products/10626", 
  "_key" : "10626", 
  "_rev" : "_YDwuYl6--_", 
  "_oldRev" : "_YDwuYly--_" 
}
shell> curl --dump - http://localhost:8529/_api/document/products/10626

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYl6--_"

{ 
  "_key" : "10626", 
  "_id" : "products/10626", 
  "_rev" : "_YDwuYl6--_", 
  "inhabitants" : { 
    "pakistan" : 188346000 
  } 
}





shell> curl --dump - http://localhost:8529/_api/document/products/10626

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYlu--_"


show response body






Changes in 3.0 from 2.8:

There are quite some changes in this in comparison to Version 2.8, but
few break existing usage:


	the rev query parameter is gone (was duplication of If-Match)

	the policy query parameter is gone (was non-sensical)

	the ignoreRevs query parameter is new, the default true gives 
the traditional behavior as in 2.8

	the returnNew and returnOld query parameters are new



There should be very few changes to behavior happening in real-world
situations or drivers. Essentially, one has to replace usage of the
rev query parameter by usage of the If-Match header. The non-sensical
combination of If-Match given and policy=last no longer works, but can
easily be achieved by leaving out the If-Match header.

The collection name should now be specified in the URL path. The old
way with the URL path /_api/document and the required query parameter
collection still works.


Update documents

 updates multiple documents

PATCH /_api/document/{collection}

Request Body (required)

A JSON representation of an array of document updates as objects.

Path Parameters


	collection (required):
This URL parameter is the name of the collection in which the
documents are updated.



Query Parameters


	keepNull (optional):
If the intention is to delete existing attributes with the patch
command, the URL query parameter keepNull can be used with a value
of false. This will modify the behavior of the patch command to
remove any attributes from the existing document that are contained
in the patch document with an attribute value of null.



	mergeObjects (optional):
Controls whether objects (not arrays) will be merged if present in
both the existing and the patch document. If set to false, the
value in the patch document will overwrite the existing document's
value. If set to true, objects will be merged. The default is
true.



	waitForSync (optional):
Wait until the new documents have been synced to disk.



	ignoreRevs (optional):
By default, or if this is set to true, the _rev attributes in 
the given documents are ignored. If this is set to false, then
any _rev attribute given in a body document is taken as a
precondition. The document is only updated if the current revision
is the one specified.



	returnOld (optional):
Return additionally the complete previous revision of the changed 
documents under the attribute old in the result.



	returnNew (optional):
Return additionally the complete new documents under the attribute new
in the result.





Partially updates documents, the documents to update are specified
by the _key attributes in the body objects. The body of the
request must contain a JSON array of document updates with the
attributes to patch (the patch documents). All attributes from the
patch documents will be added to the existing documents if they do
not yet exist, and overwritten in the existing documents if they do
exist there.

Setting an attribute value to null in the patch documents will cause a
value of null to be saved for the attribute by default.

If ignoreRevs is false and there is a _rev attribute in a
document in the body and its value does not match the revision of
the corresponding document in the database, the precondition is
violated.

If the document exists and can be updated, then an HTTP 201 or
an HTTP 202 is returned (depending on waitForSync, see below).

Optionally, the query parameter waitForSync can be used to force
synchronization of the document replacement operation to disk even in case
that the waitForSync flag had been disabled for the entire collection.
Thus, the waitForSync query parameter can be used to force synchronization
of just specific operations. To use this, set the waitForSync parameter
to true. If the waitForSync parameter is not specified or set to
false, then the collection's default waitForSync behavior is
applied. The waitForSync query parameter cannot be used to disable
synchronization for collections that have a default waitForSync value
of true.

The body of the response contains a JSON array of the same length
as the input array with the information about the handle and the
revision of the updated documents. In each entry, the attribute
_id contains the known document-handle of each updated document,
_key contains the key which uniquely identifies a document in a
given collection, and the attribute _rev contains the new document
revision. In case of an error or violated precondition, an error
object with the attribute error set to true and the attribute
errorCode set to the error code is built.

If the query parameter returnOld is true, then, for each
generated document, the complete previous revision of the document
is returned under the old attribute in the result.

If the query parameter returnNew is true, then, for each
generated document, the complete new document is returned under
the new attribute in the result.

Note that if any precondition is violated or an error occurred with
some of the documents, the return code is still 201 or 202, but
the additional HTTP header X-Arango-Error-Codes is set, which
contains a map of the error codes that occurred together with their
multiplicities, as in: 1200:17,1205:10 which means that in 17
cases the error 1200 "revision conflict" and in 10 cases the error
1205 "illegal document handle" has happened.

Return Codes


	201:
is returned if the documents were updated successfully and
waitForSync was true.



	202:
is returned if the documents were updated successfully and
waitForSync was false.



	400:
is returned if the body does not contain a valid JSON representation
of an array of documents. The response body contains
an error document in this case.



	404:
is returned if the collection was not found.





Changes in 3.0 from 2.8:

The multi document version is new in 3.0.


Removes a document

 removes a document

DELETE /_api/document/{document-handle}

Path Parameters


	document-handle (required):
Removes the document identified by document-handle.



Query Parameters


	waitForSync (optional):
Wait until deletion operation has been synced to disk.



	returnOld (optional):
Return additionally the complete previous revision of the changed 
document under the attribute old in the result.



	silent (optional):
If set to true, an empty object will be returned as response. No meta-data 
will be returned for the removed document. This option can be used to
save some network traffic.





Header Parameters


	If-Match (optional):
You can conditionally remove a document based on a target revision id by
using the if-match HTTP header.



If silent is not set to true, the body of the response contains a JSON 
object with the information about the handle and the revision. The attribute 
_id contains the known document-handle of the removed document, _key 
contains the key which uniquely identifies a document in a given collection, 
and the attribute _rev contains the document revision.

If the waitForSync parameter is not specified or set to false,
then the collection's default waitForSync behavior is applied.
The waitForSync query parameter cannot be used to disable
synchronization for collections that have a default waitForSync
value of true.

If the query parameter returnOld is true, then
the complete previous revision of the document
is returned under the old attribute in the result.

Return Codes


	200:
is returned if the document was removed successfully and
waitForSync was true.



	202:
is returned if the document was removed successfully and
waitForSync was false.



	404:
is returned if the collection or the document was not found.
The response body contains an error document in this case.



	412:
is returned if a "If-Match" header or rev is given and the found
document has a different version. The response will also contain the found
document's current revision in the _rev attribute. Additionally, the
attributes _id and _key will be returned.





Examples

Using document handle:



shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10544

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYcq--_"
location: /_db/_system/_api/document/products/10544

{ 
  "_id" : "products/10544", 
  "_key" : "10544", 
  "_rev" : "_YDwuYcq--_" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10544

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYcq--_"
location: /_db/_system/_api/document/products/10544


show response body






Unknown document handle:



shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10588

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "document not found", 
  "code" : 404, 
  "errorNum" : 1202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10588

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Revision conflict:



shell> curl -X DELETE --header 'If-Match: "_YDwuYea--B"' --dump - http://localhost:8529/_api/document/products/10554

HTTP/1.1 412 Precondition Failed
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYea--_"

{ 
  "error" : true, 
  "code" : 412, 
  "errorNum" : 1200, 
  "errorMessage" : "precondition failed", 
  "_id" : "products/10554", 
  "_key" : "10554", 
  "_rev" : "_YDwuYea--_" 
}





shell> curl -X DELETE --header 'If-Match: "_YDwuYea--B"' --dump - http://localhost:8529/_api/document/products/10554

HTTP/1.1 412 Precondition Failed
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYea--_"


show response body






Changes in 3.0 from 2.8:

There are only very few changes in this in comparison to Version 2.8:


	the rev query parameter is gone (was duplication of If-Match)

	the policy query parameter is gone (was non-sensical)

	the returnOld query parameter is new



There should be very few changes to behavior happening in real-world
situations or drivers. Essentially, one has to replace usage of the
rev query parameter by usage of the If-Match header. The non-sensical
combination of If-Match given and policy=last no longer works, but can
easily be achieved by leaving out the If-Match header.


Removes multiple documents

 removes multiple document

DELETE /_api/document/{collection}

Request Body (required)

A JSON array of strings or documents.

Path Parameters


	collection (required):
Collection from which documents are removed.



Query Parameters


	waitForSync (optional):
Wait until deletion operation has been synced to disk.



	returnOld (optional):
Return additionally the complete previous revision of the changed 
document under the attribute old in the result.



	ignoreRevs (optional):
If set to true, ignore any _rev attribute in the selectors. No
revision check is performed.





The body of the request is an array consisting of selectors for
documents. A selector can either be a string with a key or a string
with a document handle or an object with a _key attribute. This
API call removes all specified documents from collection. If the
selector is an object and has a _rev attribute, it is a
precondition that the actual revision of the removed document in the
collection is the specified one.

The body of the response is an array of the same length as the input
array. For each input selector, the output contains a JSON object
with the information about the outcome of the operation. If no error
occurred, an object is built in which the attribute _id contains
the known document-handle of the removed document, _key contains
the key which uniquely identifies a document in a given collection,
and the attribute _rev contains the document revision. In case of
an error, an object with the attribute error set to true and
errorCode set to the error code is built.

If the waitForSync parameter is not specified or set to false,
then the collection's default waitForSync behavior is applied.
The waitForSync query parameter cannot be used to disable
synchronization for collections that have a default waitForSync
value of true.

If the query parameter returnOld is true, then
the complete previous revision of the document
is returned under the old attribute in the result.

Note that if any precondition is violated or an error occurred with
some of the documents, the return code is still 200 or 202, but
the additional HTTP header X-Arango-Error-Codes is set, which
contains a map of the error codes that occurred together with their
multiplicities, as in: 1200:17,1205:10 which means that in 17
cases the error 1200 "revision conflict" and in 10 cases the error
1205 "illegal document handle" has happened.

Return Codes


	200:
is returned if waitForSync was true.



	202:
is returned if waitForSync was false.



	404:
is returned if the collection was not found.
The response body contains an error document in this case.





Examples

Using document handle:



shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10578

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYgi--_"
location: /_db/_system/_api/document/products/10578

{ 
  "_id" : "products/10578", 
  "_key" : "10578", 
  "_rev" : "_YDwuYgi--_" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10578

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff
etag: "_YDwuYgi--_"
location: /_db/_system/_api/document/products/10578


show response body






Unknown document handle:



shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10599

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "document not found", 
  "code" : 404, 
  "errorNum" : 1202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/document/products/10599

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Revision conflict:



shell> curl -X DELETE --header 'If-Match: "_YDwuYfa--B"' --dump - http://localhost:8529/_api/document/products/10566

HTTP/1.1 412 Precondition Failed
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYfa--_"

{ 
  "error" : true, 
  "code" : 412, 
  "errorNum" : 1200, 
  "errorMessage" : "precondition failed", 
  "_id" : "products/10566", 
  "_key" : "10566", 
  "_rev" : "_YDwuYfa--_" 
}





shell> curl -X DELETE --header 'If-Match: "_YDwuYfa--B"' --dump - http://localhost:8529/_api/document/products/10566

HTTP/1.1 412 Precondition Failed
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: "_YDwuYfa--_"


show response body






Changes in 3.0 from 2.8:

This variant is new in 3.0. Note that it requires a body in the DELETE
request.


        

    



        
    



        

    
        Edges

        
            HTTP Interface for Edges

This is an introduction to ArangoDB's REST interface for edges.

ArangoDB offers graph functionality; Edges are one part of that.


        

    



        
    



        

    
        Address and Etag

        
            Address and Etag of an Edge

All documents in ArangoDB have a document handle. This handle uniquely identifies 
a document. Any document can be retrieved using its unique URI:

http://server:port/_api/document/<document-handle>

Edges are a special variation of documents. To access an edge use the same
URL format as for a document:

http://server:port/_api/document/<document-handle>

For example, assumed that the document handle, which is stored in the _id
attribute of the edge, is demo/362549736, then the URL of that edge is:

http://localhost:8529/_api/document/demo/362549736

The above URL scheme does not specify a database name explicitly, so the 
default database will be used. To explicitly specify the database context, use
the following URL schema:

http://server:port/_db/<database-name>/_api/document/<document-handle>

Example:

http://localhost:8529/_db/mydb/_api/document/demo/362549736

Note: that the following examples use the short URL format for brevity.


        

    



        
    



        

    
        Working with Edges

        
            Working with Edges using REST

This is documentation to ArangoDB's
REST interface for edges.

Edges are documents with two additional attributes: _from and _to.
These attributes are mandatory and must contain the document-handle
of the from and to vertices of an edge.

Use the general document
REST api
for create/read/update/delete.


Read in- or outbound edges

 get edges

GET /_api/edges/{collection-id}

Path Parameters


	collection-id (required):
The id of the collection.



Query Parameters


	vertex (required):
The id of the start vertex.



	direction (optional):
Selects in or out direction for edges. If not set, any edges are
returned.





Returns an array of edges starting or ending in the vertex identified by
vertex-handle.

Return Codes


	200:
is returned if the edge collection was found and edges were retrieved.



	400:
is returned if the request contains invalid parameters.



	404:
is returned if the edge collection was not found.





Examples

Any direction



shell> curl --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "edges" : [ 
    { 
      "_key" : "6", 
      "_id" : "edges/6", 
      "_from" : "vertices/2", 
      "_to" : "vertices/1", 
      "_rev" : "_YDwuY3S--F", 
      "$label" : "v2 -> v1" 
    }, 
    { 
      "_key" : "7", 
      "_id" : "edges/7", 
      "_from" : "vertices/4", 
      "_to" : "vertices/1", 
      "_rev" : "_YDwuY3S--H", 
      "$label" : "v4 -> v1" 
    }, 
    { 
      "_key" : "5", 
      "_id" : "edges/5", 
      "_from" : "vertices/1", 
      "_to" : "vertices/3", 
      "_rev" : "_YDwuY3S--D", 
      "$label" : "v1 -> v3" 
    } 
  ], 
  "error" : false, 
  "code" : 200, 
  "stats" : { 
    "scannedIndex" : 3, 
    "filtered" : 0 
  } 
}





shell> curl --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






In edges



shell> curl --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=in

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "edges" : [ 
    { 
      "_key" : "6", 
      "_id" : "edges/6", 
      "_from" : "vertices/2", 
      "_to" : "vertices/1", 
      "_rev" : "_YDwuY5a--B", 
      "$label" : "v2 -> v1" 
    }, 
    { 
      "_key" : "7", 
      "_id" : "edges/7", 
      "_from" : "vertices/4", 
      "_to" : "vertices/1", 
      "_rev" : "_YDwuY5a--D", 
      "$label" : "v4 -> v1" 
    } 
  ], 
  "error" : false, 
  "code" : 200, 
  "stats" : { 
    "scannedIndex" : 2, 
    "filtered" : 0 
  } 
}





shell> curl --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=in

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Out edges



shell> curl --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=out

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "edges" : [ 
    { 
      "_key" : "5", 
      "_id" : "edges/5", 
      "_from" : "vertices/1", 
      "_to" : "vertices/3", 
      "_rev" : "_YDwuY7e--B", 
      "$label" : "v1 -> v3" 
    } 
  ], 
  "error" : false, 
  "code" : 200, 
  "stats" : { 
    "scannedIndex" : 1, 
    "filtered" : 0 
  } 
}





shell> curl --dump - http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=out

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        General Graph

        
            General Graphs

This chapter describes the REST interface for the multi-collection graph module.
It allows you to define a graph that is spread across several edge and document collections.
There is no need to include the referenced collections within the query, this module will handle it for you.


        

    



        
    



        

    
        Management

        
            Manage your graphs

The graph module provides functions dealing with graph structures.
Examples will explain the REST API on the social graph:

[image: Social Example Graph]

List all graphs

 Lists all graphs known to the graph module.

GET /_api/gharial

Lists all graph names stored in this database.

Return Codes


	200:
Is returned if the module is available and the graphs could be listed.



Examples



shell> curl --dump - http://localhost:8529/_api/gharial

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "graphs" : [ 
    { 
      "_key" : "routeplanner", 
      "_id" : "_graphs/routeplanner", 
      "_rev" : "_YDwuTGm--_", 
      "orphanCollections" : [ ], 
      "edgeDefinitions" : [ 
        { 
          "collection" : "germanHighway", 
          "from" : [ 
            "germanCity" 
          ], 
          "to" : [ 
            "germanCity" 
          ] 
        }, 
        { 
          "collection" : "frenchHighway", 
          "from" : [ 
            "frenchCity" 
          ], 
          "to" : [ 
            "frenchCity" 
          ] 
        }, 
        { 
          "collection" : "internationalHighway", 
          "from" : [ 
            "frenchCity", 
            "germanCity" 
          ], 
          "to" : [ 
            "frenchCity", 
            "germanCity" 
          ] 
        } 
      ], 
      "numberOfShards" : 1, 
      "replicationFactor" : 1 
    }, 
    { 
      "_key" : "social", 
      "_id" : "_graphs/social", 
      "_rev" : "_YDwuTBu--_", 
      "orphanCollections" : [ ], 
      "edgeDefinitions" : [ 
        { 
          "collection" : "relation", 
          "from" : [ 
            "female", 
            "male" 
          ], 
          "to" : [ 
            "female", 
            "male" 
          ] 
        } 
      ], 
      "numberOfShards" : 1, 
      "replicationFactor" : 1 
    } 
  ], 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/gharial

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Create a graph

 Create a new graph in the graph module.

POST /_api/gharial

The creation of a graph requires the name of the graph and a
definition of its edges.
See also edge definitions.

A JSON object with these properties is required:


	orphanCollections: An array of additional vertex collections.

	edgeDefinitions: An array of definitions for the edge

	name: Name of the graph.

	isSmart: Define if the created graph should be smart.
This only has effect in Enterprise version.

	options:
	smartGraphAttribute: The attribute name that is used to smartly shard the vertices of a graph.
Every vertex in this Graph has to have this attribute.
Cannot be modified later.

	numberOfShards: The number of shards that is used for every collection within this graph.
Cannot be modified later.







Return Codes


	201:
Is returned if the graph could be created and waitForSync is enabled
for the _graphs collection.  The response body contains the
graph configuration that has been stored.



	202:
Is returned if the graph could be created and waitForSync is disabled
for the _graphs collection. The response body contains the
graph configuration that has been stored.



	409:
Returned if there is a conflict storing the graph.  This can occur
either if a graph with this name is already stored, or if there is one
edge definition with a the same
edge collection but a
different signature used in any other graph.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial <<EOF
{ 
  "name" : "myGraph", 
  "edgeDefinitions" : [ 
    { 
      "collection" : "edges", 
      "from" : [ 
        "startVertices" 
      ], 
      "to" : [ 
        "endVertices" 
      ] 
    } 
  ] 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSQe--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "myGraph", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "edges", 
        "from" : [ 
          "startVertices" 
        ], 
        "to" : [ 
          "endVertices" 
        ] 
      } 
    ], 
    "orphanCollections" : [ ], 
    "isSmart" : false, 
    "numberOfShards" : 0, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/myGraph", 
    "_rev" : "_YDwuSQe--_" 
  }, 
  "code" : 202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial <<EOF
{ 
  "name" : "myGraph", 
  "edgeDefinitions" : [ 
    { 
      "collection" : "edges", 
      "from" : [ 
        "startVertices" 
      ], 
      "to" : [ 
        "endVertices" 
      ] 
    } 
  ] 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSQe--_


show response body








shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial <<EOF
{ 
  "name" : "myGraph", 
  "edgeDefinitions" : [ 
    { 
      "collection" : "edges", 
      "from" : [ 
        "startVertices" 
      ], 
      "to" : [ 
        "endVertices" 
      ] 
    } 
  ], 
  "isSmart" : true, 
  "options" : { 
    "numberOfShards" : 9, 
    "smartGraphAttribute" : "region" 
  } 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSW2--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "myGraph", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "edges", 
        "from" : [ 
          "startVertices" 
        ], 
        "to" : [ 
          "endVertices" 
        ] 
      } 
    ], 
    "orphanCollections" : [ ], 
    "isSmart" : false, 
    "numberOfShards" : 0, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/myGraph", 
    "_rev" : "_YDwuSW2--_" 
  }, 
  "code" : 202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial <<EOF
{ 
  "name" : "myGraph", 
  "edgeDefinitions" : [ 
    { 
      "collection" : "edges", 
      "from" : [ 
        "startVertices" 
      ], 
      "to" : [ 
        "endVertices" 
      ] 
    } 
  ], 
  "isSmart" : true, 
  "options" : { 
    "numberOfShards" : 9, 
    "smartGraphAttribute" : "region" 
  } 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSW2--_


show response body







Get a graph

 Get a graph from the graph module.

GET /_api/gharial/{graph-name}

Gets a graph from the collection _graphs.
Returns the definition content of this graph.

Path Parameters


	graph-name (required):
The name of the graph.



Return Codes


	200:
Returned if the graph could be found.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl --dump - http://localhost:8529/_api/gharial/myGraph

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuS5O--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "myGraph", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "edges", 
        "from" : [ 
          "startVertices" 
        ], 
        "to" : [ 
          "endVertices" 
        ] 
      } 
    ], 
    "orphanCollections" : [ ], 
    "isSmart" : false, 
    "numberOfShards" : 1, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/myGraph", 
    "_rev" : "_YDwuS5O--_" 
  }, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/gharial/myGraph

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuS5O--_


show response body







Drop a graph

 delete an existing graph

DELETE /_api/gharial/{graph-name}

Removes a graph from the collection _graphs.

Path Parameters


	graph-name (required):
The name of the graph.



Query Parameters


	dropCollections (optional):
Drop collections of this graph as well.  Collections will only be
dropped if they are not used in other graphs.



Return Codes


	201:
Is returned if the graph could be dropped and waitForSync is enabled
for the _graphs collection. 



	202:
Returned if the graph could be dropped and waitForSync is disabled
for the _graphs collection.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social?dropCollections=true

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "removed" : true, 
  "code" : 202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social?dropCollections=true

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







List vertex collections

 Lists all vertex collections used in this graph.

GET /_api/gharial/{graph-name}/vertex

Lists all vertex collections within this graph.

Path Parameters


	graph-name (required):
The name of the graph.



Return Codes


	200:
Is returned if the collections could be listed.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl --dump - http://localhost:8529/_api/gharial/social/vertex

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "collections" : [ 
    "female", 
    "male" 
  ], 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/gharial/social/vertex

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Add vertex collection

 Add an additional vertex collection to the graph.

POST /_api/gharial/{graph-name}/vertex

Adds a vertex collection to the set of collections of the graph. If
the collection does not exist, it will be created.

Path Parameters


	graph-name (required):
The name of the graph.



Return Codes


	201:
Returned if the edge collection could be added successfully and
waitForSync is true.



	202:
Returned if the edge collection could be added successfully and
waitForSync is false.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex <<EOF
{ 
  "collection" : "otherVertices" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSK---_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "social", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "relation", 
        "from" : [ 
          "female", 
          "male" 
        ], 
        "to" : [ 
          "female", 
          "male" 
        ] 
      } 
    ], 
    "orphanCollections" : [ 
      "otherVertices" 
    ], 
    "isSmart" : false, 
    "numberOfShards" : 1, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/social", 
    "_rev" : "_YDwuSK---_" 
  }, 
  "code" : 202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex <<EOF
{ 
  "collection" : "otherVertices" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSK---_


show response body







Remove vertex collection

 Remove a vertex collection form the graph.

DELETE /_api/gharial/{graph-name}/vertex/{collection-name}

Removes a vertex collection from the graph and optionally deletes the collection,
if it is not used in any other graph.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required):
The name of the vertex collection.





Query Parameters


	dropCollection (optional):
Drop the collection as well.
Collection will only be dropped if it is not used in other graphs.



Return Codes


	201:
Returned if the vertex collection was removed from the graph successfully
and waitForSync is true.



	202:
Returned if the request was successful but waitForSync is false.



	400:
Returned if the vertex collection is still used in an edge definition.
In this case it cannot be removed from the graph yet, it has to be
removed from the edge definition first.



	404:
Returned if no graph with this name could be found.





Examples

You can remove vertex collections that are not used in any edge collection:



shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/vertex/otherVertices

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuTtO--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "social", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "relation", 
        "from" : [ 
          "female", 
          "male" 
        ], 
        "to" : [ 
          "female", 
          "male" 
        ] 
      } 
    ], 
    "orphanCollections" : [ ], 
    "isSmart" : false, 
    "numberOfShards" : 1, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/social", 
    "_rev" : "_YDwuTtO--_" 
  }, 
  "code" : 202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/vertex/otherVertices

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuTtO--_


show response body






You cannot remove vertex collections that are used in edge collections:



shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/vertex/male

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorNum" : 1928, 
  "errorMessage" : "not in orphan collection", 
  "code" : 400 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/vertex/male

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







List edge definitions

 Lists all edge definitions

GET /_api/gharial/{graph-name}/edge

Lists all edge collections within this graph.

Path Parameters


	graph-name (required):
The name of the graph.



Return Codes


	200:
Is returned if the edge definitions could be listed.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl --dump - http://localhost:8529/_api/gharial/social/edge

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "collections" : [ 
    "relation" 
  ], 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/gharial/social/edge

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Add edge definition

 Add a new edge definition to the graph

POST /_api/gharial/{graph-name}/edge

Adds an additional edge definition to the graph.

This edge definition has to contain a collection and an array of
each from and to vertex collections.  An edge definition can only
be added if this definition is either not used in any other graph, or
it is used with exactly the same definition. It is not possible to
store a definition "e" from "v1" to "v2" in the one graph, and "e"
from "v2" to "v1" in the other graph.

A JSON object with these properties is required:


	to (string): One or many vertex collections that can contain target vertices.

	from (string): One or many vertex collections that can contain source vertices.

	collection: The name of the edge collection to be used.



Path Parameters


	graph-name (required):
The name of the graph.



Return Codes


	201:
Returned if the definition could be added successfully and
waitForSync is enabled for the _graphs collection.



	202:
Returned if the definition could be added successfully and
waitForSync is disabled for the _graphs collection.



	400:
Returned if the defininition could not be added, the edge collection
is used in an other graph with a different signature.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge <<EOF
{ 
  "collection" : "works_in", 
  "from" : [ 
    "female", 
    "male" 
  ], 
  "to" : [ 
    "city" 
  ] 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuR7G--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "social", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "relation", 
        "from" : [ 
          "female", 
          "male" 
        ], 
        "to" : [ 
          "female", 
          "male" 
        ] 
      }, 
      { 
        "collection" : "works_in", 
        "from" : [ 
          "female", 
          "male" 
        ], 
        "to" : [ 
          "city" 
        ] 
      } 
    ], 
    "orphanCollections" : [ ], 
    "isSmart" : false, 
    "numberOfShards" : 1, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/social", 
    "_rev" : "_YDwuR7G--_" 
  }, 
  "code" : 202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge <<EOF
{ 
  "collection" : "works_in", 
  "from" : [ 
    "female", 
    "male" 
  ], 
  "to" : [ 
    "city" 
  ] 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuR7G--_


show response body







Replace an edge definition

 Replace an existing edge definition

PUT /_api/gharial/{graph-name}/edge/{definition-name}

Change one specific edge definition.
This will modify all occurrences of this definition in all graphs known to your database.

A JSON object with these properties is required:


	to (string): One or many vertex collections that can contain target vertices.

	from (string): One or many vertex collections that can contain source vertices.

	collection: The name of the edge collection to be used.



Path Parameters


	graph-name (required):
The name of the graph.



	definition-name (required):
The name of the edge collection used in the definition.





Return Codes


	201:
Returned if the request was successful and waitForSync is true.



	202:
Returned if the request was successful but waitForSync is false.



	400:
Returned if no edge definition with this name is found in the graph.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation <<EOF
{ 
  "collection" : "relation", 
  "from" : [ 
    "female", 
    "male", 
    "animal" 
  ], 
  "to" : [ 
    "female", 
    "male", 
    "animal" 
  ] 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuT4C--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "social", 
    "edgeDefinitions" : [ 
      { 
        "collection" : "relation", 
        "from" : [ 
          "animal", 
          "female", 
          "male" 
        ], 
        "to" : [ 
          "animal", 
          "female", 
          "male" 
        ] 
      } 
    ], 
    "orphanCollections" : [ ], 
    "isSmart" : false, 
    "numberOfShards" : 1, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/social", 
    "_rev" : "_YDwuT4C--_" 
  }, 
  "code" : 202 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation <<EOF
{ 
  "collection" : "relation", 
  "from" : [ 
    "female", 
    "male", 
    "animal" 
  ], 
  "to" : [ 
    "female", 
    "male", 
    "animal" 
  ] 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuT4C--_


show response body







Remove an edge definition from the graph

 Remove an edge definition form the graph

DELETE /_api/gharial/{graph-name}/edge/{definition-name}

Remove one edge definition from the graph.  This will only remove the
edge collection, the vertex collections remain untouched and can still
be used in your queries.

Path Parameters


	graph-name (required):
The name of the graph.



	definition-name (required):
The name of the edge collection used in the definition.





Query Parameters


	dropCollection (optional):
Drop the collection as well.
Collection will only be dropped if it is not used in other graphs.



Return Codes


	201:
Returned if the edge definition could be removed from the graph 
and waitForSync is true.



	202:
Returned if the edge definition could be removed from the graph and
waitForSync is false.



	400:
Returned if no edge definition with this name is found in the graph.



	404:
Returned if no graph with this name could be found.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/edge/relation

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSvi--_

{ 
  "error" : false, 
  "graph" : { 
    "name" : "social", 
    "edgeDefinitions" : [ ], 
    "orphanCollections" : [ 
      "female", 
      "male" 
    ], 
    "isSmart" : false, 
    "numberOfShards" : 1, 
    "replicationFactor" : 1, 
    "smartGraphAttribute" : "", 
    "_id" : "_graphs/social", 
    "_rev" : "_YDwuSvi--_" 
  }, 
  "code" : 202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/edge/relation

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSvi--_


show response body







        

    



        
    



        

    
        Vertices

        
            Handling Vertices

Examples will explain the REST API to the graph module
on the social graph:

[image: Social Example Graph]

Create a vertex

 create a new vertex

POST /_api/gharial/{graph-name}/vertex/{collection-name}

Adds a vertex to the given collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the vertex collection the vertex belongs to.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



Request Body (required)

The body has to be the JSON object to be stored.

Return Codes


	201:
Returned if the vertex could be added and waitForSync is true.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph or no vertex collection with this name could be found.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/male <<EOF
{ 
  "name" : "Francis" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSE2--_

{ 
  "error" : false, 
  "vertex" : { 
    "_id" : "male/8142", 
    "_key" : "8142", 
    "_rev" : "_YDwuSE2--_" 
  }, 
  "code" : 202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/male <<EOF
{ 
  "name" : "Francis" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuSE2--_


show response body







Get a vertex

 fetches an existing vertex

GET /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}

Gets a vertex from the given collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the vertex collection the vertex belongs to.



	vertex-key (required): 
The _key attribute of the vertex.





Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is returned,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Return Codes


	200:
Returned if the vertex could be found.



	404:
Returned if no graph with this name, no vertex collection or no vertex with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuS9i--_

{ 
  "error" : false, 
  "vertex" : { 
    "_key" : "alice", 
    "_id" : "female/alice", 
    "_rev" : "_YDwuS9i--_", 
    "name" : "Alice" 
  }, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuS9i--_


show response body







Modify a vertex

 replace an existing vertex

PATCH /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}

Updates the data of the specific vertex in the collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required):
The name of the vertex collection the vertex belongs to.



	vertex-key (required): 
The _key attribute of the vertex.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



	keepNull (optional):
Define if values set to null should be stored. By default the key is not removed from the document.





Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is updated,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Request Body (required)

The body has to contain a JSON object containing exactly the attributes that should be replaced.

Return Codes


	200:
Returned if the vertex could be updated.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no vertex collection or no vertex with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice <<EOF
{ 
  "age" : 26 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuTcq--_

{ 
  "error" : false, 
  "vertex" : { 
    "_id" : "female/alice", 
    "_key" : "alice", 
    "_rev" : "_YDwuTcq--_", 
    "_oldRev" : "_YDwuTca--B" 
  }, 
  "code" : 202 
}





shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice <<EOF
{ 
  "age" : 26 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuTcq--_


show response body







Replace a vertex

 replaces an existing vertex

PUT /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}

Replaces the data of a vertex in the collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the vertex collection the vertex belongs to.



	vertex-key (required): 
The _key attribute of the vertex.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is updated,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Request Body (required)

The body has to be the JSON object to be stored.

Return Codes


	200:
Returned if the vertex could be replaced.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no vertex collection or no vertex with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice <<EOF
{ 
  "name" : "Alice Cooper", 
  "age" : 26 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuU-i--_

{ 
  "error" : false, 
  "vertex" : { 
    "_id" : "female/alice", 
    "_key" : "alice", 
    "_rev" : "_YDwuU-i--_", 
    "_oldRev" : "_YDwuU-W--B" 
  }, 
  "code" : 202 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice <<EOF
{ 
  "name" : "Alice Cooper", 
  "age" : 26 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuU-i--_


show response body







Remove a vertex

 removes a vertex from a graph

DELETE /_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}

Removes a vertex from the collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the vertex collection the vertex belongs to.



	vertex-key (required): 
The _key attribute of the vertex.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is updated,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Return Codes


	200:
Returned if the vertex could be removed.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no vertex collection or no vertex with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "removed" : true, 
  "code" : 202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Edges

        
            Handling Edges

Examples will explain the REST API for manipulating edges
of the graph module on the knows graph:

[image: Social Example Graph]

Create an edge

 Creates an edge in an existing graph

POST /_api/gharial/{graph-name}/edge/{collection-name}

Creates a new edge in the collection.
Within the body the has to contain a _from and _to value referencing to valid vertices in the graph.
Furthermore the edge has to be valid in the definition of this
edge collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the edge collection the edge belongs to.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



	_from (required):



	_to (required):





Request Body (required)

The body has to be the JSON object to be stored.

Return Codes


	201:
Returned if the edge could be created.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no edge collection or no edge with this id could be found.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation <<EOF
{ 
  "type" : "friend", 
  "_from" : "female/alice", 
  "_to" : "female/diana" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuR2m--_

{ 
  "error" : false, 
  "edge" : { 
    "_id" : "relation/7987", 
    "_key" : "7987", 
    "_rev" : "_YDwuR2m--_" 
  }, 
  "code" : 202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation <<EOF
{ 
  "type" : "friend", 
  "_from" : "female/alice", 
  "_to" : "female/diana" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuR2m--_


show response body







Get an edge

 fetch an edge

GET /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}

Gets an edge from the given collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the edge collection the edge belongs to.



	edge-key (required): 
The _key attribute of the vertex.





Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is returned,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Return Codes


	200:
Returned if the edge could be found.



	404:
Returned if no graph with this name, no edge collection or no edge with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl --dump - http://localhost:8529/_api/gharial/social/edge/relation/8612

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuS0W--H

{ 
  "error" : false, 
  "edge" : { 
    "_key" : "8612", 
    "_id" : "relation/8612", 
    "_from" : "female/alice", 
    "_to" : "male/bob", 
    "_rev" : "_YDwuS0W--H", 
    "type" : "married", 
    "vertex" : "alice" 
  }, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/gharial/social/edge/relation/8612

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuS0W--H


show response body






Examples will explain the API on the social graph:

[image: Social Example Graph]

Modify an edge

 modify an existing edge

PATCH /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}

Updates the data of the specific edge in the collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required):
The name of the edge collection the edge belongs to.



	edge-key (required):
The _key attribute of the vertex.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



	keepNull (optional):
Define if values set to null should be stored. By default the key is not removed from the document.





Request Body (required)

The body has to be a JSON object containing the attributes to be updated.

Return Codes


	200:
Returned if the edge could be updated.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no edge collection or no edge with this id could be found.





Examples



shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation/9174 <<EOF
{ 
  "since" : "01.01.2001" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuThy--_

{ 
  "error" : false, 
  "edge" : { 
    "_id" : "relation/9174", 
    "_key" : "9174", 
    "_rev" : "_YDwuThy--_", 
    "_oldRev" : "_YDwuThm--H" 
  }, 
  "code" : 202 
}





shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation/9174 <<EOF
{ 
  "since" : "01.01.2001" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuThy--_


show response body







Replace an edge

 replace the content of an existing edge

PUT /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}

Replaces the data of an edge in the collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the edge collection the edge belongs to.



	edge-key (required): 
The _key attribute of the vertex.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is updated,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Request Body (required)

The body has to be the JSON object to be stored.

Return Codes


	201:
Returned if the request was successful but waitForSync is true.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no edge collection or no edge with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation/9249 <<EOF
{ 
  "type" : "divorced", 
  "_from" : "female/alice", 
  "_to" : "male/bob" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuTnG--_

{ 
  "error" : false, 
  "edge" : { 
    "_id" : "relation/9249", 
    "_key" : "9249", 
    "_rev" : "_YDwuTnG--_", 
    "_oldRev" : "_YDwuTn---D" 
  }, 
  "code" : 202 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/gharial/social/edge/relation/9249 <<EOF
{ 
  "type" : "divorced", 
  "_from" : "female/alice", 
  "_to" : "male/bob" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
content-type: application/json; charset=utf-8
etag: _YDwuTnG--_


show response body







Remove an edge

 removes an edge from graph

DELETE /_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}

Removes an edge from the collection.

Path Parameters


	graph-name (required):
The name of the graph.



	collection-name (required): 
The name of the edge collection the edge belongs to.



	edge-key (required): 
The _key attribute of the vertex.





Query Parameters


	waitForSync (optional):
Define if the request should wait until synced to disk.



Header Parameters


	if-match (optional):
If the "If-Match" header is given, then it must contain exactly one Etag. The document is updated,
if it has the same revision as the given Etag. Otherwise a HTTP 412 is returned. As an alternative
you can supply the Etag in an attribute rev in the URL.



Return Codes


	200:
Returned if the edge could be removed.



	202:
Returned if the request was successful but waitForSync is false.



	404:
Returned if no graph with this name, no edge collection or no edge with this id could be found.



	412:
Returned if if-match header is given, but the documents revision is different.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/edge/relation/8337

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "removed" : true, 
  "code" : 202 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/gharial/social/edge/relation/8337

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Traversals

        
            HTTP Interface for Traversals

Traversals

ArangoDB's graph traversals are executed on the server. Traversals can be 
initiated by clients by sending the traversal description for execution to
the server.

Traversals in ArangoDB are used to walk over a graph
stored in one edge collection. It can easily be described
which edges of the graph should be followed and which actions
should be performed on each visited vertex.
Furthermore the ordering of visiting the nodes can be
specified, for instance depth-first or breadth-first search
are offered.

Executing Traversals via HTTP

executes a traversal

 execute a server-side traversal

POST /_api/traversal

Starts a traversal starting from a given vertex and following.
edges contained in a given edgeCollection. The request must
contain the following attributes.

A JSON object with these properties is required:


	sort: body (JavaScript) code of a custom comparison function
for the edges. The signature of this function is
(l, r) -> integer (where l and r are edges) and must
return -1 if l is smaller than, +1 if l is greater than,
and 0 if l and r are equal. The reason for this is the
following: The order of edges returned for a certain
vertex is undefined. This is because there is no natural
order of edges for a vertex with multiple connected edges.
To explicitly define the order in which edges on the
vertex are followed, you can specify an edge comparator
function with this attribute. Note that the value here has
to be a string to conform to the JSON standard, which in
turn is parsed as function body on the server side. Furthermore
note that this attribute is only used for the standard
expanders. If you use your custom expander you have to
do the sorting yourself within the expander code.

	direction: direction for traversal
	if set, must be either "outbound", "inbound", or "any"

	if not set, the expander attribute must be specified





	minDepth: ANDed with any existing filters):
visits only nodes in at least the given depth

	startVertex: id of the startVertex, e.g. "users/foo".

	visitor: body (JavaScript) code of custom visitor function
function signature: (config, result, vertex, path, connected) -> void
The visitor function can do anything, but its return value is ignored. To
populate a result, use the result variable by reference. Note that the
connected argument is only populated when the order attribute is set
to "preorder-expander".

	itemOrder: item iteration order can be "forward" or "backward"

	strategy: traversal strategy can be "depthfirst" or "breadthfirst"

	filter: default is to include all nodes:
body (JavaScript code) of custom filter function
function signature: (config, vertex, path) -> mixed
can return four different string values:
	"exclude" -> this vertex will not be visited.

	"prune" -> the edges of this vertex will not be followed.

	"" or undefined -> visit the vertex and follow its edges.

	Array -> containing any combination of the above.
If there is at least one "exclude" or "prune" respectivly
is contained, it's effect will occur.





	init: body (JavaScript) code of custom result initialization function
function signature: (config, result) -> void
initialize any values in result with what is required

	maxIterations: Maximum number of iterations in each traversal. This number can be
set to prevent endless loops in traversal of cyclic graphs. When a traversal performs
as many iterations as the maxIterations value, the traversal will abort with an
error. If maxIterations is not set, a server-defined value may be used.

	maxDepth: ANDed with any existing filters visits only nodes in at most the given depth

	uniqueness: specifies uniqueness for vertices and edges visited.
If set, must be an object like this:
"uniqueness": {"vertices": "none"|"global"|"path", "edges": "none"|"global"|"path"}

	order: traversal order can be "preorder", "postorder" or "preorder-expander"

	graphName: name of the graph that contains the edges.
Either edgeCollection or graphName has to be given.
In case both values are set the graphName is prefered.

	expander: body (JavaScript) code of custom expander function
must be set if direction attribute is not set
function signature: (config, vertex, path) -> array
expander must return an array of the connections for vertex
each connection is an object with the attributes edge and vertex

	edgeCollection: name of the collection that contains the edges.



If the Traversal is successfully executed HTTP 200 will be returned.
Additionally the result object will be returned by the traversal.

For successful traversals, the returned JSON object has the
following properties:


	error: boolean flag to indicate if an error occurred (false
in this case)



	code: the HTTP status code



	result: the return value of the traversal





If the traversal specification is either missing or malformed, the server
will respond with HTTP 400.

The body of the response will then contain a JSON object with additional error
details. The object has the following attributes:


	error: boolean flag to indicate that an error occurred (true in this case)



	code: the HTTP status code



	errorNum: the server error number



	errorMessage: a descriptive error message





Return Codes


	200:
If the traversal is fully executed
HTTP 200 will be returned.



	400:
If the traversal specification is either missing or malformed, the server
will respond with HTTP 400.



	404:
The server will responded with HTTP 404 if the specified edge collection
does not exist, or the specified start vertex cannot be found.



	500:
The server will responded with HTTP 500 when an error occurs inside the
traversal or if a traversal performs more than maxIterations iterations.





Examples

In the following examples the underlying graph will contain five persons
Alice, Bob, Charlie, Dave and Eve.
We will have the following directed relations:


	Alice knows Bob

	Bob knows Charlie

	Bob knows Dave

	Eve knows Alice

	Eve knows Bob



The starting vertex will always be Alice.

Follow only outbound edges



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwugIe--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwugIe--D", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwugIe--F", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwugIe--H", 
          "name" : "Dave" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugIe--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12915", 
              "_id" : "knows/12915", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugIi--_", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugIe--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugIe--D", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12915", 
              "_id" : "knows/12915", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugIi--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12919", 
              "_id" : "knows/12919", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwugIi--B", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugIe--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugIe--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwugIe--F", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12915", 
              "_id" : "knows/12915", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugIi--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12922", 
              "_id" : "knows/12922", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwugIi--D", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugIe--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugIe--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwugIe--H", 
              "name" : "Dave" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Follow only inbound edges



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "inbound" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwuf9---B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwuf9C--F", 
          "name" : "Eve" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuf9---B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12630", 
              "_id" : "knows/12630", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuf9C--N", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuf9---B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuf9C--F", 
              "name" : "Eve" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "inbound" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Follow any direction of edges



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "uniqueness" : { 
    "vertices" : "none", 
    "edges" : "global" 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufqi--_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwufqi--B", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwufqm--_", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwufqm--B", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwufqm--D", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufqi--_", 
          "name" : "Alice" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12137", 
              "_id" : "knows/12137", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqm--F", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufqi--B", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12137", 
              "_id" : "knows/12137", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqm--F", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12141", 
              "_id" : "knows/12141", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwufqm--H", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufqi--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwufqm--_", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12137", 
              "_id" : "knows/12137", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqm--F", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12144", 
              "_id" : "knows/12144", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwufqq--_", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufqi--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwufqm--B", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12137", 
              "_id" : "knows/12137", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqm--F", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12150", 
              "_id" : "knows/12150", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqq--D", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufqi--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufqm--D", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12137", 
              "_id" : "knows/12137", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqm--F", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12150", 
              "_id" : "knows/12150", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufqq--D", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12147", 
              "_id" : "knows/12147", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufqq--B", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufqi--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufqm--D", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufqi--_", 
              "name" : "Alice" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "uniqueness" : { 
    "vertices" : "none", 
    "edges" : "global" 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Excluding Charlie and Bob



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "filter" : "if (vertex.name === \"Bob\" ||     vertex.name === \"Charlie\") {  return \"exclude\";}return;" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwuf3---_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwuf3---F", 
          "name" : "Dave" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuf3---_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12487", 
              "_id" : "knows/12487", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf3---J", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12494", 
              "_id" : "knows/12494", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwuf3C--_", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuf3---_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf3---B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwuf3---F", 
              "name" : "Dave" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "filter" : "if (vertex.name === \"Bob\" ||     vertex.name === \"Charlie\") {  return \"exclude\";}return;" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Do not follow edges from Bob



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "filter" : "if (vertex.name === \"Bob\") {return \"prune\";}return;" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwuf6e--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwuf6e--D", 
          "name" : "Bob" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuf6e--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12556", 
              "_id" : "knows/12556", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf6i--B", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuf6e--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf6e--D", 
              "name" : "Bob" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "filter" : "if (vertex.name === \"Bob\") {return \"prune\";}return;" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Visit only nodes in a depth of at least 2



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "minDepth" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwugGG--F", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwugGK--_", 
          "name" : "Dave" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ 
            { 
              "_key" : "12846", 
              "_id" : "knows/12846", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugGK--D", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12850", 
              "_id" : "knows/12850", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwugGK--F", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugGG--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugGG--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwugGG--F", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12846", 
              "_id" : "knows/12846", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugGK--D", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12853", 
              "_id" : "knows/12853", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwugGK--H", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugGG--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugGG--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwugGK--_", 
              "name" : "Dave" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "minDepth" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Visit only nodes in a depth of at most 1



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "maxDepth" : 1 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwugAK--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwugAK--D", 
          "name" : "Bob" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugAK--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12685", 
              "_id" : "knows/12685", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugAO--B", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugAK--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugAK--D", 
              "name" : "Bob" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "maxDepth" : 1 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a visitor function to return vertex ids only



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "visitor" : "result.visited.vertices.push(vertex._id);" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        "persons/alice", 
        "persons/bob", 
        "persons/charlie", 
        "persons/dave" 
      ], 
      "paths" : [ ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "visitor" : "result.visited.vertices.push(vertex._id);" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Count all visited nodes and return a list of nodes only



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "init" : "result.visited = 0; result.myVertices = [ ];", 
  "visitor" : "result.visited++; result.myVertices.push(vertex);" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : 4, 
    "myVertices" : [ 
      { 
        "_key" : "alice", 
        "_id" : "persons/alice", 
        "_rev" : "_YDwugOq--_", 
        "name" : "Alice" 
      }, 
      { 
        "_key" : "bob", 
        "_id" : "persons/bob", 
        "_rev" : "_YDwugOq--B", 
        "name" : "Bob" 
      }, 
      { 
        "_key" : "charlie", 
        "_id" : "persons/charlie", 
        "_rev" : "_YDwugOq--D", 
        "name" : "Charlie" 
      }, 
      { 
        "_key" : "dave", 
        "_id" : "persons/dave", 
        "_rev" : "_YDwugOq--F", 
        "name" : "Dave" 
      } 
    ] 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "outbound", 
  "init" : "result.visited = 0; result.myVertices = [ ];", 
  "visitor" : "result.visited++; result.myVertices.push(vertex);" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Expand only inbound edges of Alice and outbound edges of Eve



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "expander" : "var connections = [ ];if (vertex.name === \"Alice\") {config.datasource.getInEdges(vertex).forEach(function (e) {connections.push({ vertex: require(\"internal\").db._document(e._from), edge: e});});}if (vertex.name === \"Eve\") {config.datasource.getOutEdges(vertex).forEach(function (e) {connections.push({vertex: require(\"internal\").db._document(e._to), edge: e});});}return connections;" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwugRa--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwugRe--B", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwugRa--D", 
          "name" : "Bob" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugRa--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "13158", 
              "_id" : "knows/13158", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugRe--J", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugRa--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugRe--B", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "13158", 
              "_id" : "knows/13158", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugRe--J", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "13161", 
              "_id" : "knows/13161", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugRe--L", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugRa--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugRe--B", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugRa--D", 
              "name" : "Bob" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "expander" : "var connections = [ ];if (vertex.name === \"Alice\") {config.datasource.getInEdges(vertex).forEach(function (e) {connections.push({ vertex: require(\"internal\").db._document(e._from), edge: e});});}if (vertex.name === \"Eve\") {config.datasource.getOutEdges(vertex).forEach(function (e) {connections.push({vertex: require(\"internal\").db._document(e._to), edge: e});});}return connections;" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Follow the depthfirst strategy



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "strategy" : "depthfirst" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufwq--_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwufwq--B", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwufwq--D", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwufwq--F", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwufwq--H", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufwq--_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwufwq--H", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwufwq--B", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwufwq--D", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwufwq--F", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufwq--_", 
          "name" : "Alice" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12312", 
              "_id" : "knows/12312", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--_", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12312", 
              "_id" : "knows/12312", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12316", 
              "_id" : "knows/12316", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwufwu--B", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwufwq--D", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12312", 
              "_id" : "knows/12312", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12319", 
              "_id" : "knows/12319", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwufwu--D", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwufwq--F", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12312", 
              "_id" : "knows/12312", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12325", 
              "_id" : "knows/12325", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--H", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12312", 
              "_id" : "knows/12312", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12325", 
              "_id" : "knows/12325", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12322", 
              "_id" : "knows/12322", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufwu--F", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12322", 
              "_id" : "knows/12322", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufwu--F", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12322", 
              "_id" : "knows/12322", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufwu--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12325", 
              "_id" : "knows/12325", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--H", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12322", 
              "_id" : "knows/12322", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufwu--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12325", 
              "_id" : "knows/12325", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12316", 
              "_id" : "knows/12316", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwufwu--B", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwufwq--D", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12322", 
              "_id" : "knows/12322", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufwu--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12325", 
              "_id" : "knows/12325", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12319", 
              "_id" : "knows/12319", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwufwu--D", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwufwq--F", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12322", 
              "_id" : "knows/12322", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwufwu--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12325", 
              "_id" : "knows/12325", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12312", 
              "_id" : "knows/12312", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwufwu--_", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwufwq--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwufwq--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufwq--_", 
              "name" : "Alice" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "strategy" : "depthfirst" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using postorder ordering



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "order" : "postorder" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwugLm--F", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwugLm--H", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwugLm--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwugLm--J", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwugLm--D", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwugLm--F", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwugLm--H", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwugLm--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwugLm--D", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwugLm--J", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwugLm--B", 
          "name" : "Alice" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ 
            { 
              "_key" : "12984", 
              "_id" : "knows/12984", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12988", 
              "_id" : "knows/12988", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwugLq--B", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwugLm--F", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12984", 
              "_id" : "knows/12984", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12991", 
              "_id" : "knows/12991", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwugLq--D", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwugLm--H", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12984", 
              "_id" : "knows/12984", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12997", 
              "_id" : "knows/12997", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12994", 
              "_id" : "knows/12994", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugLq--F", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12984", 
              "_id" : "knows/12984", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--_", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12997", 
              "_id" : "knows/12997", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--H", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12984", 
              "_id" : "knows/12984", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--_", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12994", 
              "_id" : "knows/12994", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugLq--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12997", 
              "_id" : "knows/12997", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12988", 
              "_id" : "knows/12988", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwugLq--B", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwugLm--F", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12994", 
              "_id" : "knows/12994", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugLq--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12997", 
              "_id" : "knows/12997", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12991", 
              "_id" : "knows/12991", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwugLq--D", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwugLm--H", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12994", 
              "_id" : "knows/12994", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugLq--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12997", 
              "_id" : "knows/12997", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--H", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12984", 
              "_id" : "knows/12984", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--_", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12994", 
              "_id" : "knows/12994", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugLq--F", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12997", 
              "_id" : "knows/12997", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwugLq--H", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwugLm--D", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12994", 
              "_id" : "knows/12994", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwugLq--F", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwugLm--J", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwugLm--B", 
              "name" : "Alice" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "order" : "postorder" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using backward item-ordering:



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "itemOrder" : "backward" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwuftS--_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwuftS--H", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwuftS--B", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwuftS--_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwuftS--F", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwuftS--D", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwuftS--B", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwuftS--H", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwuftS--_", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwuftS--F", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwuftS--D", 
          "name" : "Charlie" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12227", 
              "_id" : "knows/12227", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuftW--B", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12227", 
              "_id" : "knows/12227", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuftW--B", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12230", 
              "_id" : "knows/12230", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftW--D", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12227", 
              "_id" : "knows/12227", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuftW--B", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12230", 
              "_id" : "knows/12230", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftW--D", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12217", 
              "_id" : "knows/12217", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftS--J", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12227", 
              "_id" : "knows/12227", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuftW--B", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12230", 
              "_id" : "knows/12230", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftW--D", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12224", 
              "_id" : "knows/12224", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwuftW--_", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwuftS--F", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12227", 
              "_id" : "knows/12227", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuftW--B", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12230", 
              "_id" : "knows/12230", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftW--D", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12221", 
              "_id" : "knows/12221", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwuftS--L", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwuftS--D", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12217", 
              "_id" : "knows/12217", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftS--J", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12217", 
              "_id" : "knows/12217", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftS--J", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12230", 
              "_id" : "knows/12230", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftW--D", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12217", 
              "_id" : "knows/12217", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftS--J", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12230", 
              "_id" : "knows/12230", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftW--D", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12227", 
              "_id" : "knows/12227", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuftW--B", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuftS--H", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12217", 
              "_id" : "knows/12217", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftS--J", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12224", 
              "_id" : "knows/12224", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwuftW--_", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwuftS--F", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12217", 
              "_id" : "knows/12217", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuftS--J", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12221", 
              "_id" : "knows/12221", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwuftS--L", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwuftS--_", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuftS--B", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwuftS--D", 
              "name" : "Charlie" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "itemOrder" : "backward" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Edges should only be included once globally,
but nodes are included every time they are visited



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "uniqueness" : { 
    "vertices" : "none", 
    "edges" : "global" 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : { 
    "visited" : { 
      "vertices" : [ 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufz6--B", 
          "name" : "Alice" 
        }, 
        { 
          "_key" : "bob", 
          "_id" : "persons/bob", 
          "_rev" : "_YDwuf0---_", 
          "name" : "Bob" 
        }, 
        { 
          "_key" : "charlie", 
          "_id" : "persons/charlie", 
          "_rev" : "_YDwuf0---B", 
          "name" : "Charlie" 
        }, 
        { 
          "_key" : "dave", 
          "_id" : "persons/dave", 
          "_rev" : "_YDwuf0---D", 
          "name" : "Dave" 
        }, 
        { 
          "_key" : "eve", 
          "_id" : "persons/eve", 
          "_rev" : "_YDwuf0---F", 
          "name" : "Eve" 
        }, 
        { 
          "_key" : "alice", 
          "_id" : "persons/alice", 
          "_rev" : "_YDwufz6--B", 
          "name" : "Alice" 
        } 
      ], 
      "paths" : [ 
        { 
          "edges" : [ ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12407", 
              "_id" : "knows/12407", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0---H", 
              "vertex" : "alice" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf0---_", 
              "name" : "Bob" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12407", 
              "_id" : "knows/12407", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0---H", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12411", 
              "_id" : "knows/12411", 
              "_from" : "persons/bob", 
              "_to" : "persons/charlie", 
              "_rev" : "_YDwuf0---J", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf0---_", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "charlie", 
              "_id" : "persons/charlie", 
              "_rev" : "_YDwuf0---B", 
              "name" : "Charlie" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12407", 
              "_id" : "knows/12407", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0---H", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12414", 
              "_id" : "knows/12414", 
              "_from" : "persons/bob", 
              "_to" : "persons/dave", 
              "_rev" : "_YDwuf0---L", 
              "vertex" : "bob" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf0---_", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "dave", 
              "_id" : "persons/dave", 
              "_rev" : "_YDwuf0---D", 
              "name" : "Dave" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12407", 
              "_id" : "knows/12407", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0---H", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12420", 
              "_id" : "knows/12420", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0C--B", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf0---_", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuf0---F", 
              "name" : "Eve" 
            } 
          ] 
        }, 
        { 
          "edges" : [ 
            { 
              "_key" : "12407", 
              "_id" : "knows/12407", 
              "_from" : "persons/alice", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0---H", 
              "vertex" : "alice" 
            }, 
            { 
              "_key" : "12420", 
              "_id" : "knows/12420", 
              "_from" : "persons/eve", 
              "_to" : "persons/bob", 
              "_rev" : "_YDwuf0C--B", 
              "vertex" : "eve" 
            }, 
            { 
              "_key" : "12417", 
              "_id" : "knows/12417", 
              "_from" : "persons/eve", 
              "_to" : "persons/alice", 
              "_rev" : "_YDwuf0C--_", 
              "vertex" : "eve" 
            } 
          ], 
          "vertices" : [ 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            }, 
            { 
              "_key" : "bob", 
              "_id" : "persons/bob", 
              "_rev" : "_YDwuf0---_", 
              "name" : "Bob" 
            }, 
            { 
              "_key" : "eve", 
              "_id" : "persons/eve", 
              "_rev" : "_YDwuf0---F", 
              "name" : "Eve" 
            }, 
            { 
              "_key" : "alice", 
              "_id" : "persons/alice", 
              "_rev" : "_YDwufz6--B", 
              "name" : "Alice" 
            } 
          ] 
        } 
      ] 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "uniqueness" : { 
    "vertices" : "none", 
    "edges" : "global" 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






If the underlying graph is cyclic, maxIterations should be set

The underlying graph has two vertices Alice and Bob.
With the directed edges:


	Alice knows Bob

	Bob knows Alice





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "uniqueness" : { 
    "vertices" : "none", 
    "edges" : "none" 
  }, 
  "maxIterations" : 5 
}
EOF

HTTP/1.1 500 Internal Server Error
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "code" : 500, 
  "errorNum" : 1909, 
  "errorMessage" : "too many iterations - try increasing the value of 'maxIterations'" 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/traversal <<EOF
{ 
  "startVertex" : "persons/alice", 
  "graphName" : "knows_graph", 
  "direction" : "any", 
  "uniqueness" : { 
    "vertices" : "none", 
    "edges" : "none" 
  }, 
  "maxIterations" : 5 
}
EOF

HTTP/1.1 500 Internal Server Error
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






All examples were using this graph:

[image: Persons relation Example Graph]


        

    



        
    



        

    
        AQL Query Cursors

        
            HTTP Interface for AQL Query Cursors

Database Cursors

This is an introduction to ArangoDB's HTTP Interface for Queries. Results of AQL
and simple queries are returned as cursors in order to batch the communication
between server and client. Each call returns a number of documents in a batch
and an indication if the current batch has been the final batch. Depending on
the query, the total number of documents in the result set might or might not be
known in advance. In order to free server resources the client should delete the
cursor as soon as it is no longer needed.

To execute a query, the query details need to be shipped from the client to
the server via an HTTP POST request.


        

    



        
    



        

    
        Query Results

        
            Retrieving query results

Select queries are executed on-the-fly on the server and the result
set will be returned back to the client.

There are two ways the client can get the result set from the server:


	In a single roundtrip

	Using a cursor



Single roundtrip

The server will only transfer a certain number of result documents back to the
client in one roundtrip. This number is controllable by the client by setting
the batchSize attribute when issuing the query.

If the complete result can be transferred to the client in one go, the client
does not need to issue any further request. The client can check whether it has
retrieved the complete result set by checking the hasMore attribute of the
result set. If it is set to false, then the client has fetched the complete
result set from the server. In this case no server side cursor will be created.

> curl --data @- -X POST --dump - http://localhost:8529/_api/cursor
{ "query" : "FOR u IN users LIMIT 2 RETURN u", "count" : true, "batchSize" : 2 }

HTTP/1.1 201 Created
Content-type: application/json

{
  "hasMore" : false,
  "error" : false,
  "result" : [
    {
      "name" : "user1",
      "_rev" : "210304551",
      "_key" : "210304551",
      "_id" : "users/210304551"
    },
    {
      "name" : "user2",
      "_rev" : "210304552",
      "_key" : "210304552",
      "_id" : "users/210304552"
    }
  ],
  "code" : 201,
  "count" : 2
}


Using a cursor

If the result set contains more documents than should be transferred in a single
roundtrip (i.e. as set via the batchSize attribute), the server will return
the first few documents and create a temporary cursor. The cursor identifier
will also be returned to the client. The server will put the cursor identifier
in the id attribute of the response object. Furthermore, the hasMore
attribute of the response object will be set to true. This is an indication
for the client that there are additional results to fetch from the server.

Examples:

Create and extract first batch:

> curl --data @- -X POST --dump - http://localhost:8529/_api/cursor
{ "query" : "FOR u IN users LIMIT 5 RETURN u", "count" : true, "batchSize" : 2 }

HTTP/1.1 201 Created
Content-type: application/json

{
  "hasMore" : true,
  "error" : false,
  "id" : "26011191",
  "result" : [
    {
      "name" : "user1",
      "_rev" : "258801191",
      "_key" : "258801191",
      "_id" : "users/258801191"
    },
    {
      "name" : "user2",
      "_rev" : "258801192",
      "_key" : "258801192",
      "_id" : "users/258801192"
    }
  ],
  "code" : 201,
  "count" : 5
}


Extract next batch, still have more:

> curl -X PUT --dump - http://localhost:8529/_api/cursor/26011191

HTTP/1.1 200 OK
Content-type: application/json

{
  "hasMore" : true,
  "error" : false,
  "id" : "26011191",
  "result": [
    {
      "name" : "user3",
      "_rev" : "258801193",
      "_key" : "258801193",
      "_id" : "users/258801193"
    },
    {
      "name" : "user4",
      "_rev" : "258801194",
      "_key" : "258801194",
      "_id" : "users/258801194"
    }
  ],
  "code" : 200,
  "count" : 5
}


Extract next batch, done:

> curl -X PUT --dump - http://localhost:8529/_api/cursor/26011191

HTTP/1.1 200 OK
Content-type: application/json

{
  "hasMore" : false,
  "error" : false,
  "result" : [
    {
      "name" : "user5",
      "_rev" : "258801195",
      "_key" : "258801195",
      "_id" : "users/258801195"
    }
  ],
  "code" : 200,
  "count" : 5
}


Do not do this because hasMore now has a value of false:

> curl -X PUT --dump - http://localhost:8529/_api/cursor/26011191

HTTP/1.1 404 Not Found
Content-type: application/json

{
  "errorNum": 1600,
  "errorMessage": "cursor not found: disposed or unknown cursor",
  "error": true,
  "code": 404
}


Modifying documents

The _api/cursor endpoint can also be used to execute modifying queries.

The following example appends a value into the array arrayValue of the document
with key test in the collection documents. Normal update behavior is to
replace the attribute completely, and using an update AQL query with the PUSH() 
function allows to append to the array.

curl --data @- -X POST --dump http://127.0.0.1:8529/_api/cursor
{ "query": "FOR doc IN documents FILTER doc._key == @myKey UPDATE doc._key WITH { arrayValue: PUSH(doc.arrayValue, @value) } IN documents","bindVars": { "myKey": "test", "value": 42 } }

HTTP/1.1 201 Created
Content-type: application/json; charset=utf-8

{
  "result" : [],
  "hasMore" : false,
  "extra" : {
    "stats" : {
      "writesExecuted" : 1,
      "writesIgnored" : 0,
      "scannedFull" : 0,
      "scannedIndex" : 1,
      "filtered" : 0
    },
    "warnings" : []
  },
  "error" : false,
  "code" : 201
}


Setting a memory limit

To set a memory limit for the query, the memoryLimit option can be passed to
the server.
The memory limit specifies the maximum number of bytes that the query is
allowed to use. When a single AQL query reaches the specified limit value, 
the query will be aborted with a resource limit exceeded exception. In a 
cluster, the memory accounting is done per shard, so the limit value is 
effectively a memory limit per query per shard.

> curl --data @- -X POST --dump - http://localhost:8529/_api/cursor
{ "query" : "FOR i IN 1..100000 SORT i RETURN i", "memoryLimit" : 100000 }

HTTP/1.1 500 Internal Server Error
Server: ArangoDB
Connection: Keep-Alive
Content-Type: application/json; charset=utf-8
Content-Length: 115

{"error":true,"errorMessage":"query would use more memory than allowed (while executing)","code":500,"errorNum":32}


If no memory limit is specified, then the server default value (controlled by
startup option --query.memory-limit will be used for restricting the maximum amount 
of memory the query can use. A memory limit value of 0 means that the maximum
amount of memory for the query is not restricted. 


        

    



        
    



        

    
        Accessing Cursors

        
            Accessing Cursors via HTTP


Create cursor

 create a cursor and return the first results

POST /_api/cursor

A JSON object describing the query and query parameters.

A JSON object with these properties is required:


	count: indicates whether the number of documents in the result set should be returned in
the "count" attribute of the result.
Calculating the "count" attribute might have a performance impact for some queries
in the future so this option is turned off by default, and "count"
is only returned when requested.

	batchSize: maximum number of result documents to be transferred from
the server to the client in one roundtrip. If this attribute is
not set, a server-controlled default value will be used. A batchSize value of
0 is disallowed.

	cache: flag to determine whether the AQL query cache
shall be used. If set to false, then any query cache lookup will be skipped
for the query. If set to true, it will lead to the query cache being checked
for the query if the query cache mode is either on or demand.

	memoryLimit: the maximum number of memory (measured in bytes) that the query is allowed to
use. If set, then the query will fail with error "resource limit exceeded" in
case it allocates too much memory. A value of 0 indicates that there is no
memory limit.

	ttl: The time-to-live for the cursor (in seconds). The cursor will be
removed on the server automatically after the specified amount of time. This
is useful to ensure garbage collection of cursors that are not fully fetched
by clients. If not set, a server-defined value will be used.

	query: contains the query string to be executed

	bindVars (object): key/value pairs representing the bind parameters.

	options:
	failOnWarning: When set to true, the query will throw an exception and abort instead of producing
a warning. This option should be used during development to catch potential issues
early. When the attribute is set to false, warnings will not be propagated to
exceptions and will be returned with the query result.
There is also a server configuration option --query.fail-on-warning for setting the
default value for failOnWarning so it does not need to be set on a per-query level.

	profile: If set to true, then the additional query profiling information will be returned
in the sub-attribute profile of the extra return attribute if the query result
is not served from the query cache.

	maxTransactionSize: Transaction size limit in bytes. Honored by the RocksDB storage engine only.

	skipInaccessibleCollections: AQL queries (especially graph traversals) will treat collection to which a user has no access rights as if these collections were empty. Instead of returning a forbidden access error, your queries will execute normally. This is intended to help with certain use-cases: A graph contains several collections and different users execute AQL queries on that graph. You can now naturally limit the accessible results by changing the access rights of users on collections. This feature is only available in the Enterprise Edition.

	maxWarningCount: Limits the maximum number of warnings a query will return. The number of warnings
a query will return is limited to 10 by default, but that number can be increased
or decreased by setting this attribute.

	intermediateCommitCount: Maximum number of operations after which an intermediate commit is performed
automatically. Honored by the RocksDB storage engine only.

	satelliteSyncWait: This enterprise parameter allows to configure how long a DBServer will have time
to bring the satellite collections involved in the query into sync.
The default value is 60.0 (seconds). When the max time has been reached the query
will be stopped.

	fullCount: if set to true and the query contains a LIMIT clause, then the
result will have an extra attribute with the sub-attributes stats
and fullCount, { ... , "extra": { "stats": { "fullCount": 123 } } }.
The fullCount attribute will contain the number of documents in the result before the
last LIMIT in the query was applied. It can be used to count the number of documents that
match certain filter criteria, but only return a subset of them, in one go.
It is thus similar to MySQL's SQL_CALC_FOUND_ROWS hint. Note that setting the option
will disable a few LIMIT optimizations and may lead to more documents being processed,
and thus make queries run longer. Note that the fullCount attribute will only
be present in the result if the query has a LIMIT clause and the LIMIT clause is
actually used in the query.

	intermediateCommitSize: Maximum total size of operations after which an intermediate commit is performed
automatically. Honored by the RocksDB storage engine only.

	optimizer.rules (string): A list of to-be-included or to-be-excluded optimizer rules
can be put into this attribute, telling the optimizer to include or exclude
specific rules. To disable a rule, prefix its name with a -, to enable a rule, prefix it
with a +. There is also a pseudo-rule all, which will match all optimizer rules.

	maxPlans: Limits the maximum number of plans that are created by the AQL query optimizer.







The query details include the query string plus optional query options and
bind parameters. These values need to be passed in a JSON representation in
the body of the POST request.

HTTP 201

A json document with these Properties is returned:

is returned if the result set can be created by the server.


	count: the total number of result documents available (only
available if the query was executed with the count attribute set)

	code: the HTTP status code

	extra: an optional JSON object with extra information about the query result
contained in its stats sub-attribute. For data-modification queries, the
extra.stats sub-attribute will contain the number of modified documents and
the number of documents that could not be modified
due to an error (if ignoreErrors query option is specified)

	cached: a boolean flag indicating whether the query result was served
from the query cache or not. If the query result is served from the query
cache, the extra return attribute will not contain any stats sub-attribute
and no profile sub-attribute.

	hasMore: A boolean indicator whether there are more results
available for the cursor on the server

	result (anonymous json object): an array of result documents (might be empty if query has no results)

	error: A flag to indicate that an error occurred (false in this case)

	id: id of temporary cursor created on the server (optional, see above)



HTTP 400

A json document with these Properties is returned:

is returned if the JSON representation is malformed or the query specification is
missing from the request.
If the JSON representation is malformed or the query specification is
missing from the request, the server will respond with HTTP 400.
The body of the response will contain a JSON object with additional error
details. The object has the following attributes:


	errorMessage: a descriptive error message
If the query specification is complete, the server will process the query. If an
error occurs during query processing, the server will respond with HTTP 400.
Again, the body of the response will contain details about the error.
A list of query errors can be found here.

	errorNum: the server error number

	code: the HTTP status code

	error: boolean flag to indicate that an error occurred (true in this case)



Return Codes


	201:
is returned if the result set can be created by the server.



Response Body


	count: the total number of result documents available (only
available if the query was executed with the count attribute set)

	code: the HTTP status code

	extra: an optional JSON object with extra information about the query result
contained in its stats sub-attribute. For data-modification queries, the
extra.stats sub-attribute will contain the number of modified documents and
the number of documents that could not be modified
due to an error (if ignoreErrors query option is specified)

	cached: a boolean flag indicating whether the query result was served
from the query cache or not. If the query result is served from the query
cache, the extra return attribute will not contain any stats sub-attribute
and no profile sub-attribute.

	hasMore: A boolean indicator whether there are more results
available for the cursor on the server

	result (anonymous json object): an array of result documents (might be empty if query has no results)

	error: A flag to indicate that an error occurred (false in this case)

	id: id of temporary cursor created on the server (optional, see above)



	400:
is returned if the JSON representation is malformed or the query specification is
missing from the request.





If the JSON representation is malformed or the query specification is
missing from the request, the server will respond with HTTP 400.

The body of the response will contain a JSON object with additional error
details. The object has the following attributes:

Response Body


	errorMessage: a descriptive error message
If the query specification is complete, the server will process the query. If an
error occurs during query processing, the server will respond with HTTP 400.
Again, the body of the response will contain details about the error.
A list of query errors can be found here.

	code: the HTTP status code

	errorNum: the server error number

	error: boolean flag to indicate that an error occurred (true in this case)



If the query specification is complete, the server will process the query. If an
error occurs during query processing, the server will respond with HTTP 400.
Again, the body of the response will contain details about the error.

A list of query errors can be found here.


	404:
The server will respond with HTTP 404 in case a non-existing collection is
accessed in the query.



	405:
The server will respond with HTTP 405 if an unsupported HTTP method is used.





Examples

Execute a query and extract the result in a single go



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 2 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "10334", 
      "_id" : "products/10334", 
      "_rev" : "_YDwuY_G--B", 
      "hello2" : "world1" 
    }, 
    { 
      "_key" : "10330", 
      "_id" : "products/10330", 
      "_rev" : "_YDwuY_G--_", 
      "hello1" : "world1" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 2, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00009489059448242188 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 2 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Execute a query and extract a part of the result



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 5 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 201, 
  "result" : [ 
    { 
      "_key" : "10308", 
      "_id" : "products/10308", 
      "_rev" : "_YDwuY----_", 
      "hello1" : "world1" 
    }, 
    { 
      "_key" : "10315", 
      "_id" : "products/10315", 
      "_rev" : "_YDwuY----D", 
      "hello3" : "world1" 
    } 
  ], 
  "hasMore" : true, 
  "id" : "10324", 
  "count" : 5, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 5, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.0001163482666015625 
    }, 
    "warnings" : [ ] 
  }, 
  "cached" : false 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 5 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using the query option "fullCount"



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR i IN 1..1000 FILTER i > 500 LIMIT 10 RETURN i", 
  "count" : true, 
  "options" : { 
    "fullCount" : true 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    501, 
    502, 
    503, 
    504, 
    505, 
    506, 
    507, 
    508, 
    509, 
    510 
  ], 
  "hasMore" : false, 
  "count" : 10, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 0, 
      "scannedIndex" : 0, 
      "filtered" : 500, 
      "httpRequests" : 0, 
      "fullCount" : 500, 
      "executionTime" : 0.00038814544677734375 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR i IN 1..1000 FILTER i > 500 LIMIT 10 RETURN i", 
  "count" : true, 
  "options" : { 
    "fullCount" : true 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Enabling and disabling optimizer rules



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR i IN 1..10 LET a = 1 LET b = 2 FILTER a + b == 3 RETURN i", 
  "count" : true, 
  "options" : { 
    "maxPlans" : 1, 
    "optimizer" : { 
      "rules" : [ 
        "-all", 
        "+remove-unnecessary-filters" 
      ] 
    } 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    1, 
    2, 
    3, 
    4, 
    5, 
    6, 
    7, 
    8, 
    9, 
    10 
  ], 
  "hasMore" : false, 
  "count" : 10, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 0, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00009965896606445312 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR i IN 1..10 LET a = 1 LET b = 2 FILTER a + b == 3 RETURN i", 
  "count" : true, 
  "options" : { 
    "maxPlans" : 1, 
    "optimizer" : { 
      "rules" : [ 
        "-all", 
        "+remove-unnecessary-filters" 
      ] 
    } 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Execute a data-modification query and retrieve the number of
modified documents



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products REMOVE p IN products" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ ], 
  "hasMore" : false, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 2, 
      "writesIgnored" : 0, 
      "scannedFull" : 2, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00013136863708496094 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products REMOVE p IN products" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Execute a data-modification query with option ignoreErrors



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "REMOVE 'bar' IN products OPTIONS { ignoreErrors: true }" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ ], 
  "hasMore" : false, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 1, 
      "scannedFull" : 0, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00011348724365234375 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "REMOVE 'bar' IN products OPTIONS { ignoreErrors: true }" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Bad query - Missing body



shell> curl -X POST --dump - http://localhost:8529/_api/cursor

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "query is empty", 
  "code" : 400, 
  "errorNum" : 1502 
}





shell> curl -X POST --dump - http://localhost:8529/_api/cursor

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Bad query - Unknown collection



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR u IN unknowncoll LIMIT 2 RETURN u", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "AQL: collection not found: unknowncoll (while parsing)", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR u IN unknowncoll LIMIT 2 RETURN u", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Bad query - Execute a data-modification query that attempts to remove a non-existing
document



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "REMOVE 'foo' IN products" 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "AQL: document not found (while executing)", 
  "code" : 404, 
  "errorNum" : 1202 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "REMOVE 'foo' IN products" 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Read next batch from cursor

 return the next results from an existing cursor

PUT /_api/cursor/{cursor-identifier}

Path Parameters


	cursor-identifier (required):
The name of the cursor



If the cursor is still alive, returns an object with the following
attributes:


	id: the cursor-identifier

	result: a list of documents for the current batch

	hasMore: false if this was the last batch

	count: if present the total number of elements



Note that even if hasMore returns true, the next call might
still return no documents. If, however, hasMore is false, then
the cursor is exhausted.  Once the hasMore attribute has a value of
false, the client can stop.

Return Codes


	200:
The server will respond with HTTP 200 in case of success.



	400:
If the cursor identifier is omitted, the server will respond with HTTP 404.



	404:
If no cursor with the specified identifier can be found, the server will respond
with HTTP 404.





Examples

Valid request for next batch



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 5 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

shell> curl -X PUT --dump - http://localhost:8529/_api/cursor/10414

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : [ 
    { 
      "_key" : "10411", 
      "_id" : "products/10411", 
      "_rev" : "_YDwuYGu--_", 
      "hello5" : "world1" 
    }, 
    { 
      "_key" : "10408", 
      "_id" : "products/10408", 
      "_rev" : "_YDwuYGq--F", 
      "hello4" : "world1" 
    } 
  ], 
  "hasMore" : true, 
  "id" : "10414", 
  "count" : 5, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 5, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00010967254638671875 
    }, 
    "warnings" : [ ] 
  }, 
  "cached" : false 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 5 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

shell> curl -X PUT --dump - http://localhost:8529/_api/cursor/10414

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Missing identifier



shell> curl -X PUT --dump - http://localhost:8529/_api/cursor

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "expecting PUT /_api/cursor/<cursor-id>", 
  "code" : 400, 
  "errorNum" : 400 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/cursor

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Unknown identifier



shell> curl -X PUT --dump - http://localhost:8529/_api/cursor/123123

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "cursor not found", 
  "code" : 404, 
  "errorNum" : 1600 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/cursor/123123

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Delete cursor

 dispose an existing cursor

DELETE /_api/cursor/{cursor-identifier}

Path Parameters


	cursor-identifier (required):
The id of the cursor



Deletes the cursor and frees the resources associated with it.

The cursor will automatically be destroyed on the server when the client has
retrieved all documents from it. The client can also explicitly destroy the
cursor at any earlier time using an HTTP DELETE request. The cursor id must
be included as part of the URL.

Note: the server will also destroy abandoned cursors automatically after a
certain server-controlled timeout to avoid resource leakage.

Return Codes


	202:
is returned if the server is aware of the cursor.



	404:
is returned if the server is not aware of the cursor. It is also
returned if a cursor is used after it has been destroyed.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 5 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 201, 
  "result" : [ 
    { 
      "_key" : "10350", 
      "_id" : "products/10350", 
      "_rev" : "_YDwuYBW--B", 
      "hello3" : "world1" 
    }, 
    { 
      "_key" : "10353", 
      "_id" : "products/10353", 
      "_rev" : "_YDwuYBW--D", 
      "hello4" : "world1" 
    } 
  ], 
  "hasMore" : true, 
  "id" : "10359", 
  "count" : 5, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 5, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00011682510375976562 
    }, 
    "warnings" : [ ] 
  }, 
  "cached" : false 
}
shell> curl -X DELETE --dump - http://localhost:8529/_api/cursor/10359






shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR p IN products LIMIT 5 RETURN p", 
  "count" : true, 
  "batchSize" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        AQL Queries

        
            HTTP Interface for AQL Queries

Explaining and parsing queries

ArangoDB has an HTTP interface to syntactically validate AQL queries.
Furthermore, it offers an HTTP interface to retrieve the execution plan for any
valid AQL query.

Both functionalities do not actually execute the supplied AQL query, but only
inspect it and return meta information about it.


Explain an AQL query

 explain an AQL query and return information about it

POST /_api/explain

A JSON object describing the query and query parameters.

A JSON object with these properties is required:


	query: the query which you want explained; If the query references any bind variables,
these must also be passed in the attribute bindVars. Additional
options for the query can be passed in the options attribute.

	options:
	optimizer.rules (string): an array of to-be-included or to-be-excluded optimizer rules
can be put into this attribute, telling the optimizer to include or exclude
specific rules. To disable a rule, prefix its name with a -, to enable a rule, prefix it
with a +. There is also a pseudo-rule all, which will match all optimizer rules.

	maxNumberOfPlans: an optional maximum number of plans that the optimizer is 
allowed to generate. Setting this attribute to a low value allows to put a
cap on the amount of work the optimizer does.

	allPlans: if set to true, all possible execution plans will be returned.
The default is false, meaning only the optimal plan will be returned.





	bindVars (object): key/value pairs representing the bind parameters.



To explain how an AQL query would be executed on the server, the query string
can be sent to the server via an HTTP POST request. The server will then validate
the query and create an execution plan for it. The execution plan will be
returned, but the query will not be executed.

The execution plan that is returned by the server can be used to estimate the
probable performance of the query. Though the actual performance will depend
on many different factors, the execution plan normally can provide some rough
estimates on the amount of work the server needs to do in order to actually run 
the query.

By default, the explain operation will return the optimal plan as chosen by
the query optimizer The optimal plan is the plan with the lowest total estimated
cost. The plan will be returned in the attribute plan of the response object.
If the option allPlans is specified in the request, the result will contain 
all plans created by the optimizer. The plans will then be returned in the 
attribute plans.

The result will also contain an attribute warnings, which is an array of 
warnings that occurred during optimization or execution plan creation. Additionally,
a stats attribute is contained in the result with some optimizer statistics.
If allPlans is set to false, the result will contain an attribute cacheable 
that states whether the query results can be cached on the server if the query
result cache were used. The cacheable attribute is not present when allPlans
is set to true.

Each plan in the result is a JSON object with the following attributes:


	nodes: the array of execution nodes of the plan. The array of available node types
can be found here



	estimatedCost: the total estimated cost for the plan. If there are multiple
plans, the optimizer will choose the plan with the lowest total cost.



	collections: an array of collections used in the query



	rules: an array of rules the optimizer applied. An overview of the
available rules can be found here



	variables: array of variables used in the query (note: this may contain
internal variables created by the optimizer)





Return Codes


	200:
If the query is valid, the server will respond with HTTP 200 and
return the optimal execution plan in the plan attribute of the response.
If option allPlans was set in the request, an array of plans will be returned
in the allPlans attribute instead.



	400:
The server will respond with HTTP 400 in case of a malformed request,
or if the query contains a parse error. The body of the response will
contain the error details embedded in a JSON object.
Omitting bind variables if the query references any will also result
in an HTTP 400 error.



	404:
The server will respond with HTTP 404 in case a non-existing collection is
accessed in the query.





Examples

Valid query



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products RETURN p" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "plan" : { 
    "nodes" : [ 
      { 
        "type" : "SingletonNode", 
        "dependencies" : [ ], 
        "id" : 1, 
        "estimatedCost" : 1, 
        "estimatedNrItems" : 1 
      }, 
      { 
        "type" : "EnumerateCollectionNode", 
        "dependencies" : [ 
          1 
        ], 
        "id" : 2, 
        "estimatedCost" : 12, 
        "estimatedNrItems" : 10, 
        "database" : "_system", 
        "collection" : "products", 
        "random" : false, 
        "satellite" : false, 
        "outVariable" : { 
          "id" : 0, 
          "name" : "p" 
        }, 
        "projections" : [ ], 
        "producesResult" : true 
      }, 
      { 
        "type" : "ReturnNode", 
        "dependencies" : [ 
          2 
        ], 
        "id" : 3, 
        "estimatedCost" : 22, 
        "estimatedNrItems" : 10, 
        "inVariable" : { 
          "id" : 0, 
          "name" : "p" 
        } 
      } 
    ], 
    "rules" : [ ], 
    "collections" : [ 
      { 
        "name" : "products", 
        "type" : "read" 
      } 
    ], 
    "variables" : [ 
      { 
        "id" : 0, 
        "name" : "p" 
      } 
    ], 
    "estimatedCost" : 22, 
    "estimatedNrItems" : 10, 
    "initialize" : true 
  }, 
  "cacheable" : true, 
  "warnings" : [ ], 
  "stats" : { 
    "rulesExecuted" : 30, 
    "rulesSkipped" : 0, 
    "plansCreated" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products RETURN p" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






A plan with some optimizer rules applied



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products LET a = p.id FILTER a == 4 LET name = p.name SORT p.id LIMIT 1 RETURN name" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "plan" : { 
    "nodes" : [ 
      { 
        "type" : "SingletonNode", 
        "dependencies" : [ ], 
        "id" : 1, 
        "estimatedCost" : 1, 
        "estimatedNrItems" : 1 
      }, 
      { 
        "type" : "IndexNode", 
        "dependencies" : [ 
          1 
        ], 
        "id" : 11, 
        "estimatedCost" : 4.321928094887362, 
        "estimatedNrItems" : 1, 
        "database" : "_system", 
        "collection" : "products", 
        "satellite" : false, 
        "outVariable" : { 
          "id" : 0, 
          "name" : "p" 
        }, 
        "projections" : [ ], 
        "producesResult" : true, 
        "indexes" : [ 
          { 
            "id" : "10873", 
            "type" : "skiplist", 
            "fields" : [ 
              "id" 
            ], 
            "unique" : false, 
            "sparse" : false, 
            "deduplicate" : true 
          } 
        ], 
        "condition" : { 
          "type" : "n-ary or", 
          "subNodes" : [ 
            { 
              "type" : "n-ary and", 
              "subNodes" : [ 
                { 
                  "type" : "compare ==", 
                  "subNodes" : [ 
                    { 
                      "type" : "attribute access", 
                      "name" : "id", 
                      "subNodes" : [ 
                        { 
                          "type" : "reference", 
                          "name" : "p", 
                          "id" : 0 
                        } 
                      ] 
                    }, 
                    { 
                      "type" : "value", 
                      "value" : 4 
                    } 
                  ] 
                } 
              ] 
            } 
          ] 
        }, 
        "reverse" : false, 
        "needsGatherNodeSort" : true, 
        "indexCoversProjections" : false 
      }, 
      { 
        "type" : "CalculationNode", 
        "dependencies" : [ 
          11 
        ], 
        "id" : 4, 
        "estimatedCost" : 5.321928094887362, 
        "estimatedNrItems" : 1, 
        "expression" : { 
          "type" : "compare ==", 
          "subNodes" : [ 
            { 
              "type" : "attribute access", 
              "name" : "id", 
              "subNodes" : [ 
                { 
                  "type" : "reference", 
                  "name" : "p", 
                  "id" : 0 
                } 
              ] 
            }, 
            { 
              "type" : "value", 
              "value" : 4 
            } 
          ] 
        }, 
        "outVariable" : { 
          "id" : 4, 
          "name" : "3" 
        }, 
        "canThrow" : false, 
        "expressionType" : "simple" 
      }, 
      { 
        "type" : "FilterNode", 
        "dependencies" : [ 
          4 
        ], 
        "id" : 5, 
        "estimatedCost" : 6.321928094887362, 
        "estimatedNrItems" : 1, 
        "inVariable" : { 
          "id" : 4, 
          "name" : "3" 
        } 
      }, 
      { 
        "type" : "LimitNode", 
        "dependencies" : [ 
          5 
        ], 
        "id" : 9, 
        "estimatedCost" : 7.321928094887362, 
        "estimatedNrItems" : 1, 
        "offset" : 0, 
        "limit" : 1, 
        "fullCount" : false 
      }, 
      { 
        "type" : "CalculationNode", 
        "dependencies" : [ 
          9 
        ], 
        "id" : 6, 
        "estimatedCost" : 8.321928094887362, 
        "estimatedNrItems" : 1, 
        "expression" : { 
          "type" : "attribute access", 
          "name" : "name", 
          "subNodes" : [ 
            { 
              "type" : "reference", 
              "name" : "p", 
              "id" : 0 
            } 
          ] 
        }, 
        "outVariable" : { 
          "id" : 2, 
          "name" : "name" 
        }, 
        "canThrow" : false, 
        "expressionType" : "attribute" 
      }, 
      { 
        "type" : "ReturnNode", 
        "dependencies" : [ 
          6 
        ], 
        "id" : 10, 
        "estimatedCost" : 9.321928094887362, 
        "estimatedNrItems" : 1, 
        "inVariable" : { 
          "id" : 2, 
          "name" : "name" 
        } 
      } 
    ], 
    "rules" : [ 
      "move-calculations-up", 
      "remove-redundant-calculations", 
      "remove-unnecessary-calculations", 
      "move-calculations-up-2", 
      "use-indexes", 
      "use-index-for-sort", 
      "remove-unnecessary-calculations-2", 
      "move-calculations-down" 
    ], 
    "collections" : [ 
      { 
        "name" : "products", 
        "type" : "read" 
      } 
    ], 
    "variables" : [ 
      { 
        "id" : 6, 
        "name" : "5" 
      }, 
      { 
        "id" : 4, 
        "name" : "3" 
      }, 
      { 
        "id" : 2, 
        "name" : "name" 
      }, 
      { 
        "id" : 1, 
        "name" : "a" 
      }, 
      { 
        "id" : 0, 
        "name" : "p" 
      } 
    ], 
    "estimatedCost" : 9.321928094887362, 
    "estimatedNrItems" : 1, 
    "initialize" : true 
  }, 
  "cacheable" : true, 
  "warnings" : [ ], 
  "stats" : { 
    "rulesExecuted" : 30, 
    "rulesSkipped" : 0, 
    "plansCreated" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products LET a = p.id FILTER a == 4 LET name = p.name SORT p.id LIMIT 1 RETURN name" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using some options



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products LET a = p.id FILTER a == 4 LET name = p.name SORT p.id LIMIT 1 RETURN name", 
  "options" : { 
    "maxNumberOfPlans" : 2, 
    "allPlans" : true, 
    "optimizer" : { 
      "rules" : [ 
        "-all", 
        "+use-index-for-sort", 
        "+use-index-range" 
      ] 
    } 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "plans" : [ 
    { 
      "nodes" : [ 
        { 
          "type" : "SingletonNode", 
          "dependencies" : [ ], 
          "id" : 1, 
          "estimatedCost" : 1, 
          "estimatedNrItems" : 1 
        }, 
        { 
          "type" : "IndexNode", 
          "dependencies" : [ 
            1 
          ], 
          "id" : 11, 
          "estimatedCost" : 11, 
          "estimatedNrItems" : 10, 
          "database" : "_system", 
          "collection" : "products", 
          "satellite" : false, 
          "outVariable" : { 
            "id" : 0, 
            "name" : "p" 
          }, 
          "projections" : [ ], 
          "producesResult" : true, 
          "indexes" : [ 
            { 
              "id" : "10912", 
              "type" : "skiplist", 
              "fields" : [ 
                "id" 
              ], 
              "unique" : false, 
              "sparse" : false, 
              "deduplicate" : true 
            } 
          ], 
          "condition" : { 
          }, 
          "reverse" : false, 
          "needsGatherNodeSort" : true, 
          "indexCoversProjections" : false 
        }, 
        { 
          "type" : "CalculationNode", 
          "dependencies" : [ 
            11 
          ], 
          "id" : 3, 
          "estimatedCost" : 21, 
          "estimatedNrItems" : 10, 
          "expression" : { 
            "type" : "attribute access", 
            "name" : "id", 
            "subNodes" : [ 
              { 
                "type" : "reference", 
                "name" : "p", 
                "id" : 0 
              } 
            ] 
          }, 
          "outVariable" : { 
            "id" : 1, 
            "name" : "a" 
          }, 
          "canThrow" : false, 
          "expressionType" : "attribute" 
        }, 
        { 
          "type" : "CalculationNode", 
          "dependencies" : [ 
            3 
          ], 
          "id" : 4, 
          "estimatedCost" : 31, 
          "estimatedNrItems" : 10, 
          "expression" : { 
            "type" : "compare ==", 
            "subNodes" : [ 
              { 
                "type" : "reference", 
                "name" : "a", 
                "id" : 1 
              }, 
              { 
                "type" : "value", 
                "value" : 4 
              } 
            ] 
          }, 
          "outVariable" : { 
            "id" : 4, 
            "name" : "3" 
          }, 
          "canThrow" : false, 
          "expressionType" : "simple" 
        }, 
        { 
          "type" : "FilterNode", 
          "dependencies" : [ 
            4 
          ], 
          "id" : 5, 
          "estimatedCost" : 41, 
          "estimatedNrItems" : 10, 
          "inVariable" : { 
            "id" : 4, 
            "name" : "3" 
          } 
        }, 
        { 
          "type" : "CalculationNode", 
          "dependencies" : [ 
            5 
          ], 
          "id" : 6, 
          "estimatedCost" : 51, 
          "estimatedNrItems" : 10, 
          "expression" : { 
            "type" : "attribute access", 
            "name" : "name", 
            "subNodes" : [ 
              { 
                "type" : "reference", 
                "name" : "p", 
                "id" : 0 
              } 
            ] 
          }, 
          "outVariable" : { 
            "id" : 2, 
            "name" : "name" 
          }, 
          "canThrow" : false, 
          "expressionType" : "attribute" 
        }, 
        { 
          "type" : "CalculationNode", 
          "dependencies" : [ 
            6 
          ], 
          "id" : 7, 
          "estimatedCost" : 61, 
          "estimatedNrItems" : 10, 
          "expression" : { 
            "type" : "attribute access", 
            "name" : "id", 
            "subNodes" : [ 
              { 
                "type" : "reference", 
                "name" : "p", 
                "id" : 0 
              } 
            ] 
          }, 
          "outVariable" : { 
            "id" : 6, 
            "name" : "5" 
          }, 
          "canThrow" : false, 
          "expressionType" : "attribute" 
        }, 
        { 
          "type" : "LimitNode", 
          "dependencies" : [ 
            7 
          ], 
          "id" : 9, 
          "estimatedCost" : 62, 
          "estimatedNrItems" : 1, 
          "offset" : 0, 
          "limit" : 1, 
          "fullCount" : false 
        }, 
        { 
          "type" : "ReturnNode", 
          "dependencies" : [ 
            9 
          ], 
          "id" : 10, 
          "estimatedCost" : 63, 
          "estimatedNrItems" : 1, 
          "inVariable" : { 
            "id" : 2, 
            "name" : "name" 
          } 
        } 
      ], 
      "rules" : [ 
        "use-index-for-sort" 
      ], 
      "collections" : [ 
        { 
          "name" : "products", 
          "type" : "read" 
        } 
      ], 
      "variables" : [ 
        { 
          "id" : 6, 
          "name" : "5" 
        }, 
        { 
          "id" : 4, 
          "name" : "3" 
        }, 
        { 
          "id" : 2, 
          "name" : "name" 
        }, 
        { 
          "id" : 1, 
          "name" : "a" 
        }, 
        { 
          "id" : 0, 
          "name" : "p" 
        } 
      ], 
      "estimatedCost" : 63, 
      "estimatedNrItems" : 1, 
      "initialize" : true 
    } 
  ], 
  "warnings" : [ ], 
  "stats" : { 
    "rulesExecuted" : 1, 
    "rulesSkipped" : 29, 
    "plansCreated" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products LET a = p.id FILTER a == 4 LET name = p.name SORT p.id LIMIT 1 RETURN name", 
  "options" : { 
    "maxNumberOfPlans" : 2, 
    "allPlans" : true, 
    "optimizer" : { 
      "rules" : [ 
        "-all", 
        "+use-index-for-sort", 
        "+use-index-range" 
      ] 
    } 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Returning all plans



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products FILTER p.id == 25 RETURN p", 
  "options" : { 
    "allPlans" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "plans" : [ 
    { 
      "nodes" : [ 
        { 
          "type" : "SingletonNode", 
          "dependencies" : [ ], 
          "id" : 1, 
          "estimatedCost" : 1, 
          "estimatedNrItems" : 1 
        }, 
        { 
          "type" : "IndexNode", 
          "dependencies" : [ 
            1 
          ], 
          "id" : 6, 
          "estimatedCost" : 1.99, 
          "estimatedNrItems" : 1, 
          "database" : "_system", 
          "collection" : "products", 
          "satellite" : false, 
          "outVariable" : { 
            "id" : 0, 
            "name" : "p" 
          }, 
          "projections" : [ ], 
          "producesResult" : true, 
          "indexes" : [ 
            { 
              "id" : "10856", 
              "type" : "hash", 
              "fields" : [ 
                "id" 
              ], 
              "selectivityEstimate" : 1, 
              "unique" : false, 
              "sparse" : false, 
              "deduplicate" : true 
            } 
          ], 
          "condition" : { 
            "type" : "n-ary or", 
            "subNodes" : [ 
              { 
                "type" : "n-ary and", 
                "subNodes" : [ 
                  { 
                    "type" : "compare ==", 
                    "subNodes" : [ 
                      { 
                        "type" : "attribute access", 
                        "name" : "id", 
                        "subNodes" : [ 
                          { 
                            "type" : "reference", 
                            "name" : "p", 
                            "id" : 0 
                          } 
                        ] 
                      }, 
                      { 
                        "type" : "value", 
                        "value" : 25 
                      } 
                    ] 
                  } 
                ] 
              } 
            ] 
          }, 
          "reverse" : false, 
          "needsGatherNodeSort" : false, 
          "indexCoversProjections" : false 
        }, 
        { 
          "type" : "ReturnNode", 
          "dependencies" : [ 
            6 
          ], 
          "id" : 5, 
          "estimatedCost" : 2.99, 
          "estimatedNrItems" : 1, 
          "inVariable" : { 
            "id" : 0, 
            "name" : "p" 
          } 
        } 
      ], 
      "rules" : [ 
        "use-indexes", 
        "remove-filter-covered-by-index", 
        "remove-unnecessary-calculations-2" 
      ], 
      "collections" : [ 
        { 
          "name" : "products", 
          "type" : "read" 
        } 
      ], 
      "variables" : [ 
        { 
          "id" : 2, 
          "name" : "1" 
        }, 
        { 
          "id" : 0, 
          "name" : "p" 
        } 
      ], 
      "estimatedCost" : 2.99, 
      "estimatedNrItems" : 1, 
      "initialize" : true 
    } 
  ], 
  "warnings" : [ ], 
  "stats" : { 
    "rulesExecuted" : 30, 
    "rulesSkipped" : 0, 
    "plansCreated" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products FILTER p.id == 25 RETURN p", 
  "options" : { 
    "allPlans" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






A query that produces a warning



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR i IN 1..10 RETURN 1 / 0" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "plan" : { 
    "nodes" : [ 
      { 
        "type" : "SingletonNode", 
        "dependencies" : [ ], 
        "id" : 1, 
        "estimatedCost" : 1, 
        "estimatedNrItems" : 1 
      }, 
      { 
        "type" : "CalculationNode", 
        "dependencies" : [ 
          1 
        ], 
        "id" : 2, 
        "estimatedCost" : 2, 
        "estimatedNrItems" : 1, 
        "expression" : { 
          "type" : "range", 
          "subNodes" : [ 
            { 
              "type" : "value", 
              "value" : 1 
            }, 
            { 
              "type" : "value", 
              "value" : 10 
            } 
          ] 
        }, 
        "outVariable" : { 
          "id" : 2, 
          "name" : "1" 
        }, 
        "canThrow" : false, 
        "expressionType" : "simple" 
      }, 
      { 
        "type" : "CalculationNode", 
        "dependencies" : [ 
          2 
        ], 
        "id" : 4, 
        "estimatedCost" : 3, 
        "estimatedNrItems" : 1, 
        "expression" : { 
          "type" : "value", 
          "value" : null 
        }, 
        "outVariable" : { 
          "id" : 4, 
          "name" : "3" 
        }, 
        "canThrow" : false, 
        "expressionType" : "json" 
      }, 
      { 
        "type" : "EnumerateListNode", 
        "dependencies" : [ 
          4 
        ], 
        "id" : 3, 
        "estimatedCost" : 13, 
        "estimatedNrItems" : 10, 
        "inVariable" : { 
          "id" : 2, 
          "name" : "1" 
        }, 
        "outVariable" : { 
          "id" : 0, 
          "name" : "i" 
        } 
      }, 
      { 
        "type" : "ReturnNode", 
        "dependencies" : [ 
          3 
        ], 
        "id" : 5, 
        "estimatedCost" : 23, 
        "estimatedNrItems" : 10, 
        "inVariable" : { 
          "id" : 4, 
          "name" : "3" 
        } 
      } 
    ], 
    "rules" : [ 
      "move-calculations-up", 
      "move-calculations-up-2" 
    ], 
    "collections" : [ ], 
    "variables" : [ 
      { 
        "id" : 4, 
        "name" : "3" 
      }, 
      { 
        "id" : 2, 
        "name" : "1" 
      }, 
      { 
        "id" : 0, 
        "name" : "i" 
      } 
    ], 
    "estimatedCost" : 23, 
    "estimatedNrItems" : 10, 
    "initialize" : true 
  }, 
  "cacheable" : false, 
  "warnings" : [ 
    { 
      "code" : 1562, 
      "message" : "division by zero" 
    } 
  ], 
  "stats" : { 
    "rulesExecuted" : 30, 
    "rulesSkipped" : 0, 
    "plansCreated" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR i IN 1..10 RETURN 1 / 0" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Invalid query (missing bind parameter)



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products FILTER p.id == @id LIMIT 2 RETURN p.n" 
}
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "no value specified for declared bind parameter 'id' (while parsing)", 
  "code" : 400, 
  "errorNum" : 1551 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ 
  "query" : "FOR p IN products FILTER p.id == @id LIMIT 2 RETURN p.n" 
}
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






The data returned in the plan attribute of the result contains one element per AQL top-level statement
(i.e. FOR, RETURN, FILTER etc.). If the query optimizer removed some unnecessary statements,
the result might also contain less elements than there were top-level statements in the AQL query.

The following example shows a query with a non-sensible filter condition that
the optimizer has removed so that there are less top-level statements.



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ "query" : "FOR i IN [ 1, 2, 3 ] FILTER 1 == 2 RETURN i" }
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "plan" : { 
    "nodes" : [ 
      { 
        "type" : "SingletonNode", 
        "dependencies" : [ ], 
        "id" : 1, 
        "estimatedCost" : 1, 
        "estimatedNrItems" : 1 
      }, 
      { 
        "type" : "CalculationNode", 
        "dependencies" : [ 
          1 
        ], 
        "id" : 2, 
        "estimatedCost" : 2, 
        "estimatedNrItems" : 1, 
        "expression" : { 
          "type" : "array", 
          "subNodes" : [ 
            { 
              "type" : "value", 
              "value" : 1 
            }, 
            { 
              "type" : "value", 
              "value" : 2 
            }, 
            { 
              "type" : "value", 
              "value" : 3 
            } 
          ] 
        }, 
        "outVariable" : { 
          "id" : 2, 
          "name" : "1" 
        }, 
        "canThrow" : false, 
        "expressionType" : "json" 
      }, 
      { 
        "type" : "NoResultsNode", 
        "dependencies" : [ 
          2 
        ], 
        "id" : 7, 
        "estimatedCost" : 0.5, 
        "estimatedNrItems" : 0 
      }, 
      { 
        "type" : "EnumerateListNode", 
        "dependencies" : [ 
          7 
        ], 
        "id" : 3, 
        "estimatedCost" : 0.5, 
        "estimatedNrItems" : 0, 
        "inVariable" : { 
          "id" : 2, 
          "name" : "1" 
        }, 
        "outVariable" : { 
          "id" : 0, 
          "name" : "i" 
        } 
      }, 
      { 
        "type" : "ReturnNode", 
        "dependencies" : [ 
          3 
        ], 
        "id" : 6, 
        "estimatedCost" : 0.5, 
        "estimatedNrItems" : 0, 
        "inVariable" : { 
          "id" : 0, 
          "name" : "i" 
        } 
      } 
    ], 
    "rules" : [ 
      "move-calculations-up", 
      "move-filters-up", 
      "remove-unnecessary-filters", 
      "remove-unnecessary-calculations" 
    ], 
    "collections" : [ ], 
    "variables" : [ 
      { 
        "id" : 4, 
        "name" : "3" 
      }, 
      { 
        "id" : 2, 
        "name" : "1" 
      }, 
      { 
        "id" : 0, 
        "name" : "i" 
      } 
    ], 
    "estimatedCost" : 0.5, 
    "estimatedNrItems" : 0, 
    "initialize" : true 
  }, 
  "cacheable" : true, 
  "warnings" : [ ], 
  "stats" : { 
    "rulesExecuted" : 30, 
    "rulesSkipped" : 0, 
    "plansCreated" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/explain <<EOF
{ "query" : "FOR i IN [ 1, 2, 3 ] FILTER 1 == 2 RETURN i" }
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Parse an AQL query

 parse an AQL query and return information about it

POST /_api/query

This endpoint is for query validation only. To actually query the database,
see /api/cursor.

A JSON object with these properties is required:


	query: To validate a query string without executing it, the query string can be
passed to the server via an HTTP POST request.



Return Codes


	200:
If the query is valid, the server will respond with HTTP 200 and
return the names of the bind parameters it found in the query (if any) in
the bindVars attribute of the response. It will also return an array
of the collections used in the query in the collections attribute.
If a query can be parsed successfully, the ast attribute of the returned
JSON will contain the abstract syntax tree representation of the query.
The format of the ast is subject to change in future versions of
ArangoDB, but it can be used to inspect how ArangoDB interprets a given
query. Note that the abstract syntax tree will be returned without any
optimizations applied to it.



	400:
The server will respond with HTTP 400 in case of a malformed request,
or if the query contains a parse error. The body of the response will
contain the error details embedded in a JSON object.





Examples

a Valid query



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/query <<EOF
{ "query" : "FOR p IN products FILTER p.name == @name LIMIT 2 RETURN p.n" }
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "parsed" : true, 
  "collections" : [ 
    "products" 
  ], 
  "bindVars" : [ 
    "name" 
  ], 
  "ast" : [ 
    { 
      "type" : "root", 
      "subNodes" : [ 
        { 
          "type" : "for", 
          "subNodes" : [ 
            { 
              "type" : "variable", 
              "name" : "p", 
              "id" : 0 
            }, 
            { 
              "type" : "collection", 
              "name" : "products" 
            } 
          ] 
        }, 
        { 
          "type" : "filter", 
          "subNodes" : [ 
            { 
              "type" : "compare ==", 
              "subNodes" : [ 
                { 
                  "type" : "attribute access", 
                  "name" : "name", 
                  "subNodes" : [ 
                    { 
                      "type" : "reference", 
                      "name" : "p", 
                      "id" : 0 
                    } 
                  ] 
                }, 
                { 
                  "type" : "parameter", 
                  "name" : "name" 
                } 
              ] 
            } 
          ] 
        }, 
        { 
          "type" : "limit", 
          "subNodes" : [ 
            { 
              "type" : "value", 
              "value" : 0 
            }, 
            { 
              "type" : "value", 
              "value" : 2 
            } 
          ] 
        }, 
        { 
          "type" : "return", 
          "subNodes" : [ 
            { 
              "type" : "attribute access", 
              "name" : "n", 
              "subNodes" : [ 
                { 
                  "type" : "reference", 
                  "name" : "p", 
                  "id" : 0 
                } 
              ] 
            } 
          ] 
        } 
      ] 
    } 
  ] 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/query <<EOF
{ "query" : "FOR p IN products FILTER p.name == @name LIMIT 2 RETURN p.n" }
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






an Invalid query



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/query <<EOF
{ "query" : "FOR p IN products FILTER p.name = @name LIMIT 2 RETURN p.n" }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "syntax error, unexpected assignment near '= @name LIMIT 2 RETURN p.n' at position 1:33", 
  "code" : 400, 
  "errorNum" : 1501 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/query <<EOF
{ "query" : "FOR p IN products FILTER p.name = @name LIMIT 2 RETURN p.n" }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Query tracking

ArangoDB has an HTTP interface for retrieving the lists of currently
executing AQL queries and the list of slow AQL queries. In order to make meaningful
use of these APIs, query tracking needs to be enabled in the database the HTTP 
request is executed for.


Returns the properties for the AQL query tracking

 returns the configuration for the AQL query tracking

GET /_api/query/properties

Returns the current query tracking configuration. The configuration is a
JSON object with the following properties:


	enabled: if set to true, then queries will be tracked. If set to
false, neither queries nor slow queries will be tracked.



	trackSlowQueries: if set to true, then slow queries will be tracked
in the list of slow queries if their runtime exceeds the value set in 
slowQueryThreshold. In order for slow queries to be tracked, the enabled
property must also be set to true.



	trackBindVars: if set to true, then bind variables used in queries will 
be tracked.



	maxSlowQueries: the maximum number of slow queries to keep in the list
of slow queries. If the list of slow queries is full, the oldest entry in
it will be discarded when additional slow queries occur.



	slowQueryThreshold: the threshold value for treating a query as slow. A
query with a runtime greater or equal to this threshold value will be
put into the list of slow queries when slow query tracking is enabled.
The value for slowQueryThreshold is specified in seconds.



	maxQueryStringLength: the maximum query string length to keep in the
list of queries. Query strings can have arbitrary lengths, and this property
can be used to save memory in case very long query strings are used. The
value is specified in bytes.





Return Codes


	200:
Is returned if properties were retrieved successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request,






Changes the properties for the AQL query tracking

 changes the configuration for the AQL query tracking

PUT /_api/query/properties

A JSON object with these properties is required:


	maxSlowQueries: The maximum number of slow queries to keep in the list
of slow queries. If the list of slow queries is full, the oldest entry in
it will be discarded when additional slow queries occur.

	slowQueryThreshold: The threshold value for treating a query as slow. A
query with a runtime greater or equal to this threshold value will be
put into the list of slow queries when slow query tracking is enabled.
The value for slowQueryThreshold is specified in seconds.

	enabled: If set to true, then queries will be tracked. If set to
false, neither queries nor slow queries will be tracked.

	maxQueryStringLength: The maximum query string length to keep in the list of queries.
Query strings can have arbitrary lengths, and this property
can be used to save memory in case very long query strings are used. The
value is specified in bytes.

	trackSlowQueries: If set to true, then slow queries will be tracked
in the list of slow queries if their runtime exceeds the value set in
slowQueryThreshold. In order for slow queries to be tracked, the enabled
property must also be set to true.

	trackBindVars: If set to true, then the bind variables used in queries will be tracked 
along with queries.



The properties need to be passed in the attribute properties in the body
of the HTTP request. properties needs to be a JSON object.

After the properties have been changed, the current set of properties will
be returned in the HTTP response.

Return Codes


	200:
Is returned if the properties were changed successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request,






Returns the currently running AQL queries

 returns a list of currently running AQL queries

GET /_api/query/current

Returns an array containing the AQL queries currently running in the selected
database. Each query is a JSON object with the following attributes:


	id: the query's id



	query: the query string (potentially truncated)



	bindVars: the bind parameter values used by the query



	started: the date and time when the query was started



	runTime: the query's run time up to the point the list of queries was
queried



	state: the query's current execution state (as a string)





Return Codes


	200:
Is returned when the list of queries can be retrieved successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request,






Returns the list of slow AQL queries

 returns a list of slow running AQL queries

GET /_api/query/slow

Returns an array containing the last AQL queries that are finished and
have exceeded the slow query threshold in the selected database.
The maximum amount of queries in the list can be controlled by setting
the query tracking property maxSlowQueries. The threshold for treating
a query as slow can be adjusted by setting the query tracking property
slowQueryThreshold.

Each query is a JSON object with the following attributes:


	id: the query's id



	query: the query string (potentially truncated)



	bindVars: the bind parameter values used by the query



	started: the date and time when the query was started



	runTime: the query's total run time 



	state: the query's current execution state (will always be "finished"
for the list of slow queries)





Return Codes


	200:
Is returned when the list of queries can be retrieved successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request,






Clears the list of slow AQL queries

 clears the list of slow AQL queries

DELETE /_api/query/slow

Clears the list of slow AQL queries

Return Codes


	200:
The server will respond with HTTP 200 when the list of queries was
cleared successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request.

Killing queries





Running AQL queries can also be killed on the server. ArangoDB provides a kill facility
via an HTTP interface. To kill a running query, its id (as returned for the query in the
list of currently running queries) must be specified. The kill flag of the query will
then be set, and the query will be aborted as soon as it reaches a cancelation point.


Kills a running AQL query

 kills an AQL query

DELETE /_api/query/{query-id}

Path Parameters


	query-id (required):
The id of the query.



Kills a running query. The query will be terminated at the next cancelation
point.

Return Codes


	200:
The server will respond with HTTP 200 when the query was still running when
the kill request was executed and the query's kill flag was set.



	400:
The server will respond with HTTP 400 in case of a malformed request.



	404:
The server will respond with HTTP 404 when no query with the specified
id was found.






        

    



        
    



        

    
        AQL Query Cache

        
            HTTP Interface for the AQL query cache

This section describes the API methods for controlling the AQL query cache.

Clears any results in the AQL query cache

 clears the AQL query cache

DELETE /_api/query-cache

clears the query cache

Return Codes


	200:
The server will respond with HTTP 200 when the cache was cleared
successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request.





Returns the global properties for the AQL query cache

 returns the global configuration for the AQL query cache

GET /_api/query-cache/properties

Returns the global AQL query cache configuration. The configuration is a
JSON object with the following properties:


	mode: the mode the AQL query cache operates in. The mode is one of the following
values: off, on or demand.



	maxResults: the maximum number of query results that will be stored per database-specific
cache.





Return Codes


	200:
Is returned if the properties can be retrieved successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request,





Globally adjusts the AQL query result cache properties

 changes the configuration for the AQL query cache

PUT /_api/query-cache/properties

After the properties have been changed, the current set of properties will
be returned in the HTTP response.

Note: changing the properties may invalidate all results in the cache.
The global properties for AQL query cache.
The properties need to be passed in the attribute properties in the body
of the HTTP request. properties needs to be a JSON object with the following
properties:

A JSON object with these properties is required:


	mode:  the mode the AQL query cache should operate in. Possible values are off, on or demand.

	maxResults: the maximum number of query results that will be stored per database-specific cache.



Return Codes


	200:
Is returned if the properties were changed successfully.



	400:
The server will respond with HTTP 400 in case of a malformed request,






        

    



        
    



        

    
        AQL User Functions Management

        
            HTTP Interface for AQL User Functions Management

AQL User Functions Management

This is an introduction to ArangoDB's HTTP interface for managing AQL
user functions. AQL user functions are a means to extend the functionality
of ArangoDB's query language (AQL) with user-defined JavaScript code.

For an overview of how AQL user functions and their implications, please refer to
the Extending AQL chapter.

The HTTP interface provides an API for adding, deleting, and listing
previously registered AQL user functions.

All user functions managed through this interface will be stored in the 
system collection _aqlfunctions. Documents in this collection should not
be accessed directly, but only via the dedicated interfaces.


Create AQL user function

 create a new AQL user function

POST /_api/aqlfunction

A JSON object with these properties is required:


	isDeterministic: an optional boolean value to indicate that the function
results are fully deterministic (function return value solely depends on
the input value and return value is the same for repeated calls with same
input). The isDeterministic attribute is currently not used but may be
used later for optimisations.

	code: a string representation of the function body.

	name: the fully qualified name of the user functions.



In case of success, the returned JSON object has the following properties:


	error: boolean flag to indicate that an error occurred (false
in this case)



	code: the HTTP status code





The body of the response will contain a JSON object with additional error
details. The object has the following attributes:


	error: boolean flag to indicate that an error occurred (true in this case)



	code: the HTTP status code



	errorNum: the server error number



	errorMessage: a descriptive error message





Return Codes


	200:
If the function already existed and was replaced by the
call, the server will respond with HTTP 200.



	201:
If the function can be registered by the server, the server will respond with
HTTP 201.



	400:
If the JSON representation is malformed or mandatory data is missing from the
request, the server will respond with HTTP 400.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/aqlfunction <<EOF
{ 
  "name" : "myfunctions::temperature::celsiustofahrenheit", 
  "code" : "function (celsius) { return celsius * 1.8 + 32; }" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 201 
}








Remove existing AQL user function

 remove an existing AQL user function

DELETE /_api/aqlfunction/{name}

Path Parameters


	name (required):
the name of the AQL user function.



Query Parameters


	group (optional):
If set to true, then the function name provided in name is treated as
a namespace prefix, and all functions in the specified namespace will be deleted.
If set to false, the function name provided in name must be fully
qualified, including any namespaces.



Removes an existing AQL user function, identified by name.

In case of success, the returned JSON object has the following properties:


	error: boolean flag to indicate that an error occurred (false
in this case)



	code: the HTTP status code





The body of the response will contain a JSON object with additional error
details. The object has the following attributes:


	error: boolean flag to indicate that an error occurred (true in this case)



	code: the HTTP status code



	errorNum: the server error number



	errorMessage: a descriptive error message





Return Codes


	200:
If the function can be removed by the server, the server will respond with
HTTP 200.



	400:
If the user function name is malformed, the server will respond with HTTP 400.



	404:
If the specified user user function does not exist, the server will respond with HTTP 404.





Examples

deletes a function:



shell> curl -X DELETE --dump - http://localhost:8529/_api/aqlfunction/square::x::y

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200 
}







function not found:



shell> curl -X DELETE --dump - http://localhost:8529/_api/aqlfunction/myfunction::x::y

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "code" : 404, 
  "errorNum" : 1582, 
  "errorMessage" : "user function '%s()' not found" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/aqlfunction/myfunction::x::y

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Return registered AQL user functions

 gets all reqistered AQL user functions

GET /_api/aqlfunction

Query Parameters


	namespace (optional):
Returns all registered AQL user functions from namespace namespace.



Returns all registered AQL user functions.

The call will return a JSON array with all user functions found. Each user
function will at least have the following attributes:


	name: The fully qualified name of the user function



	code: A string representation of the function body





Return Codes


	200:
if success HTTP 200 is returned.



Examples



shell> curl --dump - http://localhost:8529/_api/aqlfunction

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  { 
    "name" : "myfunctions::temperature::celsiustofahrenheit", 
    "code" : "function (celsius) { return celsius * 1.8 + 32; }" 
  } 
]








        

    



        
    



        

    
        Simple Queries

        
            HTTP Interface for Simple Queries

Simple Queries

This is an introduction to ArangoDB's HTTP interface for simple queries.

Simple queries can be used if the query condition is straight forward simple,
i.e., a document reference, all documents, a query-by-example, or a simple geo
query. In a simple query you can specify exactly one collection and one
condition. The result can then be sorted and can be split into pages.

Working with Simples Queries using HTTP

To limit the amount of results to be transferred in one batch, simple queries
support a batchSize parameter that can optionally be used to tell the server
to limit the number of results to be transferred in one batch to a certain
value. If the query has more results than were transferred in one go, more
results are waiting on the server so they can be fetched subsequently. If no
value for the batchSize parameter is specified, the server will use a
reasonable default value.

If the server has more documents than should be returned in a single batch, the
server will set the hasMore attribute in the result. It will also return the
id of the server-side cursor in the id attribute in the result.  This id can
be used with the cursor API to fetch any outstanding results from the server and
dispose the server-side cursor afterwards.


Return all documents

 returns all documents of a collection

PUT /_api/simple/all

Request Body (required)

Contains the query.

Returns all documents of a collections. The call expects a JSON object
as body with the following attributes:


	collection: The name of the collection to query.



	skip: The number of documents to skip in the query (optional).



	limit: The maximal amount of documents to return. The skip
is applied before the limit restriction. (optional)





Returns a cursor containing the result, see Http Cursor for details.

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Limit the amount of documents using limit



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all <<EOF
{ "collection": "products", "skip": 2, "limit" : 2 }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11400", 
      "_id" : "products/11400", 
      "_rev" : "_YDwufA6--D", 
      "Hello3" : "World3" 
    }, 
    { 
      "_key" : "11406", 
      "_id" : "products/11406", 
      "_rev" : "_YDwufB---_", 
      "Hello5" : "World5" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00011801719665527344 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all <<EOF
{ "collection": "products", "skip": 2, "limit" : 2 }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a batchSize value



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all <<EOF
{ "collection": "products", "batchSize" : 3 }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 201, 
  "result" : [ 
    { 
      "_key" : "11378", 
      "_id" : "products/11378", 
      "_rev" : "_YDwuf_2--D", 
      "Hello3" : "World3" 
    }, 
    { 
      "_key" : "11375", 
      "_id" : "products/11375", 
      "_rev" : "_YDwuf_2--B", 
      "Hello2" : "World2" 
    }, 
    { 
      "_key" : "11381", 
      "_id" : "products/11381", 
      "_rev" : "_YDwuf_2--F", 
      "Hello4" : "World4" 
    } 
  ], 
  "hasMore" : true, 
  "id" : "11387", 
  "count" : 5, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 5, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.00011491775512695312 
    }, 
    "warnings" : [ ] 
  }, 
  "cached" : false 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/all <<EOF
{ "collection": "products", "batchSize" : 3 }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Simple query by-example

 returns all documents of a collection matching a given example

PUT /_api/simple/by-example

A JSON object with these properties is required:


	skip: The number of documents to skip in the query (optional).

	batchSize: maximum number of result documents to be transferred from
the server to the client in one roundtrip. If this attribute is
not set, a server-controlled default value will be used. A batchSize value of
0 is disallowed.

	limit: The maximal amount of documents to return. The skip
is applied before the limit restriction. (optional)

	example: The example document.

	collection: The name of the collection to query.



This will find all documents matching a given example.

Returns a cursor containing the result, see Http Cursor for details.

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Matching an attribute



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11442", 
      "_id" : "products/11442", 
      "_rev" : "_YDwufDC--D", 
      "i" : 1 
    }, 
    { 
      "_key" : "11445", 
      "_id" : "products/11445", 
      "_rev" : "_YDwufDC--F", 
      "a" : { 
        "k" : 2, 
        "j" : 2 
      }, 
      "i" : 1 
    }, 
    { 
      "_key" : "11439", 
      "_id" : "products/11439", 
      "_rev" : "_YDwufDC--B", 
      "a" : { 
        "j" : 1 
      }, 
      "i" : 1 
    }, 
    { 
      "_key" : "11435", 
      "_id" : "products/11435", 
      "_rev" : "_YDwufDC--_", 
      "a" : { 
        "k" : 1, 
        "j" : 1 
      }, 
      "i" : 1 
    } 
  ], 
  "hasMore" : false, 
  "count" : 4, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.0001595020294189453 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Matching an attribute which is a sub-document



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a.j" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11457", 
      "_id" : "products/11457", 
      "_rev" : "_YDwufEC--B", 
      "a" : { 
        "j" : 1 
      }, 
      "i" : 1 
    }, 
    { 
      "_key" : "11453", 
      "_id" : "products/11453", 
      "_rev" : "_YDwufEC--_", 
      "a" : { 
        "k" : 1, 
        "j" : 1 
      }, 
      "i" : 1 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 2, 
      "httpRequests" : 0, 
      "executionTime" : 0.00019931793212890625 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a.j" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Matching an attribute within a sub-document



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11475", 
      "_id" : "products/11475", 
      "_rev" : "_YDwufFG--B", 
      "a" : { 
        "j" : 1 
      }, 
      "i" : 1 
    } 
  ], 
  "hasMore" : false, 
  "count" : 1, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 3, 
      "httpRequests" : 0, 
      "executionTime" : 0.00014972686767578125 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Find documents matching an example

 returns one document of a collection matching a given example

PUT /_api/simple/first-example

A JSON object with these properties is required:


	example: The example document.

	collection: The name of the collection to query.



This will return the first document matching a given example.

Returns a result containing the document or HTTP 404 if no
document matched the example.

If more than one document in the collection matches the specified example, only
one of these documents will be returned, and it is undefined which of the matching
documents is returned.

Return Codes


	200:
is returned when the query was successfully executed.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

If a matching document was found



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "document" : { 
    "_key" : "11493", 
    "_id" : "products/11493", 
    "_rev" : "_YDwufGG--B", 
    "a" : { 
      "j" : 1 
    }, 
    "i" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






If no document was found



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "l" : 1 
  } 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "code" : 404, 
  "errorNum" : 404, 
  "errorMessage" : "no match" 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "l" : 1 
  } 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Find documents by their keys

 fetches multiple documents by their keys

PUT /_api/simple/lookup-by-keys

A JSON object with these properties is required:


	keys (string): array with the _keys of documents to remove.

	collection: The name of the collection to look in for the documents



Looks up the documents in the specified collection
using the array of keys provided. All documents for which a matching
key was specified in the keys array and that exist in the collection
will be returned.  Keys for which no document can be found in the
underlying collection are ignored, and no exception will be thrown for
them.

The body of the response contains a JSON object with a documents
attribute. The documents attribute is an array containing the
matching documents. The order in which matching documents are present
in the result array is unspecified.

Return Codes


	200:
is returned if the operation was carried out successfully.



	404:
is returned if the collection was not found.  The response body
contains an error document in this case.



	405:
is returned if the operation was called with a different HTTP METHOD than PUT.





Examples

Looking up existing documents



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/lookup-by-keys <<EOF
{ 
  "keys" : [ 
    "test0", 
    "test1", 
    "test2", 
    "test3", 
    "test4", 
    "test5", 
    "test6", 
    "test7", 
    "test8", 
    "test9" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "documents" : [ 
    { 
      "_key" : "test0", 
      "_id" : "test/test0", 
      "_rev" : "_YDwufKS--_", 
      "value" : 0 
    }, 
    { 
      "_key" : "test1", 
      "_id" : "test/test1", 
      "_rev" : "_YDwufKS--B", 
      "value" : 1 
    }, 
    { 
      "_key" : "test2", 
      "_id" : "test/test2", 
      "_rev" : "_YDwufKS--D", 
      "value" : 2 
    }, 
    { 
      "_key" : "test3", 
      "_id" : "test/test3", 
      "_rev" : "_YDwufKS--F", 
      "value" : 3 
    }, 
    { 
      "_key" : "test4", 
      "_id" : "test/test4", 
      "_rev" : "_YDwufKS--H", 
      "value" : 4 
    }, 
    { 
      "_key" : "test5", 
      "_id" : "test/test5", 
      "_rev" : "_YDwufKS--J", 
      "value" : 5 
    }, 
    { 
      "_key" : "test6", 
      "_id" : "test/test6", 
      "_rev" : "_YDwufKW--_", 
      "value" : 6 
    }, 
    { 
      "_key" : "test7", 
      "_id" : "test/test7", 
      "_rev" : "_YDwufKW--B", 
      "value" : 7 
    }, 
    { 
      "_key" : "test8", 
      "_id" : "test/test8", 
      "_rev" : "_YDwufKW--D", 
      "value" : 8 
    }, 
    { 
      "_key" : "test9", 
      "_id" : "test/test9", 
      "_rev" : "_YDwufKW--F", 
      "value" : 9 
    } 
  ], 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/lookup-by-keys <<EOF
{ 
  "keys" : [ 
    "test0", 
    "test1", 
    "test2", 
    "test3", 
    "test4", 
    "test5", 
    "test6", 
    "test7", 
    "test8", 
    "test9" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Looking up non-existing documents



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/lookup-by-keys <<EOF
{ 
  "keys" : [ 
    "foo", 
    "bar", 
    "baz" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "documents" : [ ], 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/lookup-by-keys <<EOF
{ 
  "keys" : [ 
    "foo", 
    "bar", 
    "baz" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Return a random document

 returns a random document from a collection

PUT /_api/simple/any

Returns a random document from a collection. The call expects a JSON object
as body with the following attributes:

A JSON object with these properties is required:


	collection: The identifier or name of the collection to query.
Returns a JSON object with the document stored in the attribute
document if the collection contains at least one document. If
the collection is empty, the document attrbute contains null.



Return Codes


	200:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/any <<EOF
{ 
  "collection" : "products" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "document" : { 
    "_key" : "11418", 
    "_id" : "products/11418", 
    "_rev" : "_YDwufC---B", 
    "Hello2" : "World2" 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/any <<EOF
{ 
  "collection" : "products" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Remove documents by their keys

 removes multiple documents by their keys

PUT /_api/simple/remove-by-keys

A JSON object with these properties is required:


	keys (string): array with the _keys of documents to remove.

	options:
	returnOld: if set to true and silent above is false, then the above
information about the removed documents contains the complete
removed documents.

	silent: if set to false, then the result will contain an additional
attribute old which contains an array with one entry for each
removed document. By default, these entries will have the _id,
_key and _rev attributes.

	waitForSync: if set to true, then all removal operations will
instantly be synchronized to disk. If this is not specified, then the
collection's default sync behavior will be applied.





	collection: The name of the collection to look in for the documents to remove



Looks up the documents in the specified collection using the array of keys
provided, and removes all documents from the collection whose keys are
contained in the keys array. Keys for which no document can be found in
the underlying collection are ignored, and no exception will be thrown for
them.

The body of the response contains a JSON object with information how many
documents were removed (and how many were not). The removed attribute will
contain the number of actually removed documents. The ignored attribute 
will contain the number of keys in the request for which no matching document
could be found.

Return Codes


	200:
is returned if the operation was carried out successfully. The number of removed
documents may still be 0 in this case if none of the specified document keys
were found in the collection.



	404:
is returned if the collection was not found.
The response body contains an error document in this case.



	405:
is returned if the operation was called with a different HTTP METHOD than PUT.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-keys <<EOF
{ 
  "keys" : [ 
    "test0", 
    "test1", 
    "test2", 
    "test3", 
    "test4", 
    "test5", 
    "test6", 
    "test7", 
    "test8", 
    "test9" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "removed" : 10, 
  "ignored" : 0, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-keys <<EOF
{ 
  "keys" : [ 
    "test0", 
    "test1", 
    "test2", 
    "test3", 
    "test4", 
    "test5", 
    "test6", 
    "test7", 
    "test8", 
    "test9" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body








shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-keys <<EOF
{ 
  "keys" : [ 
    "foo", 
    "bar", 
    "baz" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "removed" : 0, 
  "ignored" : 3, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-keys <<EOF
{ 
  "keys" : [ 
    "foo", 
    "bar", 
    "baz" 
  ], 
  "collection" : "test" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Remove documents by example

 removes all documents of a collection that match an example

PUT /_api/simple/remove-by-example

A JSON object with these properties is required:


	example: An example document that all collection documents are compared against.

	collection: The name of the collection to remove from.

	options:
	limit: an optional value that determines how many documents to
delete at most. If limit is specified but is less than the number
of documents in the collection, it is undefined which of the documents
will be deleted.

	waitForSync: if set to true, then all removal operations will
instantly be synchronized to disk. If this is not specified, then the
collection's default sync behavior will be applied.







This will find all documents in the collection that match the specified
example object.

Note: the limit attribute is not supported on sharded collections.
Using it will result in an error.

Returns the number of documents that were deleted.

Return Codes


	200:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deleted" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using Parameter: waitForSync and limit



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "waitForSync" : true, 
  "limit" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deleted" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "waitForSync" : true, 
  "limit" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using Parameter: waitForSync and limit with new signature



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "options" : { 
    "waitForSync" : true, 
    "limit" : 2 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deleted" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/remove-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "options" : { 
    "waitForSync" : true, 
    "limit" : 2 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







 replaces the body of all documents of a collection that match an example @RESTHEADER{PUT /_api/simple/replace-by-example, Replace documents by example}

A JSON object with these properties is required:


	options:
	limit: an optional value that determines how many documents to
replace at most. If limit is specified but is less than the number
of documents in the collection, it is undefined which of the documents
will be replaced.

	waitForSync: if set to true, then all removal operations will
instantly be synchronized to disk. If this is not specified, then the
collection's default sync behavior will be applied.





	example: An example document that all collection documents are compared against.

	collection: The name of the collection to replace within.

	newValue: The replacement document that will get inserted in place
of the "old" documents.



This will find all documents in the collection that match the specified
example object, and replace the entire document body with the new value
specified. Note that document meta-attributes such as _id, _key,
_from, _to etc. cannot be replaced.

Note: the limit attribute is not supported on sharded collections.
Using it will result in an error.

Returns the number of documents that were replaced.

Return Codes


	200:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/replace-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "foo" : "bar" 
  }, 
  "limit" : 3 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "replaced" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/replace-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "foo" : "bar" 
  }, 
  "limit" : 3 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using new Signature for attributes WaitForSync and limit



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/replace-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "foo" : "bar" 
  }, 
  "options" : { 
    "limit" : 3, 
    "waitForSync" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "replaced" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/replace-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "foo" : "bar" 
  }, 
  "options" : { 
    "limit" : 3, 
    "waitForSync" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







 partially updates the body of all documents of a collection that match an example @RESTHEADER{PUT /_api/simple/update-by-example, Update documents by example}

A JSON object with these properties is required:


	options:
	keepNull: This parameter can be used to modify the behavior when
handling null values. Normally, null values are stored in the
database. By setting the keepNull parameter to false, this
behavior can be changed so that all attributes in data with null
values will be removed from the updated document.

	mergeObjects: Controls whether objects (not arrays) will be merged if present in both the
existing and the patch document. If set to false, the value in the
patch document will overwrite the existing document's value. If set to
true, objects will be merged. The default is true.

	limit: an optional value that determines how many documents to
update at most. If limit is specified but is less than the number
of documents in the collection, it is undefined which of the documents
will be updated.

	waitForSync: if set to true, then all removal operations will
instantly be synchronized to disk. If this is not specified, then the
collection's default sync behavior will be applied.





	example: An example document that all collection documents are compared against.

	collection: The name of the collection to update within.

	newValue: A document containing all the attributes to update in the found documents.



This will find all documents in the collection that match the specified
example object, and partially update the document body with the new value
specified. Note that document meta-attributes such as _id, _key,
_from, _to etc. cannot be replaced.

Note: the limit attribute is not supported on sharded collections.
Using it will result in an error.

Returns the number of documents that were updated.

Return Codes


	200:
is returned if the collection was updated successfully and waitForSync was
true.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

using old syntax for options



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/update-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "a" : { 
      "j" : 22 
    } 
  }, 
  "limit" : 3 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "updated" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/update-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "a" : { 
      "j" : 22 
    } 
  }, 
  "limit" : 3 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






using new signature for options



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/update-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "a" : { 
      "j" : 22 
    } 
  }, 
  "options" : { 
    "limit" : 3, 
    "waitForSync" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "updated" : 1, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/update-by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  }, 
  "newValue" : { 
    "a" : { 
      "j" : 22 
    } 
  }, 
  "options" : { 
    "limit" : 3, 
    "waitForSync" : true 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Simple range query

 returns all documents of a collection within a range

PUT /_api/simple/range

A JSON object with these properties is required:


	right: The upper bound.

	attribute: The attribute path to check.

	collection: The name of the collection to query.

	limit: The maximal amount of documents to return. The skip
is applied before the limit restriction. (optional)

	closed: If true, use interval including left and right,
otherwise exclude right, but include left.

	skip: The number of documents to skip in the query (optional).

	left: The lower bound.



This will find all documents within a given range. In order to execute a
range query, a skip-list index on the queried attribute must be present.

Returns a cursor containing the result, see Http Cursor for details.

Note: the range simple query is deprecated as of ArangoDB 2.6. 
The function may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection within a specific range
is to use an AQL query as follows: 

FOR doc IN @@collection 
  FILTER doc.value >= @left && doc.value < @right 
  LIMIT @skip, @limit 
  RETURN doc`

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown or no
suitable index for the range query is present.  The response body contains 
an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/range <<EOF
{ 
  "collection" : "products", 
  "attribute" : "i", 
  "left" : 2, 
  "right" : 4 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11692", 
      "_id" : "products/11692", 
      "_rev" : "_YDwufRe--B", 
      "i" : 2 
    }, 
    { 
      "_key" : "11695", 
      "_id" : "products/11695", 
      "_rev" : "_YDwufRi---", 
      "i" : 3 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/range <<EOF
{ 
  "collection" : "products", 
  "attribute" : "i", 
  "left" : 2, 
  "right" : 4 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Returns documents near a coordinate

 returns all documents of a collection near a given location

PUT /_api/simple/near

A JSON object with these properties is required:


	distance: If given, the attribute key used to return the distance to
the given coordinate. (optional). If specified, distances are returned in meters.

	skip: The number of documents to skip in the query. (optional)

	longitude: The longitude of the coordinate.

	limit: The maximal amount of documents to return. The skip is
applied before the limit restriction. The default is 100. (optional)

	collection: The name of the collection to query.

	latitude: The latitude of the coordinate.

	geo: If given, the identifier of the geo-index to use. (optional)



The default will find at most 100 documents near the given coordinate.  The
returned array is sorted according to the distance, with the nearest document
being first in the return array. If there are near documents of equal distance, documents
are chosen randomly from this set until the limit is reached.

In order to use the near operator, a geo index must be defined for the
collection. This index also defines which attribute holds the coordinates
for the document.  If you have more than one geo-spatial index, you can use
the geo field to select a particular index.

Returns a cursor containing the result, see Http Cursor for details.

Note: the near simple query is deprecated as of ArangoDB 2.6. 
This API may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection using the near operator is
to issue an AQL query using the NEAR function as follows: 

FOR doc IN NEAR(@@collection, @latitude, @longitude, @limit)
  RETURN doc`

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Without distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11619", 
      "_id" : "products/11619", 
      "_rev" : "_YDwufNa--H", 
      "name" : "Name/0.002/", 
      "loc" : [ 
        0.002, 
        0 
      ] 
    }, 
    { 
      "_key" : "11613", 
      "_id" : "products/11613", 
      "_rev" : "_YDwufNa--D", 
      "name" : "Name/-0.002/", 
      "loc" : [ 
        -0.002, 
        0 
      ] 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






With distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11657", 
      "_key" : "11657", 
      "_rev" : "_YDwufPe--D", 
      "loc" : [ 
        -0.002, 
        0 
      ], 
      "name" : "Name/-0.002/" 
    }, 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11663", 
      "_key" : "11663", 
      "_rev" : "_YDwufPe--H", 
      "loc" : [ 
        0.002, 
        0 
      ], 
      "name" : "Name/0.002/" 
    }, 
    { 
      "distance" : 444.779706578235, 
      "_id" : "products/11654", 
      "_key" : "11654", 
      "_rev" : "_YDwufPe--B", 
      "loc" : [ 
        -0.004, 
        0 
      ], 
      "name" : "Name/-0.004/" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 3, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Find documents within a radius around a coordinate

 returns all documents of a collection within a given radius

PUT /_api/simple/within

A JSON object with these properties is required:


	distance: If given, the attribute key used to return the distance to
the given coordinate. (optional). If specified, distances are returned in meters.

	skip: The number of documents to skip in the query. (optional)

	longitude: The longitude of the coordinate.

	radius: The maximal radius (in meters).

	collection: The name of the collection to query.

	latitude: The latitude of the coordinate.

	limit: The maximal amount of documents to return. The skip is
applied before the limit restriction. The default is 100. (optional)

	geo: If given, the identifier of the geo-index to use. (optional)



This will find all documents within a given radius around the coordinate
(latitude, longitude). The returned list is sorted by distance.

In order to use the within operator, a geo index must be defined for
the collection. This index also defines which attribute holds the
coordinates for the document.  If you have more than one geo-spatial index,
you can use the geo field to select a particular index.

Returns a cursor containing the result, see Http Cursor for details.

Note: the within simple query is deprecated as of ArangoDB 2.6. 
This API may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection using the near operator is
to issue an AQL query using the WITHIN function as follows: 

FOR doc IN WITHIN(@@collection, @latitude, @longitude, @radius, @distanceAttributeName)
  RETURN doc

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Without distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2, 
  "radius" : 500 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11948", 
      "_id" : "products/11948", 
      "_rev" : "_YDwufeW--B", 
      "name" : "Name/0.002/", 
      "loc" : [ 
        0.002, 
        0 
      ] 
    }, 
    { 
      "_key" : "11942", 
      "_id" : "products/11942", 
      "_rev" : "_YDwufeS--H", 
      "name" : "Name/-0.002/", 
      "loc" : [ 
        -0.002, 
        0 
      ] 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2, 
  "radius" : 500 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






With distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance", 
  "radius" : 300 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11986", 
      "_key" : "11986", 
      "_rev" : "_YDwufga--_", 
      "loc" : [ 
        -0.002, 
        0 
      ], 
      "name" : "Name/-0.002/" 
    }, 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11992", 
      "_key" : "11992", 
      "_rev" : "_YDwufga--D", 
      "loc" : [ 
        0.002, 
        0 
      ], 
      "name" : "Name/0.002/" 
    }, 
    { 
      "distance" : 444.779706578235, 
      "_id" : "products/11983", 
      "_key" : "11983", 
      "_rev" : "_YDwufgW--F", 
      "loc" : [ 
        -0.004, 
        0 
      ], 
      "name" : "Name/-0.004/" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 3, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance", 
  "radius" : 300 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Within rectangle query

 returns all documents of a collection within a rectangle

PUT /_api/simple/within-rectangle

A JSON object with these properties is required:


	latitude1: The latitude of the first rectangle coordinate.

	skip: The number of documents to skip in the query. (optional)

	latitude2: The latitude of the second rectangle coordinate.

	longitude2: The longitude of the second rectangle coordinate.

	longitude1: The longitude of the first rectangle coordinate.

	limit: The maximal amount of documents to return. The skip is
applied before the limit restriction. The default is 100. (optional)

	collection: The name of the collection to query.

	geo: If given, the identifier of the geo-index to use. (optional)



This will find all documents within the specified rectangle (determined by
the given coordinates (latitude1, longitude1, latitude2, longitude2). 

In order to use the within-rectangle query, a geo index must be defined for
the collection. This index also defines which attribute holds the
coordinates for the document.  If you have more than one geo-spatial index,
you can use the geo field to select a particular index.

Returns a cursor containing the result, see Http Cursor for details.

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/within-rectangle <<EOF
{ 
  "collection" : "products", 
  "latitude1" : 0, 
  "longitude1" : 0, 
  "latitude2" : 0.2, 
  "longitude2" : 0.2, 
  "skip" : 1, 
  "limit" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "12045", 
      "_id" : "products/12045", 
      "_rev" : "_YDwufie--N", 
      "name" : "Name/0.008/", 
      "loc" : [ 
        0.008, 
        0 
      ] 
    }, 
    { 
      "_key" : "12042", 
      "_id" : "products/12042", 
      "_rev" : "_YDwufie--L", 
      "name" : "Name/0.006/", 
      "loc" : [ 
        0.006, 
        0 
      ] 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/within-rectangle <<EOF
{ 
  "collection" : "products", 
  "latitude1" : 0, 
  "longitude1" : 0, 
  "latitude2" : 0.2, 
  "longitude2" : 0.2, 
  "skip" : 1, 
  "limit" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Fulltext index query

 returns documents of a collection as a result of a fulltext query

PUT /_api/simple/fulltext

A JSON object with these properties is required:


	index: The identifier of the fulltext-index to use.

	attribute: The attribute that contains the texts.

	collection: The name of the collection to query.

	limit: The maximal amount of documents to return. The skip
is applied before the limit restriction. (optional)

	skip: The number of documents to skip in the query (optional).

	query: The fulltext query. Please refer to Fulltext queries
 for details.



This will find all documents from the collection that match the fulltext
query specified in query.

In order to use the fulltext operator, a fulltext index must be defined
for the collection and the specified attribute.

Returns a cursor containing the result, see Http Cursor for details.

Note: the fulltext simple query is deprecated as of ArangoDB 2.6. 
This API may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection using the near operator is
to issue an AQL query using the FULLTEXT AQL function 
as follows:

FOR doc IN FULLTEXT(@@collection, @attributeName, @queryString, @limit) 
  RETURN doc

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/fulltext <<EOF
{ 
  "collection" : "products", 
  "attribute" : "text", 
  "query" : "word" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11525", 
      "_id" : "products/11525", 
      "_rev" : "_YDwufIO--_", 
      "text" : "this text contains word" 
    }, 
    { 
      "_key" : "11529", 
      "_id" : "products/11529", 
      "_rev" : "_YDwufIO--B", 
      "text" : "this text also has a word" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/fulltext <<EOF
{ 
  "collection" : "products", 
  "attribute" : "text", 
  "query" : "word" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Async Result Handling

        
            HTTP Interface for Async Results Management

Request Execution

ArangoDB provides various methods of executing client requests. Clients can choose the appropriate method on a per-request level based on their throughput, control flow, and durability requirements.

Blocking execution

ArangoDB is a multi-threaded server, allowing the processing of multiple client 
requests at the same time. Communication handling and the actual work can be performed
by multiple worker threads in parallel.

Though multiple clients can connect and send their requests in parallel to ArangoDB,
clients may need to wait for their requests to be processed.

By default, the server will fully process an incoming request and then return the
result to the client. The client must wait for the server's response before it can
send additional requests over the connection. For clients that are single-threaded
or not event-driven, waiting for the full server response may be non-optimal.

Furthermore, please note that even if the client closes the HTTP
connection, the request running on the server will still continue until
it is complete and only then notice that the client no longer listens.
Thus closing the connection does not help to abort a long running query!
See below under Async Execution and later Result Retrieval
and HttpJobPutCancel for details.

Fire and Forget

To mitigate client blocking issues, ArangoDB since version 1.4. offers a generic mechanism 
for non-blocking requests: if clients add the HTTP header x-arango-async: true to their
requests, ArangoDB will put the request into an in-memory task queue and return an HTTP 202
(accepted) response to the client instantly. The server will execute the tasks from
the queue asynchronously, decoupling the client requests and the actual work.

This allows for much higher throughput than if clients would wait for the server's
response. The downside is that the response that is sent to the client is always the
same (a generic HTTP 202) and clients cannot make a decision based on the actual
operation's result at this point. In fact, the operation might have not even been executed at the
time the generic response has reached the client. Clients can thus not rely on their
requests having been processed successfully.

The asynchronous task queue on the server is not persisted, meaning not-yet processed
tasks from the queue will be lost in case of a crash. However, the client will
not know whether they were processed or not.

Clients should thus not send the extra header when they have strict durability 
requirements or if they rely on result of the sent operation for further actions.

The maximum number of queued tasks is determined by the startup option 
-scheduler.maximal-queue-size. If more than this number of tasks are already queued,
the server will reject the request with an HTTP 500 error.

Finally, please note that it is not possible to cancel such a
fire and forget job, since you won't get any handle to identify it later on.
If you need to cancel requests,
use Async Execution and later Result Retrieval 
and HttpJobPutCancel below.

Async Execution and later Result Retrieval

By adding the HTTP header x-arango-async: store to a request, clients can instruct
the ArangoDB server to execute the operation asynchronously as above,
but also store the operation result in memory for a later retrieval. The
server will return a job id in the HTTP response header x-arango-async-id. The client
can use this id in conjunction with the HTTP API at /_api/job, which is described in
detail in this manual.

Clients can ask the ArangoDB server via the async jobs API which results are
ready for retrieval, and which are not. Clients can also use the async jobs API to
retrieve the original results of an already executed async job by passing it the
originally returned job id. The server will then return the job result as if the job was 
executed normally. Furthermore, clients can cancel running async jobs by
their job id, see HttpJobPutCancel.

ArangoDB will keep all results of jobs initiated with the x-arango-async: store 
header. Results are removed from the server only if a client explicitly asks the
server for a specific result.

The async jobs API also provides methods for garbage collection that clients can
use to get rid of "old" not fetched results. Clients should call this method periodically
because ArangoDB does not artificially limit the number of not-yet-fetched results.

It is thus a client responsibility to store only as many results as needed and to fetch 
available results as soon as possible, or at least to clean up not fetched results
from time to time.

The job queue and the results are kept in memory only on the server, so they will be
lost in case of a crash.

Canceling asynchronous jobs

As mentioned above it is possible to cancel an asynchronously running
job using its job ID. This is done with a PUT request as described in
HttpJobPutCancel. 

However, a few words of explanation about what happens behind the
scenes are in order. Firstly, a running async query can internally be
executed by C++ code or by JavaScript code. For example CRUD operations
are executed directly in C++, whereas AQL queries and transactions
are executed by JavaScript code. The job cancelation only works for
JavaScript code, since the mechanism used is simply to trigger an
uncatchable exception in the JavaScript thread, which will be caught
on the C++ level, which in turn leads to the cancelation of the job.
No result can be retrieved later, since all data about the request is
discarded.

If you cancel a job running on a coordinator of a cluster (Sharding),
then only the code running on the coordinator is stopped, there may
remain tasks within the cluster which have already been distributed to
the DBservers and it is currently not possible to cancel them as well.

Async Execution and Authentication

If a request requires authentication, the authentication procedure is run before 
queueing. The request will only be queued if it valid credentials and the authentication 
succeeds. If the request does not contain valid credentials, it will not be queued but
rejected instantly in the same way as a "regular", non-queued request.

Managing Async Results via HTTP

Return result of an async job

 fetches a job result and removes it from the queue

PUT /_api/job/{job-id}

Path Parameters


	job-id (required):
The async job id.



Returns the result of an async job identified by job-id. If the async job
result is present on the server, the result will be removed from the list of
result. That means this method can be called for each job-id once.
The method will return the original job result's headers and body, plus the
additional HTTP header x-arango-async-job-id. If this header is present,
then
the job was found and the response contains the original job's result. If
the header is not present, the job was not found and the response contains
status information from the job manager.

Return Codes


	204:
is returned if the job requested via job-id is still in the queue of pending
(or not yet finished) jobs. In this case, no x-arango-async-id HTTP header
will be returned.



	400:
is returned if no job-id was specified in the request. In this case,
no x-arango-async-id HTTP header will be returned.



	404:
is returned if the job was not found or already deleted or fetched from
the job result list. In this case, no x-arango-async-id HTTP header will
be returned.





Examples

Not providing a job-id:



shell> curl -X PUT --dump - http://localhost:8529/_api/job

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "bad parameter", 
  "code" : 400, 
  "errorNum" : 400 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/job

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Providing a job-id for a non-existing job:



shell> curl -X PUT --dump - http://localhost:8529/_api/job/notthere

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "not found", 
  "code" : 404, 
  "errorNum" : 404 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/job/notthere

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Fetching the result of an HTTP GET job:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9594
content-type: text/plain; charset=utf-8

shell> curl -X PUT --dump - http://localhost:8529/_api/job/9594

HTTP/1.1 200 OK
x-content-type-options: nosniff
x-arango-async-id: 9594
content-type: application/json; charset=utf-8

{ 
  "server" : "arango", 
  "version" : "3.3.22", 
  "license" : "community" 
}





shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9594
content-type: text/plain; charset=utf-8

shell> curl -X PUT --dump - http://localhost:8529/_api/job/9594

HTTP/1.1 200 OK
x-content-type-options: nosniff
x-arango-async-id: 9594
content-type: application/json; charset=utf-8


show response body






Fetching the result of an HTTP POST job that failed:



shell> curl -X PUT --header 'x-arango-async: store' --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : " this name is invalid " 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9595
content-type: text/plain; charset=utf-8

shell> curl -X PUT --dump - http://localhost:8529/_api/job/9595

HTTP/1.1 400 Bad Request
x-content-type-options: nosniff
x-arango-async-id: 9595
content-type: application/json; charset=utf-8

{ 
  "error" : true, 
  "errorMessage" : "expected PUT /_api/collection/<collection-name>/<action>", 
  "code" : 400, 
  "errorNum" : 400 
}





shell> curl -X PUT --header 'x-arango-async: store' --data-binary @- --dump - http://localhost:8529/_api/collection <<EOF
{ 
  "name" : " this name is invalid " 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9595
content-type: text/plain; charset=utf-8

shell> curl -X PUT --dump - http://localhost:8529/_api/job/9595

HTTP/1.1 400 Bad Request
x-content-type-options: nosniff
x-arango-async-id: 9595
content-type: application/json; charset=utf-8


show response body







Cancel async job

 cancels an async job

PUT /_api/job/{job-id}/cancel

Path Parameters


	job-id (required):
The async job id.



Cancels the currently running job identified by job-id. Note that it still
might take some time to actually cancel the running async job.

Return Codes


	200:
cancel has been initiated.



	400:
is returned if no job-id was specified in the request. In this case,
no x-arango-async-id HTTP header will be returned.



	404:
is returned if the job was not found or already deleted or fetched from
the job result list. In this case, no x-arango-async-id HTTP header will
be returned.





Examples



shell> curl -X POST --header 'x-arango-async: store' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR i IN 1..10 FOR j IN 1..10 LET x = sleep(1.0) FILTER i == 5 && j == 5 RETURN 42" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9589
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_api/job/pending

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  "9589" 
]
shell> curl -X PUT --dump - http://localhost:8529/_api/job/9589/cancel

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : true 
}
shell> curl --dump - http://localhost:8529/_api/job/pending

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  "9589" 
]





shell> curl -X POST --header 'x-arango-async: store' --data-binary @- --dump - http://localhost:8529/_api/cursor <<EOF
{ 
  "query" : "FOR i IN 1..10 FOR j IN 1..10 LET x = sleep(1.0) FILTER i == 5 && j == 5 RETURN 42" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9589
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_api/job/pending

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  "9589" 
]
shell> curl -X PUT --dump - http://localhost:8529/_api/job/9589/cancel

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Deletes async job

 deletes an async job result

DELETE /_api/job/{type}

Path Parameters


	type (required):
The type of jobs to delete. type can be:

	all: Deletes all jobs results. Currently executing or queued async 
jobs will not be stopped by this call.

	expired: Deletes expired results. To determine the expiration status of a 
result, pass the stamp query parameter. stamp needs to be a UNIX timestamp, 
and all async job results created at a lower timestamp will be deleted.

	an actual job-id: In this case, the call will remove the result of the
specified async job. If the job is currently executing or queued, it will
not be aborted.



Query Parameters


	stamp (optional):
A UNIX timestamp specifying the expiration threshold when type is expired.



Deletes either all job results, expired job results, or the result of a
specific job.
Clients can use this method to perform an eventual garbage collection of job
results.

Return Codes


	200:
is returned if the deletion operation was carried out successfully.
This code will also be returned if no results were deleted.



	400:
is returned if type is not specified or has an invalid value.



	404:
is returned if type is a job-id but no async job with the specified id was
found.





Examples

Deleting all jobs:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9591
content-type: text/plain; charset=utf-8

shell> curl -X DELETE --dump - http://localhost:8529/_api/job/all

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : true 
}







Deleting expired jobs:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9592
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_admin/time

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "time" : 1547743287.4651425, 
  "error" : false, 
  "code" : 200 
}
shell> curl -X DELETE --dump - http://localhost:8529/_api/job/expired?stamp=1547743287.4651425

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : true 
}
shell> curl --dump - http://localhost:8529/_api/job/pending

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ ]





shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9592
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_admin/time

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Deleting the result of a specific job:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9593
content-type: text/plain; charset=utf-8

shell> curl -X DELETE --dump - http://localhost:8529/_api/job/9593

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : true 
}







Deleting the result of a non-existing job:



shell> curl -X DELETE --dump - http://localhost:8529/_api/job/AreYouThere

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "not found", 
  "code" : 404, 
  "errorNum" : 404 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/job/AreYouThere

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Returns async job

 Returns the status of a specific job

GET /_api/job/{job-id}

Path Parameters


	job-id (required):
The async job id.



Returns the processing status of the specified job. The processing status
can be
determined by peeking into the HTTP response code of the response.

Return Codes


	200:
is returned if the job requested via job-id has been executed
and its result is ready to fetch.



	204:
is returned if the job requested via job-id is still in the queue of pending
(or not yet finished) jobs.



	404:
is returned if the job was not found or already deleted or fetched from the
job result list.





Examples

Querying the status of a done job:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9600
content-type: text/plain; charset=utf-8

shell> curl -X PUT --dump - http://localhost:8529/_api/job/9600

HTTP/1.1 200 OK
x-content-type-options: nosniff
x-arango-async-id: 9600
content-type: application/json; charset=utf-8

{ 
  "server" : "arango", 
  "version" : "3.3.22", 
  "license" : "community" 
}





shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9600
content-type: text/plain; charset=utf-8

shell> curl -X PUT --dump - http://localhost:8529/_api/job/9600

HTTP/1.1 200 OK
x-content-type-options: nosniff
x-arango-async-id: 9600
content-type: application/json; charset=utf-8


show response body






Querying the status of a pending job:
(therefore we create a long runnging job...)



shell> curl -X POST --header 'x-arango-async: store' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "read" : [ 
      "_frontend" 
    ] 
  }, 
  "action" : "function () {require('internal').sleep(15.0);}" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9601
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_api/job/9601

HTTP/1.1 204 No Content
content-type: text/plain; charset=utf-8
x-content-type-options: nosniff









Returns list of async jobs

 Returns the ids of job results with a specific status

GET /_api/job/{type}

Path Parameters


	type (required):
The type of jobs to return. The type can be either done or pending. Setting
the type to done will make the method return the ids of already completed
async
jobs for which results can be fetched. Setting the type to pending will
return
the ids of not yet finished async jobs.



Query Parameters


	count (optional):



The maximum number of ids to return per call. If not specified, a
server-defined maximum value will be used.

Returns the list of ids of async jobs with a specific status (either done or
pending).
The list can be used by the client to get an overview of the job system
status and
to retrieve completed job results later.

Return Codes


	200:
is returned if the list can be compiled successfully. Note: the list might
be empty.



	400:
is returned if type is not specified or has an invalid value.





Examples

Fetching the list of done jobs:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9596
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_api/job/done

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  "9596" 
]







Fetching the list of pending jobs:



shell> curl -X PUT --header 'x-arango-async: store' --dump - http://localhost:8529/_api/version

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9597
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_api/job/pending

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ ]







Querying the status of a pending job:
(we create a sleep job therefore...)



shell> curl -X POST --header 'x-arango-async: store' --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "read" : [ 
      "_frontend" 
    ] 
  }, 
  "action" : "function () {require('internal').sleep(15.0);}" 
}
EOF

HTTP/1.1 202 Accepted
x-content-type-options: nosniff
x-arango-async-id: 9598
content-type: text/plain; charset=utf-8

shell> curl --dump - http://localhost:8529/_api/job/pending

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  "9598" 
]
shell> curl -X DELETE --dump - http://localhost:8529/_api/job/9598

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : true 
}








        

    



        
    



        

    
        Bulk Import / Export

        
            HTTP Interface for Bulk Imports

ArangoDB provides an HTTP interface to import multiple documents at once into a
collection. This is known as a bulk import.

The data uploaded must be provided in JSON format. There are two mechanisms to
import the data:


	self-contained JSON documents: in this case, each document contains all 
attribute names and values. Attribute names may be completely different
among the documents uploaded

	attribute names plus document data: in this case, the first array must 
contain the attribute names of the documents that follow. The following arrays
containing only the attribute values. Attribute values will be mapped to the 
attribute names by positions.



The endpoint address is /_api/import for both input mechanisms. Data must be
sent to this URL using an HTTP POST request. The data to import must be
contained in the body of the POST request.

The collection query parameter must be used to specify the target collection for
the import. Importing data into a non-existing collection will produce an error. 

The waitForSync query parameter can be set to true to make the import only 
return if all documents have been synced to disk.

The complete query parameter can be set to true to make the entire import fail if
any of the uploaded documents is invalid and cannot be imported. In this case,
no documents will be imported by the import run, even if a failure happens at the
end of the import. 

If complete has a value other than true, valid documents will be imported while 
invalid documents will be rejected, meaning only some of the uploaded documents 
might have been imported.

The details query parameter can be set to true to make the import API return
details about documents that could not be imported. If details is true, then
the result will also contain a details attribute which is an array of detailed
error messages. If the details is set to false or omitted, no details will be
returned.

imports document values

 imports documents from JSON-encoded lists

POST /_api/import#document

Request Body (required)

The body must consist of JSON-encoded arrays of attribute values, with one
line per document. The first row of the request must be a JSON-encoded
array of attribute names. These attribute names are used for the data in the
subsequent lines.

Query Parameters


	collection (required):
The collection name.



	fromPrefix (optional):
An optional prefix for the values in _from attributes. If specified, the
value is automatically prepended to each _from input value. This allows
specifying just the keys for _from.



	toPrefix (optional):
An optional prefix for the values in _to attributes. If specified, the
value is automatically prepended to each _to input value. This allows
specifying just the keys for _to.



	overwrite (optional):
If this parameter has a value of true or yes, then all data in the
collection will be removed prior to the import. Note that any existing
index definitions will be preseved.



	waitForSync (optional):
Wait until documents have been synced to disk before returning.



	onDuplicate (optional):
Controls what action is carried out in case of a unique key constraint
violation. Possible values are:



	error: this will not import the current document because of the unique
key constraint violation. This is the default setting.

	update: this will update an existing document in the database with the
data specified in the request. Attributes of the existing document that
are not present in the request will be preseved.

	replace: this will replace an existing document in the database with the
data specified in the request.

	ignore: this will not update an existing document and simply ignore the
error caused by the unique key constraint violation.



Note that update, replace and ignore will only work when the
import document in the request contains the _key attribute. update and
replace may also fail because of secondary unique key constraint
violations.


	complete (optional):
If set to true or yes, it will make the whole import fail if any error
occurs. Otherwise the import will continue even if some documents cannot
be imported.



	details (optional):
If set to true or yes, the result will include an attribute details
with details about documents that could not be imported.





NOTE Swagger examples won't work due to the anchor.

Creates documents in the collection identified by collection-name.
The first line of the request body must contain a JSON-encoded array of
attribute names. All following lines in the request body must contain
JSON-encoded arrays of attribute values. Each line is interpreted as a
separate document, and the values specified will be mapped to the array
of attribute names specified in the first header line.

The response is a JSON object with the following attributes:


	created: number of documents imported.



	errors: number of documents that were not imported due to an error.



	empty: number of empty lines found in the input (will only contain a
value greater zero for types documents or auto).



	updated: number of updated/replaced documents (in case onDuplicate
was set to either update or replace).



	ignored: number of failed but ignored insert operations (in case
onDuplicate was set to ignore).



	details: if query parameter details is set to true, the result will
contain a details attribute which is an array with more detailed
information about which documents could not be inserted.





Return Codes


	201:
is returned if all documents could be imported successfully.



	400:
is returned if type contains an invalid value, no collection is
specified, the documents are incorrectly encoded, or the request
is malformed.



	404:
is returned if collection or the _from or _to attributes of an
imported edge refer to an unknown collection.



	409:
is returned if the import would trigger a unique key violation and
complete is set to true.



	500:
is returned if the server cannot auto-generate a document key (out of keys
error) for a document with no user-defined key.





Examples

Importing two documents, with attributes _key, value1 and value2 each. One
line in the import data is empty



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]

[ "foo", "bar", "baz" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 2, 
  "errors" : 0, 
  "empty" : 1, 
  "updated" : 0, 
  "ignored" : 0 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]

[ "foo", "bar", "baz" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Importing into an edge collection, with attributes _from, _to and name



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links <<EOF
[ "_from", "_to", "name" ]
[ "products/123","products/234", "some name" ]
[ "products/332", "products/abc", "other name" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 2, 
  "errors" : 0, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links <<EOF
[ "_from", "_to", "name" ]
[ "products/123","products/234", "some name" ]
[ "products/332", "products/abc", "other name" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Importing into an edge collection, omitting _from or _to



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&details=true <<EOF
[ "name" ]
[ "some name" ]
[ "other name" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 0, 
  "errors" : 2, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0, 
  "details" : [ 
    "at position 1: missing '_from' or '_to' attribute, offending document: {\"name\":\"some name\"}", 
    "at position 2: missing '_from' or '_to' attribute, offending document: {\"name\":\"other name\"}" 
  ] 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&details=true <<EOF
[ "name" ]
[ "some name" ]
[ "other name" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Violating a unique constraint, but allow partial imports



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&details=true <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]
["abc", "bar", "baz" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 1, 
  "errors" : 1, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0, 
  "details" : [ 
    "at position 1: creating document failed with error 'unique constraint violated', offending document: {\"_key\":\"abc\",\"value1\":\"bar\",\"value2\":\"baz\"}" 
  ] 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&details=true <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]
["abc", "bar", "baz" ]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Violating a unique constraint, not allowing partial imports



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&complete=true <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]
["abc", "bar", "baz" ]
EOF

HTTP/1.1 409 Conflict
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "unique constraint violated", 
  "code" : 409, 
  "errorNum" : 1210 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&complete=true <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]
["abc", "bar", "baz" ]
EOF

HTTP/1.1 409 Conflict
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a non-existing collection



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]
["foo", "bar", "baz" ]
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "collection not found: products", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
[ "_key", "value1", "value2" ]
[ "abc", 25, "test" ]
["foo", "bar", "baz" ]
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a malformed body



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
{ "_key": "foo", "value1": "bar" }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "no JSON array found in second line", 
  "code" : 400, 
  "errorNum" : 400 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products <<EOF
{ "_key": "foo", "value1": "bar" }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







imports documents from JSON

 imports documents from JSON

POST /_api/import#json

Request Body (required)

The body must either be a JSON-encoded array of objects or a string with
multiple JSON objects separated by newlines.

Query Parameters


	type (required):
Determines how the body of the request will be interpreted. type can have
the following values:

	documents: when this type is used, each line in the request body is
expected to be an individual JSON-encoded document. Multiple JSON objects
in the request body need to be separated by newlines.

	list: when this type is used, the request body must contain a single
JSON-encoded array of individual objects to import.

	auto: if set, this will automatically determine the body type (either
documents or list).



	collection (required):
The collection name.



	fromPrefix (optional):
An optional prefix for the values in _from attributes. If specified, the
value is automatically prepended to each _from input value. This allows
specifying just the keys for _from.



	toPrefix (optional):
An optional prefix for the values in _to attributes. If specified, the
value is automatically prepended to each _to input value. This allows
specifying just the keys for _to.



	overwrite (optional):
If this parameter has a value of true or yes, then all data in the
collection will be removed prior to the import. Note that any existing
index definitions will be preseved.



	waitForSync (optional):
Wait until documents have been synced to disk before returning.



	onDuplicate (optional):
Controls what action is carried out in case of a unique key constraint
violation. Possible values are:



	error: this will not import the current document because of the unique
key constraint violation. This is the default setting.

	update: this will update an existing document in the database with the 
data specified in the request. Attributes of the existing document that
are not present in the request will be preseved.

	replace: this will replace an existing document in the database with the
data specified in the request. 

	ignore: this will not update an existing document and simply ignore the
error caused by a unique key constraint violation.



Note that that update, replace and ignore will only work when the
import document in the request contains the _key attribute. update and
replace may also fail because of secondary unique key constraint violations.


	complete (optional):
If set to true or yes, it will make the whole import fail if any error
occurs. Otherwise the import will continue even if some documents cannot
be imported.



	details (optional):
If set to true or yes, the result will include an attribute details
with details about documents that could not be imported.





NOTE Swagger examples won't work due to the anchor.

Creates documents in the collection identified by collection-name.
The JSON representations of the documents must be passed as the body of the
POST request. The request body can either consist of multiple lines, with
each line being a single stand-alone JSON object, or a singe JSON array with
sub-objects.

The response is a JSON object with the following attributes:


	created: number of documents imported.



	errors: number of documents that were not imported due to an error.



	empty: number of empty lines found in the input (will only contain a
value greater zero for types documents or auto).



	updated: number of updated/replaced documents (in case onDuplicate
was set to either update or replace).



	ignored: number of failed but ignored insert operations (in case
onDuplicate was set to ignore).



	details: if query parameter details is set to true, the result will
contain a details attribute which is an array with more detailed
information about which documents could not be inserted.





Return Codes


	201:
is returned if all documents could be imported successfully.



	400:
is returned if type contains an invalid value, no collection is
specified, the documents are incorrectly encoded, or the request
is malformed.



	404:
is returned if collection or the _from or _to attributes of an
imported edge refer to an unknown collection.



	409:
is returned if the import would trigger a unique key violation and
complete is set to true.



	500:
is returned if the server cannot auto-generate a document key (out of keys
error) for a document with no user-defined key.





Examples

Importing documents with heterogenous attributes from a JSON array



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=list <<EOF
[ 
  { 
    "_key" : "abc", 
    "value1" : 25, 
    "value2" : "test", 
    "allowed" : true 
  }, 
  { 
    "_key" : "foo", 
    "name" : "baz" 
  }, 
  { 
    "name" : { 
      "detailed" : "detailed name", 
      "short" : "short name" 
    } 
  } 
]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 3, 
  "errors" : 0, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=list <<EOF
[ 
  { 
    "_key" : "abc", 
    "value1" : 25, 
    "value2" : "test", 
    "allowed" : true 
  }, 
  { 
    "_key" : "foo", 
    "name" : "baz" 
  }, 
  { 
    "name" : { 
      "detailed" : "detailed name", 
      "short" : "short name" 
    } 
  } 
]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Importing documents from individual JSON lines



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents <<EOF
{ "_key": "abc", "value1": 25, "value2": "test","allowed": true }
{ "_key": "foo", "name": "baz" }

{ "name": { "detailed": "detailed name", "short": "short name" } }

EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 3, 
  "errors" : 0, 
  "empty" : 1, 
  "updated" : 0, 
  "ignored" : 0 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents <<EOF
{ "_key": "abc", "value1": 25, "value2": "test","allowed": true }
{ "_key": "foo", "name": "baz" }

{ "name": { "detailed": "detailed name", "short": "short name" } }

EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using the auto type detection



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=auto <<EOF
[ 
  { 
    "_key" : "abc", 
    "value1" : 25, 
    "value2" : "test", 
    "allowed" : true 
  }, 
  { 
    "_key" : "foo", 
    "name" : "baz" 
  }, 
  { 
    "name" : { 
      "detailed" : "detailed name", 
      "short" : "short name" 
    } 
  } 
]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 3, 
  "errors" : 0, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=auto <<EOF
[ 
  { 
    "_key" : "abc", 
    "value1" : 25, 
    "value2" : "test", 
    "allowed" : true 
  }, 
  { 
    "_key" : "foo", 
    "name" : "baz" 
  }, 
  { 
    "name" : { 
      "detailed" : "detailed name", 
      "short" : "short name" 
    } 
  } 
]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Importing into an edge collection, with attributes _from, _to and name



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&type=documents <<EOF
{ "_from": "products/123", "_to": "products/234" }
{"_from": "products/332", "_to": "products/abc",   "name": "other name" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 2, 
  "errors" : 0, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&type=documents <<EOF
{ "_from": "products/123", "_to": "products/234" }
{"_from": "products/332", "_to": "products/abc",   "name": "other name" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Importing into an edge collection, omitting _from or _to



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&type=list&details=true <<EOF
[ 
  { 
    "name" : "some name" 
  } 
]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 0, 
  "errors" : 1, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0, 
  "details" : [ 
    "at position 1: missing '_from' or '_to' attribute, offending document: {\"name\":\"some name\"}" 
  ] 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=links&type=list&details=true <<EOF
[ 
  { 
    "name" : "some name" 
  } 
]
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Violating a unique constraint, but allow partial imports



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents&details=true <<EOF
{ "_key": "abc", "value1": 25, "value2": "test" }
{ "_key": "abc", "value1": "bar", "value2": "baz" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "created" : 1, 
  "errors" : 1, 
  "empty" : 0, 
  "updated" : 0, 
  "ignored" : 0, 
  "details" : [ 
    "at position 1: creating document failed with error 'unique constraint violated', offending document: {\"_key\":\"abc\",\"value1\":\"bar\",\"value2\":\"baz\"}" 
  ] 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents&details=true <<EOF
{ "_key": "abc", "value1": 25, "value2": "test" }
{ "_key": "abc", "value1": "bar", "value2": "baz" }
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Violating a unique constraint, not allowing partial imports



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents&complete=true <<EOF
{ "_key": "abc", "value1": 25, "value2": "test" }
{ "_key": "abc", "value1": "bar", "value2": "baz" }
EOF

HTTP/1.1 409 Conflict
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "unique constraint violated", 
  "code" : 409, 
  "errorNum" : 1210 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents&complete=true <<EOF
{ "_key": "abc", "value1": 25, "value2": "test" }
{ "_key": "abc", "value1": "bar", "value2": "baz" }
EOF

HTTP/1.1 409 Conflict
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a non-existing collection



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents <<EOF
{ "name": "test" }
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "collection not found: products", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=documents <<EOF
{ "name": "test" }
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Using a malformed body



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=list <<EOF
{ }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "expecting a JSON array in the request", 
  "code" : 400, 
  "errorNum" : 400 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/import?collection=products&type=list <<EOF
{ }
EOF

HTTP/1.1 400 Bad Request
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        JSON Documents

        
            Importing Self-Contained JSON Documents

This import method allows uploading self-contained JSON documents. The documents
must be uploaded in the body of the HTTP POST request. Each line of the body
will be interpreted as one stand-alone document. Empty lines in the body are
allowed but will be skipped. Using this format, the documents are imported
line-wise.

Example input data:
    { "_key": "key1", ... }
    { "_key": "key2", ... }
    ...

To use this method, the type query parameter should be set to documents.

It is also possible to upload self-contained JSON documents that are embedded
into a JSON array. Each element from the array will be treated as a document and
be imported.

Example input data for this case:

[
  { "_key": "key1", ... },
  { "_key": "key2", ... },
  ...
]


This format does not require each document to be on a separate line, and any
whitespace in the JSON data is allowed. It can be used to import a
JSON-formatted result array (e.g. from arangosh) back into ArangoDB.  Using this
format requires ArangoDB to parse the complete array and keep it in memory for
the duration of the import. This might be more resource-intensive than the
line-wise processing.

To use this method, the type query parameter should be set to array.

Setting the type query parameter to auto will make the server auto-detect whether
the data are line-wise JSON documents (type = documents) or a JSON array (type = array).

Examples

curl --data-binary @- -X POST --dump - "http://localhost:8529/_api/import?type=documents&collection=test"
{ "name" : "test", "gender" : "male", "age" : 39 }
{ "type" : "bird", "name" : "robin" }

HTTP/1.1 201 Created
Server: ArangoDB
Connection: Keep-Alive
Content-type: application/json; charset=utf-8

{"error":false,"created":2,"empty":0,"errors":0}


The server will respond with an HTTP 201 if everything went well. The number of
documents imported will be returned in the created attribute of the
response. If any documents were skipped or incorrectly formatted, this will be
returned in the errors attribute. There will also be an attribute empty in 
the response, which will contain a value of 0.

If the details parameter was set to true in the request, the response will 
also contain an attribute details which is an array of details about errors that
occurred on the server side during the import. This array might be empty if no
errors occurred.


        

    



        
    



        

    
        Headers & Values

        
            Importing Headers and Values

When using this type of import, the attribute names of the documents to be
imported are specified separate from the actual document value data.  The first
line of the HTTP POST request body must be a JSON array containing the attribute
names for the documents that follow.  The following lines are interpreted as the
document data. Each document must be a JSON array of values. No attribute names
are needed or allowed in this data section.

Examples

curl --data-binary @- -X POST --dump - "http://localhost:8529/_api/import?collection=test"
[ "firstName", "lastName", "age", "gender" ]
[ "Joe", "Public", 42, "male" ]
[ "Jane", "Doe", 31, "female" ]

HTTP/1.1 201 Created
Server: ArangoDB
Connection: Keep-Alive
Content-type: application/json; charset=utf-8

{"error":false,"created":2,"empty":0,"errors":0}


The server will again respond with an HTTP 201 if everything went well. The
number of documents imported will be returned in the created attribute of the
response. If any documents were skipped or incorrectly formatted, this will be
returned in the errors attribute. The number of empty lines in the input file
will be returned in the empty attribute.

If the details parameter was set to true in the request, the response will 
also contain an attribute details which is an array of details about errors that
occurred on the server side during the import. This array might be empty if no
errors occurred.

Importing into Edge Collections

Please note that when importing documents into an
edge collection, 
it is mandatory that all imported documents contain the _from and _to attributes,
and that these contain references to existing collections.


        

    



        
    



        

    
        Batch Requests

        
            HTTP Interface for Batch Requests

Clients normally send individual operations to ArangoDB in individual
HTTP requests. This is straightforward and simple, but has the
disadvantage that the network overhead can be significant if many
small requests are issued in a row.

To mitigate this problem, ArangoDB offers a batch request API that
clients can use to send multiple operations in one batch to
ArangoDB. This method is especially useful when the client has to send
many HTTP requests with a small body/payload and the individual
request results do not depend on each other.

Clients can use ArangoDB's batch API by issuing a multipart HTTP POST
request to the URL /_api/batch handler. The handler will accept the
request if the Content-type is multipart/form-data and a boundary
string is specified. ArangoDB will then decompose the batch request
into its individual parts using this boundary. This also means that
the boundary string itself must not be contained in any of the parts.
When ArangoDB has split the multipart request into its individual
parts, it will process all parts sequentially as if it were a
standalone request.  When all parts are processed, ArangoDB will
generate a multipart HTTP response that contains one part for each
part operation result.  For example, if you send a multipart request
with 5 parts, ArangoDB will send back a multipart response with 5
parts as well.

The server expects each part message to start with exactly the
following "header": 

Content-type: application/x-arango-batchpart

You can optionally specify a Content-Id "header" to uniquely
identify each part message. The server will return the Content-Id in
its response if it is specified. Otherwise, the server will not send a
Content-Id "header" back. The server will not validate the uniqueness
of the Content-Id.  After the mandatory Content-type and the
optional Content-Id header, two Windows line breaks
(i.e. \r\n\r\n) must follow.  Any deviation of this structure
might lead to the part being rejected or incorrectly interpreted. The
part request payload, formatted as a regular HTTP request, must follow
the two Windows line breaks literal directly.

Note that the literal Content-type: application/x-arango-batchpart
technically is the header of the MIME part, and the HTTP request
(including its headers) is the body part of the MIME part.

An actual part request should start with the HTTP method, the called
URL, and the HTTP protocol version as usual, followed by arbitrary
HTTP headers. Its body should follow after the usual \r\n\r\n
literal. Part requests are therefore regular HTTP requests, only
embedded inside a multipart message.

The following example will send a batch with 3 individual document
creation operations. The boundary used in this example is
XXXsubpartXXX.

Examples

> curl -X POST --data-binary @- --header "Content-type: multipart/form-data; boundary=XXXsubpartXXX" http://localhost:8529/_api/batch
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 1

POST /_api/document?collection=xyz HTTP/1.1

{"a":1,"b":2,"c":3}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 2

POST /_api/document?collection=xyz HTTP/1.1

{"a":1,"b":2,"c":3,"d":4}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 3

POST /_api/document?collection=xyz HTTP/1.1

{"a":1,"b":2,"c":3,"d":4,"e":5}
--XXXsubpartXXX--


The server will then respond with one multipart message, containing
the overall status and the individual results for the part
operations. The overall status should be 200 except there was an error
while inspecting and processing the multipart message. The overall
status therefore does not indicate the success of each part operation,
but only indicates whether the multipart message could be handled
successfully.

Each part operation will return its own status value. As the part
operation results are regular HTTP responses (just included in one
multipart response), the part operation status is returned as a HTTP
status code. The status codes of the part operations are exactly the
same as if you called the individual operations standalone. Each part
operation might also return arbitrary HTTP headers and a body/payload:

Examples

HTTP/1.1 200 OK
Connection: Keep-Alive
Content-type: multipart/form-data; boundary=XXXsubpartXXX
Content-length: 1055

--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 1

HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9514299"
Content-length: 53

{"error":false,"_id":"xyz/9514299","_key":"9514299","_rev":"9514299"}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 2

HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9579835"
Content-length: 53

{"error":false,"_id":"xyz/9579835","_key":"9579835","_rev":"9579835"}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart
Content-Id: 3

HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9645371"
Content-length: 53

{"error":false,"_id":"xyz/9645371","_key":"9645371","_rev":"9645371"}
--XXXsubpartXXX--


In the above example, the server returned an overall status code of
200, and each part response contains its own status value (202 in the
example):

When constructing the multipart HTTP response, the server will use the
same boundary that the client supplied. If any of the part responses
has a status code of 400 or greater, the server will also return an
HTTP header x-arango-errors containing the overall number of part
requests that produced errors:

Examples

> curl -X POST --data-binary @- --header "Content-type: multipart/form-data; boundary=XXXsubpartXXX" http://localhost:8529/_api/batch
--XXXsubpartXXX
Content-type: application/x-arango-batchpart

POST /_api/document?collection=nonexisting

{"a":1,"b":2,"c":3}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart

POST /_api/document?collection=xyz

{"a":1,"b":2,"c":3,"d":4}
--XXXsubpartXXX--


In this example, the overall response code is 200, but as some of the
part request failed (with status code 404), the x-arango-errors
header of the overall response is 1:

Examples

HTTP/1.1 200 OK
x-arango-errors: 1
Content-type: multipart/form-data; boundary=XXXsubpartXXX
Content-length: 711

--XXXsubpartXXX
Content-type: application/x-arango-batchpart

HTTP/1.1 404 Not Found
Content-type: application/json; charset=utf-8
Content-length: 111

{"error":true,"code":404,"errorNum":1203,"errorMessage":"collection \/_api\/collection\/nonexisting not found"}
--XXXsubpartXXX
Content-type: application/x-arango-batchpart

HTTP/1.1 202 Accepted
Content-type: application/json; charset=utf-8
Etag: "9841979"
Content-length: 53

{"error":false,"_id":"xyz/9841979","_key":"9841979","_rev":"9841979"}
--XXXsubpartXXX--


Please note that the database used for all part operations of a batch
request is determined by scanning the original URL (the URL that contains
/_api/batch). It is not possible to override the
database name in
part operations of a batch. When doing so, any other database name used 
in a batch part will be ignored.

executes a batch request

 executes a batch request

POST /_api/batch 

Request Body (required)

The multipart batch request, consisting of the envelope and the individual
batch parts.

Executes a batch request. A batch request can contain any number of
other requests that can be sent to ArangoDB in isolation. The benefit of
using batch requests is that batching requests requires less client/server
roundtrips than when sending isolated requests.

All parts of a batch request are executed serially on the server. The
server will return the results of all parts in a single response when all
parts are finished.

Technically, a batch request is a multipart HTTP request, with
content-type multipart/form-data. A batch request consists of an
envelope and the individual batch part actions. Batch part actions
are "regular" HTTP requests, including full header and an optional body.
Multiple batch parts are separated by a boundary identifier. The
boundary identifier is declared in the batch envelope. The MIME content-type
for each individual batch part must be application/x-arango-batchpart.

Please note that when constructing the individual batch parts, you must
use CRLF (\
\) as the line terminator as in regular HTTP messages.

The response sent by the server will be an HTTP 200 response, with an
optional error summary header x-arango-errors. This header contains the
number of batch part operations that failed with an HTTP error code of at
least 400. This header is only present in the response if the number of
errors is greater than zero.

The response sent by the server is a multipart response, too. It contains
the individual HTTP responses for all batch parts, including the full HTTP
result header (with status code and other potential headers) and an
optional result body. The individual batch parts in the result are
seperated using the same boundary value as specified in the request.

The order of batch parts in the response will be the same as in the
original client request. Client can additionally use the Content-Id
MIME header in a batch part to define an individual id for each batch part.
The server will return this id is the batch part responses, too.

Return Codes


	200:
is returned if the batch was received successfully. HTTP 200 is returned
even if one or multiple batch part actions failed.



	400:
is returned if the batch envelope is malformed or incorrectly formatted.
This code will also be returned if the content-type of the overall batch
request or the individual MIME parts is not as expected.



	405:
is returned when an invalid HTTP method is used.





Examples

Sending a batch request with five batch parts:


	GET /_api/version

	DELETE /_api/collection/products

	POST /_api/collection/products

	GET /_api/collection/products/figures

	DELETE /_api/collection/products



The boundary (SomeBoundaryValue) is passed to the server in the HTTP
Content-Type HTTP header.
Please note the reply is not displayed all accurate.



shell> curl -X POST --header 'Content-Type: multipart/form-data; boundary=SomeBoundaryValue' --data-binary @- --dump - http://localhost:8529/_api/batch <<EOF
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: myId1

GET /_api/version HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: myId2

DELETE /_api/collection/products HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: someId

POST /_api/collection/products HTTP/1.1

{"name": "products" }
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: nextId

GET /_api/collection/products/figures HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart
Content-Id: otherId

DELETE /_api/collection/products HTTP/1.1
--SomeBoundaryValue--

EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: multipart/form-data; boundary=SomeBoundaryValue
x-arango-errors: 1

"--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: myId1\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 60\r\n\r\n{\"server\":\"arango\",\"version\":\"3.3.22\",\"license\":\"community\"}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: myId2\r\n\r\nHTTP/1.1 404 Not Found\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 79\r\n\r\n{\"error\":true,\"errorMessage\":\"collection not found\",\"code\":404,\"errorNum\":1203}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: someId\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 324\r\n\r\n{\"code\":200,\"error\":false,\"status\":3,\"statusString\":\"loaded\",\"name\":\"products\",\"keyOptions\":{\"type\":\"traditional\",\"allowUserKeys\":true,\"lastValue\":0},\"type\":2,\"indexBuckets\":8,\"globallyUniqueId\":\"h407686C16EDC/9855\",\"doCompact\":true,\"waitForSync\":false,\"id\":\"9855\",\"isSystem\":false,\"journalSize\":33554432,\"isVolatile\":false}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: nextId\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nLocation: /_api/collection/products/figures\r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 831\r\n\r\n{\"code\":200,\"error\":false,\"statusString\":\"loaded\",\"name\":\"products\",\"keyOptions\":{\"type\":\"traditional\",\"allowUserKeys\":true,\"lastValue\":0},\"journalSize\":33554432,\"isVolatile\":false,\"isSystem\":false,\"status\":3,\"count\":0,\"figures\":{\"indexes\":{\"count\":1,\"size\":32128},\"documentReferences\":0,\"waitingFor\":\"-\",\"alive\":{\"count\":0,\"size\":0},\"dead\":{\"count\":0,\"size\":0,\"deletion\":0},\"compactionStatus\":{\"message\":\"compaction not yet started\",\"time\":\"2019-01-17T16:41:29Z\",\"count\":0,\"filesCombined\":0,\"bytesRead\":0,\"bytesWritten\":0},\"datafiles\":{\"count\":0,\"fileSize\":0},\"journals\":{\"count\":0,\"fileSize\":0},\"compactors\":{\"count\":0,\"fileSize\":0},\"revisions\":{\"count\":0,\"size\":48192},\"lastTick\":0,\"uncollectedLogfileEntries\":0},\"doCompact\":true,\"globallyUniqueId\":\"h407686C16EDC/9855\",\"type\":2,\"indexBuckets\":8,\"waitForSync\":false,\"id\":\"9855\"}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\nContent-Id: otherId\r\n\r\nHTTP/1.1 200 OK\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 38\r\n\r\n{\"code\":200,\"error\":false,\"id\":\"9855\"}\r\n--SomeBoundaryValue--"







Sending a batch request, setting the boundary implicitly (the server will
in this case try to find the boundary at the beginning of the request body).



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/batch <<EOF
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart

DELETE /_api/collection/notexisting1 HTTP/1.1
--SomeBoundaryValue
Content-Type: application/x-arango-batchpart

DELETE _api/collection/notexisting2 HTTP/1.1
--SomeBoundaryValue--

EOF

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: 
x-arango-errors: 2

"--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\n\r\nHTTP/1.1 404 Not Found\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 79\r\n\r\n{\"error\":true,\"errorMessage\":\"collection not found\",\"code\":404,\"errorNum\":1203}\r\n--SomeBoundaryValue\r\nContent-Type: application/x-arango-batchpart\r\n\r\nHTTP/1.1 404 Not Found\r\nServer: \r\nConnection: \r\nContent-Type: application/json; charset=utf-8\r\nContent-Length: 101\r\n\r\n{\"error\":true,\"code\":404,\"errorNum\":404,\"errorMessage\":\"unknown path '_api/collection/notexisting2'\"}\r\n--SomeBoundaryValue--"








        

    



        
    



        

    
        Exporting data

        
            HTTP Interface for Exporting Documents

Create export cursor

 export all documents from a collection, using a cursor

POST /_api/export

A JSON object with these properties is required:


	count: boolean flag that indicates whether the number of documents
in the result set should be returned in the "count" attribute of the result
(optional).
Calculating the "count" attribute might in the future have a performance
impact so this option is turned off by default, and "count" is only returned
when requested.

	restrict:
	fields (string): Contains an array of attribute names to include or exclude. Matching of attribute names
for inclusion or exclusion will be done on the top level only.
Specifying names of nested attributes is not supported at the moment.

	type: has to be be set to either include or exclude depending on which you want to use





	batchSize: maximum number of result documents to be transferred from
the server to the client in one roundtrip (optional). If this attribute is
not set, a server-controlled default value will be used.

	flush: if set to true, a WAL flush operation will be executed prior to the
export. The flush operation will start copying documents from the WAL to the
collection's datafiles. There will be an additional wait time of up
to flushWait seconds after the flush to allow the WAL collector to change
the adjusted document meta-data to point into the datafiles, too.
The default value is false (i.e. no flush) so most recently inserted or
updated
documents from the collection might be missing in the export.

	flushWait: maximum wait time in seconds after a flush operation. The default
value is 10. This option only has an effect when flush is set to true.

	limit: an optional limit value, determining the maximum number of documents to
be included in the cursor. Omitting the limit attribute or setting it to 0 will
lead to no limit being used. If a limit is used, it is undefined which documents
from the collection will be included in the export and which will be excluded. 
This is because there is no natural order of documents in a collection.

	ttl: an optional time-to-live for the cursor (in seconds). The cursor will be
removed on the server automatically after the specified amount of time. This
is useful to ensure garbage collection of cursors that are not fully fetched
by clients. If not set, a server-defined value will be used.



A call to this method creates a cursor containing all documents in the 
specified collection. In contrast to other data-producing APIs, the internal
data structures produced by the export API are more lightweight, so it is
the preferred way to retrieve all documents from a collection.

Documents are returned in a similar manner as in the /_api/cursor REST API. 
If all documents of the collection fit into the first batch, then no cursor
will be created, and the result object's hasMore attribute will be set to
false. If not all documents fit into the first batch, then the result 
object's hasMore attribute will be set to true, and the id attribute
of the result will contain a cursor id.

The order in which the documents are returned is not specified.

By default, only those documents from the collection will be returned that are
stored in the collection's datafiles. Documents that are present in the write-ahead
log (WAL) at the time the export is run will not be exported.

To export these documents as well, the caller can issue a WAL flush request
before calling the export API or set the flush attribute. Setting the flush
option will trigger a WAL flush before the export so documents get copied from 
the WAL to the collection datafiles.

If the result set can be created by the server, the server will respond with
HTTP 201. The body of the response will contain a JSON object with the
result set.

The returned JSON object has the following properties:


	error: boolean flag to indicate that an error occurred (false
in this case)



	code: the HTTP status code



	result: an array of result documents (might be empty if the collection was empty)



	hasMore: a boolean indicator whether there are more results
available for the cursor on the server



	count: the total number of result documents available (only
available if the query was executed with the count attribute set)



	id: id of temporary cursor created on the server (optional, see above)





If the JSON representation is malformed or the query specification is
missing from the request, the server will respond with HTTP 400.

The body of the response will contain a JSON object with additional error
details. The object has the following attributes:


	error: boolean flag to indicate that an error occurred (true in this case)



	code: the HTTP status code



	errorNum: the server error number



	errorMessage: a descriptive error message





Clients should always delete an export cursor result as early as possible because a
lingering export cursor will prevent the underlying collection from being
compacted or unloaded. By default, unused cursors will be deleted automatically 
after a server-defined idle time, and clients can adjust this idle time by setting
the ttl value.

Note: this API is currently not supported on cluster coordinators.

Query Parameters


	collection (required):
The name of the collection to export.



Return Codes


	201:
is returned if the result set can be created by the server.



	400:
is returned if the JSON representation is malformed or the query specification is
missing from the request.



	404:
The server will respond with HTTP 404 in case a non-existing collection is
accessed in the query.



	405:
The server will respond with HTTP 405 if an unsupported HTTP method is used.



	501:
The server will respond with HTTP 501 if this API is called on a cluster
coordinator.






        

    



        
    



        

    
        Indexes

        
            HTTP Interface for Indexes

Indexes

This is an introduction to ArangoDB's HTTP interface for indexes in
general. There are special sections for various index types.

Index

Indexes are used to allow fast access to documents. For each collection there is always the primary index which is a hash index for the
document key (_key attribute). This index cannot be dropped or changed.
edge collections will also have an automatically created edges index, which cannot be modified. This index provides quick access to documents via the _from and _to attributes.

Most user-land indexes can be created by defining the names of the attributes which should be indexed. Some index types allow indexing just one attribute (e.g. fulltext index) whereas other index types allow indexing multiple attributes.

Using the system attribute _id in user-defined indexes is not supported by any index type.

Index Handle

An index handle uniquely identifies an index in the database. It is a string and consists of a collection name and an index identifier separated by /.
Geo Index: A geo index is used to find places on the surface of the earth fast.
Hash Index: A hash index is used to find documents based on examples. A hash index can be created for one or multiple document attributes.
A hash index will only be used by queries if all indexed attributes are present in the example or search query, and if all attributes are compared using the equality (== operator). That means the hash index does not support range queries.

If the index is declared unique, then access to the indexed attributes should be fast. The performance degrades if the indexed attribute(s) contain(s) only very few distinct values.

Edges Index

An edges index is automatically created for edge collections. It contains connections between vertex documents and is invoked when the connecting edges of a vertex are queried. There is no way to explicitly create or delete edge indexes.

Skiplist Index

A skiplist is a sorted index that can be used to find individual documents or ranges of documents.

Persistent Index

A persistent index is a sorted index that can be used for finding individual documents or ranges of documents.
In constrast to the other indexes, the contents of a persistent index are stored on disk and thus do not need to be rebuilt in memory from the documents when the collection is loaded.

Fulltext Index:

A fulltext index can be used to find words, or prefixes of words inside documents. A fulltext index can be set on one attribute only, and will index all words contained in documents that have a textual value in this attribute. Only words with a (specifiable) minimum length are indexed. Word tokenization is done using the word boundary analysis provided by libicu, which is taking into account the selected language provided at server start. Words are indexed in their lower-cased form. The index supports complete match queries (full words) and prefix queries.

The basic operations (create, read, update, delete) for documents are mapped to
the standard HTTP methods (POST, GET, PUT, DELETE).

Address of an Index

All indexes in ArangoDB have an unique handle. This index handle identifies an
index and is managed by ArangoDB. All indexes are found under the URI

http://server:port/_api/index/index-handle

For example: Assume that the index handle is demo/63563528 then the URL of
that index is:

http://localhost:8529/_api/index/demo/63563528


        

    



        
    



        

    
        Working with Indexes

        
            Working with Indexes using HTTP


Read index

 returns an index

GET /_api/index/{index-handle}

Path Parameters


	index-handle (required):
The index-handle.



The result is an object describing the index. It has at least the following
attributes:


	id: the identifier of the index



	type: the index type





All other attributes are type-dependent. For example, some indexes provide
unique or sparse flags, whereas others don't. Some indexes also provide 
a selectivity estimate in the selectivityEstimate attribute of the result.

Return Codes


	200:
If the index exists, then a HTTP 200 is returned.



	404:
If the index does not exist, then a HTTP 404
is returned.





Examples



shell> curl --dump - http://localhost:8529/_api/index/products/0

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "fields" : [ 
    "_key" 
  ], 
  "id" : "products/0", 
  "selectivityEstimate" : 1, 
  "sparse" : false, 
  "type" : "primary", 
  "unique" : true, 
  "error" : false, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/index/products/0

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Create index

 creates an index

POST /_api/index#general

Query Parameters


	collection (required):
The collection name.



Request Body (required)

NOTE Swagger examples won't work due to the anchor.

Creates a new index in the collection collection. Expects
an object containing the index details.

The type of the index to be created must specified in the type
attribute of the index details. Depending on the index type, additional
other attributes may need to specified in the request in order to create
the index.

Indexes require the to be indexed attribute(s) in the fields attribute
of the index details. Depending on the index type, a single attribute or
multiple attributes can be indexed. In the latter case, an array of
strings is expected.

Indexing the system attribute _id is not supported for user-defined indexes. 
Manually creating an index using _id as an index attribute will fail with 
an error.

Some indexes can be created as unique or non-unique variants. Uniqueness
can be controlled for most indexes by specifying the unique flag in the
index details. Setting it to true will create a unique index.
Setting it to false or omitting the unique attribute will
create a non-unique index.

Note: The following index types do not support uniqueness, and using
the unique attribute with these types may lead to an error:


	geo indexes

	fulltext indexes



Note: Unique indexes on non-shard keys are not supported in a
cluster.

Hash, skiplist and persistent indexes can optionally be created in a sparse
variant. A sparse index will be created if the sparse attribute in
the index details is set to true. Sparse indexes do not index documents
for which any of the index attributes is either not set or is null. 

The optional attribute deduplicate is supported by array indexes of
type hash or skiplist. It controls whether inserting duplicate index values 
from the same document into a unique array index will lead to a unique constraint
error or not. The default value is true, so only a single instance of each
non-unique index value will be inserted into the index per document. Trying to
insert a value into the index that already exists in the index will always fail,
regardless of the value of this attribute.

Return Codes


	200:
If the index already exists, then an HTTP 200 is returned.



	201:
If the index does not already exist and could be created, then an HTTP 201
is returned.



	400:
If an invalid index description is posted or attributes are used that the
target index will not support, then an HTTP 400 is returned.



	404:
If collection is unknown, then an HTTP 404 is returned.






Delete index

 deletes an index

DELETE /_api/index/{index-handle}

Path Parameters


	index-handle (required):
The index handle.



Deletes an index with index-handle.

Return Codes


	200:
If the index could be deleted, then an HTTP 200 is
returned.



	404:
If the index-handle is unknown, then an HTTP 404 is returned.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/index/products/11256

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "id" : "products/11256", 
  "error" : false, 
  "code" : 200 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/index/products/11256

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Read all indexes of a collection

 returns all indexes of a collection

GET /_api/index

Query Parameters


	collection (required):
The collection name.



Returns an object with an attribute indexes containing an array of all
index descriptions for the given collection. The same information is also
available in the identifiers as an object with the index handles as
keys.

Return Codes


	200:
returns a JSON object containing a list of indexes on that collection.



Examples

Return information about all indexes



shell> curl --dump - http://localhost:8529/_api/index?collection=products

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "indexes" : [ 
    { 
      "fields" : [ 
        "_key" 
      ], 
      "id" : "products/0", 
      "selectivityEstimate" : 1, 
      "sparse" : false, 
      "type" : "primary", 
      "unique" : true 
    }, 
    { 
      "deduplicate" : true, 
      "fields" : [ 
        "name" 
      ], 
      "id" : "products/11170", 
      "selectivityEstimate" : 1, 
      "sparse" : false, 
      "type" : "hash", 
      "unique" : false 
    }, 
    { 
      "deduplicate" : true, 
      "fields" : [ 
        "price" 
      ], 
      "id" : "products/11173", 
      "sparse" : true, 
      "type" : "skiplist", 
      "unique" : false 
    } 
  ], 
  "identifiers" : { 
    "products/0" : { 
      "fields" : [ 
        "_key" 
      ], 
      "id" : "products/0", 
      "selectivityEstimate" : 1, 
      "sparse" : false, 
      "type" : "primary", 
      "unique" : true 
    }, 
    "products/11170" : { 
      "deduplicate" : true, 
      "fields" : [ 
        "name" 
      ], 
      "id" : "products/11170", 
      "selectivityEstimate" : 1, 
      "sparse" : false, 
      "type" : "hash", 
      "unique" : false 
    }, 
    "products/11173" : { 
      "deduplicate" : true, 
      "fields" : [ 
        "price" 
      ], 
      "id" : "products/11173", 
      "sparse" : true, 
      "type" : "skiplist", 
      "unique" : false 
    } 
  } 
}





shell> curl --dump - http://localhost:8529/_api/index?collection=products

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Hash

        
            Working with Hash Indexes

If a suitable hash index exists, then /_api/simple/by-example will use this index to execute a query-by-example.


Create hash index

 creates a hash index

POST /_api/index#hash

Query Parameters


	collection-name (required):
The collection name.



A JSON object with these properties is required:


	fields (string): an array of attribute paths.

	unique: if true, then create a unique index.

	type: must be equal to "hash".

	sparse: if true, then create a sparse index.

	deduplicate: if false, the deduplication of array values is turned off.



NOTE Swagger examples won't work due to the anchor.

Creates a hash index for the collection collection-name if it
does not already exist. The call expects an object containing the index
details.

In a sparse index all documents will be excluded from the index that do not 
contain at least one of the specified index attributes (i.e. fields) or that 
have a value of null in any of the specified index attributes. Such documents 
will not be indexed, and not be taken into account for uniqueness checks if
the unique flag is set.

In a non-sparse index, these documents will be indexed (for non-present
indexed attributes, a value of null will be used) and will be taken into
account for uniqueness checks if the unique flag is set.

Note: unique indexes on non-shard keys are not supported in a cluster.

Return Codes


	200:
If the index already exists, then a HTTP 200 is returned.



	201:
If the index does not already exist and could be created, then a HTTP 201
is returned.



	400:
If the collection already contains documents and you try to create a unique
hash index in such a way that there are documents violating the uniqueness,
then a HTTP 400 is returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Creating an unique constraint



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "hash", 
  "unique" : true, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a", 
    "b" 
  ], 
  "id" : "products/11228", 
  "isNewlyCreated" : true, 
  "selectivityEstimate" : 1, 
  "sparse" : false, 
  "type" : "hash", 
  "unique" : true, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "hash", 
  "unique" : true, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Creating a non-unique hash index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "hash", 
  "unique" : false, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a", 
    "b" 
  ], 
  "id" : "products/11207", 
  "isNewlyCreated" : true, 
  "selectivityEstimate" : 1, 
  "sparse" : false, 
  "type" : "hash", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "hash", 
  "unique" : false, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Creating a sparse index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "hash", 
  "unique" : false, 
  "sparse" : true, 
  "fields" : [ 
    "a" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a" 
  ], 
  "id" : "products/11235", 
  "isNewlyCreated" : true, 
  "selectivityEstimate" : 1, 
  "sparse" : true, 
  "type" : "hash", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "hash", 
  "unique" : false, 
  "sparse" : true, 
  "fields" : [ 
    "a" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Simple query by-example

 returns all documents of a collection matching a given example

PUT /_api/simple/by-example

A JSON object with these properties is required:


	skip: The number of documents to skip in the query (optional).

	batchSize: maximum number of result documents to be transferred from
the server to the client in one roundtrip. If this attribute is
not set, a server-controlled default value will be used. A batchSize value of
0 is disallowed.

	limit: The maximal amount of documents to return. The skip
is applied before the limit restriction. (optional)

	example: The example document.

	collection: The name of the collection to query.



This will find all documents matching a given example.

Returns a cursor containing the result, see Http Cursor for details.

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Matching an attribute



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11442", 
      "_id" : "products/11442", 
      "_rev" : "_YDwufDC--D", 
      "i" : 1 
    }, 
    { 
      "_key" : "11445", 
      "_id" : "products/11445", 
      "_rev" : "_YDwufDC--F", 
      "a" : { 
        "k" : 2, 
        "j" : 2 
      }, 
      "i" : 1 
    }, 
    { 
      "_key" : "11439", 
      "_id" : "products/11439", 
      "_rev" : "_YDwufDC--B", 
      "a" : { 
        "j" : 1 
      }, 
      "i" : 1 
    }, 
    { 
      "_key" : "11435", 
      "_id" : "products/11435", 
      "_rev" : "_YDwufDC--_", 
      "a" : { 
        "k" : 1, 
        "j" : 1 
      }, 
      "i" : 1 
    } 
  ], 
  "hasMore" : false, 
  "count" : 4, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 0, 
      "httpRequests" : 0, 
      "executionTime" : 0.0001595020294189453 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Matching an attribute which is a sub-document



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a.j" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11457", 
      "_id" : "products/11457", 
      "_rev" : "_YDwufEC--B", 
      "a" : { 
        "j" : 1 
      }, 
      "i" : 1 
    }, 
    { 
      "_key" : "11453", 
      "_id" : "products/11453", 
      "_rev" : "_YDwufEC--_", 
      "a" : { 
        "k" : 1, 
        "j" : 1 
      }, 
      "i" : 1 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 2, 
      "httpRequests" : 0, 
      "executionTime" : 0.00019931793212890625 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a.j" : 1 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Matching an attribute within a sub-document



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11475", 
      "_id" : "products/11475", 
      "_rev" : "_YDwufFG--B", 
      "a" : { 
        "j" : 1 
      }, 
      "i" : 1 
    } 
  ], 
  "hasMore" : false, 
  "count" : 1, 
  "cached" : false, 
  "extra" : { 
    "stats" : { 
      "writesExecuted" : 0, 
      "writesIgnored" : 0, 
      "scannedFull" : 4, 
      "scannedIndex" : 0, 
      "filtered" : 3, 
      "httpRequests" : 0, 
      "executionTime" : 0.00014972686767578125 
    }, 
    "warnings" : [ ] 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/by-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "a" : { 
      "j" : 1 
    } 
  } 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Find documents matching an example

 returns one document of a collection matching a given example

PUT /_api/simple/first-example

A JSON object with these properties is required:


	example: The example document.

	collection: The name of the collection to query.



This will return the first document matching a given example.

Returns a result containing the document or HTTP 404 if no
document matched the example.

If more than one document in the collection matches the specified example, only
one of these documents will be returned, and it is undefined which of the matching
documents is returned.

Return Codes


	200:
is returned when the query was successfully executed.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

If a matching document was found



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "document" : { 
    "_key" : "11493", 
    "_id" : "products/11493", 
    "_rev" : "_YDwufGG--B", 
    "a" : { 
      "j" : 1 
    }, 
    "i" : 1 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "i" : 1 
  } 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






If no document was found



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "l" : 1 
  } 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "code" : 404, 
  "errorNum" : 404, 
  "errorMessage" : "no match" 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/first-example <<EOF
{ 
  "collection" : "products", 
  "example" : { 
    "l" : 1 
  } 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Skiplist

        
            Working with Skiplist Indexes

If a suitable skip-list index exists, then /_api/simple/range and other operations
will use this index to execute queries.


Create skip list

 creates a skip-list

POST /_api/index#skiplist

Query Parameters


	collection-name (required):
The collection name.



A JSON object with these properties is required:


	fields (string): an array of attribute paths.

	unique: if true, then create a unique index.

	type: must be equal to "skiplist".

	sparse: if true, then create a sparse index.

	deduplicate: if false, the deduplication of array values is turned off.



Creates a skip-list index for the collection collection-name, if
it does not already exist. The call expects an object containing the index
details.

In a sparse index all documents will be excluded from the index that do not 
contain at least one of the specified index attributes (i.e. fields) or that 
have a value of null in any of the specified index attributes. Such documents 
will not be indexed, and not be taken into account for uniqueness checks if
the unique flag is set.

In a non-sparse index, these documents will be indexed (for non-present
indexed attributes, a value of null will be used) and will be taken into
account for uniqueness checks if the unique flag is set.

Note: unique indexes on non-shard keys are not supported in a cluster.

Return Codes


	200:
If the index already exists, then a HTTP 200 is
returned.



	201:
If the index does not already exist and could be created, then a HTTP 201
is returned.



	400:
If the collection already contains documents and you try to create a unique
skip-list index in such a way that there are documents violating the
uniqueness, then a HTTP 400 is returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Creating a skiplist index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "skiplist", 
  "unique" : false, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a", 
    "b" 
  ], 
  "id" : "products/11221", 
  "isNewlyCreated" : true, 
  "sparse" : false, 
  "type" : "skiplist", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "skiplist", 
  "unique" : false, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Creating a sparse skiplist index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "skiplist", 
  "unique" : false, 
  "sparse" : true, 
  "fields" : [ 
    "a" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a" 
  ], 
  "id" : "products/11249", 
  "isNewlyCreated" : true, 
  "sparse" : true, 
  "type" : "skiplist", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "skiplist", 
  "unique" : false, 
  "sparse" : true, 
  "fields" : [ 
    "a" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Persistent

        
            Working with Persistent Indexes

If a suitable persistent index exists, then /_api/simple/range and other operations
will use this index to execute queries.


Create a persistent index

 creates a persistent index

POST /_api/index#persistent

Query Parameters


	collection-name (required):
The collection name.



A JSON object with these properties is required:


	fields (string): an array of attribute paths.

	unique: if true, then create a unique index.

	type: must be equal to "persistent".

	sparse: if true, then create a sparse index.



Creates a persistent index for the collection collection-name, if
it does not already exist. The call expects an object containing the index
details.

In a sparse index all documents will be excluded from the index that do not 
contain at least one of the specified index attributes (i.e. fields) or that 
have a value of null in any of the specified index attributes. Such documents 
will not be indexed, and not be taken into account for uniqueness checks if
the unique flag is set.

In a non-sparse index, these documents will be indexed (for non-present
indexed attributes, a value of null will be used) and will be taken into
account for uniqueness checks if the unique flag is set.

Note: unique indexes on non-shard keys are not supported in a cluster.

Return Codes


	200:
If the index already exists, then a HTTP 200 is
returned.



	201:
If the index does not already exist and could be created, then a HTTP 201
is returned.



	400:
If the collection already contains documents and you try to create a unique
persistent index in such a way that there are documents violating the
uniqueness, then a HTTP 400 is returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Creating a persistent index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "persistent", 
  "unique" : false, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a", 
    "b" 
  ], 
  "id" : "products/11214", 
  "isNewlyCreated" : true, 
  "sparse" : false, 
  "type" : "persistent", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "persistent", 
  "unique" : false, 
  "fields" : [ 
    "a", 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Creating a sparse persistent index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "persistent", 
  "unique" : false, 
  "sparse" : true, 
  "fields" : [ 
    "a" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "deduplicate" : true, 
  "fields" : [ 
    "a" 
  ], 
  "id" : "products/11242", 
  "isNewlyCreated" : true, 
  "sparse" : true, 
  "type" : "persistent", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "persistent", 
  "unique" : false, 
  "sparse" : true, 
  "fields" : [ 
    "a" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Geo

        
            Working with Geo Indexes


Create geo-spatial index

 creates a geo index

POST /_api/index#geo

Query Parameters


	collection (required):
The collection name.



A JSON object with these properties is required:


	fields (string): An array with one or two attribute paths.
If it is an array with one attribute path location, then a geo-spatial
index on all documents is created using location as path to the
coordinates. The value of the attribute must be an array with at least two
double values. The array must contain the latitude (first value) and the
longitude (second value). All documents, which do not have the attribute
path or with value that are not suitable, are ignored.
If it is an array with two attribute paths latitude and longitude,
then a geo-spatial index on all documents is created using latitude
and longitude as paths the latitude and the longitude. The value of
the attribute latitude and of the attribute longitude must a
double. All documents, which do not have the attribute paths or which
values are not suitable, are ignored.

	type: must be equal to "geo".

	geoJson: If a geo-spatial index on a location is constructed
and geoJson is true, then the order within the array is longitude
followed by latitude. This corresponds to the format described in
http://geojson.org/geojson-spec.html#positions



NOTE Swagger examples won't work due to the anchor.

Creates a geo-spatial index in the collection collection-name, if
it does not already exist. Expects an object containing the index details.

Geo indexes are always sparse, meaning that documents that do not contain
the index attributes or have non-numeric values in the index attributes
will not be indexed.

Return Codes


	200:
If the index already exists, then a HTTP 200 is returned.



	201:
If the index does not already exist and could be created, then a HTTP 201
is returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Creating a geo index with a location attribute



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "geo", 
  "fields" : [ 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "constraint" : false, 
  "fields" : [ 
    "b" 
  ], 
  "geoJson" : false, 
  "id" : "products/11193", 
  "ignoreNull" : true, 
  "isNewlyCreated" : true, 
  "sparse" : true, 
  "type" : "geo1", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "geo", 
  "fields" : [ 
    "b" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Creating a geo index with latitude and longitude attributes



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "geo", 
  "fields" : [ 
    "e", 
    "f" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "constraint" : false, 
  "fields" : [ 
    "e", 
    "f" 
  ], 
  "id" : "products/11186", 
  "ignoreNull" : true, 
  "isNewlyCreated" : true, 
  "sparse" : true, 
  "type" : "geo2", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "geo", 
  "fields" : [ 
    "e", 
    "f" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Returns documents near a coordinate

 returns all documents of a collection near a given location

PUT /_api/simple/near

A JSON object with these properties is required:


	distance: If given, the attribute key used to return the distance to
the given coordinate. (optional). If specified, distances are returned in meters.

	skip: The number of documents to skip in the query. (optional)

	longitude: The longitude of the coordinate.

	limit: The maximal amount of documents to return. The skip is
applied before the limit restriction. The default is 100. (optional)

	collection: The name of the collection to query.

	latitude: The latitude of the coordinate.

	geo: If given, the identifier of the geo-index to use. (optional)



The default will find at most 100 documents near the given coordinate.  The
returned array is sorted according to the distance, with the nearest document
being first in the return array. If there are near documents of equal distance, documents
are chosen randomly from this set until the limit is reached.

In order to use the near operator, a geo index must be defined for the
collection. This index also defines which attribute holds the coordinates
for the document.  If you have more than one geo-spatial index, you can use
the geo field to select a particular index.

Returns a cursor containing the result, see Http Cursor for details.

Note: the near simple query is deprecated as of ArangoDB 2.6. 
This API may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection using the near operator is
to issue an AQL query using the NEAR function as follows: 

FOR doc IN NEAR(@@collection, @latitude, @longitude, @limit)
  RETURN doc`

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Without distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11619", 
      "_id" : "products/11619", 
      "_rev" : "_YDwufNa--H", 
      "name" : "Name/0.002/", 
      "loc" : [ 
        0.002, 
        0 
      ] 
    }, 
    { 
      "_key" : "11613", 
      "_id" : "products/11613", 
      "_rev" : "_YDwufNa--D", 
      "name" : "Name/-0.002/", 
      "loc" : [ 
        -0.002, 
        0 
      ] 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






With distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11657", 
      "_key" : "11657", 
      "_rev" : "_YDwufPe--D", 
      "loc" : [ 
        -0.002, 
        0 
      ], 
      "name" : "Name/-0.002/" 
    }, 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11663", 
      "_key" : "11663", 
      "_rev" : "_YDwufPe--H", 
      "loc" : [ 
        0.002, 
        0 
      ], 
      "name" : "Name/0.002/" 
    }, 
    { 
      "distance" : 444.779706578235, 
      "_id" : "products/11654", 
      "_key" : "11654", 
      "_rev" : "_YDwufPe--B", 
      "loc" : [ 
        -0.004, 
        0 
      ], 
      "name" : "Name/-0.004/" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 3, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Find documents within a radius around a coordinate

 returns all documents of a collection within a given radius

PUT /_api/simple/within

A JSON object with these properties is required:


	distance: If given, the attribute key used to return the distance to
the given coordinate. (optional). If specified, distances are returned in meters.

	skip: The number of documents to skip in the query. (optional)

	longitude: The longitude of the coordinate.

	radius: The maximal radius (in meters).

	collection: The name of the collection to query.

	latitude: The latitude of the coordinate.

	limit: The maximal amount of documents to return. The skip is
applied before the limit restriction. The default is 100. (optional)

	geo: If given, the identifier of the geo-index to use. (optional)



This will find all documents within a given radius around the coordinate
(latitude, longitude). The returned list is sorted by distance.

In order to use the within operator, a geo index must be defined for
the collection. This index also defines which attribute holds the
coordinates for the document.  If you have more than one geo-spatial index,
you can use the geo field to select a particular index.

Returns a cursor containing the result, see Http Cursor for details.

Note: the within simple query is deprecated as of ArangoDB 2.6. 
This API may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection using the near operator is
to issue an AQL query using the WITHIN function as follows: 

FOR doc IN WITHIN(@@collection, @latitude, @longitude, @radius, @distanceAttributeName)
  RETURN doc

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples

Without distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2, 
  "radius" : 500 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11948", 
      "_id" : "products/11948", 
      "_rev" : "_YDwufeW--B", 
      "name" : "Name/0.002/", 
      "loc" : [ 
        0.002, 
        0 
      ] 
    }, 
    { 
      "_key" : "11942", 
      "_id" : "products/11942", 
      "_rev" : "_YDwufeS--H", 
      "name" : "Name/-0.002/", 
      "loc" : [ 
        -0.002, 
        0 
      ] 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 2, 
  "radius" : 500 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






With distance



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance", 
  "radius" : 300 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11986", 
      "_key" : "11986", 
      "_rev" : "_YDwufga--_", 
      "loc" : [ 
        -0.002, 
        0 
      ], 
      "name" : "Name/-0.002/" 
    }, 
    { 
      "distance" : 222.38985328911744, 
      "_id" : "products/11992", 
      "_key" : "11992", 
      "_rev" : "_YDwufga--D", 
      "loc" : [ 
        0.002, 
        0 
      ], 
      "name" : "Name/0.002/" 
    }, 
    { 
      "distance" : 444.779706578235, 
      "_id" : "products/11983", 
      "_key" : "11983", 
      "_rev" : "_YDwufgW--F", 
      "loc" : [ 
        -0.004, 
        0 
      ], 
      "name" : "Name/-0.004/" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 3, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/near <<EOF
{ 
  "collection" : "products", 
  "latitude" : 0, 
  "longitude" : 0, 
  "skip" : 1, 
  "limit" : 3, 
  "distance" : "distance", 
  "radius" : 300 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Fulltext

        
            Fulltext

If a fulltext index exists, then
/_api/simple/fulltext will use this index to execute the specified fulltext query.


Create fulltext index

 creates a fulltext index

POST /_api/index#fulltext

Query Parameters


	collection-name (required):
The collection name.



A JSON object with these properties is required:


	fields (string): an array of attribute names. Currently, the array is limited
to exactly one attribute.

	type: must be equal to "fulltext".

	minLength: Minimum character length of words to index. Will default
to a server-defined value if unspecified. It is thus recommended to set
this value explicitly when creating the index.



NOTE Swagger examples won't work due to the anchor.

Creates a fulltext index for the collection collection-name, if
it does not already exist. The call expects an object containing the index
details.

Return Codes


	200:
If the index already exists, then a HTTP 200 is
returned.



	201:
If the index does not already exist and could be created, then a HTTP 201
is returned.



	404:
If the collection-name is unknown, then a HTTP 404 is returned.





Examples

Creating a fulltext index



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "fulltext", 
  "fields" : [ 
    "text" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "fields" : [ 
    "text" 
  ], 
  "id" : "products/11200", 
  "isNewlyCreated" : true, 
  "minLength" : 2, 
  "sparse" : true, 
  "type" : "fulltext", 
  "unique" : false, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/index?collection=products <<EOF
{ 
  "type" : "fulltext", 
  "fields" : [ 
    "text" 
  ] 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Fulltext index query

 returns documents of a collection as a result of a fulltext query

PUT /_api/simple/fulltext

A JSON object with these properties is required:


	index: The identifier of the fulltext-index to use.

	attribute: The attribute that contains the texts.

	collection: The name of the collection to query.

	limit: The maximal amount of documents to return. The skip
is applied before the limit restriction. (optional)

	skip: The number of documents to skip in the query (optional).

	query: The fulltext query. Please refer to Fulltext queries
 for details.



This will find all documents from the collection that match the fulltext
query specified in query.

In order to use the fulltext operator, a fulltext index must be defined
for the collection and the specified attribute.

Returns a cursor containing the result, see Http Cursor for details.

Note: the fulltext simple query is deprecated as of ArangoDB 2.6. 
This API may be removed in future versions of ArangoDB. The preferred
way for retrieving documents from a collection using the near operator is
to issue an AQL query using the FULLTEXT AQL function 
as follows:

FOR doc IN FULLTEXT(@@collection, @attributeName, @queryString, @limit) 
  RETURN doc

Return Codes


	201:
is returned if the query was executed successfully.



	400:
is returned if the body does not contain a valid JSON representation of a
query. The response body contains an error document in this case.



	404:
is returned if the collection specified by collection is unknown.  The
response body contains an error document in this case.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/fulltext <<EOF
{ 
  "collection" : "products", 
  "attribute" : "text", 
  "query" : "word" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "result" : [ 
    { 
      "_key" : "11525", 
      "_id" : "products/11525", 
      "_rev" : "_YDwufIO--_", 
      "text" : "this text contains word" 
    }, 
    { 
      "_key" : "11529", 
      "_id" : "products/11529", 
      "_rev" : "_YDwufIO--B", 
      "text" : "this text also has a word" 
    } 
  ], 
  "hasMore" : false, 
  "count" : 2, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/simple/fulltext <<EOF
{ 
  "collection" : "products", 
  "attribute" : "text", 
  "query" : "word" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Transactions

        
            HTTP Interface for Transactions

Transactions

ArangoDB's transactions are executed on the server. Transactions can be 
initiated by clients by sending the transaction description for execution to
the server.

Transactions in ArangoDB do not offer separate BEGIN, COMMIT and ROLLBACK
operations as they are available in many other database products. 
Instead, ArangoDB transactions are described by a JavaScript function, and the 
code inside the JavaScript function will then be executed transactionally.
At the end of the function, the transaction is automatically committed, and all
changes done by the transaction will be persisted. If an exception is thrown
during transaction execution, all operations performed in the transaction are
rolled back.

For a more detailed description of how transactions work in ArangoDB please
refer to Transactions. 


Execute transaction

 execute a server-side transaction

POST /_api/transaction

A JSON object with these properties is required:


	maxTransactionSize: Transaction size limit in bytes. Honored by the RocksDB storage engine only.

	lockTimeout: an optional numeric value that can be used to set a
timeout for waiting on collection locks. If not specified, a default
value will be used. Setting lockTimeout to 0 will make ArangoDB
not time out waiting for a lock.

	waitForSync: an optional boolean flag that, if set, will force the
transaction to write all data to disk before returning.

	params: optional arguments passed to action.

	action: the actual transaction operations to be executed, in the
form of stringified JavaScript code. The code will be executed on server
side, with late binding. It is thus critical that the code specified in
action properly sets up all the variables it needs.
If the code specified in action ends with a return statement, the
value returned will also be returned by the REST API in the result
attribute if the transaction committed successfully.

	collections: collections must be a JSON object that can have either or both sub-attributes
read and write, each being an array of collection names or a single
collection name as string. Collections that will be written to in the
transaction must be declared with the write attribute or it will fail,
whereas non-declared collections from which is solely read will be added lazily.
The optional sub-attribute allowImplicit can be set to false to let
transactions fail in case of undeclared collections for reading. Collections
for reading should be fully declared if possible, to avoid deadlocks.



The transaction description must be passed in the body of the POST request.

If the transaction is fully executed and committed on the server,
HTTP 200 will be returned. Additionally, the return value of the
code defined in action will be returned in the result attribute.

For successfully committed transactions, the returned JSON object has the
following properties:


	error: boolean flag to indicate if an error occurred (false
in this case)



	code: the HTTP status code



	result: the return value of the transaction





If the transaction specification is either missing or malformed, the server
will respond with HTTP 400.

The body of the response will then contain a JSON object with additional error
details. The object has the following attributes:


	error: boolean flag to indicate that an error occurred (true in this case)



	code: the HTTP status code



	errorNum: the server error number



	errorMessage: a descriptive error message





If a transaction fails to commit, either by an exception thrown in the
action code, or by an internal error, the server will respond with
an error.
Any other errors will be returned with any of the return codes
HTTP 400, HTTP 409, or HTTP 500.

Return Codes


	200:
If the transaction is fully executed and committed on the server,
HTTP 200 will be returned.



	400:
If the transaction specification is either missing or malformed, the server
will respond with HTTP 400.



	404:
If the transaction specification contains an unknown collection, the server
will respond with HTTP 404.



	500:
Exceptions thrown by users will make the server respond with a return code of
HTTP 500





Examples

Executing a transaction on a single collection



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "write" : "products" 
  }, 
  "action" : "function () { var db = require('@arangodb').db; db.products.save({});  return db.products.count(); }" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : 1 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "write" : "products" 
  }, 
  "action" : "function () { var db = require('@arangodb').db; db.products.save({});  return db.products.count(); }" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Executing a transaction using multiple collections



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "write" : [ 
      "products", 
      "materials" 
    ] 
  }, 
  "action" : "function () {var db = require('@arangodb').db;db.products.save({});db.materials.save({});return 'worked!';}" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : "worked!" 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "write" : [ 
      "products", 
      "materials" 
    ] 
  }, 
  "action" : "function () {var db = require('@arangodb').db;db.products.save({});db.materials.save({});return 'worked!';}" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Aborting a transaction due to an internal error



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "write" : "products" 
  }, 
  "action" : "function () {var db = require('@arangodb').db;db.products.save({ _key: 'abc'});db.products.save({ _key: 'abc'});}" 
}
EOF

HTTP/1.1 409 Conflict
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "unique constraint violated - in index 0 of type primary over [\"_key\"]; conflicting key: abc", 
  "code" : 409, 
  "errorNum" : 1210 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "write" : "products" 
  }, 
  "action" : "function () {var db = require('@arangodb').db;db.products.save({ _key: 'abc'});db.products.save({ _key: 'abc'});}" 
}
EOF

HTTP/1.1 409 Conflict
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Aborting a transaction by explicitly throwing an exception



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "read" : "products" 
  }, 
  "action" : "function () { throw 'doh!'; }" 
}
EOF

HTTP/1.1 500 Internal Server Error
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "transaction not running on commit", 
  "code" : 500, 
  "errorNum" : 1650 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "read" : "products" 
  }, 
  "action" : "function () { throw 'doh!'; }" 
}
EOF

HTTP/1.1 500 Internal Server Error
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Referring to a non-existing collection



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "read" : "products" 
  }, 
  "action" : "function () { return true; }" 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "errorMessage" : "collection not found: products", 
  "code" : 404, 
  "errorNum" : 1203 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/transaction <<EOF
{ 
  "collections" : { 
    "read" : "products" 
  }, 
  "action" : "function () { return true; }" 
}
EOF

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Replication

        
            HTTP Interface for Replication

Replication

This is an introduction to ArangoDB's HTTP replication interface.
The replication architecture and components are described in more details in 
Replication.

The HTTP replication interface serves four main purposes:


	fetch initial data from a server (e.g. for a backup, or for the initial synchronization 
of data before starting the continuous replication applier)

	querying the state of a master

	fetch continuous changes from a master (used for incremental synchronization of changes)

	administer the replication applier (starting, stopping, configuring, querying state) on 
a slave



Please note that all replication operations work on a per-database level. If an 
ArangoDB server contains more than one database, the replication system must be
configured individually per database, and replicating the data of multiple
databases will require multiple operations.


        

    



        
    



        

    
        Replication Dump

        
            Replication Dump Commands

The inventory method can be used to query an ArangoDB database's current
set of collections plus their indexes. Clients can use this method to get an 
overview of which collections are present in the database. They can use this information
to either start a full or a partial synchronization of data, e.g. to initiate a backup
or the incremental data synchronization.


Return inventory of collections and indexes

 Returns an overview of collections and their indexes

GET /_api/replication/inventory

Query Parameters


	includeSystem (optional):
Include system collections in the result. The default value is true.



Returns the array of collections and indexes available on the server. This
array can be used by replication clients to initiate an initial sync with the
server.

The response will contain a JSON object with the collection and state and
tick attributes.

collections is an array of collections with the following sub-attributes:


	parameters: the collection properties



	indexes: an array of the indexes of a the collection. Primary indexes and edge indexes
 are not included in this array.





The state attribute contains the current state of the replication logger. It
contains the following sub-attributes:


	running: whether or not the replication logger is currently active. Note:
since ArangoDB 2.2, the value will always be true



	lastLogTick: the value of the last tick the replication logger has written



	time: the current time on the server





Replication clients should note the lastLogTick value returned. They can then
fetch collections' data using the dump method up to the value of lastLogTick, and
query the continuous replication log for log events after this tick value.

To create a full copy of the collections on the server, a replication client
can execute these steps:


	call the /inventory API method. This returns the lastLogTick value and the
array of collections and indexes from the server.



	for each collection returned by /inventory, create the collection locally and
call /dump to stream the collection data to the client, up to the value of
lastLogTick.
After that, the client can create the indexes on the collections as they were
reported by /inventory.





If the clients wants to continuously stream replication log events from the logger
server, the following additional steps need to be carried out:


	the client should call /logger-follow initially to fetch the first batch of
replication events that were logged after the client's call to /inventory.

The call to /logger-follow should use a from parameter with the value of the
lastLogTick as reported by /inventory. The call to /logger-follow will return the
x-arango-replication-lastincluded which will contain the last tick value included
in the response.



	the client can then continuously call /logger-follow to incrementally fetch new
replication events that occurred after the last transfer.

Calls should use a from parameter with the value of the x-arango-replication-lastincluded
header of the previous response. If there are no more replication events, the
response will be empty and clients can go to sleep for a while and try again
later.





Note: on a coordinator, this request must have the query parameter
DBserver which must be an ID of a DBserver.
The very same request is forwarded synchronously to that DBserver.
It is an error if this attribute is not bound in the coordinator case.

Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples



shell> curl --dump - http://localhost:8529/_api/replication/inventory

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "collections" : [ 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "62", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_appbundles", 
        "id" : "62", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 2097152, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "_appbundles", 
        "numberOfShards" : 1, 
        "planId" : "62", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ 
        { 
          "id" : "60", 
          "type" : "hash", 
          "fields" : [ 
            "mount" 
          ], 
          "selectivityEstimate" : 1, 
          "unique" : true, 
          "sparse" : false, 
          "deduplicate" : true 
        } 
      ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "57", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_apps", 
        "id" : "57", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          }, 
          { 
            "id" : "60", 
            "type" : "hash", 
            "fields" : [ 
              "mount" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false, 
            "deduplicate" : true 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 2097152, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 75 
        }, 
        "name" : "_apps", 
        "numberOfShards" : 1, 
        "planId" : "57", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "26", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_aqlfunctions", 
        "id" : "26", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 1048576, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "_aqlfunctions", 
        "numberOfShards" : 1, 
        "planId" : "26", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "2", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_graphs", 
        "id" : "2", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 1048576, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "_graphs", 
        "numberOfShards" : 1, 
        "planId" : "2", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "11", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_modules", 
        "id" : "11", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 1048576, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 9765 
        }, 
        "name" : "_modules", 
        "numberOfShards" : 1, 
        "planId" : "11", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ 
        { 
          "id" : "9", 
          "type" : "hash", 
          "fields" : [ 
            "user" 
          ], 
          "selectivityEstimate" : 1, 
          "unique" : true, 
          "sparse" : true, 
          "deduplicate" : true 
        } 
      ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "6", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_users", 
        "id" : "6", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          }, 
          { 
            "id" : "9", 
            "type" : "hash", 
            "fields" : [ 
              "user" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : true, 
            "deduplicate" : true 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 4194304, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 11267 
        }, 
        "name" : "_users", 
        "numberOfShards" : 1, 
        "planId" : "6", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "user" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "98", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "h407686C16EDC/98", 
        "id" : "98", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : false, 
        "isVolatile" : false, 
        "journalSize" : 33554432, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "animals", 
        "numberOfShards" : 1, 
        "planId" : "98", 
        "replicationFactor" : 1, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "92", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "h407686C16EDC/92", 
        "id" : "92", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : false, 
        "isVolatile" : false, 
        "journalSize" : 33554432, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "demo", 
        "numberOfShards" : 1, 
        "planId" : "92", 
        "replicationFactor" : 1, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    } 
  ], 
  "state" : { 
    "running" : true, 
    "lastLogTick" : "11301", 
    "lastUncommittedLogTick" : "11303", 
    "totalEvents" : 3840, 
    "time" : "2019-01-17T16:41:36Z" 
  }, 
  "tick" : "11303" 
}





shell> curl --dump - http://localhost:8529/_api/replication/inventory

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






With some additional indexes:



shell> curl --dump - http://localhost:8529/_api/replication/inventory

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "collections" : [ 
    { 
      "indexes" : [ 
        { 
          "id" : "11308", 
          "type" : "hash", 
          "fields" : [ 
            "name" 
          ], 
          "selectivityEstimate" : 1, 
          "unique" : false, 
          "sparse" : false, 
          "deduplicate" : true 
        }, 
        { 
          "id" : "11311", 
          "type" : "skiplist", 
          "fields" : [ 
            "a", 
            "b" 
          ], 
          "unique" : true, 
          "sparse" : false, 
          "deduplicate" : true 
        } 
      ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "11304", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "h407686C16EDC/11304", 
        "id" : "11304", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          }, 
          { 
            "id" : "11308", 
            "type" : "hash", 
            "fields" : [ 
              "name" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : false, 
            "sparse" : false, 
            "deduplicate" : true 
          }, 
          { 
            "id" : "11311", 
            "type" : "skiplist", 
            "fields" : [ 
              "a", 
              "b" 
            ], 
            "unique" : true, 
            "sparse" : false, 
            "deduplicate" : true 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : false, 
        "isVolatile" : false, 
        "journalSize" : 33554432, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "IndexedCollection1", 
        "numberOfShards" : 1, 
        "planId" : "11304", 
        "replicationFactor" : 1, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ 
        { 
          "id" : "11317", 
          "type" : "fulltext", 
          "fields" : [ 
            "text" 
          ], 
          "unique" : false, 
          "sparse" : true, 
          "minLength" : 10 
        }, 
        { 
          "id" : "11320", 
          "type" : "skiplist", 
          "fields" : [ 
            "a" 
          ], 
          "unique" : false, 
          "sparse" : false, 
          "deduplicate" : true 
        } 
      ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "11313", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "h407686C16EDC/11313", 
        "id" : "11313", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          }, 
          { 
            "id" : "11317", 
            "type" : "fulltext", 
            "fields" : [ 
              "text" 
            ], 
            "unique" : false, 
            "sparse" : true, 
            "minLength" : 10 
          }, 
          { 
            "id" : "11320", 
            "type" : "skiplist", 
            "fields" : [ 
              "a" 
            ], 
            "unique" : false, 
            "sparse" : false, 
            "deduplicate" : true 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : false, 
        "isVolatile" : false, 
        "journalSize" : 33554432, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "IndexedCollection2", 
        "numberOfShards" : 1, 
        "planId" : "11313", 
        "replicationFactor" : 1, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "62", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_appbundles", 
        "id" : "62", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 2097152, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "_appbundles", 
        "numberOfShards" : 1, 
        "planId" : "62", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ 
        { 
          "id" : "60", 
          "type" : "hash", 
          "fields" : [ 
            "mount" 
          ], 
          "selectivityEstimate" : 1, 
          "unique" : true, 
          "sparse" : false, 
          "deduplicate" : true 
        } 
      ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "57", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_apps", 
        "id" : "57", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          }, 
          { 
            "id" : "60", 
            "type" : "hash", 
            "fields" : [ 
              "mount" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false, 
            "deduplicate" : true 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 2097152, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 75 
        }, 
        "name" : "_apps", 
        "numberOfShards" : 1, 
        "planId" : "57", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "26", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_aqlfunctions", 
        "id" : "26", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 1048576, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "_aqlfunctions", 
        "numberOfShards" : 1, 
        "planId" : "26", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "2", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_graphs", 
        "id" : "2", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 1048576, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "_graphs", 
        "numberOfShards" : 1, 
        "planId" : "2", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "11", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_modules", 
        "id" : "11", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 1048576, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 9765 
        }, 
        "name" : "_modules", 
        "numberOfShards" : 1, 
        "planId" : "11", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ 
        { 
          "id" : "9", 
          "type" : "hash", 
          "fields" : [ 
            "user" 
          ], 
          "selectivityEstimate" : 1, 
          "unique" : true, 
          "sparse" : true, 
          "deduplicate" : true 
        } 
      ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "6", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "_users", 
        "id" : "6", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          }, 
          { 
            "id" : "9", 
            "type" : "hash", 
            "fields" : [ 
              "user" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : true, 
            "deduplicate" : true 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : true, 
        "isVolatile" : false, 
        "journalSize" : 4194304, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 11267 
        }, 
        "name" : "_users", 
        "numberOfShards" : 1, 
        "planId" : "6", 
        "replicationFactor" : 2, 
        "shardKeys" : [ 
          "user" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "98", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "h407686C16EDC/98", 
        "id" : "98", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : false, 
        "isVolatile" : false, 
        "journalSize" : 33554432, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "animals", 
        "numberOfShards" : 1, 
        "planId" : "98", 
        "replicationFactor" : 1, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    }, 
    { 
      "indexes" : [ ], 
      "parameters" : { 
        "allowUserKeys" : true, 
        "cid" : "92", 
        "count" : 0, 
        "deleted" : false, 
        "doCompact" : true, 
        "globallyUniqueId" : "h407686C16EDC/92", 
        "id" : "92", 
        "indexBuckets" : 8, 
        "indexes" : [ 
          { 
            "id" : "0", 
            "type" : "primary", 
            "fields" : [ 
              "_key" 
            ], 
            "selectivityEstimate" : 1, 
            "unique" : true, 
            "sparse" : false 
          } 
        ], 
        "isSmart" : false, 
        "isSystem" : false, 
        "isVolatile" : false, 
        "journalSize" : 33554432, 
        "keyOptions" : { 
          "type" : "traditional", 
          "allowUserKeys" : true, 
          "lastValue" : 0 
        }, 
        "name" : "demo", 
        "numberOfShards" : 1, 
        "planId" : "92", 
        "replicationFactor" : 1, 
        "shardKeys" : [ 
          "_key" 
        ], 
        "shards" : { 
        }, 
        "status" : 3, 
        "type" : 2, 
        "version" : 6, 
        "waitForSync" : false 
      } 
    } 
  ], 
  "state" : { 
    "running" : true, 
    "lastLogTick" : "11309", 
    "lastUncommittedLogTick" : "11321", 
    "totalEvents" : 3846, 
    "time" : "2019-01-17T16:41:36Z" 
  }, 
  "tick" : "11321" 
}





shell> curl --dump - http://localhost:8529/_api/replication/inventory

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






The batch method will create a snapshot of the current state that then can be
dumped. A batchId is required when using the dump api with rocksdb.

Create new dump batch

 handle a dump batch command

POST /_api/replication/batch

Note: These calls are uninteresting to users.

A JSON object with these properties is required:


	ttl: the time-to-live for the new batch (in seconds)
A JSON object with the batch configuration.



Creates a new dump batch and returns the batch's id.

The response is a JSON object with the following attributes:


	id: the id of the batch



Note: on a coordinator, this request must have the query parameter
DBserver which must be an ID of a DBserver.
The very same request is forwarded synchronously to that DBserver.
It is an error if this attribute is not bound in the coordinator case.

Return Codes


	200:
is returned if the batch was created successfully.



	400:
is returned if the ttl value is invalid or if DBserver attribute
is not specified or illegal on a coordinator.



	405:
is returned when an invalid HTTP method is used.





Deletes an existing dump batch

 handle a dump batch command

DELETE /_api/replication/batch/{id}

Note: These calls are uninteresting to users.

Path Parameters


	id (required):
The id of the batch.



Deletes the existing dump batch, allowing compaction and cleanup to resume.

Note: on a coordinator, this request must have the query parameter
DBserver which must be an ID of a DBserver.
The very same request is forwarded synchronously to that DBserver.
It is an error if this attribute is not bound in the coordinator case.

Return Codes


	204:
is returned if the batch was deleted successfully.



	400:
is returned if the batch was not found.



	405:
is returned when an invalid HTTP method is used.





Prolong existing dump batch

 handle a dump batch command

PUT /_api/replication/batch/{id}

Note: These calls are uninteresting to users.

A JSON object with these properties is required:


	ttl: the time-to-live for the new batch (in seconds)



Extends the ttl of an existing dump batch, using the batch's id and
the provided ttl value.

If the batch's ttl can be extended successfully, the response is empty.

Note: on a coordinator, this request must have the query parameter
DBserver which must be an ID of a DBserver.
The very same request is forwarded synchronously to that DBserver.
It is an error if this attribute is not bound in the coordinator case.

Path Parameters


	id (required):
The id of the batch.



Return Codes


	204:
is returned if the batch's ttl was extended successfully.



	400:
is returned if the ttl value is invalid or the batch was not found.



	405:
is returned when an invalid HTTP method is used.
The dump method can be used to fetch data from a specific collection. As the
results of the dump command can be huge, dump may not return all data from a collection
at once. Instead, the dump command may be called repeatedly by replication clients
until there is no more data to fetch. The dump command will not only return the
current documents in the collection, but also document updates and deletions.





Please note that the dump method will only return documents, updates and deletions
from a collection's journals and datafiles. Operations that are stored in the write-ahead
log only will not be returned. In order to ensure that these operations are included
in a dump, the write-ahead log must be flushed first. 

To get to an identical state of data, replication clients should apply the individual
parts of the dump results in the same order as they are provided.


Return data of a collection

 returns the whole content of one collection

GET /_api/replication/dump

Query Parameters


	collection (required):
The name or id of the collection to dump.



	chunkSize (optional): Approximate maximum size of the returned result.



	batchId (required):
rocksdb only - The id of the snapshot to use



	from (optional):
mmfiles only - Lower bound tick value for results.



	to (optional):
mmfiles only - Upper bound tick value for results.



	includeSystem (optional):
mmfiles only - Include system collections in the result. The default value is true.



	ticks (optional):
mmfiles only - Whether or not to include tick values in the dump. The default value is true.



	flush (optional):
mmfiles only - Whether or not to flush the WAL before dumping. The default value is true.





Returns the data from the collection for the requested range.

When the from query parameter is not used, collection events are returned from
the beginning. When the from parameter is used, the result will only contain
collection entries which have higher tick values than the specified from value
(note: the log entry with a tick value equal to from will be excluded).

The to query parameter can be used to optionally restrict the upper bound of
the result to a certain tick value. If used, the result will only contain
collection entries with tick values up to (including) to.

The chunkSize query parameter can be used to control the size of the result.
It must be specified in bytes. The chunkSize value will only be honored
approximately. Otherwise a too low chunkSize value could cause the server
to not be able to put just one entry into the result and return it.
Therefore, the chunkSize value will only be consulted after an entry has
been written into the result. If the result size is then bigger than
chunkSize, the server will respond with as many entries as there are
in the response already. If the result size is still smaller than chunkSize,
the server will try to return more data if there's more data left to return.

If chunkSize is not specified, some server-side default value will be used.

The Content-Type of the result is application/x-arango-dump. This is an
easy-to-process format, with all entries going onto separate lines in the
response body.

Each line itself is a JSON object, with at least the following attributes:


	tick: the operation's tick attribute



	key: the key of the document/edge or the key used in the deletion operation



	rev: the revision id of the document/edge or the deletion operation



	data: the actual document/edge data for types 2300 and 2301. The full
document/edge data will be returned even for updates.



	type: the type of entry. Possible values for type are:


	2300: document insertion/update



	2301: edge insertion/update



	2302: document/edge deletion









Note: there will be no distinction between inserts and updates when calling this method.

Return Codes


	200:
is returned if the request was executed successfully and data was returned. The header
x-arango-replication-lastincluded is set to the tick of the last document returned.



	204:
is returned if the request was executed successfully, but there was no content available.
The header x-arango-replication-lastincluded is 0 in this case.



	400:
is returned if either the from or to values are invalid.



	404:
is returned when the collection could not be found.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples

Empty collection:



shell> curl --dump - http://localhost:8529/_api/replication/dump?collection=testCollection

HTTP/1.1 204 No Content
x-content-type-options: nosniff
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: false
x-arango-replication-lastincluded: 0








Non-empty collection:



shell> curl --dump - http://localhost:8529/_api/replication/dump?collection=testCollection

HTTP/1.1 200 OK
x-content-type-options: nosniff
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: false
x-arango-replication-lastincluded: 11289

"{\"tick\":\"11283\",\"type\":2300,\"data\":{\"_id\":\"testCollection/123456\",\"_key\":\"123456\",\"_rev\":\"_YDwubUC--_\",\"b\":1,\"c\":false,\"d\":\"additional value\"}}\n{\"tick\":\"11287\",\"type\":2302,\"data\":{\"_key\":\"foobar\",\"_rev\":\"_YDwubUC--D\"}}\n{\"tick\":\"11289\",\"type\":2302,\"data\":{\"_key\":\"abcdef\",\"_rev\":\"_YDwubUC--F\"}}\n"








Synchronize data from a remote endpoint

 start a replication

PUT /_api/replication/sync

A JSON object with these properties is required:


	username: an optional ArangoDB username to use when connecting to the endpoint.

	includeSystem: whether or not system collection operations will be applied

	endpoint: the master endpoint to connect to (e.g. "tcp://192.168.173.13:8529").

	initialSyncMaxWaitTime: the maximum wait time (in seconds) that the initial synchronization will
wait for a response from the master when fetching initial collection data.
This wait time can be used to control after what time the initial synchronization
will give up waiting for a response and fail.
This value will be ignored if set to 0.

	database: the database name on the master (if not specified, defaults to the
name of the local current database).

	restrictType: an optional string value for collection filtering. When
specified, the allowed values are include or exclude.

	incremental: if set to true, then an incremental synchronization method will be used
for synchronizing data in collections. This method is useful when
collections already exist locally, and only the remaining differences need
to be transferred from the remote endpoint. In this case, the incremental
synchronization can be faster than a full synchronization.
The default value is false, meaning that the complete data from the remote
collection will be transferred.

	restrictCollections (string): an optional array of collections for use with
restrictType. If restrictType is include, only the specified collections
will be sychronised. If restrictType is exclude, all but the specified
collections will be synchronized.

	password: the password to use when connecting to the endpoint.



Starts a full data synchronization from a remote endpoint into the local
ArangoDB database.

The sync method can be used by replication clients to connect an ArangoDB database
to a remote endpoint, fetch the remote list of collections and indexes, and collection
data. It will thus create a local backup of the state of data at the remote ArangoDB
database. sync works on a per-database level.

sync will first fetch the list of collections and indexes from the remote endpoint.
It does so by calling the inventory API of the remote database. It will then purge
data in the local ArangoDB database, and after start will transfer collection data
from the remote database to the local ArangoDB database. It will extract data from the
remote database by calling the remote database's dump API until all data are fetched.

In case of success, the body of the response is a JSON object with the following
attributes:


	collections: an array of collections that were transferred from the endpoint



	lastLogTick: the last log tick on the endpoint at the time the transfer
was started. Use this value as the from value when starting the continuous
synchronization later.





WARNING: calling this method will sychronize data from the collections found
on the remote endpoint to the local ArangoDB database. All data in the local
collections will be purged and replaced with data from the endpoint.

Use with caution!

Note: this method is not supported on a coordinator in a cluster.

Return Codes


	200:
is returned if the request was executed successfully.



	400:
is returned if the configuration is incomplete or malformed.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred during sychronization.



	501:
is returned when this operation is called on a coordinator in a cluster.






Return cluster inventory of collections and indexes

 returs an overview of collections and indexes in a cluster

GET /_api/replication/clusterInventory

Query Parameters


	includeSystem (optional):
Include system collections in the result. The default value is true.



Returns the array of collections and indexes available on the cluster.

The response will be an array of JSON objects, one for each collection.
Each collection containscontains exactly two keys "parameters" and
"indexes". This
information comes from Plan/Collections/{DB-Name}/ in the agency,
just that the indexes* attribute there is relocated to adjust it to
the data format of arangodump.

Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.






        

    



        
    



        

    
        Replication Logger

        
            Replication Logger Commands

Previous versions of ArangoDB allowed starting, stopping and configuring the
replication logger. These commands are superfluous in ArangoDB 2.2 as all
data-modification operations are written to the server's write-ahead log and are
not handled by a separate logger anymore.

The only useful operations remaining since ArangoDB 2.2 are to query the current state
of the logger and to fetch the latest changes written by the logger. The operations
will return the state and data from the write-ahead log.


Return replication logger state

 returns the state of the replication logger

GET /_api/replication/logger-state

Returns the current state of the server's replication logger. The state will
include information about whether the logger is running and about the last
logged tick value. This tick value is important for incremental fetching of
data.

The body of the response contains a JSON object with the following
attributes:


	state: the current logger state as a JSON object with the following
sub-attributes:


	running: whether or not the logger is running



	lastLogTick: the tick value of the latest tick the logger has logged.
This value can be used for incremental fetching of log data.



	totalEvents: total number of events logged since the server was started.
The value is not reset between multiple stops and re-starts of the logger.



	time: the current date and time on the logger server







	server: a JSON object with the following sub-attributes:


	version: the logger server's version



	serverId: the logger server's id







	clients: returns the last fetch status by replication clients connected to
the logger. Each client is returned as a JSON object with the following attributes:


	serverId: server id of client



	lastServedTick: last tick value served to this client via the logger-follow API



	time: date and time when this client last called the logger-follow API



	expires: date and time when this client would expire without an established connection









Return Codes


	200:
is returned if the logger state could be determined successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if the logger state could not be determined.





Examples

Returns the state of the replication logger.



shell> curl --dump - http://localhost:8529/_api/replication/logger-state

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "state" : { 
    "running" : true, 
    "lastLogTick" : "11349", 
    "lastUncommittedLogTick" : "11349", 
    "totalEvents" : 3860, 
    "time" : "2019-01-17T16:41:38Z" 
  }, 
  "server" : { 
    "version" : "3.3.22", 
    "serverId" : "70877811142364" 
  }, 
  "clients" : [ ] 
}





shell> curl --dump - http://localhost:8529/_api/replication/logger-state

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






To query the latest changes logged by the replication logger, the HTTP interface
also provides the logger-follow method.

This method should be used by replication clients to incrementally fetch updates 
from an ArangoDB database.


Returns log entries

 Fetch log lines from the server

GET /_api/replication/logger-follow

Query Parameters


	from (optional):
Lower bound tick value for results.



	to (optional):
Upper bound tick value for results.



	chunkSize (optional):
Approximate maximum size of the returned result.



	includeSystem (optional):
Include system collections in the result. The default value is true.





Returns data from the server's replication log. This method can be called
by replication clients after an initial synchronization of data. The method
will return all "recent" log entries from the logger server, and the clients
can replay and apply these entries locally so they get to the same data
state as the logger server.

Clients can call this method repeatedly to incrementally fetch all changes
from the logger server. In this case, they should provide the from value so
they will only get returned the log events since their last fetch.

When the from query parameter is not used, the logger server will return log
entries starting at the beginning of its replication log. When the from
parameter is used, the logger server will only return log entries which have
higher tick values than the specified from value (note: the log entry with a
tick value equal to from will be excluded). Use the from value when
incrementally fetching log data.

The to query parameter can be used to optionally restrict the upper bound of
the result to a certain tick value. If used, the result will contain only log events
with tick values up to (including) to. In incremental fetching, there is no
need to use the to parameter. It only makes sense in special situations,
when only parts of the change log are required.

The chunkSize query parameter can be used to control the size of the result.
It must be specified in bytes. The chunkSize value will only be honored
approximately. Otherwise a too low chunkSize value could cause the server
to not be able to put just one log entry into the result and return it.
Therefore, the chunkSize value will only be consulted after a log entry has
been written into the result. If the result size is then bigger than
chunkSize, the server will respond with as many log entries as there are
in the response already. If the result size is still smaller than chunkSize,
the server will try to return more data if there's more data left to return.

If chunkSize is not specified, some server-side default value will be used.

The Content-Type of the result is application/x-arango-dump. This is an
easy-to-process format, with all log events going onto separate lines in the
response body. Each log event itself is a JSON object, with at least the
following attributes:


	tick: the log event tick value



	type: the log event type





Individual log events will also have additional attributes, depending on the
event type. A few common attributes which are used for multiple events types
are:


	cid: id of the collection the event was for



	tid: id of the transaction the event was contained in



	key: document key



	rev: document revision id



	data: the original document data





A more detailed description of the individual replication event types and their
data structures can be found in the manual.

The response will also contain the following HTTP headers:


	x-arango-replication-active: whether or not the logger is active. Clients
can use this flag as an indication for their polling frequency. If the
logger is not active and there are no more replication events available, it
might be sensible for a client to abort, or to go to sleep for a long time
and try again later to check whether the logger has been activated.



	x-arango-replication-lastincluded: the tick value of the last included
value in the result. In incremental log fetching, this value can be used
as the from value for the following request. Note that if the result is
empty, the value will be 0. This value should not be used as from value
by clients in the next request (otherwise the server would return the log
events from the start of the log again).



	x-arango-replication-lasttick: the last tick value the logger server has
logged (not necessarily included in the result). By comparing the the last
tick and last included tick values, clients have an approximate indication of
how many events there are still left to fetch.



	x-arango-replication-checkmore: whether or not there already exists more
log data which the client could fetch immediately. If there is more log data
available, the client could call logger-follow again with an adjusted from
value to fetch remaining log entries until there are no more.

If there isn't any more log data to fetch, the client might decide to go
to sleep for a while before calling the logger again.





Note: this method is not supported on a coordinator in a cluster.

Return Codes


	200:
is returned if the request was executed successfully, and there are log
events available for the requested range. The response body will not be empty
in this case.



	204:
is returned if the request was executed successfully, but there are no log
events available for the requested range. The response body will be empty
in this case.



	400:
is returned if either the from or to values are invalid.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.



	501:
is returned when this operation is called on a coordinator in a cluster.





Examples

No log events available



shell> curl --dump - http://localhost:8529/_api/replication/logger-follow?from=11336

HTTP/1.1 204 No Content
x-arango-replication-frompresent: true
x-arango-replication-lastscanned: 11336
x-content-type-options: nosniff
x-arango-replication-lastincluded: 0
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: false
x-arango-replication-lasttick: 11336
x-arango-replication-active: true








A few log events



shell> curl --dump - http://localhost:8529/_api/replication/logger-follow?from=11336

HTTP/1.1 200 OK
x-arango-replication-frompresent: true
x-arango-replication-lastscanned: 11349
x-content-type-options: nosniff
x-arango-replication-lastincluded: 11349
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: false
x-arango-replication-lasttick: 11349
x-arango-replication-active: true

"{\"tick\":\"11338\",\"type\":2000,\"database\":\"1\",\"cid\":\"11337\",\"cname\":\"products\",\"data\":{\"allowUserKeys\":true,\"cid\":\"11337\",\"count\":0,\"deleted\":false,\"doCompact\":true,\"globallyUniqueId\":\"h407686C16EDC/11337\",\"id\":\"11337\",\"indexBuckets\":8,\"indexes\":[{\"fields\":[\"_key\"],\"id\":\"0\",\"selectivityEstimate\":1,\"sparse\":false,\"type\":\"primary\",\"unique\":true}],\"isSmart\":false,\"isSystem\":false,\"isVolatile\":false,\"journalSize\":33554432,\"keyOptions\":{\"allowUserKeys\":true,\"lastValue\":0,\"type\":\"traditional\"},\"name\":\"products\",\"numberOfShards\":1,\"planId\":\"11337\",\"replicationFactor\":1,\"shardKeys\":[\"_key\"],\"shards\":{},\"status\":3,\"type\":2,\"version\":6,\"waitForSync\":false}}\n{\"tick\":\"11342\",\"type\":2300,\"tid\":\"0\",\"database\":\"1\",\"cid\":\"11337\",\"cname\":\"products\",\"data\":{\"_id\":\"_unknown/p1\",\"_key\":\"p1\",\"_rev\":\"_YDwud96--_\",\"name\":\"flux compensator\"}}\n{\"tick\":\"11344\",\"type\":2300,\"tid\":\"0\",\"database\":\"1\",\"cid\":\"11337\",\"cname\":\"products\",\"data\":{\"_id\":\"_unknown/p2\",\"_key\":\"p2\",\"_rev\":\"_YDwud96--B\",\"hp\":5100,\"name\":\"hybrid hovercraft\"}}\n{\"tick\":\"11346\",\"type\":2302,\"tid\":\"0\",\"database\":\"1\",\"cid\":\"11337\",\"cname\":\"products\",\"data\":{\"_key\":\"p1\",\"_rev\":\"_YDwud96--D\"}}\n{\"tick\":\"11348\",\"type\":2300,\"tid\":\"0\",\"database\":\"1\",\"cid\":\"11337\",\"cname\":\"products\",\"data\":{\"_id\":\"_unknown/p2\",\"_key\":\"p2\",\"_rev\":\"_YDwue----_\",\"hp\":5100,\"name\":\"broken hovercraft\"}}\n{\"tick\":\"11349\",\"type\":2001,\"database\":\"1\",\"cid\":\"11337\",\"cname\":\"products\",\"data\":{\"cuid\":\"h407686C16EDC/11337\",\"id\":\"11337\",\"name\":\"products\"}}\n"







More events than would fit into the response



shell> curl --dump - http://localhost:8529/_api/replication/logger-follow?from=11323&chunkSize=400

HTTP/1.1 200 OK
x-arango-replication-frompresent: true
x-arango-replication-lastscanned: 11325
x-content-type-options: nosniff
x-arango-replication-lastincluded: 11325
content-type: application/x-arango-dump; charset=utf-8
x-arango-replication-checkmore: true
x-arango-replication-lasttick: 11336
x-arango-replication-active: true

"{\"tick\":\"11325\",\"type\":2000,\"database\":\"1\",\"cid\":\"11324\",\"cname\":\"products\",\"data\":{\"allowUserKeys\":true,\"cid\":\"11324\",\"count\":0,\"deleted\":false,\"doCompact\":true,\"globallyUniqueId\":\"h407686C16EDC/11324\",\"id\":\"11324\",\"indexBuckets\":8,\"indexes\":[{\"fields\":[\"_key\"],\"id\":\"0\",\"selectivityEstimate\":1,\"sparse\":false,\"type\":\"primary\",\"unique\":true}],\"isSmart\":false,\"isSystem\":false,\"isVolatile\":false,\"journalSize\":33554432,\"keyOptions\":{\"allowUserKeys\":true,\"lastValue\":0,\"type\":\"traditional\"},\"name\":\"products\",\"numberOfShards\":1,\"planId\":\"11324\",\"replicationFactor\":1,\"shardKeys\":[\"_key\"],\"shards\":{},\"status\":3,\"type\":2,\"version\":6,\"waitForSync\":false}}\n"







To check what range of changes is available (identified by tick values), the HTTP
interface provides the methods logger-first-tick and logger-tick-ranges.
Replication clients can use the methods to determine if certain data (identified
by a tick date) is still available on the master.

Returns the first available tick value

 Return the first available tick value from the server

GET /_api/replication/logger-first-tick

Returns the first available tick value that can be served from the server's
replication log. This method can be called by replication clients after to
determine if certain data (identified by a tick value) is still available
for replication.

The result is a JSON object containing the attribute firstTick. This
attribute contains the minimum tick value available in the server's
replication
log.

Note: this method is not supported on a coordinator in a cluster.

Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.



	501:
is returned when this operation is called on a coordinator in a cluster.





Examples

Returning the first available tick



shell> curl --dump - http://localhost:8529/_api/replication/logger-first-tick

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

"{\"firstTick\":\"5\"}"








Return the tick ranges available in the WAL logfiles

 returns the tick value ranges available in the logfiles

GET /_api/replication/logger-tick-ranges

Returns the currently available ranges of tick values for all currently
available WAL logfiles. The tick values can be used to determine if certain
data (identified by tick value) are still available for replication.

The body of the response contains a JSON array. Each array member is an
object
that describes a single logfile. Each object has the following attributes:


	datafile: name of the logfile



	status: status of the datafile, in textual form (e.g. "sealed", "open")



	tickMin: minimum tick value contained in logfile



	tickMax: maximum tick value contained in logfile





Return Codes


	200:
is returned if the tick ranges could be determined successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if the logger state could not be determined.



	501:
is returned when this operation is called on a coordinator in a cluster.





Examples

Returns the available tick ranges.



shell> curl --dump - http://localhost:8529/_api/replication/logger-tick-ranges

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  { 
    "datafile" : "/tmp/arangosh_EcFtnK/tmp-21913-10480753/data/journals/logfile-3.db", 
    "status" : "collected", 
    "tickMin" : "5", 
    "tickMax" : "10216" 
  }, 
  { 
    "datafile" : "/tmp/arangosh_EcFtnK/tmp-21913-10480753/data/journals/logfile-37.db", 
    "status" : "collected", 
    "tickMin" : "10222", 
    "tickMax" : "10286" 
  }, 
  { 
    "datafile" : "/tmp/arangosh_EcFtnK/tmp-21913-10480753/data/journals/logfile-56.db", 
    "status" : "collected", 
    "tickMin" : "10292", 
    "tickMax" : "11289" 
  }, 
  { 
    "datafile" : "/tmp/arangosh_EcFtnK/tmp-21913-10480753/data/journals/logfile-10219.db", 
    "status" : "collected", 
    "tickMin" : "11296", 
    "tickMax" : "11298" 
  }, 
  { 
    "datafile" : "/tmp/arangosh_EcFtnK/tmp-21913-10480753/data/journals/logfile-10289.db", 
    "status" : "open", 
    "tickMin" : "11303", 
    "tickMax" : "11349" 
  } 
]








        

    



        
    



        

    
        Replication Applier

        
            Replication Applier Commands

The applier commands allow to remotely start, stop, and query the state and 
configuration of an ArangoDB database's replication applier.


Return configuration of replication applier

 fetch the current replication configuration

GET /_api/replication/applier-config

Returns the configuration of the replication applier.

The body of the response is a JSON object with the configuration. The
following attributes may be present in the configuration:


	endpoint: the logger server to connect to (e.g. "tcp://192.168.173.13:8529").



	database: the name of the database to connect to (e.g. "_system").



	username: an optional ArangoDB username to use when connecting to the endpoint.



	password: the password to use when connecting to the endpoint.



	maxConnectRetries: the maximum number of connection attempts the applier
will make in a row. If the applier cannot establish a connection to the
endpoint in this number of attempts, it will stop itself.



	connectTimeout: the timeout (in seconds) when attempting to connect to the
endpoint. This value is used for each connection attempt.



	requestTimeout: the timeout (in seconds) for individual requests to the endpoint.



	chunkSize: the requested maximum size for log transfer packets that
is used when the endpoint is contacted.



	autoStart: whether or not to auto-start the replication applier on
(next and following) server starts



	adaptivePolling: whether or not the replication applier will use
adaptive polling.



	includeSystem: whether or not system collection operations will be applied



	autoResync: whether or not the slave should perform a full automatic
resynchronization with the master in case the master cannot serve log data
requested by the slave, or when the replication is started and no tick
value
can be found.



	autoResyncRetries: number of resynchronization retries that will be performed
in a row when automatic resynchronization is enabled and kicks in. Setting this
to 0 will effectively disable autoResync. Setting it to some other value
will limit the number of retries that are performed. This helps preventing endless
retries in case resynchronizations always fail.



	initialSyncMaxWaitTime: the maximum wait time (in seconds) that the initial
synchronization will wait for a response from the master when fetching initial
collection data.
This wait time can be used to control after what time the initial synchronization
will give up waiting for a response and fail. This value is relevant even
for continuous replication when autoResync is set to true because this
may re-start the initial synchronization when the master cannot provide
log data the slave requires.
This value will be ignored if set to 0.



	connectionRetryWaitTime: the time (in seconds) that the applier will
intentionally idle before it retries connecting to the master in case of
connection problems.
This value will be ignored if set to 0.



	idleMinWaitTime: the minimum wait time (in seconds) that the applier will
intentionally idle before fetching more log data from the master in case
the master has already sent all its log data. This wait time can be used
to control the frequency with which the replication applier sends HTTP log
fetch requests to the master in case there is no write activity on the master.
This value will be ignored if set to 0.



	idleMaxWaitTime: the maximum wait time (in seconds) that the applier will
intentionally idle before fetching more log data from the master in case the
master has already sent all its log data and there have been previous log
fetch attempts that resulted in no more log data. This wait time can be used
to control the maximum frequency with which the replication applier sends HTTP
log fetch requests to the master in case there is no write activity on the
master for longer periods. This configuration value will only be used if the
option adaptivePolling is set to true.
This value will be ignored if set to 0.



	requireFromPresent: if set to true, then the replication applier will check
at start whether the start tick from which it starts or resumes replication is
still present on the master. If not, then there would be data loss. If
requireFromPresent is true, the replication applier will abort with an
appropriate error message. If set to false, then the replication applier will
still start, and ignore the data loss.



	verbose: if set to true, then a log line will be emitted for all operations
performed by the replication applier. This should be used for debugging
replication
problems only.



	restrictType: the configuration for restrictCollections



	restrictCollections: the optional array of collections to include or exclude,
based on the setting of restrictType





Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples



shell> curl --dump - http://localhost:8529/_api/replication/applier-config

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "requestTimeout" : 600, 
  "connectTimeout" : 10, 
  "ignoreErrors" : 0, 
  "maxConnectRetries" : 100, 
  "lockTimeoutRetries" : 0, 
  "sslProtocol" : 0, 
  "chunkSize" : 0, 
  "skipCreateDrop" : false, 
  "autoStart" : false, 
  "adaptivePolling" : true, 
  "autoResync" : false, 
  "autoResyncRetries" : 2, 
  "includeSystem" : true, 
  "requireFromPresent" : false, 
  "verbose" : false, 
  "incremental" : false, 
  "restrictType" : "", 
  "restrictCollections" : [ ], 
  "connectionRetryWaitTime" : 15, 
  "initialSyncMaxWaitTime" : 300, 
  "idleMinWaitTime" : 1, 
  "idleMaxWaitTime" : 2.5, 
  "force32mode" : false 
}





shell> curl --dump - http://localhost:8529/_api/replication/applier-config

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Adjust configuration of replication applier

 set configuration values of an applier

PUT /_api/replication/applier-config

A JSON object with these properties is required:


	username: an optional ArangoDB username to use when connecting to the endpoint.

	includeSystem: whether or not system collection operations will be applied

	endpoint: the logger server to connect to (e.g. "tcp://192.168.173.13:8529"). The endpoint must be specified.

	verbose: if set to true, then a log line will be emitted for all operations 
performed by the replication applier. This should be used for debugging replication
problems only.

	connectTimeout: the timeout (in seconds) when attempting to connect to the
endpoint. This value is used for each connection attempt.

	autoResync: whether or not the slave should perform a full automatic resynchronization
with the master in case the master cannot serve log data requested by the
slave,
or when the replication is started and no tick value can be found.

	database: the name of the database on the endpoint. If not specified, defaults to the current local database name.

	idleMinWaitTime: the minimum wait time (in seconds) that the applier will intentionally idle
before fetching more log data from the master in case the master has
already sent all its log data. This wait time can be used to control the
frequency with which the replication applier sends HTTP log fetch requests
to the master in case there is no write activity on the master.
This value will be ignored if set to 0.

	requestTimeout: the timeout (in seconds) for individual requests to the endpoint.

	requireFromPresent: if set to true, then the replication applier will check
at start whether the start tick from which it starts or resumes replication is
still present on the master. If not, then there would be data loss. If 
requireFromPresent is true, the replication applier will abort with an
appropriate error message. If set to false, then the replication applier will
still start, and ignore the data loss.

	idleMaxWaitTime: the maximum wait time (in seconds) that the applier will intentionally idle 
before fetching more log data from the master in case the master has 
already sent all its log data and there have been previous log fetch attempts
that resulted in no more log data. This wait time can be used to control the
maximum frequency with which the replication applier sends HTTP log fetch
requests to the master in case there is no write activity on the master for
longer periods. This configuration value will only be used if the option
adaptivePolling is set to true.
This value will be ignored if set to 0.

	restrictCollections (string): the array of collections to include or exclude,
based on the setting of restrictType

	restrictType: the configuration for restrictCollections; Has to be either include or exclude

	initialSyncMaxWaitTime: the maximum wait time (in seconds) that the initial synchronization will
wait for a response from the master when fetching initial collection data.
This wait time can be used to control after what time the initial
synchronization
will give up waiting for a response and fail. This value is relevant even
for continuous replication when autoResync is set to true because this
may re-start the initial synchronization when the master cannot provide
log data the slave requires.
This value will be ignored if set to 0.

	maxConnectRetries: the maximum number of connection attempts the applier
will make in a row. If the applier cannot establish a connection to the
endpoint in this number of attempts, it will stop itself.

	autoStart: whether or not to auto-start the replication applier on
(next and following) server starts

	adaptivePolling: if set to true, the replication applier will fall
to sleep for an increasingly long period in case the logger server at the
endpoint does not have any more replication events to apply. Using
adaptive polling is thus useful to reduce the amount of work for both the
applier and the logger server for cases when there are only infrequent
changes. The downside is that when using adaptive polling, it might take
longer for the replication applier to detect that there are new replication
events on the logger server.
Setting adaptivePolling to false will make the replication applier
contact the logger server in a constant interval, regardless of whether
the logger server provides updates frequently or seldom.

	password: the password to use when connecting to the endpoint.

	connectionRetryWaitTime: the time (in seconds) that the applier will intentionally idle before
it retries connecting to the master in case of connection problems.
This value will be ignored if set to 0.

	autoResyncRetries: number of resynchronization retries that will be performed in a row when
automatic resynchronization is enabled and kicks in. Setting this to 0
will
effectively disable autoResync. Setting it to some other value will limit
the number of retries that are performed. This helps preventing endless
retries
in case resynchronizations always fail.

	chunkSize: the requested maximum size for log transfer packets that
is used when the endpoint is contacted.



Sets the configuration of the replication applier. The configuration can
only be changed while the applier is not running. The updated configuration
will be saved immediately but only become active with the next start of the
applier.

In case of success, the body of the response is a JSON object with the updated
configuration.

Return Codes


	200:
is returned if the request was executed successfully.



	400:
is returned if the configuration is incomplete or malformed, or if the
replication applier is currently running.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/replication/applier-config <<EOF
{ 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "username" : "replicationApplier", 
  "password" : "applier1234@foxx", 
  "chunkSize" : 4194304, 
  "autoStart" : false, 
  "adaptivePolling" : true 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "database" : "_system", 
  "username" : "replicationApplier", 
  "requestTimeout" : 600, 
  "connectTimeout" : 10, 
  "ignoreErrors" : 0, 
  "maxConnectRetries" : 100, 
  "lockTimeoutRetries" : 0, 
  "sslProtocol" : 0, 
  "chunkSize" : 4194304, 
  "skipCreateDrop" : false, 
  "autoStart" : false, 
  "adaptivePolling" : true, 
  "autoResync" : false, 
  "autoResyncRetries" : 2, 
  "includeSystem" : true, 
  "requireFromPresent" : false, 
  "verbose" : false, 
  "incremental" : false, 
  "restrictType" : "", 
  "restrictCollections" : [ ], 
  "connectionRetryWaitTime" : 15, 
  "initialSyncMaxWaitTime" : 300, 
  "idleMinWaitTime" : 1, 
  "idleMaxWaitTime" : 2.5, 
  "force32mode" : false 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/replication/applier-config <<EOF
{ 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "username" : "replicationApplier", 
  "password" : "applier1234@foxx", 
  "chunkSize" : 4194304, 
  "autoStart" : false, 
  "adaptivePolling" : true 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Start replication applier

 start the replication applier

PUT /_api/replication/applier-start

Query Parameters


	from (optional):
The remote lastLogTick value from which to start applying. If not specified,
the last saved tick from the previous applier run is used. If there is no
previous applier state saved, the applier will start at the beginning of the
logger server's log.



Starts the replication applier. This will return immediately if the
replication applier is already running.

If the replication applier is not already running, the applier configuration
will be checked, and if it is complete, the applier will be started in a
background thread. This means that even if the applier will encounter any
errors while running, they will not be reported in the response to this
method.

To detect replication applier errors after the applier was started, use the
/_api/replication/applier-state API instead.

Return Codes


	200:
is returned if the request was executed successfully.



	400:
is returned if the replication applier is not fully configured or the
configuration is invalid.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples



shell> curl -X PUT --dump - http://localhost:8529/_api/replication/applier-start

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "state" : { 
    "running" : true, 
    "phase" : "running", 
    "lastAppliedContinuousTick" : null, 
    "lastProcessedContinuousTick" : null, 
    "lastAvailableContinuousTick" : null, 
    "safeResumeTick" : null, 
    "progress" : { 
      "time" : "2019-01-17T16:41:20Z", 
      "message" : "applier initially created for database '_system'", 
      "failedConnects" : 0 
    }, 
    "totalRequests" : 0, 
    "totalFailedConnects" : 0, 
    "totalEvents" : 0, 
    "totalResyncs" : 0, 
    "totalOperationsExcluded" : 0, 
    "lastError" : { 
      "errorNum" : 0 
    }, 
    "time" : "2019-01-17T16:41:33Z" 
  }, 
  "server" : { 
    "version" : "3.3.22", 
    "serverId" : "70877811142364" 
  }, 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "database" : "_system" 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/replication/applier-start

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Stop replication applier

 stop the replication

PUT /_api/replication/applier-stop

Stops the replication applier. This will return immediately if the
replication applier is not running.

Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples



shell> curl -X PUT --dump - http://localhost:8529/_api/replication/applier-stop

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "state" : { 
    "running" : false, 
    "phase" : "inactive", 
    "lastAppliedContinuousTick" : null, 
    "lastProcessedContinuousTick" : null, 
    "lastAvailableContinuousTick" : null, 
    "safeResumeTick" : null, 
    "progress" : { 
      "time" : "2019-01-17T16:41:34Z", 
      "message" : "applier shut down", 
      "failedConnects" : 0 
    }, 
    "totalRequests" : 6, 
    "totalFailedConnects" : 3, 
    "totalEvents" : 0, 
    "totalResyncs" : 0, 
    "totalOperationsExcluded" : 0, 
    "lastError" : { 
      "errorNum" : 0 
    }, 
    "time" : "2019-01-17T16:41:34Z" 
  }, 
  "server" : { 
    "version" : "3.3.22", 
    "serverId" : "70877811142364" 
  }, 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "database" : "_system" 
}





shell> curl -X PUT --dump - http://localhost:8529/_api/replication/applier-stop

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







State of the replication applier

 output the current status of the replication

GET /_api/replication/applier-state

Returns the state of the replication applier, regardless of whether the
applier is currently running or not.

The response is a JSON object with the following attributes:


	state: a JSON object with the following sub-attributes:


	running: whether or not the applier is active and running



	lastAppliedContinuousTick: the last tick value from the continuous
replication log the applier has applied.



	lastProcessedContinuousTick: the last tick value from the continuous
replication log the applier has processed.

Regularly, the last applied and last processed tick values should be
identical. For transactional operations, the replication applier will first
process incoming log events before applying them, so the processed tick
value might be higher than the applied tick value. This will be the case
until the applier encounters the transaction commit log event for the
transaction.



	lastAvailableContinuousTick: the last tick value the logger server can
provide.



	time: the time on the applier server.



	totalRequests: the total number of requests the applier has made to the
endpoint.



	totalFailedConnects: the total number of failed connection attempts the
applier has made.



	totalEvents: the total number of log events the applier has processed.



	totalOperationsExcluded: the total number of log events excluded because
of restrictCollections.



	progress: a JSON object with details about the replication applier progress.
It contains the following sub-attributes if there is progress to report:


	message: a textual description of the progress



	time: the date and time the progress was logged



	failedConnects: the current number of failed connection attempts







	lastError: a JSON object with details about the last error that happened on
the applier. It contains the following sub-attributes if there was an error:


	errorNum: a numerical error code



	errorMessage: a textual error description



	time: the date and time the error occurred





In case no error has occurred, lastError will be empty.







	server: a JSON object with the following sub-attributes:


	version: the applier server's version



	serverId: the applier server's id







	endpoint: the endpoint the applier is connected to (if applier is
active) or will connect to (if applier is currently inactive)



	database: the name of the database the applier is connected to (if applier is
active) or will connect to (if applier is currently inactive)





Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples

Fetching the state of an inactive applier:



shell> curl --dump - http://localhost:8529/_api/replication/applier-state

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "state" : { 
    "running" : false, 
    "phase" : "inactive", 
    "lastAppliedContinuousTick" : null, 
    "lastProcessedContinuousTick" : null, 
    "lastAvailableContinuousTick" : null, 
    "safeResumeTick" : null, 
    "progress" : { 
      "time" : "2019-01-17T16:41:33Z", 
      "message" : "applier shut down", 
      "failedConnects" : 1 
    }, 
    "totalRequests" : 2, 
    "totalFailedConnects" : 1, 
    "totalEvents" : 0, 
    "totalResyncs" : 0, 
    "totalOperationsExcluded" : 0, 
    "lastError" : { 
      "errorNum" : 0 
    }, 
    "time" : "2019-01-17T16:41:33Z" 
  }, 
  "server" : { 
    "version" : "3.3.22", 
    "serverId" : "70877811142364" 
  }, 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "database" : "_system" 
}





shell> curl --dump - http://localhost:8529/_api/replication/applier-state

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Fetching the state of an active applier:



shell> curl --dump - http://localhost:8529/_api/replication/applier-state

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "state" : { 
    "running" : true, 
    "phase" : "running", 
    "lastAppliedContinuousTick" : null, 
    "lastProcessedContinuousTick" : null, 
    "lastAvailableContinuousTick" : null, 
    "safeResumeTick" : null, 
    "progress" : { 
      "time" : "2019-01-17T16:41:33Z", 
      "message" : "fetching master state information", 
      "failedConnects" : 0 
    }, 
    "totalRequests" : 2, 
    "totalFailedConnects" : 1, 
    "totalEvents" : 0, 
    "totalResyncs" : 0, 
    "totalOperationsExcluded" : 0, 
    "lastError" : { 
      "errorNum" : 0 
    }, 
    "time" : "2019-01-17T16:41:33Z" 
  }, 
  "server" : { 
    "version" : "3.3.22", 
    "serverId" : "70877811142364" 
  }, 
  "endpoint" : "tcp://127.0.0.1:8529", 
  "database" : "_system" 
}





shell> curl --dump - http://localhost:8529/_api/replication/applier-state

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Turn the server into a slave of another

 Changes role to slave

PUT /_api/replication/make-slave

A JSON object with these properties is required:


	username: an optional ArangoDB username to use when connecting to the master.

	includeSystem: whether or not system collection operations will be applied

	endpoint: the master endpoint to connect to (e.g. "tcp://192.168.173.13:8529").

	verbose: if set to true, then a log line will be emitted for all operations
performed by the replication applier. This should be used for debugging
replication
problems only.

	connectTimeout: the timeout (in seconds) when attempting to connect to the
endpoint. This value is used for each connection attempt.

	autoResync: whether or not the slave should perform an automatic resynchronization with
the master in case the master cannot serve log data requested by the slave,
or when the replication is started and no tick value can be found.

	database: the database name on the master (if not specified, defaults to the
name of the local current database).

	idleMinWaitTime: the minimum wait time (in seconds) that the applier will intentionally idle
before fetching more log data from the master in case the master has
already sent all its log data. This wait time can be used to control the
frequency with which the replication applier sends HTTP log fetch requests
to the master in case there is no write activity on the master.
This value will be ignored if set to 0.

	requestTimeout: the timeout (in seconds) for individual requests to the endpoint.

	restrictType: an optional string value for collection filtering. When
specified, the allowed values are include or exclude.

	idleMaxWaitTime: the maximum wait time (in seconds) that the applier will intentionally idle
before fetching more log data from the master in case the master has
already sent all its log data and there have been previous log fetch attempts
that resulted in no more log data. This wait time can be used to control the
maximum frequency with which the replication applier sends HTTP log fetch
requests to the master in case there is no write activity on the master for
longer periods. This configuration value will only be used if the option
adaptivePolling is set to true.
This value will be ignored if set to 0.

	initialSyncMaxWaitTime: the maximum wait time (in seconds) that the initial synchronization will
wait for a response from the master when fetching initial collection data.
This wait time can be used to control after what time the initial synchronization
will give up waiting for a response and fail. This value is relevant even
for continuous replication when autoResync is set to true because this
may re-start the initial synchronization when the master cannot provide
log data the slave requires.
This value will be ignored if set to 0.

	restrictCollections (string): an optional array of collections for use with restrictType.
If restrictType is include, only the specified collections
will be sychronised. If restrictType is exclude, all but the specified
collections will be synchronized.

	requireFromPresent: if set to true, then the replication applier will check
at start of its continuous replication if the start tick from the dump phase
is still present on the master. If not, then there would be data loss. If
requireFromPresent is true, the replication applier will abort with an
appropriate error message. If set to false, then the replication applier will
still start, and ignore the data loss.

	adaptivePolling: whether or not the replication applier will use adaptive polling.

	maxConnectRetries: the maximum number of connection attempts the applier
will make in a row. If the applier cannot establish a connection to the
endpoint in this number of attempts, it will stop itself.

	password: the password to use when connecting to the master.

	connectionRetryWaitTime: the time (in seconds) that the applier will intentionally idle before
it retries connecting to the master in case of connection problems.
This value will be ignored if set to 0.

	autoResyncRetries: number of resynchronization retries that will be performed in a row when
automatic resynchronization is enabled and kicks in. Setting this to 0 will
effectively disable autoResync. Setting it to some other value will limit
the number of retries that are performed. This helps preventing endless retries
in case resynchronizations always fail.

	chunkSize: the requested maximum size for log transfer packets that
is used when the endpoint is contacted.



Starts a full data synchronization from a remote endpoint into the local ArangoDB
database and afterwards starts the continuous replication.
The operation works on a per-database level.

All local database data will be removed prior to the synchronization.

In case of success, the body of the response is a JSON object with the following
attributes:


	state: a JSON object with the following sub-attributes:


	running: whether or not the applier is active and running



	lastAppliedContinuousTick: the last tick value from the continuous
replication log the applier has applied.



	lastProcessedContinuousTick: the last tick value from the continuous
replication log the applier has processed.

Regularly, the last applied and last processed tick values should be
identical. For transactional operations, the replication applier will first
process incoming log events before applying them, so the processed tick
value might be higher than the applied tick value. This will be the case
until the applier encounters the transaction commit log event for the
transaction.



	lastAvailableContinuousTick: the last tick value the logger server can
provide.



	time: the time on the applier server.



	totalRequests: the total number of requests the applier has made to the
endpoint.



	totalFailedConnects: the total number of failed connection attempts the
applier has made.



	totalEvents: the total number of log events the applier has processed.



	totalOperationsExcluded: the total number of log events excluded because
of restrictCollections.



	progress: a JSON object with details about the replication applier progress.
It contains the following sub-attributes if there is progress to report:


	message: a textual description of the progress



	time: the date and time the progress was logged



	failedConnects: the current number of failed connection attempts







	lastError: a JSON object with details about the last error that happened on
the applier. It contains the following sub-attributes if there was an error:


	errorNum: a numerical error code



	errorMessage: a textual error description



	time: the date and time the error occurred





In case no error has occurred, lastError will be empty.







	server: a JSON object with the following sub-attributes:


	version: the applier server's version



	serverId: the applier server's id







	endpoint: the endpoint the applier is connected to (if applier is
active) or will connect to (if applier is currently inactive)



	database: the name of the database the applier is connected to (if applier is
active) or will connect to (if applier is currently inactive)





WARNING: calling this method will sychronize data from the collections found
on the remote master to the local ArangoDB database. All data in the local
collections will be purged and replaced with data from the master.

Use with caution!

Please also keep in mind that this command may take a long time to complete
and return. This is because it will first do a full data synchronization with
the master, which will take time roughly proportional to the amount of data.

Note: this method is not supported on a coordinator in a cluster.

Return Codes


	200:
is returned if the request was executed successfully.



	400:
is returned if the configuration is incomplete or malformed.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred during sychronization or when starting the
continuous replication.



	501:
is returned when this operation is called on a coordinator in a cluster.






        

    



        
    



        

    
        Other Replication Commands

        
            Other Replication Commands


Return server id

 fetch this server's unique identifier

GET /_api/replication/server-id

Returns the servers id. The id is also returned by other replication API
methods, and this method is an easy means of determining a server's id.

The body of the response is a JSON object with the attribute serverId. The
server id is returned as a string.

Return Codes


	200:
is returned if the request was executed successfully.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if an error occurred while assembling the response.





Examples



shell> curl --dump - http://localhost:8529/_api/replication/server-id

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "serverId" : "70877811142364" 
}








        

    



        
    



        

    
        Sharding

        
            HTTP Interface for Sharding

Sharding only should be used by developers!


Execute cluster roundtrip

 executes a cluster roundtrip for sharding

GET /_admin/cluster-test

Executes a cluster roundtrip from a coordinator to a DB server and
back. This call only works in a coordinator node in a cluster.
One can and should append an arbitrary path to the URL and the
part after /_admin/cluster-test is used as the path of the HTTP
request which is sent from the coordinator to a DB node. Likewise,
any form data appended to the URL is forwarded in the request to the
DB node. This handler takes care of all request types (see below)
and uses the same request type in its request to the DB node.

The following HTTP headers are interpreted in a special way:


	X-Shard-ID: This specifies the ID of the shard to which the
cluster request is sent and thus tells the system to which DB server
to send the cluster request. Note that the mapping from the
shard ID to the responsible server has to be defined in the
agency under Current/ShardLocation/. One has to give
this header, otherwise the system does not know where to send
the request.

	X-Client-Transaction-ID: the value of this header is taken
as the client transaction ID for the request

	X-Timeout: specifies a timeout in seconds for the cluster
operation. If the answer does not arrive within the specified
timeout, an corresponding error is returned and any subsequent
real answer is ignored. The default if not given is 24 hours.

	X-Synchronous-Mode: If set to true the test function uses
synchronous mode, otherwise the default asynchronous operation
mode is used. This is mainly for debugging purposes.

	Host: This header is ignored and not forwarded to the DB server.

	User-Agent: This header is ignored and not forwarded to the DB
server.



All other HTTP headers and the body of the request (if present, see
other HTTP methods below) are forwarded as given in the original request.

In asynchronous mode the DB server answers with an HTTP request of its
own, in synchronous mode it sends a HTTP response. In both cases the
headers and the body are used to produce the HTTP response of this
API call.

Return Codes

The return code can be anything the cluster request returns, as well as:


	200:
is returned when everything went well, or if a timeout occurred. In the
latter case a body of type application/json indicating the timeout
is returned.



	403:
is returned if ArangoDB is not running in cluster mode.



	404:
is returned if ArangoDB was not compiled for cluster operation.






Execute cluster roundtrip

 executes a cluster roundtrip for sharding

POST /_admin/cluster-test

Request Body (required)

The body can be any type and is simply forwarded.

See GET method.

Return Codes


	200: is returned when everything went well.




Execute cluster roundtrip

 executes a cluster roundtrip for sharding

PUT /_admin/cluster-test

Request Body (required)

See GET method. The body can be any type and is simply forwarded.

Return Codes


	200: is returned when everything went well.




Delete cluster roundtrip

 executes a cluster roundtrip for sharding

DELETE /_admin/cluster-test

See GET method.

Return Codes


	200: is returned when everything went well.




Update cluster roundtrip

 executes a cluster roundtrip for sharding

PATCH /_admin/cluster-test

Request Body (required)

See GET method. The body can be any type and is simply forwarded.

Return Codes


	200: is returned when everything went well.




Execute cluster roundtrip

 executes a cluster roundtrip for sharding

HEAD /_admin/cluster-test

See GET method.

Return Codes


	200: is returned when everything went well.




Check port

 allows to check whether a given port is usable

GET /_admin/clusterCheckPort

Query Parameters


	port (required):



Checks whether the requested port is usable.

Return Codes


	200: is returned when everything went well.



	400: the parameter port was not given or is no integer.






        

    



        
    



        

    
        Monitoring

        
            HTTP Interface for Administration and Monitoring

This is an introduction to ArangoDB's HTTP interface for administration and
monitoring of the server.


Read global logs from the server

 returns the server logs

GET /_admin/log

Query Parameters


	upto (optional):
Returns all log entries up to log level upto. Note that upto must be:

	fatal or 0

	error or 1

	warning or 2

	info or 3

	debug  or 4
The default value is info.



	level (optional):
Returns all log entries of log level level. Note that the query parameters
upto and level are mutually exclusive.



	start (optional):
Returns all log entries such that their log entry identifier (lid value)
is greater or equal to start.



	size (optional):
Restricts the result to at most size log entries.



	offset (optional):
Starts to return log entries skipping the first offset log entries. offset
and size can be used for pagination.



	search (optional):
Only return the log entries containing the text specified in search.



	sort (optional):
Sort the log entries either ascending (if sort is asc) or descending
(if sort is desc) according to their lid values. Note that the lid
imposes a chronological order. The default value is asc.





Returns fatal, error, warning or info log messages from the server's global log.
The result is a JSON object with the following attributes:

HTTP 200

A json document with these Properties is returned:


	lid (string): a list of log entry identifiers. Each log message is uniquely
identified by its @LIT{lid} and the identifiers are in ascending
order.

	level: A list of the loglevels for all log entries.

	timestamp (string): a list of the timestamps as seconds since 1970-01-01 for all log
entries.

	topic: a list of the topics of all log entries

	text: a list of the texts of all log entries

	totalAmount: the total amount of log entries before pagination.



Return Codes


	200:



Response Body


	lid (string): a list of log entry identifiers. Each log message is uniquely
identified by its @LIT{lid} and the identifiers are in ascending
order.

	level: A list of the loglevels for all log entries.

	text: a list of the texts of all log entries

	topic: a list of the topics of all log entries

	timestamp (string): a list of the timestamps as seconds since 1970-01-01 for all log
entries.

	totalAmount: the total amount of log entries before pagination.



	400:
is returned if invalid values are specified for upto or level.



	500:
is returned if the server cannot generate the result due to an out-of-memory
error.





Return the current server loglevel

 returns the current loglevel settings

GET /_admin/log/level

Returns the server's current loglevel settings.
The result is a JSON object with the log topics being the object keys, and
the log levels being the object values.

Return Codes


	200:
is returned if the request is valid



	500:
is returned if the server cannot generate the result due to an out-of-memory
error.





Modify and return the current server loglevel

 modifies the current loglevel settings

PUT /_admin/log/level

Modifies and returns the server's current loglevel settings.
The request body must be a JSON object with the log topics being the object keys
and the log levels being the object values.

The result is a JSON object with the adjusted log topics being the object keys, and
the adjusted log levels being the object values.

It can set the loglevel of all facilities by only specifying the loglevel as string without json.

Possible loglevels are:


	FATAL - There will be no way out of this. ArangoDB will go down after this message.

	ERROR - This is an error. you should investigate and fix it. It may harm your production.

	WARNING - This may be serious application-wise, but we don't know.

	INFO - Something has happened, take notice, but no drama attached.

	DEBUG - output debug messages

	TRACE - trace - prepare your log to be flooded - don't use in production.



A JSON object with these properties is required:


	audit-service: One of the possible loglevels.

	cache: One of the possible loglevels.

	syscall: One of the possible loglevels.

	communication: One of the possible loglevels.

	audit-authentication: One of the possible loglevels.

	agencycomm: One of the possible loglevels.

	startup: One of the possible loglevels.

	general: One of the possible loglevels.

	cluster: One of the possible loglevels.

	audit-view: One of the possible loglevels.

	collector: One of the possible loglevels.

	audit-documentation: One of the possible loglevels.

	engines: One of the possible loglevels.

	trx: One of the possible loglevels.

	mmap: One of the possible loglevels.

	agency: One of the possible loglevels.

	authentication: One of the possible loglevels.

	memory: One of the possible loglevels.

	performance: One of the possible loglevels.

	config: One of the possible loglevels.

	authorization: One of the possible loglevels.

	development: One of the possible loglevels.

	datafiles: One of the possible loglevels.

	views: One of the possible loglevels.

	ldap: One of the possible loglevels.

	replication: One of the possible loglevels.

	threads: One of the possible loglevels.

	audit-database: One of the possible loglevels.

	v8: One of the possible loglevels.

	ssl: One of the possible loglevels.

	pregel: One of the possible loglevels.

	audit-collection: One of the possible loglevels.

	rocksdb: One of the possible loglevels.

	supervision: One of the possible loglevels.

	graphs: One of the possible loglevels.

	compactor: One of the possible loglevels.

	queries: One of the possible loglevels.

	heartbeat: One of the possible loglevels.

	requests: One of the possible loglevels.



Return Codes


	200:
is returned if the request is valid



	400:
is returned when the request body contains invalid JSON.



	405:
is returned when an invalid HTTP method is used.



	500:
is returned if the server cannot generate the result due to an out-of-memory
error.






Reloads the routing information

 Reload the routing table.

POST /_admin/routing/reload

Reloads the routing information from the collection routing.

Return Codes


	200:
Routing information was reloaded successfully.




Read the statistics

 return the statistics information

GET /_admin/statistics

Returns the statistics information. The returned object contains the
statistics figures grouped together according to the description returned by
_admin/statistics-description. For instance, to access a figure userTime
from the group system, you first select the sub-object describing the
group stored in system and in that sub-object the value for userTime is
stored in the attribute of the same name.

In case of a distribution, the returned object contains the total count in
count and the distribution list in counts. The sum (or total) of the
individual values is returned in sum.

Return Codes


	200:
Statistics were returned successfully.



Examples



shell> curl --dump - http://localhost:8529/_admin/statistics

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "time" : 1547743289.0722363, 
  "enabled" : true, 
  "system" : { 
    "minorPageFaults" : 83265, 
    "majorPageFaults" : 299, 
    "userTime" : 2.5, 
    "systemTime" : 0.48, 
    "numberOfThreads" : 44, 
    "residentSize" : 459268096, 
    "residentSizePercent" : 0.027505950676904062, 
    "virtualSize" : 3750412288 
  }, 
  "client" : { 
    "httpConnections" : 1, 
    "connectionTime" : { 
      "sum" : 0, 
      "count" : 0, 
      "counts" : [ 
        0, 
        0, 
        0, 
        0 
      ] 
    }, 
    "totalTime" : { 
      "sum" : 4.35387659072876, 
      "count" : 4171, 
      "counts" : [ 
        3987, 
        180, 
        3, 
        0, 
        1, 
        0, 
        0 
      ] 
    }, 
    "requestTime" : { 
      "sum" : 0.030880451202392578, 
      "count" : 4171, 
      "counts" : [ 
        4170, 
        1, 
        0, 
        0, 
        0, 
        0, 
        0 
      ] 
    }, 
    "queueTime" : { 
      "sum" : 0.031575679779052734, 
      "count" : 1215, 
      "counts" : [ 
        1215, 
        0, 
        0, 
        0, 
        0, 
        0, 
        0 
      ] 
    }, 
    "ioTime" : { 
      "sum" : 4.2914204597473145, 
      "count" : 4171, 
      "counts" : [ 
        3988, 
        179, 
        3, 
        0, 
        1, 
        0, 
        0 
      ] 
    }, 
    "bytesSent" : { 
      "sum" : 1873304, 
      "count" : 4171, 
      "counts" : [ 
        320, 
        3490, 
        342, 
        19, 
        0, 
        0 
      ] 
    }, 
    "bytesReceived" : { 
      "sum" : 900406, 
      "count" : 4171, 
      "counts" : [ 
        3835, 
        336, 
        0, 
        0, 
        0, 
        0 
      ] 
    } 
  }, 
  "http" : { 
    "requestsTotal" : 4171, 
    "requestsAsync" : 9, 
    "requestsGet" : 1091, 
    "requestsHead" : 0, 
    "requestsPost" : 2851, 
    "requestsPut" : 72, 
    "requestsPatch" : 3, 
    "requestsDelete" : 154, 
    "requestsOptions" : 0, 
    "requestsOther" : 0 
  }, 
  "server" : { 
    "uptime" : 9.30412220954895, 
    "physicalMemory" : 16697044992, 
    "v8Context" : { 
      "available" : 5, 
      "busy" : 4, 
      "dirty" : 0, 
      "free" : 1, 
      "max" : 16 
    }, 
    "threads" : { 
      "running" : 5, 
      "working" : 4, 
      "blocked" : 0 
    } 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_admin/statistics

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Statistics description

 fetch descriptive info of statistics

GET /_admin/statistics-description

Returns a description of the statistics returned by /_admin/statistics.
The returned objects contains an array of statistics groups in the attribute
groups and an array of statistics figures in the attribute figures.

A statistics group is described by


	group: The identifier of the group.

	name: The name of the group.

	description: A description of the group.



A statistics figure is described by


	group: The identifier of the group to which this figure belongs.

	identifier: The identifier of the figure. It is unique within the group.

	name: The name of the figure.

	description: A description of the figure.

	type: Either current, accumulated, or distribution.

	cuts: The distribution vector.

	units: Units in which the figure is measured.



Return Codes


	200:
Description was returned successfully.



Examples



shell> curl --dump - http://localhost:8529/_admin/statistics-description

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "groups" : [ 
    { 
      "group" : "system", 
      "name" : "Process Statistics", 
      "description" : "Statistics about the ArangoDB process" 
    }, 
    { 
      "group" : "client", 
      "name" : "Client Connection Statistics", 
      "description" : "Statistics about the connections." 
    }, 
    { 
      "group" : "http", 
      "name" : "HTTP Request Statistics", 
      "description" : "Statistics about the HTTP requests." 
    }, 
    { 
      "group" : "server", 
      "name" : "Server Statistics", 
      "description" : "Statistics about the ArangoDB server" 
    } 
  ], 
  "figures" : [ 
    { 
      "group" : "system", 
      "identifier" : "userTime", 
      "name" : "User Time", 
      "description" : "Amount of time that this process has been scheduled in user mode, measured in seconds.", 
      "type" : "accumulated", 
      "units" : "seconds" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "systemTime", 
      "name" : "System Time", 
      "description" : "Amount of time that this process has been scheduled in kernel mode, measured in seconds.", 
      "type" : "accumulated", 
      "units" : "seconds" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "numberOfThreads", 
      "name" : "Number of Threads", 
      "description" : "Number of threads in the arangod process.", 
      "type" : "current", 
      "units" : "number" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "residentSize", 
      "name" : "Resident Set Size", 
      "description" : "The total size of the number of pages the process has in real memory. This is just the pages which count toward text, data, or stack space. This does not include pages which have not been demand-loaded in, or which are swapped out. The resident set size is reported in bytes.", 
      "type" : "current", 
      "units" : "bytes" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "residentSizePercent", 
      "name" : "Resident Set Size", 
      "description" : "The percentage of physical memory used by the process as resident set size.", 
      "type" : "current", 
      "units" : "percent" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "virtualSize", 
      "name" : "Virtual Memory Size", 
      "description" : "On Windows, this figure contains the total amount of memory that the memory manager has committed for the arangod process. On other systems, this figure contains The size of the virtual memory the process is using.", 
      "type" : "current", 
      "units" : "bytes" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "minorPageFaults", 
      "name" : "Minor Page Faults", 
      "description" : "The number of minor faults the process has made which have not required loading a memory page from disk. This figure is not reported on Windows.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "system", 
      "identifier" : "majorPageFaults", 
      "name" : "Major Page Faults", 
      "description" : "On Windows, this figure contains the total number of page faults. On other system, this figure contains the number of major faults the process has made which have required loading a memory page from disk.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "httpConnections", 
      "name" : "Client Connections", 
      "description" : "The number of connections that are currently open.", 
      "type" : "current", 
      "units" : "number" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "totalTime", 
      "name" : "Total Time", 
      "description" : "Total time needed to answer a request.", 
      "type" : "distribution", 
      "cuts" : [ 
        0.01, 
        0.05, 
        0.1, 
        0.2, 
        0.5, 
        1 
      ], 
      "units" : "seconds" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "requestTime", 
      "name" : "Request Time", 
      "description" : "Request time needed to answer a request.", 
      "type" : "distribution", 
      "cuts" : [ 
        0.01, 
        0.05, 
        0.1, 
        0.2, 
        0.5, 
        1 
      ], 
      "units" : "seconds" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "queueTime", 
      "name" : "Queue Time", 
      "description" : "Queue time needed to answer a request.", 
      "type" : "distribution", 
      "cuts" : [ 
        0.01, 
        0.05, 
        0.1, 
        0.2, 
        0.5, 
        1 
      ], 
      "units" : "seconds" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "bytesSent", 
      "name" : "Bytes Sent", 
      "description" : "Bytes sents for a request.", 
      "type" : "distribution", 
      "cuts" : [ 
        250, 
        1000, 
        2000, 
        5000, 
        10000 
      ], 
      "units" : "bytes" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "bytesReceived", 
      "name" : "Bytes Received", 
      "description" : "Bytes receiveds for a request.", 
      "type" : "distribution", 
      "cuts" : [ 
        250, 
        1000, 
        2000, 
        5000, 
        10000 
      ], 
      "units" : "bytes" 
    }, 
    { 
      "group" : "client", 
      "identifier" : "connectionTime", 
      "name" : "Connection Time", 
      "description" : "Total connection time of a client.", 
      "type" : "distribution", 
      "cuts" : [ 
        0.1, 
        1, 
        60 
      ], 
      "units" : "seconds" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsTotal", 
      "name" : "Total requests", 
      "description" : "Total number of HTTP requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsAsync", 
      "name" : "Async requests", 
      "description" : "Number of asynchronously executed HTTP requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsGet", 
      "name" : "HTTP GET requests", 
      "description" : "Number of HTTP GET requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsHead", 
      "name" : "HTTP HEAD requests", 
      "description" : "Number of HTTP HEAD requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsPost", 
      "name" : "HTTP POST requests", 
      "description" : "Number of HTTP POST requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsPut", 
      "name" : "HTTP PUT requests", 
      "description" : "Number of HTTP PUT requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsPatch", 
      "name" : "HTTP PATCH requests", 
      "description" : "Number of HTTP PATCH requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsDelete", 
      "name" : "HTTP DELETE requests", 
      "description" : "Number of HTTP DELETE requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsOptions", 
      "name" : "HTTP OPTIONS requests", 
      "description" : "Number of HTTP OPTIONS requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "http", 
      "identifier" : "requestsOther", 
      "name" : "other HTTP requests", 
      "description" : "Number of other HTTP requests.", 
      "type" : "accumulated", 
      "units" : "number" 
    }, 
    { 
      "group" : "server", 
      "identifier" : "uptime", 
      "name" : "Server Uptime", 
      "description" : "Number of seconds elapsed since server start.", 
      "type" : "current", 
      "units" : "seconds" 
    }, 
    { 
      "group" : "server", 
      "identifier" : "physicalMemory", 
      "name" : "Physical Memory", 
      "description" : "Physical memory in bytes.", 
      "type" : "current", 
      "units" : "bytes" 
    } 
  ], 
  "error" : false, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_admin/statistics-description

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Return role of a server in a cluster

 Get to know whether this server is a Coordinator or DB-Server

GET /_admin/server/role

Returns the role of a server in a cluster.
The role is returned in the role attribute of the result.
Possible return values for role are:


	SINGLE: the server is a standalone server without clustering

	COORDINATOR: the server is a coordinator in a cluster

	PRIMARY: the server is a primary database server in a cluster

	SECONDARY: the server is a secondary database server in a cluster

	AGENT: the server is an agency node in a cluster

	UNDEFINED: in a cluster, UNDEFINED is returned if the server role cannot be
 determined.



Return Codes


	200:
Is returned in all cases.




Return id of a server in a cluster

 Get to know the internal id of the server

GET /_admin/server/id

Returns the id of a server in a cluster. The request will fail if the
server is not running in cluster mode.

Return Codes


	200:
Is returned when the server is running in cluster mode.



	500:
Is returned when the server is not running in cluster mode.





Return whether or not a server is available

 Return whether or not a server is available

GET /_admin/server/availability

Return availability information about a server.

This is a public API so it does not require authentication. It is meant to be
used only in the context of server monitoring only.

Return Codes


	200:
This API will return HTTP 200 in case the server is up and running and usable for
arbitrary operations, is not set to read-only mode and is currently not a follower 
in case of an active failover setup.



	503:
HTTP 503 will be returned in case the server is during startup or during shutdown,
is set to read-only mode or is currently a follower in an active failover setup.

Cluster






Queries statistics of DBserver

 allows to query the statistics of a DBserver in the cluster

GET /_admin/clusterStatistics

Query Parameters


	DBserver (required):



Queries the statistics of the given DBserver

Return Codes


	200: is returned when everything went well.



	400: the parameter DBserver was not given or is not the
ID of a DBserver



	403: server is not a coordinator.





Queries the health of cluster for monitoring

 Returns the health of the cluster as assessed by the supervision (agency)

GET /_admin/cluster/health

Queries the health of the cluster for monitoring purposes. The response is a JSON object, containing the standard code, error, errorNum, and errorMessage fields as appropriate. The endpoint-specific fields are as follows:


	ClusterId: A UUID string identifying the cluster

	Health: An object containing a descriptive sub-object for each node in the cluster. Each entry in Health will be keyed by the node ID and contain the the following attributes:


	Endpoint: A string representing the network endpoint of the server.

	Role: The role the server plays. Possible values are "AGENT", "COORDINATOR", and "DBSERVER".

	CanBeDeleted: Boolean representing whether the node can safely be removed from the cluster.

	Version: Version String of ArangoDB used by that node.

	Engine: Storage Engine used by that node.

	Status: A string indicating the health of the node as assessed by the supervision (agency). This should be considered primary source of truth for coordinator and dbservers node health. If the node is responding normally to requests, it is "GOOD". If it has missed one heartbeat, it is "BAD". If it has been declared failed by the supervision, which occurs after missing heartbeats for about 15 seconds, it will be marked "FAILED".



Additionally it will also have the following attributes for


	Coordinators and DBServer:
	SyncStatus: The last sync status reported by the node. This value is primarily used to determine the value of Status. Possible values include "UNKNOWN", "UNDEFINED", "STARTUP", "STOPPING", "STOPPED", "SERVING", "SHUTDOWN".

	LastAckedTime: ISO 8601 timestamp specifying the last heartbeat received.

	ShortName: A string representing the shortname of the server, e.g. "Coordinator0001".

	Timestamp: ISO 8601 timestamp specifying the last heartbeat received. (deprecated)

	Host: An optional string, specifying the host machine if known.





	Only Coordinators:
	AdvertisedEndpoint: A string representing the advertised endpoint, if set. (e.g. external IP address or load balancer, optional)





	Agents:
	"Leader": ID of the agent this node regards as leader.

	"Leading": Whether this agent is the leader (true) or not (false).

	"LastAckedTime": Time since last acked in seconds.











Return Codes


	200: is returned when everything went well.




        

    



        
    



        

    
        Endpoints

        
            HTTP Interface for Endpoints

The API /_api/endpoint is deprecated. For cluster mode there
is /_api/cluster/endpoints to find all current coordinator endpoints
(see below).

The ArangoDB server can listen for incoming requests on multiple endpoints.

The endpoints are normally specified either in ArangoDB's configuration
file or on the command-line, using the "--server.endpoint" option.
The default endpoint for ArangoDB is tcp://127.0.0.1:8529 or
tcp://localhost:8529.

Please note that all endpoint management operations can only be accessed via
the default database (_system) and none of the other databases.

Asking about Endpoints via HTTP


Get information about all coordinator endpoints

 This API call returns information about all coordinator endpoints (cluster only).

GET /_api/cluster/endpoints

Returns an object with an attribute endpoints, which contains an
array of objects, which each have the attribute endpoint, whose value
is a string with the endpoint description. There is an entry for each
coordinator in the cluster. This method only works on coordinators in
cluster mode. In case of an error the error attribute is set to
true.

Return Codes


	200: is returned when everything went well.



	403: server is not a coordinator or method was not GET.






Return list of all endpoints

 This API call returns the list of all endpoints (single server).

GET /_api/endpoint

THIS API IS DEPRECATED

Returns an array of all configured endpoints the server is listening on.

The result is a JSON array of JSON objects, each with `"entrypoint"' as
the only attribute, and with the value being a string describing the
endpoint.

Note: retrieving the array of all endpoints is allowed in the system database
only. Calling this action in any other database will make the server return
an error.

Return Codes


	200:
is returned when the array of endpoints can be determined successfully.



	400:
is returned if the action is not carried out in the system database.



	405:
The server will respond with HTTP 405 if an unsupported HTTP method is used.





Examples



shell> curl --dump - http://localhost:8529/_api/endpoint

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  { 
    "endpoint" : "http://127.0.0.1:11143" 
  } 
]








        

    



        
    



        

    
        Foxx Services

        
            Foxx HTTP API

These routes allow manipulating the Foxx services installed in a database.

For more information on Foxx and its JavaScript APIs see the Foxx chapter of the main documentation.


        

    



        
    



        

    
        Management

        
            Foxx Service Management

This is an introduction to ArangoDB's HTTP interface for managing Foxx services.

List installed services

 list installed services

GET /_api/foxx

Fetches a list of services installed in the current database.

Returns a list of objects with the following attributes:


	mount: the mount path of the service

	development: true if the service is running in development mode

	legacy: true if the service is running in 2.8 legacy compatibility mode

	provides: the service manifest's provides value or an empty object



Additionally the object may contain the following attributes if they have been set on the manifest:


	name: a string identifying the service type

	version: a semver-compatible version string



Query Parameters


	excludeSystem (optional):
Whether or not system services should be excluded from the result.



Return Codes


	200:
Returned if the request was successful.



Service description

 service metadata

GET /_api/foxx/service

Fetches detailed information for the service at the given mount path.

Returns an object with the following attributes:


	mount: the mount path of the service

	path: the local file system path of the service

	development: true if the service is running in development mode

	legacy: true if the service is running in 2.8 legacy compatibility mode

	manifest: the normalized JSON manifest of the service



Additionally the object may contain the following attributes if they have been set on the manifest:


	name: a string identifying the service type

	version: a semver-compatible version string



Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was successful.



	400:
Returned if the mount path is unknown.





Install new service

 install new service

POST /_api/foxx

Installs the given new service at the given mount path.

The request body can be any of the following formats:


	application/zip: a raw zip bundle containing a service

	application/javascript: a standalone JavaScript file

	application/json: a service definition as JSON

	multipart/form-data: a service definition as a multipart form



A service definition is an object or form with the following properties or fields:


	configuration: a JSON object describing configuration values

	dependencies: a JSON object describing dependency settings

	source: a fully qualified URL or an absolute path on the server's file system



When using multipart data, the source field can also alternatively be a file field
containing either a zip bundle or a standalone JavaScript file.

When using a standalone JavaScript file the given file will be executed
to define our service's HTTP endpoints. It is the same which would be defined
in the field main of the service manifest.

If source is a URL, the URL must be reachable from the server.
If source is a file system path, the path will be resolved on the server.
In either case the path or URL is expected to resolve to a zip bundle,
JavaScript file or (in case of a file system path) directory.

Note that when using file system paths in a cluster with multiple coordinators
the file system path must resolve to equivalent files on every coordinator.

Query Parameters


	mount (required):
Mount path the service should be installed at.



	development (optional):
Set to true to enable development mode.



	setup (optional):
Set to false to not run the service's setup script.



	legacy (optional):
Set to true to install the service in 2.8 legacy compatibility mode.





Return Codes


	201:
Returned if the request was successful.



Uninstall service

 uninstall service

DELETE /_api/foxx/service

Removes the service at the given mount path from the database and file system.

Returns an empty response on success.

Query Parameters


	mount (required):
Mount path of the installed service.



	teardown (optional):
Set to false to not run the service's teardown script.





Return Codes


	204:
Returned if the request was successful.



Replace service

 replace a service

PUT /_api/foxx/service

Removes the service at the given mount path from the database and file system.
Then installs the given new service at the same mount path.

This is a slightly safer equivalent to performing an uninstall of the old service
followed by installing the new service. The new service's main and script files
(if any) will be checked for basic syntax errors before the old service is removed.

The request body can be any of the following formats:


	application/zip: a raw zip bundle containing a service

	application/javascript: a standalone JavaScript file

	application/json: a service definition as JSON

	multipart/form-data: a service definition as a multipart form



A service definition is an object or form with the following properties or fields:


	configuration: a JSON object describing configuration values

	dependencies: a JSON object describing dependency settings

	source: a fully qualified URL or an absolute path on the server's file system



When using multipart data, the source field can also alternatively be a file field
containing either a zip bundle or a standalone JavaScript file.

When using a standalone JavaScript file the given file will be executed
to define our service's HTTP endpoints. It is the same which would be defined
in the field main of the service manifest.

If source is a URL, the URL must be reachable from the server.
If source is a file system path, the path will be resolved on the server.
In either case the path or URL is expected to resolve to a zip bundle,
JavaScript file or (in case of a file system path) directory.

Note that when using file system paths in a cluster with multiple coordinators
the file system path must resolve to equivalent files on every coordinator.

Query Parameters


	mount (required):
Mount path of the installed service.



	teardown (optional):
Set to false to not run the old service's teardown script.



	setup (optional):
Set to false to not run the new service's setup script.



	legacy (optional):
Set to true to install the new service in 2.8 legacy compatibility mode.



	force (optional):
Set to true to force service install even if no service is installed under given mount.





Return Codes


	200:
Returned if the request was successful.



Upgrade service

 upgrade a service

PATCH /_api/foxx/service

Installs the given new service on top of the service currently installed at the given mount path.
This is only recommended for switching between different versions of the same service.

Unlike replacing a service, upgrading a service retains the old service's configuration
and dependencies (if any) and should therefore only be used to migrate an existing service
to a newer or equivalent service.

The request body can be any of the following formats:


	application/zip: a raw zip bundle containing a service

	application/javascript: a standalone JavaScript file

	application/json: a service definition as JSON

	multipart/form-data: a service definition as a multipart form



A service definition is an object or form with the following properties or fields:


	configuration: a JSON object describing configuration values

	dependencies: a JSON object describing dependency settings

	source: a fully qualified URL or an absolute path on the server's file system



When using multipart data, the source field can also alternatively be a file field
containing either a zip bundle or a standalone JavaScript file.

When using a standalone JavaScript file the given file will be executed
to define our service's HTTP endpoints. It is the same which would be defined
in the field main of the service manifest.

If source is a URL, the URL must be reachable from the server.
If source is a file system path, the path will be resolved on the server.
In either case the path or URL is expected to resolve to a zip bundle,
JavaScript file or (in case of a file system path) directory.

Note that when using file system paths in a cluster with multiple coordinators
the file system path must resolve to equivalent files on every coordinator.

Query Parameters


	mount (required):
Mount path of the installed service.



	teardown (optional):
Set to true to run the old service's teardown script.



	setup (optional):
Set to false to not run the new service's setup script.



	legacy (optional):
Set to true to install the new service in 2.8 legacy compatibility mode.





Return Codes


	200:
Returned if the request was successful.




        

    



        
    



        

    
        Configuration

        
            Foxx Service configuration / dependencies

This is an introduction to ArangoDB's HTTP interface for managing Foxx services configuration and dependencies.

Get configuration options

 get configuration options

GET /_api/foxx/configuration

Fetches the current configuration for the service at the given mount path.

Returns an object mapping the configuration option names to their definitions
including a human-friendly title and the current value (if any).

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Update configuration options

 update configuration options

PATCH /_api/foxx/configuration

Replaces the given service's configuration.

Returns an object mapping all configuration option names to their new values.

Request Body (required)

A JSON object mapping configuration option names to their new values.
Any omitted options will be ignored.

Query Parameters


	mount (required):
Mount path of the installed service.



	200:
Returned if the request was sucessful.





Replace configuration options

 replace configuration options

PUT /_api/foxx/configuration

Replaces the given service's configuration completely.

Returns an object mapping all configuration option names to their new values.

Request Body (required)

A JSON object mapping configuration option names to their new values.
Any omitted options will be reset to their default values or marked as unconfigured.

Query Parameters


	mount (required):
Mount path of the installed service.



	200:
Returned if the request was sucessful.





Get dependency options

 get dependency options

GET /_api/foxx/dependencies

Fetches the current dependencies for service at the given mount path.

Returns an object mapping the dependency names to their definitions
including a human-friendly title and the current mount path (if any).

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Update dependencies options

 update dependencies options

PATCH /_api/foxx/dependencies

Replaces the given service's dependencies.

Returns an object mapping all dependency names to their new mount paths.

Request Body (required)

A JSON object mapping dependency names to their new mount paths.
Any omitted dependencies will be ignored.

Query Parameters


	mount (required):
Mount path of the installed service.



	200:
Returned if the request was sucessful.





Replace dependencies options

 replace dependencies options

PUT /_api/foxx/dependencies

Replaces the given service's dependencies completely.

Returns an object mapping all dependency names to their new mount paths.

Request Body (required)

A JSON object mapping dependency names to their new mount paths.
Any omitted dependencies will be disabled.

Query Parameters


	mount (required):
Mount path of the installed service.



	200:
Returned if the request was sucessful.






        

    



        
    



        

    
        Miscellaneous

        
            Foxx Service Miscellaneous

List service scripts

 list service scripts

GET /_api/foxx/scripts

Fetches a list of the scripts defined by the service.

Returns an object mapping the raw script names to human-friendly names.

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Run service script

 run service script

POST /_api/foxx/scripts/{name}

Runs the given script for the service at the given mount path.

Returns the exports of the script, if any.

Request Body (optional)

An arbitrary JSON value that will be parsed and passed to the
script as its first argument.

Query Parameters


	name (required):
Name of the script to run.



Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Run service tests

 run service tests

POST /_api/foxx/tests

Runs the tests for the service at the given mount path and returns the results.

Supported test reporters are:


	default: a simple list of test cases

	suite: an object of test cases nested in suites

	stream: a raw stream of test results

	xunit: an XUnit/JUnit compatible structure

	tap: a raw TAP compatible stream



The Accept request header can be used to further control the response format:

When using the stream reporter application/x-ldjson will result
in the response body being formatted as a newline-delimited JSON stream.

When using the tap reporter text/plain or text/* will result
in the response body being formatted as a plain text TAP report.

When using the xunit reporter application/xml or text/xml will result
in the response body being formatted as XML instead of JSONML.

Otherwise the response body will be formatted as non-prettyprinted JSON.

Query Parameters


	mount (required):
Mount path of the installed service.



	reporter (optional):
Test reporter to use.



	idiomatic (optional):
Use the matching format for the reporter, regardless of the Accept header.





Return Codes


	200:
Returned if the request was sucessful.



Enable development mode

 enable development mode

POST /_api/foxx/development

Puts the service into development mode.

While the service is running in development mode the service will be reloaded
from the filesystem and its setup script (if any) will be re-executed every
time the service handles a request.

When running ArangoDB in a cluster with multiple coordinators note that changes
to the filesystem on one coordinator will not be reflected across the other
coordinators. This means you should treat your coordinators as inconsistent
as long as any service is running in development mode.

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Disable development mode

 disable development mode

DELETE /_api/foxx/development

Puts the service at the given mount path into production mode.

When running ArangoDB in a cluster with multiple coordinators this will
replace the service on all other coordinators with the version on this
coordinator.

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Service README

 service README

GET /_api/foxx/readme

Fetches the service's README or README.md file's contents if any.

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



	204:
Returned if no README file was found.





Swagger description

 swagger description

GET /_api/foxx/swagger

Fetches the Swagger API description for the service at the given mount path.

The response body will be an OpenAPI 2.0 compatible JSON description of the service API.

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



Download service bundle

 download service bundle

POST /_api/foxx/download

Downloads a zip bundle of the service directory.

When development mode is enabled, this always creates a new bundle.

Otherwise the bundle will represent the version of a service that
is installed on that ArangoDB instance.

Query Parameters


	mount (required):
Mount path of the installed service.



Return Codes


	200:
Returned if the request was sucessful.



	400:
Returned if the mount path is unknown.





Commit local service state

 commit local service state

POST /_api/foxx/commit

Commits the local service state of the coordinator to the database.

This can be used to resolve service conflicts between coordinators that can not be fixed automatically due to missing data.

Query Parameters


	replace (optional):
Overwrite existing service files in database even if they already exist.



	204:
Returned if the request was sucessful.






        

    



        
    



        

    
        User Management

        
            HTTP Interface for User Management

This is an introduction to ArangoDB's HTTP interface for managing users.

The interface provides a simple means to add, update, and remove users.  All
users managed through this interface will be stored in the system collection
_users. You should never manipulate the _users collection directly.

This specialized interface intentionally does not provide all functionality that
is available in the regular document REST API.

Please note that user operations are not included in ArangoDB's replication.

Create User

 Create a new user.

POST /_api/user

A JSON object with these properties is required:


	passwd: The user password as a string. If no password is specified, the empty string
will be used. If you pass the special value ARANGODB_DEFAULT_ROOT_PASSWORD,
then the password will be set the value stored in the environment variable
ARANGODB_DEFAULT_ROOT_PASSWORD. This can be used to pass an instance
variable into ArangoDB. For example, the instance identifier from Amazon.

	active: An optional flag that specifies whether the user is active.  If not
specified, this will default to true

	user: The name of the user as a string. This is mandatory.

	extra: An optional JSON object with arbitrary extra data about the user.



Create a new user. You need server access level Administrate in order to
execute this REST call.


Return Codes


	201:
Returned if the user can be added by the server



	400:
If the JSON representation is malformed or mandatory data is missing
from the request.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.



	409:
Returned if a user with the same name already exists.





Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/user <<EOF
{ 
  "user" : "admin@example", 
  "passwd" : "secure" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "user" : "admin@example", 
  "active" : true, 
  "extra" : { 
  }, 
  "error" : false, 
  "code" : 201 
}





shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/user <<EOF
{ 
  "user" : "admin@example", 
  "passwd" : "secure" 
}
EOF

HTTP/1.1 201 Created
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Set the database access level

 Set the database access level.

PUT /_api/user/{user}/database/{dbname}

A JSON object with these properties is required:


	grant: Use "rw" to set the database access level to Administrate .
Use "ro" to set the database access level to Access.
Use "none" to set the database access level to No access.



Sets the database access levels for the database dbname of user user. You
need the Administrate server access level in order to execute this REST
call.


Path Parameters


	user (required):
The name of the user.



	dbname (required):
The name of the database.





Return Codes


	200:
Returned if the access level was changed successfully.



	400:
If the JSON representation is malformed or mandatory data is missing
from the request.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp/database/_system <<EOF
{ 
  "grant" : "rw" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "_system" : "rw", 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp/database/_system <<EOF
{ 
  "grant" : "rw" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Set the collection access level

 Set the collection access level.

PUT /_api/user/{user}/database/{dbname}/{collection}

A JSON object with these properties is required:


	grant: Use "rw" to set the collection level access to Read/Write.
Use "ro" to set the collection level access to  Read Only.
Use "none" to set the collection level access to No access.



Sets the collection access level for the collection in the database dbname
for user user. You need the Administrate server access level in order to
execute this REST call.


Path Parameters


	user (required):
The name of the user.



	dbname (required):
The name of the database.



	collection (required):
The name of the collection.





Return Codes


	200:
Returned if the access permissions were changed successfully.



	400:
If the JSON representation is malformed or mandatory data is missing
from the request.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp/database/_system/reports <<EOF
{ 
  "grant" : "rw" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "_system/reports" : "rw", 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp/database/_system/reports <<EOF
{ 
  "grant" : "rw" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Clear the database access level

 Clear the database access level, revert back to the default access level

DELETE /_api/user/{user}/database/{dbname}

Path Parameters


	user (required):
The name of the user.



	dbname (required):
The name of the database.





Clears the database access level for the database dbname of user user. As
consequence the default database access level is used. If there is no defined
default database access level, it defaults to No access. You need permission
to the _system database in order to execute this REST call.


Return Codes


	202:
Returned if the access permissions were changed successfully.



	400:
If the JSON representation is malformed or mandatory data is missing
from the request.





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/user/admin@myapp/database/_system

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

"{\"error\":false,\"code\":202}"








Clear the collection access level

 Clear the collection access level, revert back to the default access level

DELETE /_api/user/{user}/database/{dbname}/{collection}

Path Parameters


	user (required):
The name of the user.



	dbname (required):
The name of the database.



	collection (required):
The name of the collection.





Clears the collection access level for the collection collection in the
database dbname of user user.  As consequence the default collection
access level is used. If there is no defined default collection access level,
it defaults to No access.  You need permissions to the _system database in
order to execute this REST call.


Return Codes


	202:
Returned if the access permissions were changed successfully.



	400:
If there was an error





Examples



shell> curl -X DELETE --dump - http://localhost:8529/_api/user/admin@myapp/database/_system/reports

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

"{\"error\":false,\"code\":202}"








List the accessible databases for a user

 List the accessible databases for a user

GET /_api/user/{user}/database/

Path Parameters


	user (required):
The name of the user for which you want to query the databases.



Query Parameters


	full (optional):
Return the full set of access levels for all databases and all collections.



Fetch the list of databases available to the specified user. You need
Administrate for the server access level in order to execute this REST call.

The call will return a JSON object with the per-database access
privileges for the specified user. The result object will contain
the databases names as object keys, and the associated privileges
for the database as values.

In case you specified full, the result will contain the permissions
for the databases as well as the permissions for the collections.


Return Codes


	200:
Returned if the list of available databases can be returned.



	400:
If the access privileges are not right etc.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.





Examples



shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : { 
    "_system" : "rw" 
  } 
}





shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






With the full response format:



shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database?full=true

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : { 
    "_system" : { 
      "permission" : "rw", 
      "collections" : { 
        "_statisticsRaw" : "undefined", 
        "_appbundles" : "undefined", 
        "_aqlfunctions" : "undefined", 
        "_routing" : "undefined", 
        "animals" : "undefined", 
        "_users" : "undefined", 
        "_apps" : "undefined", 
        "_statistics" : "undefined", 
        "_graphs" : "undefined", 
        "_statistics15" : "undefined", 
        "_frontend" : "undefined", 
        "_queues" : "undefined", 
        "_modules" : "undefined", 
        "_jobs" : "undefined", 
        "demo" : "undefined", 
        "*" : "undefined" 
      } 
    }, 
    "*" : { 
      "permission" : "none" 
    } 
  } 
}





shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database?full=true

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Get the database access level

 Get specific database access level

GET /_api/user/{user}/database/{database}

Path Parameters


	user (required):
The name of the user for which you want to query the databases.



	database (required):
The name of the database to query





Fetch the database access level for a specific database


Return Codes


	200:
Returned if the acccess level can be returned



	400:
If the access privileges are not right etc.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.





Examples



shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : "rw" 
}





shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Get the specific collection access level

 Get the collection access level

GET /_api/user/{user}/database/{database}/{collection}

Path Parameters


	user (required):
The name of the user for which you want to query the databases.



	database (required):
The name of the database to query



	collection (required):
The name of the collection





Returns the collection access level for a specific collection


Return Codes


	200:
Returned if the acccess level can be returned



	400:
If the access privileges are not right etc.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.





Examples



shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system/_users

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : "none" 
}





shell> curl --dump - http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system/_users

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Replace User

 Replace an existing user.

PUT /_api/user/{user}

Path Parameters


	user (required):
The name of the user



A JSON object with these properties is required:


	passwd: The user password as a string. Specifying a password is mandatory, but
the empty string is allowed for passwords

	active: An optional flag that specifies whether the user is active.  If not
specified, this will default to true

	extra: An optional JSON object with arbitrary extra data about the user.



Replaces the data of an existing user. The name of an existing user must be
specified in user. You need server access level Administrate in order to
execute this REST call. Additionally, a user can change his/her own data.


Return Codes


	200:
Is returned if the user data can be replaced by the server.



	400:
The JSON representation is malformed or mandatory data is missing from the request



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.



	404:
The specified user does not exist





Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp <<EOF
{ 
  "passwd" : "secure" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "user" : "admin@myapp", 
  "active" : true, 
  "extra" : { 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp <<EOF
{ 
  "passwd" : "secure" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Modify User

 Modify attributes of an existing user

PATCH /_api/user/{user}

Path Parameters


	user (required):
The name of the user



A JSON object with these properties is required:


	passwd: The user password as a string. Specifying a password is mandatory, but
the empty string is allowed for passwords

	active: An optional flag that specifies whether the user is active.  If not
specified, this will default to true

	extra: An optional JSON object with arbitrary extra data about the user.



Partially updates the data of an existing user. The name of an existing user
must be specified in user. You need server access level Administrate in
order to execute this REST call. Additionally, a user can change his/her own
data.


Return Codes


	200:
Is returned if the user data can be replaced by the server.



	400:
The JSON representation is malformed or mandatory data is missing from the request.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.



	404:
The specified user does not exist





Examples



shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp <<EOF
{ 
  "passwd" : "secure" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "user" : "admin@myapp", 
  "active" : true, 
  "extra" : { 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PATCH --data-binary @- --dump - http://localhost:8529/_api/user/admin@myapp <<EOF
{ 
  "passwd" : "secure" 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Remove User

 delete a user permanently.

DELETE /_api/user/{user}

Path Parameters


	user (required):
The name of the user



Removes an existing user, identified by user.  You need Administrate for
the server access level in order to execute this REST call.


Return Codes


	202:
Is returned if the user was removed by the server



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.



	404:
The specified user does not exist





Examples



shell> curl -X DELETE --data-binary @- --dump - http://localhost:8529/_api/user/userToDelete@myapp <<EOF
{ 
}
EOF

HTTP/1.1 202 Accepted
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 202 
}








Fetch User

 fetch the properties of a user.

GET /_api/user/{user}

Path Parameters


	user (required):
The name of the user



Fetches data about the specified user. You can fetch information about
yourself or you need the Administrate server access level in order to
execute this REST call.


Return Codes


	200:
The user was found.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.



	404:
The user with the specified name does not exist.





Examples



shell> curl --dump - http://localhost:8529/_api/user/admin@myapp

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "user" : "admin@myapp", 
  "active" : true, 
  "extra" : { 
  }, 
  "error" : false, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/user/admin@myapp

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







List available Users

 fetch the properties of a user.

GET /_api/user/

Fetches data about all users.  You need the Administrate server access level
in order to execute this REST call.  Otherwise, you will only get information
about yourself.

The call will return a JSON object with at least the following
attributes on success:


	user: The name of the user as a string.

	active: An optional flag that specifies whether the user is active.

	extra: An optional JSON object with arbitrary extra data about the user.



Return Codes


	200:
The users that were found.



	401:
Returned if you have No access database access level to the _system
database.



	403:
Returned if you have No access server access level.





Examples



shell> curl --dump - http://localhost:8529/_api/user

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200, 
  "result" : [ 
    { 
      "user" : "tester", 
      "active" : false, 
      "extra" : { 
      } 
    }, 
    { 
      "user" : "root", 
      "active" : true, 
      "extra" : { 
      } 
    }, 
    { 
      "user" : "admin", 
      "active" : true, 
      "extra" : { 
      } 
    } 
  ] 
}





shell> curl --dump - http://localhost:8529/_api/user

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







        

    



        
    



        

    
        Tasks

        
            HTTP tasks Interface

Following you have ArangoDB's HTTP Interface for Tasks.

There are also some examples provided for every API action. 

Fetch all tasks or one task

 Retrieves all currently active server tasks

GET /_api/tasks/

fetches all existing tasks on the server


	200:
The list of tasks



Examples

Fetching all tasks



shell> curl --dump - http://localhost:8529/_api/tasks

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

[ 
  { 
    "id" : "statistics-gc", 
    "name" : "statistics-gc", 
    "created" : 1547743291.8496962, 
    "type" : "periodic", 
    "period" : 450, 
    "offset" : 339.84224, 
    "command" : "(function (params) { require('@arangodb/statistics').garbageCollector(); } )(params);", 
    "database" : "_system" 
  }, 
  { 
    "id" : "statistics-average-collector", 
    "name" : "statistics-average-collector", 
    "created" : 1547743291.8496382, 
    "type" : "periodic", 
    "period" : 900, 
    "offset" : 20, 
    "command" : "(function (params) { require('@arangodb/statistics').historianAverage(); } )(params);", 
    "database" : "_system" 
  }, 
  { 
    "id" : "statistics-collector", 
    "name" : "statistics-collector", 
    "created" : 1547743291.84957, 
    "type" : "periodic", 
    "period" : 10, 
    "offset" : 1, 
    "command" : "(function (params) { require('@arangodb/statistics').historian(); } )(params);", 
    "database" : "_system" 
  }, 
  { 
    "id" : "86", 
    "name" : "user-defined task", 
    "created" : 1547743281.9320922, 
    "type" : "periodic", 
    "period" : 1, 
    "offset" : 0.000001, 
    "command" : "(function (params) { (function () {\n        require('@arangodb/foxx/queues/manager').manage();\n      })(params) } )(params);", 
    "database" : "_system" 
  } 
]








Fetch one task with id

 Retrieves  one currently active server task

GET /_api/tasks/{id}


	id (required):
The id of the task to fetch.



fetches one existing tasks on the server specified by id


	200:
The requested task



Examples

Fetching a single task by its id



shell> curl --dump - http://localhost:8529/_api/tasks/statistics-average-collector

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "id" : "statistics-average-collector", 
  "name" : "statistics-average-collector", 
  "created" : 1547743291.8496382, 
  "type" : "periodic", 
  "period" : 900, 
  "offset" : 20, 
  "command" : "(function (params) { require('@arangodb/statistics').historianAverage(); } )(params);", 
  "database" : "_system", 
  "error" : false, 
  "code" : 200 
}





shell> curl --dump - http://localhost:8529/_api/tasks/statistics-average-collector

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






trying to fetch a non-existing task



shell> curl --dump - http://localhost:8529/_api/tasks/non-existing-task

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "code" : 404, 
  "errorNum" : 1852, 
  "errorMessage" : "task not found" 
}





shell> curl --dump - http://localhost:8529/_api/tasks/non-existing-task

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







creates a task

 creates a new task

POST /_api/tasks

A JSON object with these properties is required:


	params: The parameters to be passed into command

	offset: Number of seconds initial delay 

	command: The JavaScript code to be executed

	name: The name of the task

	period: number of seconds between the executions



creates a new task with a generated id

Return Codes


	400:
If the post body is not accurate, a HTTP 400 is returned.



Examples



shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/tasks/ <<EOF
{ 
  "name" : "SampleTask", 
  "command" : "(function(params) { require('@arangodb').print(params); })(params)", 
  "params" : { 
    "foo" : "bar", 
    "bar" : "foo" 
  }, 
  "period" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "id" : "12056", 
  "name" : "SampleTask", 
  "created" : 1547743299.1530282, 
  "type" : "periodic", 
  "period" : 2, 
  "offset" : 0, 
  "command" : "(function (params) { (function(params) { require('@arangodb').print(params); })(params) } )(params);", 
  "database" : "_system", 
  "error" : false, 
  "code" : 200 
}
shell> curl -X DELETE --dump - http://localhost:8529/_api/tasks/12056






shell> curl -X POST --data-binary @- --dump - http://localhost:8529/_api/tasks/ <<EOF
{ 
  "name" : "SampleTask", 
  "command" : "(function(params) { require('@arangodb').print(params); })(params)", 
  "params" : { 
    "foo" : "bar", 
    "bar" : "foo" 
  }, 
  "period" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







creates a task with id

 registers a new task with a pre-defined id

PUT /_api/tasks/{id}


	id (required):
The id of the task to create



A JSON object with these properties is required:


	params: The parameters to be passed into command

	offset: Number of seconds initial delay 

	command: The JavaScript code to be executed

	name: The name of the task

	period: number of seconds between the executions



registers a new task with the specified id

Return Codes


	400:
If the task id already exists or the rest body is not accurate, HTTP 400 is returned.



Examples



shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/tasks/sampleTask <<EOF
{ 
  "id" : "SampleTask", 
  "name" : "SampleTask", 
  "command" : "(function(params) { require('@arangodb').print(params); })(params)", 
  "params" : { 
    "foo" : "bar", 
    "bar" : "foo" 
  }, 
  "period" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "id" : "sampleTask", 
  "name" : "SampleTask", 
  "created" : 1547743299.1664438, 
  "type" : "periodic", 
  "period" : 2, 
  "offset" : 0, 
  "command" : "(function (params) { (function(params) { require('@arangodb').print(params); })(params) } )(params);", 
  "database" : "_system", 
  "error" : false, 
  "code" : 200 
}





shell> curl -X PUT --data-binary @- --dump - http://localhost:8529/_api/tasks/sampleTask <<EOF
{ 
  "id" : "SampleTask", 
  "name" : "SampleTask", 
  "command" : "(function(params) { require('@arangodb').print(params); })(params)", 
  "params" : { 
    "foo" : "bar", 
    "bar" : "foo" 
  }, 
  "period" : 2 
}
EOF

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







deletes the task with id

 deletes one currently active server task

DELETE /_api/tasks/{id}


	id (required):
The id of the task to delete.



Deletes the task identified by id on the server. 

Return Codes


	404:
If the task id is unknown, then an HTTP 404 is returned.



Examples

trying to delete non existing task



shell> curl -X DELETE --dump - http://localhost:8529/_api/tasks/NoTaskWithThatName

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : true, 
  "code" : 404, 
  "errorNum" : 1852, 
  "errorMessage" : "task not found" 
}





shell> curl -X DELETE --dump - http://localhost:8529/_api/tasks/NoTaskWithThatName

HTTP/1.1 404 Not Found
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Remove existing Task



shell> curl -X DELETE --dump - http://localhost:8529/_api/tasks/SampleTask

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "error" : false, 
  "code" : 200 
}








        

    



        
    



        

    
        Agency

        
            HTTP Interface for Agency feature

The Agency is the ArangoDB component which manages the entire ArangoDB cluster. ArangoDB itself mainly uses the Agency as a central place to store the configuration and the cluster nodes health management. It implements the Raft consensus protocol to act as the single-source of truth for the entire cluster. You may know other software providing similar functionality e.g. Apache Zookeeper, etcd or Consul.

To an end-user the Agency is essentially a fault-tolerant Key-Value Store with a simple REST-API. It is possible to use the Agency API for a variety of use-cases, for example:

Centralized configuration repository
Service discovery registry
Distributed synchronization service
Distributed Lock-Manager

Note 1: To access the Agency API with authentication enabled, you need to include an authorization header with every request. The authorization header must contain a superuser JWT Token; For more information see the authentication section.

Note 2: The key-prefix /arango contains ArangoDBs internal configuration. You should never change any values below the arango key.

Key-Value store APIs

Generally, all document IO to and from the key-value store consists of JSON arrays. The outer Array is an envelope for multiple read or write transactions. The results are arrays are an envelope around the results corresponding to the order of the incoming transactions.

Consider the following write operation into a pristine agency:

curl -L http://$SERVER:$PORT/_api/agency/write -d '[[{"a":{"op":"set","new":{"b":{"c":[1,2,3]},"e":12}},"d":{"op":"set","new":false}}]]'

[{results:[1]}]


And the subsequent read operation 

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/"]]'

[
  {
    "a": {
      "b": {
        "c": [1,2,3]
      },
      "e": 12
    },
    "d": false
  }
]


In the first step we committed a single transaction that commits the JSON document inside the inner transaction array to the agency. The result is [1], which is the replicated log index. Repeated invocation will yield growing log numbers 2, 3, 4, etc. 

The read access is a complete access to the key-value store indicated by access to it's root element and returns the result as an array corresponding to the outermost array in the read transaction.

Let's dig in some deeper.

Read API

Let's start with the above initialized key-value store in the following. Let us visit the following read operations:

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b"]]'

[
  {
    "a": {
      "b": {
        "c": [1,2,3]
      }
    }
  }
]


And

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/c"]]'

[
  {
    "a": {
      "b": {
        "c": [1,2,3]
      }
    }
  }
]


Note that the above results are identical, meaning that results obtained from the agency are always return with full path.

The second outer array brackets in read operations correspond to transactions, meaning that the result is guaranteed to have been acquired without a write transaction in between:

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/e"],["/d","/a/b"]]'

[
  {
    "a": {
      "e": 12
    }
  },
  {
    "a": {
      "b": {
        "c": [1,2,3
        ]
      }
    },
    "d": false
  }
]


While the first transaction consists of a single read access to the key-value-store thus stretching the meaning of the word transaction, the second bracket actually hold two disjunct read accesses, which have been joined within zero-time, i.e. without a write access in between. That is to say that "/d" cannot have changed before "/a/b" had been acquired.

Let's try to fetch a value from the key-value-store, which does not exist:

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/d"]]'

[
  {
    "a": {
      "b": {}
    }
  }
]


The result returns the cross section of the requested path and the key-value-store contents. "/a/b" exists, but there is no key "/a/b/d". Thus the following transaction will yield:

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/d","/d"]]'

[
  {
    "a": {
      "b": {}
    },
    "d": false
  }
]


And this last read operation should return:

curl -L http://$SERVER:$PORT/_api/agency/read -d '[["/a/b/c"],["/a/b/d"],["/a/x/y"],["/y"],["/a/b","/a/x" ]]'

[
  {"a":{"b":{"c":[1,2,3]}}},
  {"a":{"b":{}}},
  {"a":{}},
  {},
  {"a":{"b":{"c":[1,2,3]}}}
]


Write API

The write API must obviously be more versatile and needs a more detailed appreciation. Write operations are arrays of transactions with preconditions, i.e. [[U,P]], where the system tries to apply all updates in the outer array in turn, rejecting those whose precondition is not fulfilled by the current state. It is guaranteed that the transactions in the write request are sequenced adjacent to each other (with no intervention from other write requests). Only the ones with failed preconditions are left out.

For P, the value of a key is an object with attributes "old", "oldNot", "oldEmpty" or "isArray". With "old" one can specify a JSON value that has to be present for the condition to be fulfilled. With "oldNot" one may check for a value to not be equal to the test. While with "oldEmpty", which can take a boolean value, one can specify that the key value needs to be not set true or set to an arbitrary value false. With "isArray" one can specify that the value must be an array. As a shortcut, "old" values of scalar or array type may be stored directly in the attribute.
Examples:

{ "/a/b/c": { "old": [1,2,3] }}


is a precondition specifying that the previous value of the key "/a/b/c" key must be [1,2,3]. If and only if the value of the precondition is not an object we provide a notation, where the keywork old may be omitted. Thus, the above check may be shortcut as 

{ "/a/b/c": [1, 2, 3] }


Consider the agency in initialized as above let's review the responses from the agency as follows:

curl -L http://$SERVER:$PORT/_api/agency/write -d '[[{"/a/b/c":{"op":"set","new":[1,2,3,4]},"/a/b/pi":{"op":"set","new":"some text"}},{"/a/b/c":{"old":[1,2,3]}}]]'

{
  "results": [19]
}


The condition is fulfilled in the first run and would be wrong in a second returning

{
  "results": [0]
}


0 as a result means that the precondition failed and no "real" log number was returned.

{ "/a/e": { "oldEmpty": false } }


means that the value of the key "a/e" must be set (to something, which can be null!). The condition

{ "/a/e": { "oldEmpty": true } }


means that the value of the key "a/e" must be unset. The condition

{ "/a/b/c": { "isArray": true } }

means that the value of the key "a/b/c" must be an array.

The update value U is an object, the attribute names are again key strings and the values are objects with optional attributes "new", "op" and "ttl". They have the following meaning:

"op" determines the operation, possible values are "set" (the default, if left out), "delete", "increment", "decrement", "push", "pop", "shift" or "prepend"

"new" is the new value, can be omitted for the "delete" operation and for "increment" and "decrement", where 1 is implied

"ttl", if present, the new value that is being set gets a time to live in seconds, given by a numeric value in this attribute. It is only guaranteed that the actual removal of the value is done according to the system clock, so up to clock skew between servers. The removal is done by an additional write transaction that is automatically generated between the regular writes.

Additional rule: If none of "new" and "op" is set or the value is not even an object, then this is to be interpreted as if it were

{ "op": "set", "new": <VALUE> }


which amounts to setting the value with no precondition.

Examples:

{ "/a": { "op": "set", "new": 12 } }


sets the value of the key "/a" to 12. The same could have been achieved by

{ "/a": 12 }


or by

{ "/a": { "new": 12} }


The operation

{ "/a/b": { "new": { "c": [1,2,3,4] } } }


sets the key "/a/b" to {"c": [1,2,3,4]}. Note that in the above example this is the same as setting the value of "/a/b/c" to [1,2,3,4]. The difference is, that if a/b had other sub attributes, then this transaction would delete all these other attributes and make "/a/b" equal to {"c": [1,2,3,4]}, whereas setting "/a/b/c" to [1,2,3,4] would retain all attributes other than "c" in "/a/b".

Here are some more examples for full transactions (update/precondition pairs). The transaction

[ { "/a/b": { "new": { "c": [1,2,3,4] } } },
  { "/a/b": { "old": { "c": [1,2,3] } } } ]


sets the key "/a/b" to {"c":[1,2,3,4]} if and only if it was {"c":[1,2,3]} before. Note that this fails if "/a/b" had other attributes than "c". The transaction

[ { "/x": { "op": "delete" } },
  { "/x": { "old": false } } ]


clears the value of the key "/x" if this old value was false.

[ { "/y": { "new": 13 },
  { "/y": { "oldEmpty": true } } }


sets the value of "/y" to 13, but only, if it was unset before.

[ { "/z": { "op": "push", "new": "Max" } } ]


appends the string "Max" to the end of the list stored in the "z" attribute, or creates an array ["Max"] in "z" if it was unset or not an array.

[ { "/u": { "op": "pop" } } ]


removes the last entry of the array stored under "u", if the value of "u" is not set or not an array.

HTTP-headers for write operations

X-ArangoDB-Agency-Mode with possible values "waitForCommitted", "waitForSequenced" and "noWait".

In the first case the write operation only returns when the commit to the replicated log has actually happened. In the second case the write operation returns when the write transactions that fulfilled their preconditions have been sequenced and thus it is known, which of the write transactions in the given array had fulfilled preconditions. In both cases the body is a JSON array containing the indexes of the transactions in the list that had fulfilled preconditions.

In the last case, "noWait", the operation returns immediately, an empty body is returned. To get any information about the result of the operation one has to specify a tag (see below) and ask about the status later on.

X-ArangoDB-Agency-Tag with an arbitrary UTF-8 string value.

Observers

External services to the agency may announce themselves or others to be observers of arbitrary existing or future keys in the key-value-store. The agency must then inform the observing service of any changes to the subtree below the observed key. The notification is done by virtue of POST requests to a required valid URL.

In order to observe any future modification below say "/a/b/c", a observer is announced through posting the below document to the agency’s write REST handler:

[ { "/a/b/c": 
    { "op":  "observe", 
      "url": "http://<host>:<port>/<path>" 
    }
  } ]


The observer is notified of any changes to that target until such time that it removes itself as an observer of that key through

[ { "/a/b/c": 
    { "op":  "unobserve", 
      "url": “http://<host>:<port>/<path>" } } ]


Note that the last document removes all observations from entities below "/a/b/c". In particular, issuing

[ { "/": "unobserve", "url": "http://<host>:<port>/<path>"} ]


will result in the removal of all observations for URL "http://<host>:<port>/<path>".
The notifying POST requests are submitted immediately with any complete array of changes to the read db of the leader of create, modify and delete events accordingly; The body  

{ "term": "5", 
  "index": 167,
  "/": { 
    "/a/b/c" : { "op": "modify", "old": 1, "new": 2 } },
    "/constants/euler" : {"op": "create", "new": 2.718281828459046 },
    "/constants/pi": { "op": "delete" } } }


Configuration

At all times, i.e. regardless of the state of the agents and the current health of the RAFT consensus, one can invoke the configuration API:

curl http://$SERVER:$PORT/_api/agency/config

Here, and in all subsequent calls, we assume that $SERVER is
replaced by the server name and $PORT is replaced by the port
number. We use curl throughout for the examples, but any client
library performing HTTP requests should do.
The output might look somewhat like this

{
  "term": 1,
  "leaderId": "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",
  "lastCommitted": 1,
  "lastAcked": {
    "ac129027-b440-4c4f-84e9-75c042942171": 0.21,
    "c54dbb8a-723d-4c82-98de-8c841a14a112": 0.21,
    "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98": 0
  },
  "configuration": {
    "pool": {
      "ac129027-b440-4c4f-84e9-75c042942171": "tcp://localhost:8531",
      "c54dbb8a-723d-4c82-98de-8c841a14a112": "tcp://localhost:8530",
      "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98": "tcp://localhost:8529"
    },
    "active": [
      "ac129027-b440-4c4f-84e9-75c042942171",
      "c54dbb8a-723d-4c82-98de-8c841a14a112",
      "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98"
    ],
    "id": "f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",
    "agency size": 3,
    "pool size": 3,
    "endpoint": "tcp://localhost:8529",
    "min ping": 0.5,
    "max ping": 2.5,
    "supervision": false,
    "supervision frequency": 5,
    "compaction step size": 1000,
    "supervision grace period": 120
  }
}


This is the actual output of a healthy agency. The configuration of the agency is found in the configuration section as you might have guessed. It is populated by static information on the startup parameters like agency size, the once generated unique id etc. It holds information on the invariants of the RAFT algorithm and data compaction.

The remaining data reflect the variant entities in RAFT, as term and leaderId, also some debug information on how long the last leadership vote was received from any particular agency member. Low term numbers on a healthy network are an indication of good operation environment, while often increasing term numbers indicate, that the network environment and stability suggest to raise the RAFT parameters min ping and 'max ping' accordingly.


        

    



        
    



        

    
        Miscellaneous functions

        
            HTTP Interface for Miscellaneous functions

This is an overview of ArangoDB's HTTP interface for miscellaneous functions.


Return server version

 returns the server version number

GET /_api/version

Query Parameters


	details (optional):
If set to true, the response will contain a details attribute with
additional information about included components and their versions. The
attribute names and internals of the details object may vary depending on
platform and ArangoDB version.



Returns the server name and version number. The response is a JSON object
with the following attributes:

HTTP 200

A json document with these Properties is returned:

is returned in all cases.


	version: the server version string. The string has the format
"major.minor.sub". major and minor will be numeric, and sub
may contain a number or a textual version.

	details: an optional JSON object with additional details. This is
returned only if the details query parameter is set to true in the
request.

	server: will always contain arango



Return Codes


	200:
is returned in all cases.



Response Body


	version: the server version string. The string has the format
"major.minor.sub". major and minor will be numeric, and sub
may contain a number or a textual version.

	details: an optional JSON object with additional details. This is
returned only if the details query parameter is set to true in the
request.

	server: will always contain arango



Examples

Return the version information



shell> curl --dump - http://localhost:8529/_api/version

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "server" : "arango", 
  "version" : "3.3.22", 
  "license" : "community" 
}





shell> curl --dump - http://localhost:8529/_api/version

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body






Return the version information with details



shell> curl --dump - http://localhost:8529/_api/version?details=true

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "server" : "arango", 
  "version" : "3.3.22", 
  "license" : "community", 
  "details" : { 
    "architecture" : "64bit", 
    "arm" : "false", 
    "asan" : "false", 
    "asm-crc32" : "true", 
    "assertions" : "true", 
    "boost-version" : "1.62.0", 
    "build-date" : "2019-01-17 16:39:00", 
    "build-repository" : "heads/3.3-0-gf9e804e577-dirty", 
    "compiler" : "gcc [7.3.0]", 
    "cplusplus" : "201103", 
    "debug" : "false", 
    "endianness" : "little", 
    "failure-tests" : "false", 
    "fd-client-event-handler" : "poll", 
    "fd-setsize" : "1024", 
    "full-version-string" : "ArangoDB 3.3.22 [linux] 64bit maintainer mode, using jemalloc, build heads/3.3-0-gf9e804e577-dirty, VPack 0.1.30, RocksDB 5.6.0, ICU 58.1, V8 5.7.492.77, OpenSSL 1.1.0g  2 Nov 2017", 
    "icu-version" : "58.1", 
    "jemalloc" : "true", 
    "maintainer-mode" : "true", 
    "ndebug" : "true", 
    "openssl-version" : "OpenSSL 1.1.0g  2 Nov 2017", 
    "optimisation flags" : "-march=haswell -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -mavx -mfma -mbmi2 -mavx2 -mno-sse4a -mno-xop -mno-fma4 -mno-avx512f -mno-avx512vl -mno-avx512pf -mno-avx512er -mno-avx512cd -mno-avx512dq -mno-avx512bw -mno-avx512ifma -mno-avx512vbmi", 
    "platform" : "linux", 
    "reactor-type" : "epoll", 
    "rocksdb-version" : "5.6.0", 
    "server-version" : "3.3.22", 
    "sizeof int" : "4", 
    "sizeof void*" : "8", 
    "sse42" : "true", 
    "unaligned-access" : "true", 
    "v8-version" : "5.7.492.77", 
    "vpack-version" : "0.1.30", 
    "zlib-version" : "1.2.11", 
    "mode" : "server", 
    "host" : "c54ebb83e5eb4257b9e0f7201ba87ded" 
  } 
}





shell> curl --dump - http://localhost:8529/_api/version?details=true

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Return server database engine type

 returns the engine the type the server is running with

GET /_api/engine

Returns the storage engine the server is configured to use.
The response is a JSON object with the following attributes:

HTTP 200

A json document with these Properties is returned:

is returned in all cases.


	name: will be mmfiles or rocksdb



Return Codes


	200:
is returned in all cases.



Response Body


	name: will be mmfiles or rocksdb



Examples

Return the active storage engine



shell> curl --dump - http://localhost:8529/_api/engine

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff

{ 
  "name" : "mmfiles", 
  "supports" : { 
    "dfdb" : true, 
    "indexes" : [ 
      "primary", 
      "edge", 
      "hash", 
      "skiplist", 
      "persistent", 
      "geo", 
      "fulltext" 
    ] 
  } 
}





shell> curl --dump - http://localhost:8529/_api/engine

HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
x-content-type-options: nosniff


show response body







Flushes the write-ahead log

 Sync the WAL to disk.

PUT /_admin/wal/flush

Query Parameters


	waitForSync (optional):
Whether or not the operation should block until the not-yet synchronized
data in the write-ahead log was synchronized to disk.



	waitForCollector (optional):
Whether or not the operation should block until the data in the flushed
log has been collected by the write-ahead log garbage collector. Note that
setting this option to true might block for a long time if there are
long-running transactions and the write-ahead log garbage collector cannot
finish garbage collection.





Flushes the write-ahead log. By flushing the currently active write-ahead
logfile, the data in it can be transferred to collection journals and
datafiles. This is useful to ensure that all data for a collection is
present in the collection journals and datafiles, for example, when dumping
the data of a collection.

Return Codes


	200:
Is returned if the operation succeeds.



	405:
is returned when an invalid HTTP method is used.






Retrieves the configuration of the write-ahead log

 fetch the current configuration.

GET /_admin/wal/properties

Retrieves the configuration of the write-ahead log. The result is a JSON
object with the following attributes:


	allowOversizeEntries: whether or not operations that are bigger than a
single logfile can be executed and stored

	logfileSize: the size of each write-ahead logfile

	historicLogfiles: the maximum number of historic logfiles to keep

	reserveLogfiles: the maximum number of reserve logfiles that ArangoDB
allocates in the background

	syncInterval: the interval for automatic synchronization of not-yet
synchronized write-ahead log data (in milliseconds)

	throttleWait: the maximum wait time that operations will wait before
they get aborted if case of write-throttling (in milliseconds)

	throttleWhenPending: the number of unprocessed garbage-collection
operations that, when reached, will activate write-throttling. A value of
0 means that write-throttling will not be triggered.



Return Codes


	200:
Is returned if the operation succeeds.



	405:
is returned when an invalid HTTP method is used.






Configures the write-ahead log

 configure parameters of the wal

PUT /_admin/wal/properties

Configures the behavior of the write-ahead log. The body of the request
must be a JSON object with the following attributes:


	allowOversizeEntries: whether or not operations that are bigger than a
single logfile can be executed and stored

	logfileSize: the size of each write-ahead logfile

	historicLogfiles: the maximum number of historic logfiles to keep

	reserveLogfiles: the maximum number of reserve logfiles that ArangoDB
allocates in the background

	throttleWait: the maximum wait time that operations will wait before
they get aborted if case of write-throttling (in milliseconds)

	throttleWhenPending: the number of unprocessed garbage-collection
operations that, when reached, will activate write-throttling. A value of
0 means that write-throttling will not be triggered.



Specifying any of the above attributes is optional. Not specified attributes
will be ignored and the configuration for them will not be modified.

Return Codes


	200:
Is returned if the operation succeeds.



	405:
is returned when an invalid HTTP method is used.






Returns information about the currently running transactions

 returns information about the currently running transactions

GET /_admin/wal/transactions

Returns information about the currently running transactions. The result
is a JSON object with the following attributes:


	runningTransactions: number of currently running transactions

	minLastCollected: minimum id of the last collected logfile (at the
start of each running transaction). This is null if no transaction is
running.

	minLastSealed: minimum id of the last sealed logfile (at the
start of each running transaction). This is null if no transaction is
running.



Return Codes


	200:
Is returned if the operation succeeds.



	405:
is returned when an invalid HTTP method is used.






Return system time

 Get the current time of the system

GET /_admin/time

The call returns an object with the attribute time. This contains the
current system time as a Unix timestamp with microsecond precision.

Return Codes


	200:
Time was returned successfully.




Return current request

 Send back what was sent in, headers, post body etc.

GET /_admin/echo

The call returns an object with the following attributes:


	headers: object with HTTP headers received



	requestType: the HTTP request method (e.g. GET)



	parameters: object with query parameters received





Return Codes


	200:
Echo was returned successfully.



Return the required version of the database

 returns the version of the database.

GET /_admin/database/target-version

Returns the database-version that this server requires.
The version is returned in the version attribute of the result.

Return Codes


	200:
Is returned in all cases.




Initiate shutdown sequence

 initiates the shutdown sequence

DELETE /_admin/shutdown

This call initiates a clean shutdown sequence. Requires administrive privileges

Return Codes


	200:
is returned in all cases.




Runs tests on server

 show the available unittests on the server.

POST /_admin/test

Request Body (required)

A JSON object containing an attribute tests which lists the files
containing the test suites.

Executes the specified tests on the server and returns an object with the
test results. The object has an attribute "error" which states whether
any error occurred. The object also has an attribute "passed" which
indicates which tests passed and which did not.

Return Codes


	200: is returned when everything went well.




Execute program

 Execute a script on the server.

POST /_admin/execute

Request Body (required)

The body to be executed.

Executes the javascript code in the body on the server as the body
of a function with no arguments. If you have a return statement
then the return value you produce will be returned as content type
application/json. If the parameter returnAsJSON is set to
true, the result will be a JSON object describing the return value
directly, otherwise a string produced by JSON.stringify will be
returned.

Note that this API endpoint will only be present if the server was
started with the option --javascript.allow-admin-execute true.

The default value of this option is false, which disables the execution of 
user-defined code and disables this API endpoint entirely. 
This is also the recommended setting for production. 

Return Codes


	200: is returned when everything went well.




Return status information

 returns status information of the server. 

GET /_admin/status

Returns status information about the server.

This is intended for manual use by the support and should
never be used for monitoring or automatic tests. The results
are subject to change without notice.

The call returns an object with the following attributes:


	server: always arango.



	license: either community or enterprise.



	version: the server version as string.



	mode : either server or console.



	host: the hostname, see ServerState.



	serverInfo.role: either SINGLE, COORDINATOR, PRIMARY, AGENT.



	serverInfo.writeOpsEnabled: boolean, true if writes are enabled.



	serverInfo.maintenance: boolean, true if maintenace mode is enabled.



	agency.endpoints: a list of possible agency endpoints.





An agent, coordinator or primary will also have


	serverInfo.persistedId: the persisted ide, e. g. "CRDN-e427b441-5087-4a9a-9983-2fb1682f3e2a".



A coordinator or primary will also have


	serverInfo.state: SERVING



	serverInfo.address: the address of the server, e. g. tcp://[::1]:8530.



	serverInfo.serverId: the server ide, e. g. "CRDN-e427b441-5087-4a9a-9983-2fb1682f3e2a".





A coordintor will also have


	coordinator.foxxmaster: the server id of the foxx master.



	coordinator.isFoxxmaster: boolean, true if the server is the foxx master.





An agent will also have


	agent.id: server id of this agent.



	agent.leaderId: server id of the leader.



	agent.leading: boolean, true if leading.



	agent.endpoint: the endpoint of this agent.



	agent.term: current term number.





Return Codes


	200:
Status information was returned successfully.




        

    



        
    



        

    
        Repair jobs

        
            Repair Jobs

distributeShardsLike

Before versions 3.2.12 and 3.3.4 there was a bug in the collection creation
which could lead to a violation of the property that its shards were
distributed on the DBServers exactly as the prototype collection from the
distributeShardsLike setting.

Please read everything carefully before using this API! 

There is a job that can restore this property safely. However, while the
job is running,


	the replicationFactor must not be changed for any affected collection or
prototype collection (i.e. set in distributeShardsLike, including
SmartGraphs),

	neither should shards be moved of one of those prototypes

	and shutdown of DBServers should be avoided
during the repairs. Also only one repair job should run at any given time.
Failure to meet those requirements will mostly cause the job to abort, but still
allow to restart it safely. However, changing the replicationFactor during
repairs may leave it in a state that is not repairable without manual
intervention!



Shutting down the coordinator which executes the job will abort it, but it can
safely be restarted on another coordinator. However, there may still be a shard
move ongoing even after the job stopped. If the job is started again before the
move is finished, repairing the affected collection will fail, but the repair
can be restarted safely.

If there is any affected collection which replicationFactor is equal to
the total number of DBServers, the repairs might abort. In this case, it is
necessary to reduce the replicationFactor by one (or add a DBServer). The
job will not do that automatically.

Generally, the job will abort if any of its assumptions fail, at the start
or during the repairs. It can be started again and will resume from the
current state.

Testing with GET /_admin/repairs/distributeShardsLike

Using GET will not trigger any repairs, but only calculate and return
the operations necessary to repair the cluster. This way, you can also
check if there is something to repair.

$ wget -qSO - http://localhost:8529/_admin/repair/distributeShardsLike | jq .
  HTTP/1.1 200 OK
  X-Content-Type-Options: nosniff
  Server: ArangoDB
  Connection: Keep-Alive
  Content-Type: application/json; charset=utf-8
  Content-Length: 53
{
  "error": false,
  "code": 200,
  "message": "Nothing to do."
}

In the example above, all collections with distributeShardsLike have their
shards distributed correctly. The response if something is broken looks like
this:

{
  "error": false,
  "code": 200,
  "collections": {
    "_system/someCollection": {
      "PlannedOperations": [
        {
          "BeginRepairsOperation": {
            "database": "_system",
            "collection": "someCollection",
            "distributeShardsLike": "aPrototypeCollection",
            "renameDistributeShardsLike": true,
            "replicationFactor": 4
          }
        },
        {
          "MoveShardOperation": {
            "database": "_system",
            "collection": "someCollection",
            "shard": "s2000109",
            "from": "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
            "to": "PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
            "isLeader": false
          }
        },
        {
          "MoveShardOperation": {
            "database": "_system",
            "collection": "someCollection",
            "shard": "s2000109",
            "from": "PRMR-ee3d7af6-1fbf-4ab7-bfd1-56d0a1c1c9b9",
            "to": "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
            "isLeader": true
          }
        },
        {
          "FixServerOrderOperation": {
            "database": "_system",
            "collection": "someCollection",
            "distributeShardsLike": "aPrototypeCollection",
            "shard": "s2000109",
            "distributeShardsLikeShard": "s2000092",
            "leader": "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
            "followers": [
              "PRMR-99c2ac17-f417-4710-82aa-8350417dd089",
              "PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e",
              "PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a"
            ],
            "distributeShardsLikeFollowers": [
              "PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
              "PRMR-99c2ac17-f417-4710-82aa-8350417dd089",
              "PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e"
            ]
          }
        },
        {
          "FinishRepairsOperation": {
            "database": "_system",
            "collection": "someCollection",
            "distributeShardsLike": "aPrototypeCollection",
            "shards": [
              {
                "shard": "s2000109",
                "protoShard": "s2000092",
                "dbServers": [
                  "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
                  "PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
                  "PRMR-99c2ac17-f417-4710-82aa-8350417dd089",
                  "PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e"
                ]
              },
              {
                "shard": "s2000110",
                "protoShard": "s2000093",
                "dbServers": [
                  "PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",
                  "PRMR-ee3d7af6-1fbf-4ab7-bfd1-56d0a1c1c9b9",
                  "PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",
                  "PRMR-99c2ac17-f417-4710-82aa-8350417dd089"
                ]
              },
[...]
            ]
          }
        }
      ],
      "error": false
    }
  }
}


If something is to be repaired, the response will have the property
collections with an entry <db>/<collection> for each collection which
has to be repaired. Each collection also as a separate error property
which will be true iff an error occured for this collection (and false
otherwise). If error is true, the properties errorNum and
errorMessage will also be set, and in some cases also errorDetails
with additional information on how to handle a specific error.

Repairing with POST /_admin/repairs/distributeShardsLike

As this job possibly has to move a lot of data around, it can take a while
depending on the size of the affected collections. So this should not
be called synchronously, but only via
Async Results: i.e., set the
header x-arango-async: store to put the job into background and get
its results later. Otherwise the request will most probably result in a
timeout and the response will be lost! The job will still continue unless
the coordinator is stopped, but there is no way to find out if it is
still running, or get success or error information afterwards.

Starting the job in background can be done like so:

$ wget --method=POST --header='x-arango-async: store' -qSO - http://localhost:8529/_admin/repair/distributeShardsLike 
  HTTP/1.1 202 Accepted
  X-Content-Type-Options: nosniff
  X-Arango-Async-Id: 152223973119118
  Server: ArangoDB
  Connection: Keep-Alive
  Content-Type: text/plain; charset=utf-8
  Content-Length: 0

This line is of notable importance:

  X-Arango-Async-Id: 152223973119118

as it contains the job id which can be used to fetch the state and results
of the job later. GETting /_api/job/pending and /_api/job/done will list
job ids of jobs that are pending or done, respectively.

This can also be done with the GET method for testing.

The job api must be used to fetch the state and results. It will return
a 204 while the job is running. The actual response will be returned
only once, after that the job is deleted and the api will return a 404.
It is therefore recommended to write the response directly to a file for
later inspection. Fetching the result is done by calling /_api/job via
PUT: 

$ wget --method=PUT -qSO - http://localhost:8529/_api/job/152223973119118 | jq .
  HTTP/1.1 200 OK
  X-Content-Type-Options: nosniff
  X-Arango-Async-Id: 152223973119118
  Server: ArangoDB
  Connection: Keep-Alive
  Content-Type: application/json; charset=utf-8
  Content-Length: 53
{
  "error": false,
  "code": 200,
  "message": "Nothing to do."
}

The final response will look like the response of the GET call.
If an error occured the response should contain details on how to proceed.
If in doubt, ask as on Slack: https://arangodb.com/community/


        

    



        
    


knows_graph.png
dave

charlie

alice

/
B





cover_image.jpg
ArangoDB v3.3.22
HTTP API

Documentation

ArangoDB GmbH





