
1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.6

1.6.1

1.6.2

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

1.9

1.10

1.10.1

1.10.2

1.11

1.12

1.13

1.14

1.15

1.16

1.16.1

1.16.2

1.16.3

1.16.4

1.17

1.17.1

1.17.2

1.17.3

1.17.4

1.17.5

Table	of	Contents
Introduction

General	HTTP	Handling

HTTP	Interface

Databases

To-Endpoint

Management

Notes	on	Databases

Collections

Creating

Getting	Information

Modifying

Documents

Basics	and	Terminology

Working	with	Documents

Edges

Address	and	Etag

Working	with	Edges

General	Graph

Management

Vertices

Edges

Traversals

AQL	Query	Cursors

Query	Results

Accessing	Cursors

AQL	Queries

AQL	Query	Cache

AQL	User	Functions	Management

Simple	Queries

Async	Result	Handling

Bulk	Import	/	Export

JSON	Documents

Headers	&	Values

Batch	Requests

Exporting	data

Indexes

Working	with	Indexes

Hash

Skiplist

Persistent

Geo

1

1.17.6

1.18

1.19

1.19.1

1.19.2

1.19.3

1.19.4

1.20

1.21

1.22

1.23

1.23.1

1.23.2

1.23.3

1.24

1.25

1.26

1.27

1.28

Fulltext

Transactions

Replication

Replication	Dump

Replication	Logger

Replication	Applier

Other	Replication	Commands

Sharding

Monitoring

Endpoints

Foxx	Services

Management

Configuration

Miscellaneous

User	Management

Tasks

Agency

Miscellaneous	functions

Repair	jobs

2

ArangoDB	v3.3.10	HTTP	API	Documentation
Welcome	to	the	ArangoDB	HTTP	API	documentation!	This	documentation	is	for	API	developers.	As	a	user	or	administrator	of
ArangoDB	you	should	not	need	the	information	provided	herein.

In	general,	as	a	user	of	ArangoDB	you	will	use	one	of	the	language	drivers.

Introduction

3

https://www.arangodb.com/drivers/

General	HTTP	Request	Handling	in	ArangoDB

Protocol

ArangoDB	exposes	its	API	via	HTTP,	making	the	server	accessible	easily	with	a	variety	of	clients	and	tools	(e.g.	browsers,	curl,	telnet).
The	communication	can	optionally	be	SSL-encrypted.

ArangoDB	uses	the	standard	HTTP	methods	(e.g.	GET,	POST,	PUT,	DELETE)	plus	the	PATCH	method	described	in	RFC	5789.

Most	server	APIs	expect	clients	to	send	any	payload	data	in	JSON	format.	Details	on	the	expected	format	and	JSON	attributes	can	be
found	in	the	documentation	of	the	individual	server	methods.

Clients	sending	requests	to	ArangoDB	must	use	either	HTTP	1.0	or	HTTP	1.1.	Other	HTTP	versions	are	not	supported	by	ArangoDB
and	any	attempt	to	send	a	different	HTTP	version	signature	will	result	in	the	server	responding	with	an	HTTP	505	(HTTP	version	not
supported)	error.

ArangoDB	will	always	respond	to	client	requests	with	HTTP	1.1.	Clients	should	therefore	support	HTTP	version	1.1.

Clients	are	required	to	include	the	Content-Length	HTTP	header	with	the	correct	content	length	in	every	request	that	can	have	a	body
(e.g.	POST,	PUT	or	PATCH)	request.	ArangoDB	will	not	process	requests	without	a	Content-Length	header	-	thus	chunked	transfer
encoding	for	POST-documents	is	not	supported.

HTTP	Keep-Alive

ArangoDB	supports	HTTP	keep-alive.	If	the	client	does	not	send	a	Connection	header	in	its	request,	and	the	client	uses	HTTP	version
1.1,	ArangoDB	will	assume	the	client	wants	to	keep	alive	the	connection.	If	clients	do	not	wish	to	use	the	keep-alive	feature,	they	should
explicitly	indicate	that	by	sending	a	Connection:	Close	HTTP	header	in	the	request.

ArangoDB	will	close	connections	automatically	for	clients	that	send	requests	using	HTTP	1.0,	except	if	they	send	an	Connection:	Keep-
Alive	header.

The	default	Keep-Alive	timeout	can	be	specified	at	server	start	using	the	--http.keep-alive-timeout	parameter.

Establishing	TCP	connections	is	expensive,	since	it	takes	several	ping	pongs	between	the	communication	parties.	Therefore	you	can	use
connection	keepalive	to	send	several	HTTP	request	over	one	TCP-connection;	Each	request	is	treated	independently	by	definition.	You
can	use	this	feature	to	build	up	a	so	called	connection	pool	with	several	established	connections	in	your	client	application,	and
dynamically	re-use	one	of	those	then	idle	connections	for	subsequent	requests.

Blocking	vs.	Non-blocking	HTTP	Requests

ArangoDB	supports	both	blocking	and	non-blocking	HTTP	requests.

ArangoDB	is	a	multi-threaded	server,	allowing	the	processing	of	multiple	client	requests	at	the	same	time.	Request/response	handling	and
the	actual	work	are	performed	on	the	server	in	parallel	by	multiple	worker	threads.

Still,	clients	need	to	wait	for	their	requests	to	be	processed	by	the	server,	and	thus	keep	one	connection	of	a	pool	occupied.	By	default,
the	server	will	fully	process	an	incoming	request	and	then	return	the	result	to	the	client	when	the	operation	is	finished.	The	client	must
wait	for	the	server's	HTTP	response	before	it	can	send	additional	requests	over	the	same	connection.	For	clients	that	are	single-threaded
and/or	are	blocking	on	I/O	themselves,	waiting	idle	for	the	server	response	may	be	non-optimal.

To	reduce	blocking	on	the	client	side,	ArangoDB	offers	a	generic	mechanism	for	non-blocking,	asynchronous	execution:	clients	can	add	the
HTTP	header	x-arango-async:	true	to	any	of	their	requests,	marking	them	as	to	be	executed	asynchronously	on	the	server.	ArangoDB
will	put	such	requests	into	an	in-memory	task	queue	and	return	an	HTTP	202	(accepted)	response	to	the	client	instantly	and	thus	finish
this	HTTP-request.	The	server	will	execute	the	tasks	from	the	queue	asynchronously	as	fast	as	possible,	while	clients	can	continue	to	do
other	work.	If	the	server	queue	is	full	(i.e.	contains	as	many	tasks	as	specified	by	the	option	"--scheduler.maximal-queue-size"),	then	the
request	will	be	rejected	instantly	with	an	HTTP	500	(internal	server	error)	response.

General	HTTP	Handling

4

http://tools.ietf.org/html/rfc5789
http://www.json.org

Asynchronous	execution	decouples	the	request/response	handling	from	the	actual	work	to	be	performed,	allowing	fast	server	responses
and	greatly	reducing	wait	time	for	clients.	Overall	this	allows	for	much	higher	throughput	than	if	clients	would	always	wait	for	the
server's	response.

Keep	in	mind	that	the	asynchronous	execution	is	just	"fire	and	forget".	Clients	will	get	any	of	their	asynchronous	requests	answered	with
a	generic	HTTP	202	response.	At	the	time	the	server	sends	this	response,	it	does	not	know	whether	the	requested	operation	can	be
carried	out	successfully	(the	actual	operation	execution	will	happen	at	some	later	point).	Clients	therefore	cannot	make	a	decision	based
on	the	server	response	and	must	rely	on	their	requests	being	valid	and	processable	by	the	server.

Additionally,	the	server's	asynchronous	task	queue	is	an	in-memory	data	structure,	meaning	not-yet	processed	tasks	from	the	queue
might	be	lost	in	case	of	a	crash.	Clients	should	therefore	not	use	the	asynchronous	feature	when	they	have	strict	durability	requirements
or	if	they	rely	on	the	immediate	result	of	the	request	they	send.

For	details	on	the	subsequent	processing	read	on	under	Async	Result	handling.

Authentication

Client	authentication	can	be	achieved	by	using	the	Authorization	HTTP	header	in	client	requests.	ArangoDB	supports	authentication	via
HTTP	Basic	or	JWT.

Authentication	is	turned	on	by	default	for	all	internal	database	APIs	but	turned	off	for	custom	Foxx	apps.	To	toggle	authentication	for
incoming	requests	to	the	internal	database	APIs,	use	the	option	--server.authentication.	This	option	is	turned	on	by	default	so
authentication	is	required	for	the	database	APIs.

Please	note	that	requests	using	the	HTTP	OPTIONS	method	will	be	answered	by	ArangoDB	in	any	case,	even	if	no	authentication	data
is	sent	by	the	client	or	if	the	authentication	data	is	wrong.	This	is	required	for	handling	CORS	preflight	requests	(see	Cross	Origin
Resource	Sharing	requests).	The	response	to	an	HTTP	OPTIONS	request	will	be	generic	and	not	expose	any	private	data.

There	is	an	additional	option	to	control	authentication	for	custom	Foxx	apps.	The	option	--server.authentication-system-only	controls
whether	authentication	is	required	only	for	requests	to	the	internal	database	APIs	and	the	admin	interface.	It	is	turned	on	by	default,
meaning	that	other	APIs	(this	includes	custom	Foxx	apps)	do	not	require	authentication.

The	default	values	allow	exposing	a	public	custom	Foxx	API	built	with	ArangoDB	to	the	outside	world	without	the	need	for	HTTP
authentication,	but	still	protecting	the	usage	of	the	internal	database	APIs	(i.e.	/_api/,	/_admin/)	with	HTTP	authentication.

If	the	server	is	started	with	the	--server.authentication-system-only	option	set	to	false,	all	incoming	requests	will	need	HTTP
authentication	if	the	server	is	configured	to	require	HTTP	authentication	(i.e.	--server.authentication	true).	Setting	the	option	to	true	will
make	the	server	require	authentication	only	for	requests	to	the	internal	database	APIs	and	will	allow	unauthenticated	requests	to	all	other
URLs.

Here's	a	short	summary:

	--server.authentication	true	--server.authentication-system-only	true	:	this	will	require	authentication	for	all	requests	to	the
internal	database	APIs	but	not	custom	Foxx	apps.	This	is	the	default	setting.
	--server.authentication	true	--server.authentication-system-only	false	:	this	will	require	authentication	for	all	requests
(including	custom	Foxx	apps).
	--server.authentication	false	:	authentication	disabled	for	all	requests

Whenever	authentication	is	required	and	the	client	has	not	yet	authenticated,	ArangoDB	will	return	HTTP	401	(Unauthorized).	It	will
also	send	the	WWW-Authenticate	response	header,	indicating	that	the	client	should	prompt	the	user	for	username	and	password	if
supported.	If	the	client	is	a	browser,	then	sending	back	this	header	will	normally	trigger	the	display	of	the	browser-side	HTTP
authentication	dialog.	As	showing	the	browser	HTTP	authentication	dialog	is	undesired	in	AJAX	requests,	ArangoDB	can	be	told	to	not
send	the	WWW-Authenticate	header	back	to	the	client.	Whenever	a	client	sends	the	X-Omit-WWW-Authenticate	HTTP	header	(with	an
arbitrary	value)	to	ArangoDB,	ArangoDB	will	only	send	status	code	401,	but	no	WWW-Authenticate	header.	This	allows	clients	to
implement	credentials	handling	and	bypassing	the	browser's	built-in	dialog.

Authentication	via	JWT

To	authenticate	via	JWT	you	must	first	obtain	a	JWT.	To	do	so	send	a	POST	request	to

/_open/auth

General	HTTP	Handling

5

containing	username	and	password	JSON-encoded	like	so:

{"username":"root","password":"rootPassword"}

Upon	success	the	endpoint	will	return	a	200	OK	and	an	answer	containing	the	JWT	in	a	JSON-	encoded	object	like	so:

{"jwt":"eyJhbGciOiJIUzI1NiI..x6EfI"}

This	JWT	should	then	be	used	within	the	Authorization	HTTP	header	in	subsequent	requests:

Authorization:	bearer	eyJhbGciOiJIUzI1NiI..x6EfI

Please	note	that	the	JWT	will	expire	after	1	month	and	needs	to	be	updated.

ArangoDB	uses	a	standard	JWT	authentication.	The	secret	may	either	be	set	using		--server.jwt-secret		or	will	be	randomly	generated
upon	server	startup.

For	more	information	on	JWT	please	consult	RFC7519	and	https://jwt.io

Error	Handling

The	following	should	be	noted	about	how	ArangoDB	handles	client	errors	in	its	HTTP	layer:

client	requests	using	an	HTTP	version	signature	different	than	HTTP/1.0	or	HTTP/1.1	will	get	an	HTTP	505	(HTTP	version	not
supported)	error	in	return.
ArangoDB	will	reject	client	requests	with	a	negative	value	in	the	Content-Length	request	header	with	HTTP	411	(Length	Required).
Arangodb	doesn't	support	POST	with	transfer-encoding:	chunked	which	forbids	the	Content-Length	header	above.
the	maximum	URL	length	accepted	by	ArangoDB	is	16K.	Incoming	requests	with	longer	URLs	will	be	rejected	with	an	HTTP	414
(Request-URI	too	long)	error.
if	the	client	sends	a	Content-Length	header	with	a	value	bigger	than	0	for	an	HTTP	GET,	HEAD,	or	DELETE	request,	ArangoDB
will	process	the	request,	but	will	write	a	warning	to	its	log	file.
when	the	client	sends	a	Content-Length	header	that	has	a	value	that	is	lower	than	the	actual	size	of	the	body	sent,	ArangoDB	will
respond	with	HTTP	400	(Bad	Request).
if	clients	send	a	Content-Length	value	bigger	than	the	actual	size	of	the	body	of	the	request,	ArangoDB	will	wait	for	about	90
seconds	for	the	client	to	complete	its	request.	If	the	client	does	not	send	the	remaining	body	data	within	this	time,	ArangoDB	will
close	the	connection.	Clients	should	avoid	sending	such	malformed	requests	as	this	will	block	one	tcp	connection,	and	may	lead	to	a
temporary	filedescriptor	leak.
when	clients	send	a	body	or	a	Content-Length	value	bigger	than	the	maximum	allowed	value	(512	MB),	ArangoDB	will	respond	with
HTTP	413	(Request	Entity	Too	Large).
if	the	overall	length	of	the	HTTP	headers	a	client	sends	for	one	request	exceeds	the	maximum	allowed	size	(1	MB),	the	server	will
fail	with	HTTP	431	(Request	Header	Fields	Too	Large).
if	clients	request	an	HTTP	method	that	is	not	supported	by	the	server,	ArangoDB	will	return	with	HTTP	405	(Method	Not
Allowed).	ArangoDB	offers	general	support	for	the	following	HTTP	methods:

GET
POST
PUT
DELETE
HEAD
PATCH
OPTIONS

Please	note	that	not	all	server	actions	allow	using	all	of	these	HTTP	methods.	You	should	look	up	up	the	supported	methods	for
each	method	you	intend	to	use	in	the	manual.

Requests	using	any	other	HTTP	method	(such	as	for	example	CONNECT,	TRACE	etc.)	will	be	rejected	by	ArangoDB	as
mentioned	before.

Cross-Origin	Resource	Sharing	(CORS)	requests

General	HTTP	Handling

6

https://jwt.io

ArangoDB	will	automatically	handle	CORS	requests	as	follows:

Preflight

When	a	browser	is	told	to	make	a	cross-origin	request	that	includes	explicit	headers,	credentials	or	uses	HTTP	methods	other	than		GET	
or		POST	,	it	will	first	perform	a	so-called	preflight	request	using	the		OPTIONS		method.

ArangoDB	will	respond	to		OPTIONS		requests	with	an	HTTP	200	status	response	with	an	empty	body.	Since	preflight	requests	are	not
expected	to	include	or	even	indicate	the	presence	of	authentication	credentials	even	when	they	will	be	present	in	the	actual	request,
ArangoDB	does	not	enforce	authentication	for		OPTIONS		requests	even	when	authentication	is	enabled.

ArangoDB	will	set	the	following	headers	in	the	response:

	access-control-allow-credentials	:	will	be	set	to		false		by	default.	For	details	on	when	it	will	be	set	to		true		see	the	next
section	on	cookies.

	access-control-allow-headers	:	will	be	set	to	the	exect	value	of	the	request's		access-control-request-headers		header	or	omitted	if
no	such	header	was	sent	in	the	request.

	access-control-allow-methods	:	will	be	set	to	a	list	of	all	supported	HTTP	headers	regardless	of	the	target	endpoint.	In	other	words
that	a	method	is	listed	in	this	header	does	not	guarantee	that	it	will	be	supported	by	the	endpoint	in	the	actual	request.

	access-control-allow-origin	:	will	be	set	to	the	exact	value	of	the	request's		origin		header.

	access-control-expose-headers	:	will	be	set	to	a	list	of	response	headers	used	by	the	ArangoDB	HTTP	API.

	access-control-max-age	:	will	be	set	to	an	implementation-specifc	value.

Actual	request

If	a	request	using	any	other	HTTP	method	than		OPTIONS		includes	an		origin		header,	ArangoDB	will	add	the	following	headers	to	the
response:

	access-control-allow-credentials	:	will	be	set	to		false		by	default.	For	details	on	when	it	will	be	set	to		true		see	the	next
section	on	cookies.

	access-control-allow-origin	:	will	be	set	to	the	exact	value	of	the	request's		origin		header.

	access-control-expose-headers	:	will	be	set	to	a	list	of	response	headers	used	by	the	ArangoDB	HTTP	API.

When	making	CORS	requests	to	endpoints	of	Foxx	services,	the	value	of	the		access-control-expose-headers		header	will	instead	be	set
to	a	list	of	response	headers	used	in	the	response	itself	(but	not	including	the		access-control-		headers).	Note	that	Foxx	services	may
override	this	behaviour.

Cookies	and	authentication

In	order	for	the	client	to	be	allowed	to	correctly	provide	authentication	credentials	or	handle	cookies,	ArangoDB	needs	to	set	the		access-
control-allow-credentials		response	header	to		true		instead	of		false	.

ArangoDB	will	automatically	set	this	header	to		true		if	the	value	of	the	request's		origin		header	matches	a	trusted	origin	in	the
	http.trusted-origin		configuration	option.	To	make	ArangoDB	trust	a	certain	origin,	you	can	provide	a	startup	option	when	running
	arangod		like	this:

	--http.trusted-origin	"http://localhost:8529"	

To	specify	multiple	trusted	origins,	the	option	can	be	specified	multiple	times.	Alternatively	you	can	use	the	special	value		"*"		to	trust
any	origin:

	--http.trusted-origin	"*"	

Note	that	browsers	will	not	actually	include	credentials	or	cookies	in	cross-origin	requests	unless	explicitly	told	to	do	so:

When	using	the	Fetch	API	you	need	to	set	the		credentials		option	to		include	.

fetch("./",	{	credentials:"include"	}).then(/*	…	*/)

General	HTTP	Handling

7

https://fetch.spec.whatwg.org/#cors-protocol-and-credentials

When	using		XMLHttpRequest		you	need	to	set	the		withCredentials		option	to		true	.

var	xhr	=	new	XMLHttpRequest();

xhr.open('GET',	'https://example.com/',	true);

xhr.withCredentials	=	true;

xhr.send(null);

When	using	jQuery	you	need	to	set	the		xhrFields		option:

$.ajax({

			url:	'https://example.com',

			xhrFields:	{

						withCredentials:	true

			}

});

HTTP	method	overriding
ArangoDB	provides	a	startup	option	--http.allow-method-override.	This	option	can	be	set	to	allow	overriding	the	HTTP	request	method
(e.g.	GET,	POST,	PUT,	DELETE,	PATCH)	of	a	request	using	one	of	the	following	custom	HTTP	headers:

x-http-method-override
x-http-method
x-method-override

This	allows	using	HTTP	clients	that	do	not	support	all	"common"	HTTP	methods	such	as	PUT,	PATCH	and	DELETE.	It	also	allows
bypassing	proxies	and	tools	that	would	otherwise	just	let	certain	types	of	requests	(e.g.	GET	and	POST)	pass	through.

Enabling	this	option	may	impose	a	security	risk,	so	it	should	only	be	used	in	very	controlled	environments.	Thus	the	default	value	for
this	option	is	false	(no	method	overriding	allowed).	You	need	to	enable	it	explicitly	if	you	want	to	use	this	feature.

General	HTTP	Handling

8

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

HTTP	Interface
Following	you	have	ArangoDB's	HTTP	Interface	for	Documents,	Databases,	Edges	and	more.

There	are	also	some	examples	provided	for	every	API	action.

You	may	also	use	the	interactive	Swagger	documentation	in	the	ArangoDB	webinterface	to	explore	the	API	calls	below.

HTTP	Interface

9

http://swagger.io

HTTP	Interface	for	Databases

Address	of	a	Database

Any	operation	triggered	via	ArangoDB's	HTTP	REST	API	is	executed	in	the	context	of	exactly	one	database.	To	explicitly	specify	the
database	in	a	request,	the	request	URI	must	contain	the	database	name	in	front	of	the	actual	path:

http://localhost:8529/_db/mydb/...

where	...	is	the	actual	path	to	the	accessed	resource.	In	the	example,	the	resource	will	be	accessed	in	the	context	of	the	database	mydb.
Actual	URLs	in	the	context	of	mydb	could	look	like	this:

http://localhost:8529/_db/mydb/_api/version

http://localhost:8529/_db/mydb/_api/document/test/12345

http://localhost:8529/_db/mydb/myapp/get

Databases

10

Database-to-Endpoint	Mapping
If	a	database	name	is	present	in	the	URI	as	above,	ArangoDB	will	consult	the	database-to-endpoint	mapping	for	the	current	endpoint,
and	validate	if	access	to	the	database	is	allowed	on	the	endpoint.	If	the	endpoint	is	not	restricted	to	an	array	of	databases,	ArangoDB	will
continue	with	the	regular	authentication	procedure.	If	the	endpoint	is	restricted	to	an	array	of	specified	databases,	ArangoDB	will	check	if
the	requested	database	is	in	the	array.	If	not,	the	request	will	be	turned	down	instantly.	If	yes,	then	ArangoDB	will	continue	with	the
regular	authentication	procedure.

If	the	request	URI	was	http://	localhost:8529/_db/mydb/...,	then	the	request	to	mydb	will	be	allowed	(or	disallowed)	in	the	following
situations:

Endpoint-to-database	mapping											Access	to	*mydb*	allowed?

----------------------------											-------------------------

[]																																				yes

["_system"]																										no	

["_system",	"mydb"]																		yes

["mydb"]																													yes

["mydb",	"_system"]																		yes

["test1",	"test2"]																			no

In	case	no	database	name	is	specified	in	the	request	URI,	ArangoDB	will	derive	the	database	name	from	the	endpoint-to-database
mapping	of	the	endpoint	the	connection	was	coming	in	on.

If	the	endpoint	is	not	restricted	to	an	array	of	databases,	ArangoDB	will	assume	the	_system	database.	If	the	endpoint	is	restricted	to	one
or	multiple	databases,	ArangoDB	will	assume	the	first	name	from	the	array.

Following	is	an	overview	of	which	database	name	will	be	assumed	for	different	endpoint-to-database	mappings	in	case	no	database	name
is	specified	in	the	URI:

Endpoint-to-database	mapping											Database

----------------------------											--------

[]																																				_system

["_system"]																										_system

["_system",	"mydb"]																		_system

["mydb"]																													mydb

["mydb",	"_system"]																		mydb

To-Endpoint

11

Database	Management
This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	managing	databases.

The	HTTP	interface	for	databases	provides	operations	to	create	and	drop	individual	databases.	These	are	mapped	to	the	standard	HTTP
methods	POST	and	DELETE.	There	is	also	the	GET	method	to	retrieve	an	array	of	existing	databases.

Please	note	that	all	database	management	operations	can	only	be	accessed	via	the	default	database	(_system)	and	none	of	the	other
databases.

Managing	Databases	using	HTTP

Information	of	the	database

retrieves	information	about	the	current	database

	GET	/_api/database/current	

Retrieves	information	about	the	current	database

The	response	is	a	JSON	object	with	the	following	attributes:

name:	the	name	of	the	current	database

id:	the	id	of	the	current	database

path:	the	filesystem	path	of	the	current	database

isSystem:	whether	or	not	the	current	database	is	the	_system	database

Return	Codes

200:	is	returned	if	the	information	was	retrieved	successfully.

400:	is	returned	if	the	request	is	invalid.

404:	is	returned	if	the	database	could	not	be	found.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/database/current

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

List	of	accessible	databases

retrieves	a	list	of	all	databases	the	current	user	can	access

	GET	/_api/database/user	

Retrieves	the	list	of	all	databases	the	current	user	can	access	without	specifying	a	different	username	or	password.

Return	Codes

200:	is	returned	if	the	list	of	database	was	compiled	successfully.

400:	is	returned	if	the	request	is	invalid.

Examples

Management

12

shell>	curl	--dump	-	http://localhost:8529/_api/database/user

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

List	of	databases

retrieves	a	list	of	all	existing	databases

	GET	/_api/database	

Retrieves	the	list	of	all	existing	databases

Note:	retrieving	the	list	of	databases	is	only	possible	from	within	the	_system	database.

Note:	You	should	use	the	GET	user	API	to	fetch	the	list	of	the	available	databases	now.

Return	Codes

200:	is	returned	if	the	list	of	database	was	compiled	successfully.

400:	is	returned	if	the	request	is	invalid.

403:	is	returned	if	the	request	was	not	executed	in	the	_system	database.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/database

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Create	database

creates	a	new	database

	POST	/_api/database	

A	JSON	object	with	these	properties	is	required:

name:	Has	to	contain	a	valid	database	name.
users:	Has	to	be	an	array	of	user	objects	to	initially	create	for	the	new	database.	User	information	will	not	be	changed	for	users	that
already	exist.	If	users	is	not	specified	or	does	not	contain	any	users,	a	default	user	root	will	be	created	with	an	empty	string
password.	This	ensures	that	the	new	database	will	be	accessible	after	it	is	created.	Each	user	object	can	contain	the	following
attributes:

username:	Loginname	of	the	user	to	be	created
passwd:	The	user	password	as	a	string.	If	not	specified,	it	will	default	to	an	empty	string.
active:	A	flag	indicating	whether	the	user	account	should	be	activated	or	not.	The	default	value	is	true.	If	set	to	false,	the	user
won't	be	able	to	log	into	the	database.
extra:	A	JSON	object	with	extra	user	information.	The	data	contained	in	extra	will	be	stored	for	the	user	but	not	be	interpreted
further	by	ArangoDB.

Creates	a	new	database

The	response	is	a	JSON	object	with	the	attribute	result	set	to	true.

Management

13

Note:	creating	a	new	database	is	only	possible	from	within	the	_system	database.

Return	Codes

201:	is	returned	if	the	database	was	created	successfully.

400:	is	returned	if	the	request	parameters	are	invalid	or	if	a	database	with	the	specified	name	already	exists.

403:	is	returned	if	the	request	was	not	executed	in	the	_system	database.

409:	is	returned	if	a	database	with	the	specified	name	already	exists.

Examples

Creating	a	database	named	example.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/database	<<EOF

{	

		"name"	:	"example"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Creating	a	database	named	mydb	with	two	users.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/database	<<EOF

{	

		"name"	:	"mydb",	

		"users"	:	[

				{	

						"username"	:	"admin",	

						"passwd"	:	"secret",	

						"active"	:	true	

				},	

				{	

						"username"	:	"tester",	

						"passwd"	:	"test001",	

						"active"	:	false	

				}	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Drop	database

drop	an	existing	database

	DELETE	/_api/database/{database-name}	

Management

14

Path	Parameters

database-name	(required):	The	name	of	the	database

Drops	the	database	along	with	all	data	stored	in	it.

Note:	dropping	a	database	is	only	possible	from	within	the	_system	database.	The	_system	database	itself	cannot	be	dropped.

Return	Codes

200:	is	returned	if	the	database	was	dropped	successfully.

400:	is	returned	if	the	request	is	malformed.

403:	is	returned	if	the	request	was	not	executed	in	the	_system	database.

404:	is	returned	if	the	database	could	not	be	found.

Examples

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/database/example

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Management

15

Notes	on	Databases
Please	keep	in	mind	that	each	database	contains	its	own	system	collections,	which	need	to	set	up	when	a	database	is	created.	This	will
make	the	creation	of	a	database	take	a	while.	Replication	is	configured	on	a	per-database	level,	meaning	that	any	replication	logging	or
applying	for	the	a	new	database	must	be	configured	explicitly	after	a	new	database	has	been	created.	Foxx	applications	are	also	available
only	in	the	context	of	the	database	they	have	been	installed	in.	A	new	database	will	only	provide	access	to	the	system	applications
shipped	with	ArangoDB	(that	is	the	web	interface	at	the	moment)	and	no	other	Foxx	applications	until	they	are	explicitly	installed	for
the	particular	database.

Database

ArangoDB	can	handle	multiple	databases	in	the	same	server	instance.	Databases	can	be	used	to	logically	group	and	separate	data.	An
ArangoDB	database	consists	of	collections	and	dedicated	database-specific	worker	processes.	A	database	contains	its	own	collections
(which	cannot	be	accessed	from	other	databases),	Foxx	applications	and	replication	loggers	and	appliers.	Each	ArangoDB	database
contains	its	own	system	collections	(e.g.	_users,	_graphs,	...).

There	will	always	be	at	least	one	database	in	ArangoDB.	This	is	the	default	database	named	_system.	This	database	cannot	be	dropped
and	provides	special	operations	for	creating,	dropping	and	enumerating	databases.	Users	can	create	additional	databases	and	give	them
unique	names	to	access	them	later.	Database	management	operations	cannot	be	initiated	from	out	of	user-defined	databases.

When	ArangoDB	is	accessed	via	its	HTTP	REST	API,	the	database	name	is	read	from	the	first	part	of	the	request	URI	path	(e.g.
/_db/_system/...).	If	the	request	URI	does	not	contain	a	database	name,	the	database	name	is	automatically	determined	by	the	algorithm
described	in	Database-to-Endpoint	Mapping	.

Database	Name

A	single	ArangoDB	instance	can	handle	multiple	databases	in	parallel.	When	multiple	databases	are	used,	each	database	must	be	given	an
unique	name.	This	name	is	used	to	uniquely	identify	a	database.	The	default	database	in	ArangoDB	is	named	system.	The	database	name
is	a	string	consisting	of	only	letters,	digits	and	the	(underscore)	and	-	(dash)	characters.	User-defined	database	names	must	always	start
with	a	letter.	Database	names	are	case-sensitive.

Database	Organization

A	single	ArangoDB	instance	can	handle	multiple	databases	in	parallel.	By	default,	there	will	be	at	least	one	database	which	is	named
_system.	Databases	are	physically	stored	in	separate	sub-directories	underneath	the	database	directory,	which	itself	resides	in	the
instance's	data	directory.

Each	database	has	its	own	sub-directory,	named	database-.	The	database	directory	contains	sub-directories	for	the	collections	of	the
database,	and	a	file	named	parameter.json.	This	file	contains	the	database	id	and	name.

In	an	example	ArangoDB	instance	which	has	two	databases,	the	filesystem	layout	could	look	like	this:

data/																					#	the	instance's	data	directory

		databases/														#	sub-directory	containing	all	databases'	data

				database-<id>/								#	sub-directory	for	a	single	database

						parameter.json						#	file	containing	database	id	and	name

						collection-<id>/				#	directory	containing	data	about	a	collection

				database-<id>/								#	sub-directory	for	another	database

						parameter.json						#	file	containing	database	id	and	name

						collection-<id>/				#	directory	containing	data	about	a	collection

						collection-<id>/				#	directory	containing	data	about	a	collection

Foxx	applications	are	also	organized	in	database-specific	directories	inside	the	application	path.	The	filesystem	layout	could	look	like
this:

apps/																			#	the	instance's	application	directory

		system/															#	system	applications	(can	be	ignored)

		databases/												#	sub-directory	containing	database-specific	applications

				<database-name>/				#	sub-directory	for	a	single	database

						<app-name>								#	sub-directory	for	a	single	application

Notes	on	Databases

16

						<app-name>								#	sub-directory	for	a	single	application

				<database-name>/				#	sub-directory	for	another	database

						<app-name>								#	sub-directory	for	a	single	application

`

Notes	on	Databases

17

HTTP	Interface	for	Collections

Collections

This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	collections.

Collection

A	collection	consists	of	documents.	It	is	uniquely	identified	by	its	collection	identifier.	It	also	has	a	unique	name	that	clients	should	use	to
identify	and	access	it.	Collections	can	be	renamed.	This	will	change	the	collection	name,	but	not	the	collection	identifier.	Collections	have
a	type	that	is	specified	by	the	user	when	the	collection	is	created.	There	are	currently	two	types:	document	and	edge.	The	default	type	is
document.

Collection	Identifier

A	collection	identifier	lets	you	refer	to	a	collection	in	a	database.	It	is	a	string	value	and	is	unique	within	the	database.	Up	to	including
ArangoDB	1.1,	the	collection	identifier	has	been	a	client's	primary	means	to	access	collections.	Starting	with	ArangoDB	1.2,	clients
should	instead	use	a	collection's	unique	name	to	access	a	collection	instead	of	its	identifier.	ArangoDB	currently	uses	64bit	unsigned
integer	values	to	maintain	collection	ids	internally.	When	returning	collection	ids	to	clients,	ArangoDB	will	put	them	into	a	string	to
ensure	the	collection	id	is	not	clipped	by	clients	that	do	not	support	big	integers.	Clients	should	treat	the	collection	ids	returned	by
ArangoDB	as	opaque	strings	when	they	store	or	use	it	locally.

Note:	collection	ids	have	been	returned	as	integers	up	to	including	ArangoDB	1.1

Collection	Name

A	collection	name	identifies	a	collection	in	a	database.	It	is	a	string	and	is	unique	within	the	database.	Unlike	the	collection	identifier	it	is
supplied	by	the	creator	of	the	collection.	The	collection	name	must	consist	of	letters,	digits,	and	the	_	(underscore)	and	-	(dash)	characters
only.	Please	refer	to	Naming	Conventions	in	ArangoDB	for	more	information	on	valid	collection	names.

Key	Generator

ArangoDB	allows	using	key	generators	for	each	collection.	Key	generators	have	the	purpose	of	auto-generating	values	for	the	_key
attribute	of	a	document	if	none	was	specified	by	the	user.	By	default,	ArangoDB	will	use	the	traditional	key	generator.	The	traditional
key	generator	will	auto-generate	key	values	that	are	strings	with	ever-increasing	numbers.	The	increment	values	it	uses	are	non-
deterministic.

Contrary,	the	auto	increment	key	generator	will	auto-generate	deterministic	key	values.	Both	the	start	value	and	the	increment	value	can
be	defined	when	the	collection	is	created.	The	default	start	value	is	0	and	the	default	increment	is	1,	meaning	the	key	values	it	will	create
by	default	are:

1,	2,	3,	4,	5,	...

When	creating	a	collection	with	the	auto	increment	key	generator	and	an	increment	of	5,	the	generated	keys	would	be:

1,	6,	11,	16,	21,	...

The	auto-increment	values	are	increased	and	handed	out	on	each	document	insert	attempt.	Even	if	an	insert	fails,	the	auto-increment	value
is	never	rolled	back.	That	means	there	may	exist	gaps	in	the	sequence	of	assigned	auto-increment	values	if	inserts	fails.

The	basic	operations	(create,	read,	update,	delete)	for	documents	are	mapped	to	the	standard	HTTP	methods	(POST,	GET,	PUT,
DELETE).

Address	of	a	Collection

All	collections	in	ArangoDB	have	an	unique	identifier	and	a	unique	name.	ArangoDB	internally	uses	the	collection's	unique	identifier	to
look	up	collections.	This	identifier	however	is	managed	by	ArangoDB	and	the	user	has	no	control	over	it.	In	order	to	allow	users	use	their
own	names,	each	collection	also	has	a	unique	name,	which	is	specified	by	the	user.	To	access	a	collection	from	the	user	perspective,	the

Collections

18

collection	name	should	be	used,	i.e.:

http://server:port/_api/collection/collection-name

For	example:	Assume	that	the	collection	identifier	is	7254820	and	the	collection	name	is	demo,	then	the	URL	of	that	collection	is:

http://localhost:8529/_api/collection/demo

Collections

19

Creating	and	Deleting	Collections

Create	collection

creates	a	collection

	POST	/_api/collection	

A	JSON	object	with	these	properties	is	required:

journalSize:	The	maximal	size	of	a	journal	or	datafile	in	bytes.	The	value	must	be	at	least		1048576		(1	MiB).	(The	default	is	a
configuration	parameter)	This	option	is	meaningful	for	the	MMFiles	storage	engine	only.
replicationFactor:	(The	default	is	1):	in	a	cluster,	this	attribute	determines	how	many	copies	of	each	shard	are	kept	on	different
DBServers.	The	value	1	means	that	only	one	copy	(no	synchronous	replication)	is	kept.	A	value	of	k	means	that	k-1	replicas	are
kept.	Any	two	copies	reside	on	different	DBServers.	Replication	between	them	is	synchronous,	that	is,	every	write	operation	to	the
"leader"	copy	will	be	replicated	to	all	"follower"	replicas,	before	the	write	operation	is	reported	successful.	If	a	server	fails,	this	is
detected	automatically	and	one	of	the	servers	holding	copies	take	over,	usually	without	an	error	being	reported.
keyOptions:

allowUserKeys:	if	set	to	true,	then	it	is	allowed	to	supply	own	key	values	in	the	_key	attribute	of	a	document.	If	set	to	false,
then	the	key	generator	will	solely	be	responsible	for	generating	keys	and	supplying	own	key	values	in	the	_key	attribute	of
documents	is	considered	an	error.
type:	specifies	the	type	of	the	key	generator.	The	currently	available	generators	are	traditional	and	autoincrement.
increment:	increment	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.
offset:	Initial	offset	value	for	autoincrement	key	generator.	Not	used	for	other	key	generator	types.

name:	The	name	of	the	collection.
waitForSync:	If	true	then	the	data	is	synchronized	to	disk	before	returning	from	a	document	create,	update,	replace	or	removal
operation.	(default:	false)
doCompact:	whether	or	not	the	collection	will	be	compacted	(default	is	true)	This	option	is	meaningful	for	the	MMFiles	storage
engine	only.
isVolatile:	If	true	then	the	collection	data	is	kept	in-memory	only	and	not	made	persistent.	Unloading	the	collection	will	cause	the
collection	data	to	be	discarded.	Stopping	or	re-starting	the	server	will	also	cause	full	loss	of	data	in	the	collection.	Setting	this	option
will	make	the	resulting	collection	be	slightly	faster	than	regular	collections	because	ArangoDB	does	not	enforce	any	synchronization
to	disk	and	does	not	calculate	any	CRC	checksums	for	datafiles	(as	there	are	no	datafiles).	This	option	should	therefore	be	used	for
cache-type	collections	only,	and	not	for	data	that	cannot	be	re-created	otherwise.	(The	default	is	false)	This	option	is	meaningful	for
the	MMFiles	storage	engine	only.
shardKeys:	(The	default	is	["_key"]):	in	a	cluster,	this	attribute	determines	which	document	attributes	are	used	to	determine	the
target	shard	for	documents.	Documents	are	sent	to	shards	based	on	the	values	of	their	shard	key	attributes.	The	values	of	all	shard
key	attributes	in	a	document	are	hashed,	and	the	hash	value	is	used	to	determine	the	target	shard.	Note:	Values	of	shard	key
attributes	cannot	be	changed	once	set.	This	option	is	meaningless	in	a	single	server	setup.
numberOfShards:	(The	default	is	1):	in	a	cluster,	this	value	determines	the	number	of	shards	to	create	for	the	collection.	In	a	single
server	setup,	this	option	is	meaningless.
isSystem:	If	true,	create	a	system	collection.	In	this	case	collection-name	should	start	with	an	underscore.	End	users	should
normally	create	non-system	collections	only.	API	implementors	may	be	required	to	create	system	collections	in	very	special
occasions,	but	normally	a	regular	collection	will	do.	(The	default	is	false)
type:	(The	default	is	2):	the	type	of	the	collection	to	create.	The	following	values	for	type	are	valid:

2:	document	collection
3:	edges	collection

indexBuckets:	The	number	of	buckets	into	which	indexes	using	a	hash	table	are	split.	The	default	is	16	and	this	number	has	to	be	a
power	of	2	and	less	than	or	equal	to	1024.	For	very	large	collections	one	should	increase	this	to	avoid	long	pauses	when	the	hash
table	has	to	be	initially	built	or	resized,	since	buckets	are	resized	individually	and	can	be	initially	built	in	parallel.	For	example,	64
might	be	a	sensible	value	for	a	collection	with	100	000	000	documents.	Currently,	only	the	edge	index	respects	this	value,	but	other
index	types	might	follow	in	future	ArangoDB	versions.	Changes	(see	below)	are	applied	when	the	collection	is	loaded	the	next	time.
This	option	is	meaningful	for	the	MMFiles	storage	engine	only.
distributeShardsLike:	(The	default	is	""):	in	an	enterprise	cluster,	this	attribute	binds	the	specifics	of	sharding	for	the	newly
created	collection	to	follow	that	of	a	specified	existing	collection.	Note:	Using	this	parameter	has	consequences	for	the	prototype
collection.	It	can	no	longer	be	dropped,	before	sharding	imitating	collections	are	dropped.	Equally,	backups	and	restores	of	imitating

Creating

20

collections	alone	will	generate	warnings,	which	can	be	overridden,	about	missing	sharding	prototype.

Creates	a	new	collection	with	a	given	name.	The	request	must	contain	an	object	with	the	following	attributes.

Query	Parameters

waitForSyncReplication	(optional):	Default	is	1	which	means	the	server	will	only	report	success	back	to	the	client	if	all	replicas	have
created	the	collection.	Set	to	0	if	you	want	faster	server	responses	and	don't	care	about	full	replication.

enforceReplicationFactor	(optional):	Default	is	1	which	means	the	server	will	check	if	there	are	enough	replicas	available	at	creation
time	and	bail	out	otherwise.	Set	to	0	to	disable	this	extra	check.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection	<<EOF

{	

		"name"	:	"testCollectionBasics"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/collection	<<EOF

{	

		"name"	:	"testCollectionUsers",	

		"keyOptions"	:	{	

				"type"	:	"autoincrement",	

				"increment"	:	5,	

				"allowUserKeys"	:	true	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Drops	a	collection

drops	a	collection

	DELETE	/_api/collection/{collection-name}	

Path	Parameters

collection-name	(required):	The	name	of	the	collection	to	drop.

Query	Parameters

Creating

21

isSystem	(optional):	Whether	or	not	the	collection	to	drop	is	a	system	collection.	This	parameter	must	be	set	to	true	in	order	to	drop
a	system	collection.

Drops	the	collection	identified	by	collection-name.

If	the	collection	was	successfully	dropped,	an	object	is	returned	with	the	following	attributes:

error:	false

id:	The	identifier	of	the	dropped	collection.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Using	an	identifier:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/collection/9859

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	a	name:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/collection/products1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Dropping	a	system	collection

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/collection/_example?

isSystem=true

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Truncate	collection

truncates	a	collection

	PUT	/_api/collection/{collection-name}/truncate	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

Removes	all	documents	from	the	collection,	but	leaves	the	indexes	intact.

Creating

22

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/collection/products/truncate

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/truncate

show	response	body

Creating

23

Getting	Information	about	a	Collection

Return	information	about	a	collection

returns	a	collection

	GET	/_api/collection/{collection-name}	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

The	result	is	an	object	describing	the	collection	with	the	following	attributes:

id:	The	identifier	of	the	collection.

name:	The	name	of	the	collection.

status:	The	status	of	the	collection	as	number.

1:	new	born	collection
2:	unloaded
3:	loaded
4:	in	the	process	of	being	unloaded
5:	deleted
6:	loading

Every	other	status	indicates	a	corrupted	collection.

type:	The	type	of	the	collection	as	number.

2:	document	collection	(normal	case)
3:	edges	collection

isSystem:	If	true	then	the	collection	is	a	system	collection.

Return	Codes

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Read	properties	of	a	collection

reads	the	properties	of	the	specified	collection

	GET	/_api/collection/{collection-name}/properties	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

In	addition	to	the	above,	the	result	will	always	contain	the	waitForSync	attribute,	and	the	doCompact,	journalSize,	and	isVolatile
attributes	for	the	MMFiles	storage	engine.	This	is	achieved	by	forcing	a	load	of	the	underlying	collection.

waitForSync:	If	true	then	creating,	changing	or	removing	documents	will	wait	until	the	data	has	been	synchronized	to	disk.

doCompact:	Whether	or	not	the	collection	will	be	compacted.	This	option	is	only	present	for	the	MMFiles	storage	engine.

journalSize:	The	maximal	size	setting	for	journals	/	datafiles	in	bytes.	This	option	is	only	present	for	the	MMFiles	storage	engine.

keyOptions:	JSON	object	which	contains	key	generation	options:

type:	specifies	the	type	of	the	key	generator.	The	currently	available	generators	are	traditional	and	autoincrement.
allowUserKeys:	if	set	to	true,	then	it	is	allowed	to	supply	own	key	values	in	the	_key	attribute	of	a	document.	If	set	to	false,
then	the	key	generator	is	solely	responsible	for	generating	keys	and	supplying	own	key	values	in	the	_key	attribute	of
documents	is	considered	an	error.

isVolatile:	If	true	then	the	collection	data	will	be	kept	in	memory	only	and	ArangoDB	will	not	write	or	sync	the	data	to	disk.	This
option	is	only	present	for	the	MMFiles	storage	engine.

Getting	Information

24

In	a	cluster	setup,	the	result	will	also	contain	the	following	attributes:

numberOfShards:	the	number	of	shards	of	the	collection.

shardKeys:	contains	the	names	of	document	attributes	that	are	used	to	determine	the	target	shard	for	documents.

replicationFactor:	contains	how	many	copies	of	each	shard	are	kept	on	different	DBServers.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Using	an	identifier:

shell>	curl	--dump	-	http://localhost:8529/_api/collection/10217/properties

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/10217/properties

show	response	body
Using	a	name:

shell>	curl	--dump	-	http://localhost:8529/_api/collection/products/properties

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/properties

show	response	body

Return	number	of	documents	in	a	collection

Counts	the	documents	in	a	collection

	GET	/_api/collection/{collection-name}/count	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

In	addition	to	the	above,	the	result	also	contains	the	number	of	documents.	Note	that	this	will	always	load	the	collection	into	memory.

count:	The	number	of	documents	inside	the	collection.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Requesting	the	number	of	documents:

shell>	curl	--dump	-	http://localhost:8529/_api/collection/products/count

Getting	Information

25

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/count

show	response	body

Return	statistics	for	a	collection

Fetch	the	statistics	of	a	collection

	GET	/_api/collection/{collection-name}/figures	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

In	addition	to	the	above,	the	result	also	contains	the	number	of	documents	and	additional	statistical	information	about	the	collection.
Note	:	This	will	always	load	the	collection	into	memory.

Note:	collection	data	that	are	stored	in	the	write-ahead	log	only	are	not	reported	in	the	results.	When	the	write-ahead	log	is	collected,
documents	might	be	added	to	journals	and	datafiles	of	the	collection,	which	may	modify	the	figures	of	the	collection.

Additionally,	the	filesizes	of	collection	and	index	parameter	JSON	files	are	not	reported.	These	files	should	normally	have	a	size	of	a	few
bytes	each.	Please	also	note	that	the	fileSize	values	are	reported	in	bytes	and	reflect	the	logical	file	sizes.	Some	filesystems	may	use
optimisations	(e.g.	sparse	files)	so	that	the	actual	physical	file	size	is	somewhat	different.	Directories	and	sub-directories	may	also
require	space	in	the	file	system,	but	this	space	is	not	reported	in	the	fileSize	results.

That	means	that	the	figures	reported	do	not	reflect	the	actual	disk	usage	of	the	collection	with	100%	accuracy.	The	actual	disk	usage	of	a
collection	is	normally	slightly	higher	than	the	sum	of	the	reported	fileSize	values.	Still	the	sum	of	the	fileSize	values	can	still	be	used	as	a
lower	bound	approximation	of	the	disk	usage.

HTTP	200

A	json	document	with	these	Properties	is	returned:

Returns	information	about	the	collection:

count:	The	number	of	documents	currently	present	in	the	collection.
journalSize:	The	maximal	size	of	a	journal	or	datafile	in	bytes.
figures:

datafiles:
count:	The	number	of	datafiles.
fileSize:	The	total	filesize	of	datafiles	(in	bytes).

uncollectedLogfileEntries:	The	number	of	markers	in	the	write-ahead	log	for	this	collection	that	have	not	been	transferred	to
journals	or	datafiles.
documentReferences:	The	number	of	references	to	documents	in	datafiles	that	JavaScript	code	currently	holds.	This
information	can	be	used	for	debugging	compaction	and	unload	issues.
compactionStatus:

message:	The	action	that	was	performed	when	the	compaction	was	last	run	for	the	collection.	This	information	can	be
used	for	debugging	compaction	issues.
time:	The	point	in	time	the	compaction	for	the	collection	was	last	executed.	This	information	can	be	used	for	debugging
compaction	issues.

compactors:
count:	The	number	of	compactor	files.
fileSize:	The	total	filesize	of	all	compactor	files	(in	bytes).

dead:
count:	The	number	of	dead	documents.	This	includes	document	versions	that	have	been	deleted	or	replaced	by	a	newer
version.	Documents	deleted	or	replaced	that	are	contained	the	write-ahead	log	only	are	not	reported	in	this	figure.
deletion:	The	total	number	of	deletion	markers.	Deletion	markers	only	contained	in	the	write-ahead	log	are	not	reporting

Getting	Information

26

in	this	figure.
size:	The	total	size	in	bytes	used	by	all	dead	documents.

indexes:
count:	The	total	number	of	indexes	defined	for	the	collection,	including	the	pre-defined	indexes	(e.g.	primary	index).
size:	The	total	memory	allocated	for	indexes	in	bytes.

readcache:
count:	The	number	of	revisions	of	this	collection	stored	in	the	document	revisions	cache.
size:	The	memory	used	for	storing	the	revisions	of	this	collection	in	the	document	revisions	cache	(in	bytes).	This	figure
does	not	include	the	document	data	but	only	mappings	from	document	revision	ids	to	cache	entry	locations.

waitingFor:	An	optional	string	value	that	contains	information	about	which	object	type	is	at	the	head	of	the	collection's
cleanup	queue.	This	information	can	be	used	for	debugging	compaction	and	unload	issues.
alive:

count:	The	number	of	currently	active	documents	in	all	datafiles	and	journals	of	the	collection.	Documents	that	are
contained	in	the	write-ahead	log	only	are	not	reported	in	this	figure.
size:	The	total	size	in	bytes	used	by	all	active	documents	of	the	collection.	Documents	that	are	contained	in	the	write-
ahead	log	only	are	not	reported	in	this	figure.

lastTick:	The	tick	of	the	last	marker	that	was	stored	in	a	journal	of	the	collection.	This	might	be	0	if	the	collection	does	not	yet
have	a	journal.
journals:

count:	The	number	of	journal	files.
fileSize:	The	total	filesize	of	all	journal	files	(in	bytes).

revisions:
count:	The	number	of	revisions	of	this	collection	managed	by	the	storage	engine.
size:	The	memory	used	for	storing	the	revisions	of	this	collection	in	the	storage	engine	(in	bytes).	This	figure	does	not
include	the	document	data	but	only	mappings	from	document	revision	ids	to	storage	engine	datafile	positions.

Return	Codes

200:	Returns	information	about	the	collection:

Response	Body

count:	The	number	of	documents	currently	present	in	the	collection.
journalSize:	The	maximal	size	of	a	journal	or	datafile	in	bytes.
figures:

datafiles:
count:	The	number	of	datafiles.
fileSize:	The	total	filesize	of	datafiles	(in	bytes).

uncollectedLogfileEntries:	The	number	of	markers	in	the	write-ahead	log	for	this	collection	that	have	not	been	transferred	to
journals	or	datafiles.
lastTick:	The	tick	of	the	last	marker	that	was	stored	in	a	journal	of	the	collection.	This	might	be	0	if	the	collection	does	not	yet
have	a	journal.
compactionStatus:

message:	The	action	that	was	performed	when	the	compaction	was	last	run	for	the	collection.	This	information	can	be
used	for	debugging	compaction	issues.
time:	The	point	in	time	the	compaction	for	the	collection	was	last	executed.	This	information	can	be	used	for	debugging
compaction	issues.

dead:
count:	The	number	of	dead	documents.	This	includes	document	versions	that	have	been	deleted	or	replaced	by	a	newer
version.	Documents	deleted	or	replaced	that	are	contained	the	write-ahead	log	only	are	not	reported	in	this	figure.
deletion:	The	total	number	of	deletion	markers.	Deletion	markers	only	contained	in	the	write-ahead	log	are	not	reporting
in	this	figure.
size:	The	total	size	in	bytes	used	by	all	dead	documents.

compactors:
count:	The	number	of	compactor	files.
fileSize:	The	total	filesize	of	all	compactor	files	(in	bytes).

readcache:

Getting	Information

27

count:	The	number	of	revisions	of	this	collection	stored	in	the	document	revisions	cache.
size:	The	memory	used	for	storing	the	revisions	of	this	collection	in	the	document	revisions	cache	(in	bytes).	This	figure
does	not	include	the	document	data	but	only	mappings	from	document	revision	ids	to	cache	entry	locations.

waitingFor:	An	optional	string	value	that	contains	information	about	which	object	type	is	at	the	head	of	the	collection's
cleanup	queue.	This	information	can	be	used	for	debugging	compaction	and	unload	issues.
alive:

count:	The	number	of	currently	active	documents	in	all	datafiles	and	journals	of	the	collection.	Documents	that	are
contained	in	the	write-ahead	log	only	are	not	reported	in	this	figure.
size:	The	total	size	in	bytes	used	by	all	active	documents	of	the	collection.	Documents	that	are	contained	in	the	write-
ahead	log	only	are	not	reported	in	this	figure.

documentReferences:	The	number	of	references	to	documents	in	datafiles	that	JavaScript	code	currently	holds.	This
information	can	be	used	for	debugging	compaction	and	unload	issues.
indexes:

count:	The	total	number	of	indexes	defined	for	the	collection,	including	the	pre-defined	indexes	(e.g.	primary	index).
size:	The	total	memory	allocated	for	indexes	in	bytes.

journals:
count:	The	number	of	journal	files.
fileSize:	The	total	filesize	of	all	journal	files	(in	bytes).

revisions:
count:	The	number	of	revisions	of	this	collection	managed	by	the	storage	engine.
size:	The	memory	used	for	storing	the	revisions	of	this	collection	in	the	storage	engine	(in	bytes).	This	figure	does	not
include	the	document	data	but	only	mappings	from	document	revision	ids	to	storage	engine	datafile	positions.

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Using	an	identifier	and	requesting	the	figures	of	the	collection:

shell>	curl	--dump	-	http://localhost:8529/_api/collection/products/figures

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/figures

show	response	body

Return	collection	revision	id

Retrieve	the	collections	revision	id

	GET	/_api/collection/{collection-name}/revision	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

In	addition	to	the	above,	the	result	will	also	contain	the	collection's	revision	id.	The	revision	id	is	a	server-generated	string	that	clients	can
use	to	check	whether	data	in	a	collection	has	changed	since	the	last	revision	check.

revision:	The	collection	revision	id	as	a	string.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Getting	Information

28

Retrieving	the	revision	of	a	collection

shell>	curl	--dump	-	http://localhost:8529/_api/collection/products/revision

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/revision

show	response	body

Return	checksum	for	the	collection

returns	a	checksum	for	the	specified	collection

	GET	/_api/collection/{collection-name}/checksum	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

Query	Parameters

withRevisions	(optional):	Whether	or	not	to	include	document	revision	ids	in	the	checksum	calculation.

withData	(optional):	Whether	or	not	to	include	document	body	data	in	the	checksum	calculation.

Will	calculate	a	checksum	of	the	meta-data	(keys	and	optionally	revision	ids)	and	optionally	the	document	data	in	the	collection.

The	checksum	can	be	used	to	compare	if	two	collections	on	different	ArangoDB	instances	contain	the	same	contents.	The	current
revision	of	the	collection	is	returned	too	so	one	can	make	sure	the	checksums	are	calculated	for	the	same	state	of	data.

By	default,	the	checksum	will	only	be	calculated	on	the	_key	system	attribute	of	the	documents	contained	in	the	collection.	For	edge
collections,	the	system	attributes	_from	and	_to	will	also	be	included	in	the	calculation.

By	setting	the	optional	query	parameter	withRevisions	to	true,	then	revision	ids	(_rev	system	attributes)	are	included	in	the
checksumming.

By	providing	the	optional	query	parameter	withData	with	a	value	of	true,	the	user-defined	document	attributes	will	be	included	in	the
calculation	too.	Note:	Including	user-defined	attributes	will	make	the	checksumming	slower.

The	response	is	a	JSON	object	with	the	following	attributes:

checksum:	The	calculated	checksum	as	a	number.

revision:	The	collection	revision	id	as	a	string.

Note:	this	method	is	not	available	in	a	cluster.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Retrieving	the	checksum	of	a	collection:

shell>	curl	--dump	-	http://localhost:8529/_api/collection/products/checksum

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/checksum

Getting	Information

29

show	response	body
Retrieving	the	checksum	of	a	collection	including	the	collection	data,	but	not	the	revisions:

shell>	curl	--dump	-	http://localhost:8529/_api/collection/products/checksum?

withRevisions=false&withData=true

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/checksum

show	response	body

reads	all	collections

returns	all	collections

	GET	/_api/collection	

Query	Parameters

excludeSystem	(optional):	Whether	or	not	system	collections	should	be	excluded	from	the	result.

Returns	an	object	with	an	attribute	collections	containing	an	array	of	all	collection	descriptions.	The	same	information	is	also	available	in
the	names	as	an	object	with	the	collection	names	as	keys.

By	providing	the	optional	query	parameter	excludeSystem	with	a	value	of	true,	all	system	collections	will	be	excluded	from	the	response.

Return	Codes

200:	The	list	of	collections

Examples

Return	information	about	all	collections:

shell>	curl	--dump	-	http://localhost:8529/_api/collection

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Getting	Information

30

Modifying	a	Collection

Load	collection

loads	a	collection

	PUT	/_api/collection/{collection-name}/load	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

Loads	a	collection	into	memory.	Returns	the	collection	on	success.

The	request	body	object	might	optionally	contain	the	following	attribute:

count:	If	set,	this	controls	whether	the	return	value	should	include	the	number	of	documents	in	the	collection.	Setting	count	to	false
may	speed	up	loading	a	collection.	The	default	value	for	count	is	true.

On	success	an	object	with	the	following	attributes	is	returned:

id:	The	identifier	of	the	collection.

name:	The	name	of	the	collection.

count:	The	number	of	documents	inside	the	collection.	This	is	only	returned	if	the	count	input	parameters	is	set	to	true	or	has	not
been	specified.

status:	The	status	of	the	collection	as	number.

type:	The	collection	type.	Valid	types	are:

2:	document	collection
3:	edges	collection

isSystem:	If	true	then	the	collection	is	a	system	collection.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/collection/products/load

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/load

show	response	body

Unload	collection

unloads	a	collection

	PUT	/_api/collection/{collection-name}/unload	

Path	Parameters

collection-name	(required):

Modifying

31

Removes	a	collection	from	memory.	This	call	does	not	delete	any	documents.	You	can	use	the	collection	afterwards;	in	which	case	it	will
be	loaded	into	memory,	again.	On	success	an	object	with	the	following	attributes	is	returned:

id:	The	identifier	of	the	collection.

name:	The	name	of	the	collection.

status:	The	status	of	the	collection	as	number.

type:	The	collection	type.	Valid	types	are:

2:	document	collection
3:	edges	collection

isSystem:	If	true	then	the	collection	is	a	system	collection.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/collection/products/unload

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/unload

show	response	body

Load	Indexes	into	Memory

Load	Indexes	into	Memory

	PUT	/_api/collection/{collection-name}/loadIndexesIntoMemory	

Path	Parameters

collection-name	(required):

This	route	tries	to	cache	all	index	entries	of	this	collection	into	the	main	memory.	Therefore	it	iterates	over	all	indexes	of	the	collection
and	stores	the	indexed	values,	not	the	entire	document	data,	in	memory.	All	lookups	that	could	be	found	in	the	cache	are	much	faster	than
lookups	not	stored	in	the	cache	so	you	get	a	nice	performance	boost.	It	is	also	guaranteed	that	the	cache	is	consistent	with	the	stored
data.

For	the	time	being	this	function	is	only	useful	on	RocksDB	storage	engine,	as	in	MMFiles	engine	all	indexes	are	in	memory	anyways.

On	RocksDB	this	function	honors	all	memory	limits,	if	the	indexes	you	want	to	load	are	smaller	than	your	memory	limit	this	function
guarantees	that	most	index	values	are	cached.	If	the	index	is	larger	than	your	memory	limit	this	function	will	fill	up	values	up	to	this	limit
and	for	the	time	being	there	is	no	way	to	control	which	indexes	of	the	collection	should	have	priority	over	others.

On	sucess	this	function	returns	an	object	with	attribute		result		set	to		true	

Return	Codes

200:	If	the	indexes	have	all	been	loaded

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Modifying

32

shell>	curl	-X	PUT	--dump	-	

http://localhost:8529/_api/collection/products/loadIndexesIntoMemory

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/loadIndexesIntoMemory

show	response	body

Change	properties	of	a	collection

changes	a	collection

	PUT	/_api/collection/{collection-name}/properties	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

Changes	the	properties	of	a	collection.	Expects	an	object	with	the	attribute(s)

waitForSync:	If	true	then	creating	or	changing	a	document	will	wait	until	the	data	has	been	synchronized	to	disk.

journalSize:	The	maximal	size	of	a	journal	or	datafile	in	bytes.	The	value	must	be	at	least		1048576		(1	MB).	Note	that	when
changing	the	journalSize	value,	it	will	only	have	an	effect	for	additional	journals	or	datafiles	that	are	created.	Already	existing	journals
or	datafiles	will	not	be	affected.

On	success	an	object	with	the	following	attributes	is	returned:

id:	The	identifier	of	the	collection.

name:	The	name	of	the	collection.

waitForSync:	The	new	value.

journalSize:	The	new	value.

status:	The	status	of	the	collection	as	number.

type:	The	collection	type.	Valid	types	are:

2:	document	collection
3:	edges	collection

isSystem:	If	true	then	the	collection	is	a	system	collection.

isVolatile:	If	true	then	the	collection	data	will	be	kept	in	memory	only	and	ArangoDB	will	not	write	or	sync	the	data	to	disk.

doCompact:	Whether	or	not	the	collection	will	be	compacted.

keyOptions:	JSON	object	which	contains	key	generation	options:

type:	specifies	the	type	of	the	key	generator.	The	currently	available	generators	are	traditional	and	autoincrement.
allowUserKeys:	if	set	to	true,	then	it	is	allowed	to	supply	own	key	values	in	the	_key	attribute	of	a	document.	If	set	to	false,
then	the	key	generator	is	solely	responsible	for	generating	keys	and	supplying	own	key	values	in	the	_key	attribute	of
documents	is	considered	an	error.

Note:	except	for	waitForSync,	journalSize	and	name,	collection	properties	cannot	be	changed	once	a	collection	is	created.	To	rename	a
collection,	the	rename	endpoint	must	be	used.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Modifying

33

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/collection/products/properties	<<EOF

{	

		"waitForSync"	:	true	

}

EOF

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/properties

show	response	body

Rename	collection

renames	a	collection

	PUT	/_api/collection/{collection-name}/rename	

Path	Parameters

collection-name	(required):	The	name	of	the	collection	to	rename.

Renames	a	collection.	Expects	an	object	with	the	attribute(s)

name:	The	new	name.

It	returns	an	object	with	the	attributes

id:	The	identifier	of	the	collection.

name:	The	new	name	of	the	collection.

status:	The	status	of	the	collection	as	number.

type:	The	collection	type.	Valid	types	are:

2:	document	collection
3:	edges	collection

isSystem:	If	true	then	the	collection	is	a	system	collection.

If	renaming	the	collection	succeeds,	then	the	collection	is	also	renamed	in	all	graph	definitions	inside	the		_graphs		collection	in	the
current	database.

Note:	this	method	is	not	available	in	a	cluster.

Return	Codes

400:	If	the	collection-name	is	missing,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/collection/products1/rename	<<EOF

{	

		"name"	:	"newname"	

}

EOF

Modifying

34

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products1/rename

show	response	body

Rotate	journal	of	a	collection

rotates	the	journal	of	a	collection

	PUT	/_api/collection/{collection-name}/rotate	

Path	Parameters

collection-name	(required):	The	name	of	the	collection.

Rotates	the	journal	of	a	collection.	The	current	journal	of	the	collection	will	be	closed	and	made	a	read-only	datafile.	The	purpose	of	the
rotate	method	is	to	make	the	data	in	the	file	available	for	compaction	(compaction	is	only	performed	for	read-only	datafiles,	and	not	for
journals).

Saving	new	data	in	the	collection	subsequently	will	create	a	new	journal	file	automatically	if	there	is	no	current	journal.

It	returns	an	object	with	the	attributes

result:	will	be	true	if	rotation	succeeded

Note:	this	method	is	specific	for	the	MMFiles	storage	engine,	and	there	it	is	not	available	in	a	cluster.

Return	Codes

400:	If	the	collection	currently	has	no	journal,	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Rotating	the	journal:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/collection/products/rotate	<<EOF

{	

}

EOF

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

location:	/_api/collection/products/rotate

show	response	body
Rotating	if	no	journal	exists:

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/collection/products/rotate	<<EOF

{	

}

EOF

Modifying

35

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Modifying

36

HTTP	Interface	for	Documents
In	this	chapter	we	describe	the	REST	API	of	ArangoDB	for	documents.

Basic	approach
Detailed	API	description

Documents

37

Basics	and	Terminology

Documents,	Keys,	Handles	and	Revisions

Documents	in	ArangoDB	are	JSON	objects.	These	objects	can	be	nested	(to	any	depth)	and	may	contain	lists.	Each	document	has	a
unique	primary	key	which	identifies	it	within	its	collection.	Furthermore,	each	document	is	uniquely	identified	by	its	document	handle
across	all	collections	in	the	same	database.	Different	revisions	of	the	same	document	(identified	by	its	handle)	can	be	distinguished	by
their	document	revision.	Any	transaction	only	ever	sees	a	single	revision	of	a	document.

Here	is	an	example	document:

{

		"_id"	:	"myusers/3456789",

		"_key"	:	"3456789",

		"_rev"	:	"14253647",

		"firstName"	:	"John",

		"lastName"	:	"Doe",

		"address"	:	{

				"street"	:	"Road	To	Nowhere	1",

				"city"	:	"Gotham"

		},

		"hobbies"	:	[

				{name:	"swimming",	howFavorite:	10},

				{name:	"biking",	howFavorite:	6},

				{name:	"programming",	howFavorite:	4}

]

}

All	documents	contain	special	attributes:	the	document	handle	is	stored	as	a	string	in		_id	,	the	document's	primary	key	in		_key		and
the	document	revision	in		_rev	.	The	value	of	the		_key		attribute	can	be	specified	by	the	user	when	creating	a	document.		_id		and
	_key		values	are	immutable	once	the	document	has	been	created.	The		_rev		value	is	maintained	by	ArangoDB	automatically.

Document	Handle

A	document	handle	uniquely	identifies	a	document	in	the	database.	It	is	a	string	and	consists	of	the	collection's	name	and	the	document
key	(_key		attribute)	separated	by		/	.

Document	Key

A	document	key	uniquely	identifies	a	document	in	the	collection	it	is	stored	in.	It	can	and	should	be	used	by	clients	when	specific
documents	are	queried.	The	document	key	is	stored	in	the		_key		attribute	of	each	document.	The	key	values	are	automatically	indexed
by	ArangoDB	in	a	collection's	primary	index.	Thus	looking	up	a	document	by	its	key	is	a	fast	operation.	The	_key	value	of	a	document	is
immutable	once	the	document	has	been	created.	By	default,	ArangoDB	will	auto-generate	a	document	key	if	no	_key	attribute	is
specified,	and	use	the	user-specified	_key	otherwise.

This	behavior	can	be	changed	on	a	per-collection	level	by	creating	collections	with	the		keyOptions		attribute.

Using		keyOptions		it	is	possible	to	disallow	user-specified	keys	completely,	or	to	force	a	specific	regime	for	auto-generating	the		_key	
values.

Document	Revision

As	ArangoDB	supports	MVCC	(Multiple	Version	Concurrency	Control),	documents	can	exist	in	more	than	one	revision.	The	document
revision	is	the	MVCC	token	used	to	specify	a	particular	revision	of	a	document	(identified	by	its		_id).	It	is	a	string	value	currently
containing	an	integer	number	and	is	unique	within	the	list	of	document	revisions	for	a	single	document.	Document	revisions	can	be	used	to
conditionally	query,	update,	replace	or	delete	documents	in	the	database.	In	order	to	find	a	particular	revision	of	a	document,	you	need
the	document	handle	or	key,	and	the	document	revision.

Basics	and	Terminology

38

ArangoDB	uses	64bit	unsigned	integer	values	to	maintain	document	revisions	internally.	When	returning	document	revisions	to	clients,
ArangoDB	will	put	them	into	a	string	to	ensure	the	revision	is	not	clipped	by	clients	that	do	not	support	big	integers.	Clients	should	treat
the	revision	returned	by	ArangoDB	as	an	opaque	string	when	they	store	or	use	it	locally.	This	will	allow	ArangoDB	to	change	the	format
of	revisions	later	if	this	should	be	required.	Clients	can	use	revisions	to	perform	simple	equality/non-equality	comparisons	(e.g.	to	check
whether	a	document	has	changed	or	not),	but	they	should	not	use	revision	ids	to	perform	greater/less	than	comparisons	with	them	to
check	if	a	document	revision	is	older	than	one	another,	even	if	this	might	work	for	some	cases.

Document	Etag

ArangoDB	tries	to	adhere	to	the	existing	HTTP	standard	as	far	as	possible.	To	this	end,	results	of	single	document	queries	have	the
HTTP	header		Etag		set	to	the	document	revision	enclosed	in	double	quotes.

The	basic	operations	(create,	read,	exists,	replace,	update,	delete)	for	documents	are	mapped	to	the	standard	HTTP	methods	(POST,
GET,	HEAD,	PUT,	PATCH	and	DELETE).

If	you	modify	a	document,	you	can	use	the	If-Match	field	to	detect	conflicts.	The	revision	of	a	document	can	be	checking	using	the	HTTP
method	HEAD.

Multiple	Documents	in	a	single	Request

Beginning	with	ArangoDB	3.0	the	basic	document	API	has	been	extended	to	handle	not	only	single	documents	but	multiple	documents	in
a	single	request.	This	is	crucial	for	performance,	in	particular	in	the	cluster	situation,	in	which	a	single	request	can	involve	multiple
network	hops	within	the	cluster.	Another	advantage	is	that	it	reduces	the	overhead	of	the	HTTP	protocol	and	individual	network	round
trips	between	the	client	and	the	server.	The	general	idea	to	perform	multiple	document	operations	in	a	single	request	is	to	use	a	JSON
array	of	objects	in	the	place	of	a	single	document.	As	a	consequence,	document	keys,	handles	and	revisions	for	preconditions	have	to	be
supplied	embedded	in	the	individual	documents	given.	Multiple	document	operations	are	restricted	to	a	single	document	or	edge
collections.	See	the	API	descriptions	for	details.

Note	that	the	GET,	HEAD	and	DELETE	HTTP	operations	generally	do	not	allow	to	pass	a	message	body.	Thus,	they	cannot	be	used	to
perform	multiple	document	operations	in	one	request.	However,	there	are	other	endpoints	to	request	and	delete	multiple	documents	in
one	request.	FIXME:	ADD	SENSIBLE	LINKS	HERE.

URI	of	a	Document

Any	document	can	be	retrieved	using	its	unique	URI:

http://server:port/_api/document/<document-handle>

For	example,	assuming	that	the	document	handle	is		demo/362549736	,	then	the	URL	of	that	document	is:

http://localhost:8529/_api/document/demo/362549736

The	above	URL	schema	does	not	specify	a	database	name	explicitly,	so	the	default	database		_system		will	be	used.	To	explicitly	specify
the	database	context,	use	the	following	URL	schema:

http://server:port/_db/<database-name>/_api/document/<document-handle>

Example:

http://localhost:8529/_db/mydb/_api/document/demo/362549736

Note:	The	following	examples	use	the	short	URL	format	for	brevity.

The	document	revision	is	returned	in	the	"Etag"	HTTP	header	when	requesting	a	document.

If	you	obtain	a	document	using	GET	and	you	want	to	check	whether	a	newer	revision	is	available,	then	you	can	use	the	If-None-Match
header.	If	the	document	is	unchanged,	a	HTTP	412	(precondition	failed)	error	is	returned.

Basics	and	Terminology

39

If	you	want	to	query,	replace,	update	or	delete	a	document,	then	you	can	use	the	If-Match	header.	If	the	document	has	changed,	then	the
operation	is	aborted	and	an	HTTP	412	error	is	returned.

Basics	and	Terminology

40

Working	with	Documents	using	REST

Read	document

reads	a	single	document

	GET	/_api/document/{document-handle}	

Path	Parameters

document-handle	(required):	The	handle	of	the	document.

Header	Parameters

If-None-Match	(optional):	If	the	"If-None-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	returned,
if	it	has	a	different	revision	than	the	given	Etag.	Otherwise	an	HTTP	304	is	returned.

If-Match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	returned,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.

Returns	the	document	identified	by	document-handle.	The	returned	document	contains	three	special	attributes:	_id	containing	the
document	handle,	_key	containing	key	which	uniquely	identifies	a	document	in	a	given	collection	and	_rev	containing	the	revision.

Return	Codes

200:	is	returned	if	the	document	was	found

304:	is	returned	if	the	"If-None-Match"	header	is	given	and	the	document	has	the	same	version

404:	is	returned	if	the	document	or	collection	was	not	found

412:	is	returned	if	an	"If-Match"	header	is	given	and	the	found	document	has	a	different	version.	The	response	will	also	contain	the
found	document's	current	revision	in	the	_rev	attribute.	Additionally,	the	attributes	_id	and	_key	will	be	returned.

Examples

Use	a	document	handle:

shell>	curl	--dump	-	http://localhost:8529/_api/document/products/10676

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	"_W6lFRfO--_"

show	response	body
Use	a	document	handle	and	an	Etag:

shell>	curl	--header	'If-None-Match:	"_W6lFRja--_"'	--dump	-	

http://localhost:8529/_api/document/products/10724

Unknown	document	handle:

shell>	curl	--dump	-	http://localhost:8529/_api/document/products/unknownhandle

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Working	with	Documents

41

show	response	body

Changes	in	3.0	from	2.8:

The	rev	query	parameter	has	been	withdrawn.	The	same	effect	can	be	achieved	with	the	If-Match	HTTP	header.

Read	document	header

reads	a	single	document	head

	HEAD	/_api/document/{document-handle}	

Path	Parameters

document-handle	(required):	The	handle	of	the	document.

Header	Parameters

If-None-Match	(optional):	If	the	"If-None-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	If	the	current	document
revision	is	not	equal	to	the	specified	Etag,	an	HTTP	200	response	is	returned.	If	the	current	document	revision	is	identical	to	the
specified	Etag,	then	an	HTTP	304	is	returned.

If-Match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	returned,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.

Like	GET,	but	only	returns	the	header	fields	and	not	the	body.	You	can	use	this	call	to	get	the	current	revision	of	a	document	or	check	if
the	document	was	deleted.

Return	Codes

200:	is	returned	if	the	document	was	found

304:	is	returned	if	the	"If-None-Match"	header	is	given	and	the	document	has	the	same	version

404:	is	returned	if	the	document	or	collection	was	not	found

412:	is	returned	if	an	"If-Match"	header	is	given	and	the	found	document	has	a	different	version.	The	response	will	also	contain	the
found	document's	current	revision	in	the	Etag	header.

Examples

shell>	curl	-X	HEAD	--dump	-	http://localhost:8529/_api/document/products/10715

Changes	in	3.0	from	2.8:

The	rev	query	parameter	has	been	withdrawn.	The	same	effect	can	be	achieved	with	the	If-Match	HTTP	header.

Read	all	documents

reads	all	documents	from	collection

	PUT	/_api/simple/all-keys	

Query	Parameters

collection	(optional):	The	name	of	the	collection.	This	parameter	is	only	for	an	easier	migration	path	from	old	versions.	In
ArangoDB	versions	<	3.0,	the	URL	path	was	/_api/document	and	this	was	passed	in	via	the	query	parameter	"collection".	This
combination	was	removed.	The	collection	name	can	be	passed	to	/_api/simple/all-keys	as	body	parameter	(preferred)	or	as	query
parameter.

A	JSON	object	with	these	properties	is	required:

type:	The	type	of	the	result.	The	following	values	are	allowed:

Working	with	Documents

42

id:	returns	an	array	of	document	ids	(_id	attributes)
key:	returns	an	array	of	document	keys	(_key	attributes)
path:	returns	an	array	of	document	URI	paths.	This	is	the	default.

collection:	The	collection	that	should	be	queried

Returns	an	array	of	all	keys,	ids,	or	URI	paths	for	all	documents	in	the	collection	identified	by	collection.	The	type	of	the	result	array	is
determined	by	the	type	attribute.

Note	that	the	results	have	no	defined	order	and	thus	the	order	should	not	be	relied	on.

Return	Codes

201:	All	went	well.

404:	The	collection	does	not	exist.

Examples

Return	all	document	paths

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/all-keys	

<<EOF

{	

		"collection"	:	"products"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Return	all	document	keys

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/all-keys	

<<EOF

{	

		"collection"	:	"products",	

		"type"	:	"id"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Collection	does	not	exist

shell>	curl	--dump	-	http://localhost:8529/_api/document/doesnotexist

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Working	with	Documents

43

show	response	body

Changes	in	3.0	from	2.8:

The	collection	name	should	now	be	specified	in	the	URL	path.	The	old	way	with	the	URL	path	/_api/document	and	the	required	query
parameter	collection	still	works.

Create	document

creates	documents

	POST	/_api/document/{collection}	

Path	Parameters

collection	(required):	The	collection	in	which	the	collection	is	to	be	created.

Request	Body	(required)

A	JSON	representation	of	a	single	document	or	of	an	array	of	documents.

Query	Parameters

collection	(optional):	The	name	of	the	collection.	This	is	only	for	backward	compatibility.	In	ArangoDB	versions	<	3.0,	the	URL
path	was	/_api/document	and	this	query	parameter	was	required.	This	combination	still	works,	but	the	recommended	way	is	to
specify	the	collection	in	the	URL	path.

waitForSync	(optional):	Wait	until	document	has	been	synced	to	disk.

returnNew	(optional):	Additionally	return	the	complete	new	document	under	the	attribute	new	in	the	result.

silent	(optional):	If	set	to	true,	an	empty	object	will	be	returned	as	response.	No	meta-data	will	be	returned	for	the	created
document.	This	option	can	be	used	to	save	some	network	traffic.

Creates	a	new	document	from	the	document	given	in	the	body,	unless	there	is	already	a	document	with	the	_key	given.	If	no	_key	is	given,
a	new	unique	_key	is	generated	automatically.

The	body	can	be	an	array	of	documents,	in	which	case	all	documents	in	the	array	are	inserted	with	the	same	semantics	as	for	a	single
document.	The	result	body	will	contain	a	JSON	array	of	the	same	length	as	the	input	array,	and	each	entry	contains	the	result	of	the
operation	for	the	corresponding	input.	In	case	of	an	error	the	entry	is	a	document	with	attributes	error	set	to	true	and	errorCode	set	to
the	error	code	that	has	happened.

Possibly	given	_id	and	_rev	attributes	in	the	body	are	always	ignored,	the	URL	part	or	the	query	parameter	collection	respectively
counts.

If	the	document	was	created	successfully,	then	the	Location	header	contains	the	path	to	the	newly	created	document.	The	Etag	header
field	contains	the	revision	of	the	document.	Both	are	only	set	in	the	single	document	case.

If	silent	is	not	set	to	true,	the	body	of	the	response	contains	a	JSON	object	(single	document	case)	with	the	following	attributes:

_id	contains	the	document	handle	of	the	newly	created	document
_key	contains	the	document	key
_rev	contains	the	document	revision

In	the	multi	case	the	body	is	an	array	of	such	objects.

If	the	collection	parameter	waitForSync	is	false,	then	the	call	returns	as	soon	as	the	document	has	been	accepted.	It	will	not	wait	until	the
documents	have	been	synced	to	disk.

Optionally,	the	query	parameter	waitForSync	can	be	used	to	force	synchronization	of	the	document	creation	operation	to	disk	even	in
case	that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	query	parameter	can	be	used	to	force
synchronization	of	just	this	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	query	parameter	cannot	be	used
to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

Working	with	Documents

44

If	the	query	parameter	returnNew	is	true,	then,	for	each	generated	document,	the	complete	new	document	is	returned	under	the	new
attribute	in	the	result.

Return	Codes

201:	is	returned	if	the	documents	were	created	successfully	and	waitForSync	was	true.

202:	is	returned	if	the	documents	were	created	successfully	and	waitForSync	was	false.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	one	document	or	an	array	of	documents.	The	response
body	contains	an	error	document	in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

409:	is	returned	in	the	single	document	case	if	a	document	with	the	same	qualifiers	in	an	indexed	attribute	conflicts	with	an	already
existing	document	and	thus	violates	that	unique	constraint.	The	response	body	contains	an	error	document	in	this	case.	In	the	array
case	only	201	or	202	is	returned,	but	if	an	error	occurred,	the	additional	HTTP	header	X-Arango-Error-Codes	is	set,	which	contains
a	map	of	the	error	codes	that	occurred	together	with	their	multiplicities,	as	in:	1205:10,1210:17	which	means	that	in	10	cases	the
error	1205	"illegal	document	handle"	and	in	17	cases	the	error	1210	"unique	constraint	violated"	has	happened.

Examples

Create	a	document	in	a	collection	named	products.	Note	that	the	revision	identifier	might	or	might	not	by	equal	to	the	auto-generated	key.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products	

<<EOF

{	"Hello":	"World"	}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRZ6--_"

location:	/_db/_system/_api/document/products/10638

show	response	body
Create	a	document	in	a	collection	named	products	with	a	collection-level	waitForSync	value	of	false.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products	

<<EOF

{	"Hello":	"World"	}

EOF

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRXy--_"

location:	/_db/_system/_api/document/products/10626

show	response	body
Create	a	document	in	a	collection	with	a	collection-level	waitForSync	value	of	false,	but	using	the	waitForSync	query	parameter.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	

http://localhost:8529/_api/document/products?waitForSync=true	<<EOF

{	"Hello":	"World"	}

EOF

Working	with	Documents

45

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRdu--_"

location:	/_db/_system/_api/document/products/10668

show	response	body
Unknown	collection	name

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products	

<<EOF

{	"Hello":	"World"	}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Illegal	document

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products	

<<EOF

{	1:	"World"	}

EOF

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Insert	multiple	documents:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/document/products	

<<EOF

[{"Hello":"Earth"},	{"Hello":"Venus"},	{"Hello":"Mars"}]

EOF

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		{	

				"_id"	:	"products/10646",	

				"_key"	:	"10646",	

				"_rev"	:	"_W6lFRba--_"	

		},	

		{	

				"_id"	:	"products/10650",	

				"_key"	:	"10650",	

				"_rev"	:	"_W6lFRba--B"	

Working	with	Documents

46

		},	

		{	

				"_id"	:	"products/10652",	

				"_key"	:	"10652",	

				"_rev"	:	"_W6lFRba--D"	

		}	

]

Use	of	returnNew:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	

http://localhost:8529/_api/document/products?returnNew=true	<<EOF

{"Hello":"World"}

EOF

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRce--_"

location:	/_db/_system/_api/document/products/10660

show	response	body

Changes	in	3.0	from	2.8:

The	collection	name	should	now	be	specified	in	the	URL	path.	The	old	way	with	the	URL	path	/_api/document	and	the	required	query
parameter	collection	still	works.	The	possibility	to	insert	multiple	documents	with	one	operation	is	new	and	the	query	parameter
returnNew	has	been	added.

Replace	document

replaces	a	document

	PUT	/_api/document/{document-handle}	

Request	Body	(required)

A	JSON	representation	of	a	single	document.

Path	Parameters

document-handle	(required):	This	URL	parameter	must	be	a	document	handle.

Query	Parameters

waitForSync	(optional):	Wait	until	document	has	been	synced	to	disk.

ignoreRevs	(optional):	By	default,	or	if	this	is	set	to	true,	the	_rev	attributes	in	the	given	document	is	ignored.	If	this	is	set	to	false,
then	the	_rev	attribute	given	in	the	body	document	is	taken	as	a	precondition.	The	document	is	only	replaced	if	the	current	revision
is	the	one	specified.

returnOld	(optional):	Return	additionally	the	complete	previous	revision	of	the	changed	document	under	the	attribute	old	in	the
result.

returnNew	(optional):	Return	additionally	the	complete	new	document	under	the	attribute	new	in	the	result.

silent	(optional):	If	set	to	true,	an	empty	object	will	be	returned	as	response.	No	meta-data	will	be	returned	for	the	replaced
document.	This	option	can	be	used	to	save	some	network	traffic.

Header	Parameters

Working	with	Documents

47

If-Match	(optional):	You	can	conditionally	replace	a	document	based	on	a	target	revision	id	by	using	the	if-match	HTTP	header.

Replaces	the	document	with	handle	with	the	one	in	the	body,	provided	there	is	such	a	document	and	no	precondition	is	violated.

If	the	If-Match	header	is	specified	and	the	revision	of	the	document	in	the	database	is	unequal	to	the	given	revision,	the	precondition	is
violated.

If	If-Match	is	not	given	and	ignoreRevs	is	false	and	there	is	a	_rev	attribute	in	the	body	and	its	value	does	not	match	the	revision	of	the
document	in	the	database,	the	precondition	is	violated.

If	a	precondition	is	violated,	an	HTTP	412	is	returned.

If	the	document	exists	and	can	be	updated,	then	an	HTTP	201	or	an	HTTP	202	is	returned	(depending	on	waitForSync,	see	below),	the
Etag	header	field	contains	the	new	revision	of	the	document	and	the	Location	header	contains	a	complete	URL	under	which	the	document
can	be	queried.

Optionally,	the	query	parameter	waitForSync	can	be	used	to	force	synchronization	of	the	document	replacement	operation	to	disk	even
in	case	that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	query	parameter	can	be	used	to	force
synchronization	of	just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	query	parameter	cannot	be	used
to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

If	silent	is	not	set	to	true,	the	body	of	the	response	contains	a	JSON	object	with	the	information	about	the	handle	and	the	revision.	The
attribute	_id	contains	the	known	document-handle	of	the	updated	document,	_key	contains	the	key	which	uniquely	identifies	a	document
in	a	given	collection,	and	the	attribute	_rev	contains	the	new	document	revision.

If	the	query	parameter	returnOld	is	true,	then	the	complete	previous	revision	of	the	document	is	returned	under	the	old	attribute	in	the
result.

If	the	query	parameter	returnNew	is	true,	then	the	complete	new	document	is	returned	under	the	new	attribute	in	the	result.

If	the	document	does	not	exist,	then	a	HTTP	404	is	returned	and	the	body	of	the	response	contains	an	error	document.

Return	Codes

201:	is	returned	if	the	document	was	replaced	successfully	and	waitForSync	was	true.

202:	is	returned	if	the	document	was	replaced	successfully	and	waitForSync	was	false.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	document.	The	response	body	contains	an	error
document	in	this	case.

404:	is	returned	if	the	collection	or	the	document	was	not	found.

412:	is	returned	if	the	precondition	was	violated.	The	response	will	also	contain	the	found	documents'	current	revisions	in	the	_rev
attributes.	Additionally,	the	attributes	_id	and	_key	will	be	returned.

Examples

Using	a	document	handle

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/document/products/10733	<<EOF

{"Hello":	"you"}

EOF

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRke--_"

location:	/_db/_system/_api/document/products/10733

show	response	body
Unknown	document	handle

Working	with	Documents

48

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/document/products/10755	<<EOF

{}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Produce	a	revision	conflict

shell>	curl	-X	PUT	--header	'If-Match:	"_W6lFRli--_"'	--data-binary	@-	--dump	-	

http://localhost:8529/_api/document/products/10743	<<EOF

{"other":"content"}

EOF

HTTP/1.1	412	Precondition	Failed

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	"_W6lFRle--_"

show	response	body

Changes	in	3.0	from	2.8:

There	are	quite	some	changes	in	this	in	comparison	to	Version	2.8,	but	few	break	existing	usage:

the	rev	query	parameter	is	gone	(was	duplication	of	If-Match)
the	policy	query	parameter	is	gone	(was	non-sensical)
the	ignoreRevs	query	parameter	is	new,	the	default	true	gives	the	traditional	behavior	as	in	2.8
the	returnNew	and	returnOld	query	parameters	are	new

There	should	be	very	few	changes	to	behavior	happening	in	real-world	situations	or	drivers.	Essentially,	one	has	to	replace	usage	of	the
rev	query	parameter	by	usage	of	the	If-Match	header.	The	non-sensical	combination	of	If-Match	given	and	policy=last	no	longer	works,
but	can	easily	be	achieved	by	leaving	out	the	If-Match	header.

The	collection	name	should	now	be	specified	in	the	URL	path.	The	old	way	with	the	URL	path	/_api/document	and	the	required	query
parameter	collection	still	works.

Replace	documents

replaces	multiple	documents

	PUT	/_api/document/{collection}	

Request	Body	(required)

A	JSON	representation	of	an	array	of	documents.

Path	Parameters

collection	(required):	This	URL	parameter	is	the	name	of	the	collection	in	which	the	documents	are	replaced.

Query	Parameters

waitForSync	(optional):	Wait	until	the	new	documents	have	been	synced	to	disk.

Working	with	Documents

49

ignoreRevs	(optional):	By	default,	or	if	this	is	set	to	true,	the	_rev	attributes	in	the	given	documents	are	ignored.	If	this	is	set	to
false,	then	any	_rev	attribute	given	in	a	body	document	is	taken	as	a	precondition.	The	document	is	only	replaced	if	the	current
revision	is	the	one	specified.

returnOld	(optional):	Return	additionally	the	complete	previous	revision	of	the	changed	documents	under	the	attribute	old	in	the
result.

returnNew	(optional):	Return	additionally	the	complete	new	documents	under	the	attribute	new	in	the	result.

Replaces	multiple	documents	in	the	specified	collection	with	the	ones	in	the	body,	the	replaced	documents	are	specified	by	the	_key
attributes	in	the	body	documents.

If	ignoreRevs	is	false	and	there	is	a	_rev	attribute	in	a	document	in	the	body	and	its	value	does	not	match	the	revision	of	the
corresponding	document	in	the	database,	the	precondition	is	violated.

If	the	document	exists	and	can	be	updated,	then	an	HTTP	201	or	an	HTTP	202	is	returned	(depending	on	waitForSync,	see	below).

Optionally,	the	query	parameter	waitForSync	can	be	used	to	force	synchronization	of	the	document	replacement	operation	to	disk	even
in	case	that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	query	parameter	can	be	used	to	force
synchronization	of	just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	query	parameter	cannot	be	used
to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

The	body	of	the	response	contains	a	JSON	array	of	the	same	length	as	the	input	array	with	the	information	about	the	handle	and	the
revision	of	the	replaced	documents.	In	each	entry,	the	attribute	_id	contains	the	known	document-handle	of	each	updated	document,	_key
contains	the	key	which	uniquely	identifies	a	document	in	a	given	collection,	and	the	attribute	_rev	contains	the	new	document	revision.	In
case	of	an	error	or	violated	precondition,	an	error	object	with	the	attribute	error	set	to	true	and	the	attribute	errorCode	set	to	the	error
code	is	built.

If	the	query	parameter	returnOld	is	true,	then,	for	each	generated	document,	the	complete	previous	revision	of	the	document	is	returned
under	the	old	attribute	in	the	result.

If	the	query	parameter	returnNew	is	true,	then,	for	each	generated	document,	the	complete	new	document	is	returned	under	the	new
attribute	in	the	result.

Note	that	if	any	precondition	is	violated	or	an	error	occurred	with	some	of	the	documents,	the	return	code	is	still	201	or	202,	but	the
additional	HTTP	header	X-Arango-Error-Codes	is	set,	which	contains	a	map	of	the	error	codes	that	occurred	together	with	their
multiplicities,	as	in:	1200:17,1205:10	which	means	that	in	17	cases	the	error	1200	"revision	conflict"	and	in	10	cases	the	error	1205
"illegal	document	handle"	has	happened.

Return	Codes

201:	is	returned	if	the	documents	were	replaced	successfully	and	waitForSync	was	true.

202:	is	returned	if	the	documents	were	replaced	successfully	and	waitForSync	was	false.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	an	array	of	documents.	The	response	body	contains	an
error	document	in	this	case.

404:	is	returned	if	the	collection	was	not	found.

Changes	in	3.0	from	2.8:

The	multi	document	version	is	new	in	3.0.

Update	document

updates	a	document

	PATCH	/_api/document/{document-handle}	

Request	Body	(required)

A	JSON	representation	of	a	document	update	as	an	object.

Path	Parameters

Working	with	Documents

50

document-handle	(required):	This	URL	parameter	must	be	a	document	handle.

Query	Parameters

keepNull	(optional):	If	the	intention	is	to	delete	existing	attributes	with	the	patch	command,	the	URL	query	parameter	keepNull	can
be	used	with	a	value	of	false.	This	will	modify	the	behavior	of	the	patch	command	to	remove	any	attributes	from	the	existing
document	that	are	contained	in	the	patch	document	with	an	attribute	value	of	null.

mergeObjects	(optional):	Controls	whether	objects	(not	arrays)	will	be	merged	if	present	in	both	the	existing	and	the	patch
document.	If	set	to	false,	the	value	in	the	patch	document	will	overwrite	the	existing	document's	value.	If	set	to	true,	objects	will	be
merged.	The	default	is	true.

waitForSync	(optional):	Wait	until	document	has	been	synced	to	disk.

ignoreRevs	(optional):	By	default,	or	if	this	is	set	to	true,	the	_rev	attributes	in	the	given	document	is	ignored.	If	this	is	set	to	false,
then	the	_rev	attribute	given	in	the	body	document	is	taken	as	a	precondition.	The	document	is	only	updated	if	the	current	revision
is	the	one	specified.

returnOld	(optional):	Return	additionally	the	complete	previous	revision	of	the	changed	document	under	the	attribute	old	in	the
result.

returnNew	(optional):	Return	additionally	the	complete	new	document	under	the	attribute	new	in	the	result.

silent	(optional):	If	set	to	true,	an	empty	object	will	be	returned	as	response.	No	meta-data	will	be	returned	for	the	updated
document.	This	option	can	be	used	to	save	some	network	traffic.

Header	Parameters

If-Match	(optional):	You	can	conditionally	update	a	document	based	on	a	target	revision	id	by	using	the	if-match	HTTP	header.

Partially	updates	the	document	identified	by	document-handle.	The	body	of	the	request	must	contain	a	JSON	document	with	the
attributes	to	patch	(the	patch	document).	All	attributes	from	the	patch	document	will	be	added	to	the	existing	document	if	they	do	not
yet	exist,	and	overwritten	in	the	existing	document	if	they	do	exist	there.

Setting	an	attribute	value	to	null	in	the	patch	document	will	cause	a	value	of	null	to	be	saved	for	the	attribute	by	default.

If	the	If-Match	header	is	specified	and	the	revision	of	the	document	in	the	database	is	unequal	to	the	given	revision,	the	precondition	is
violated.

If	If-Match	is	not	given	and	ignoreRevs	is	false	and	there	is	a	_rev	attribute	in	the	body	and	its	value	does	not	match	the	revision	of	the
document	in	the	database,	the	precondition	is	violated.

If	a	precondition	is	violated,	an	HTTP	412	is	returned.

If	the	document	exists	and	can	be	updated,	then	an	HTTP	201	or	an	HTTP	202	is	returned	(depending	on	waitForSync,	see	below),	the
Etag	header	field	contains	the	new	revision	of	the	document	(in	double	quotes)	and	the	Location	header	contains	a	complete	URL	under
which	the	document	can	be	queried.

Optionally,	the	query	parameter	waitForSync	can	be	used	to	force	synchronization	of	the	updated	document	operation	to	disk	even	in
case	that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	query	parameter	can	be	used	to	force
synchronization	of	just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	query	parameter	cannot	be	used
to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

If	silent	is	not	set	to	true,	the	body	of	the	response	contains	a	JSON	object	with	the	information	about	the	handle	and	the	revision.	The
attribute	_id	contains	the	known	document-handle	of	the	updated	document,	_key	contains	the	key	which	uniquely	identifies	a	document
in	a	given	collection,	and	the	attribute	_rev	contains	the	new	document	revision.

If	the	query	parameter	returnOld	is	true,	then	the	complete	previous	revision	of	the	document	is	returned	under	the	old	attribute	in	the
result.

If	the	query	parameter	returnNew	is	true,	then	the	complete	new	document	is	returned	under	the	new	attribute	in	the	result.

If	the	document	does	not	exist,	then	a	HTTP	404	is	returned	and	the	body	of	the	response	contains	an	error	document.

Return	Codes

Working	with	Documents

51

201:	is	returned	if	the	document	was	updated	successfully	and	waitForSync	was	true.

202:	is	returned	if	the	document	was	updated	successfully	and	waitForSync	was	false.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	document.	The	response	body	contains	an	error
document	in	this	case.

404:	is	returned	if	the	collection	or	the	document	was	not	found.

412:	is	returned	if	the	precondition	was	violated.	The	response	will	also	contain	the	found	documents'	current	revisions	in	the	_rev
attributes.	Additionally,	the	attributes	_id	and	_key	will	be	returned.

Examples

Patches	an	existing	document	with	new	content.

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	

http://localhost:8529/_api/document/products/10595	<<EOF

{	

		"hello"	:	"world"	

}

EOF

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRVu--B"

location:	/_db/_system/_api/document/products/10595

show	response	body
Merging	attributes	of	an	object	using		mergeObjects	:

shell>	curl	--dump	-	http://localhost:8529/_api/document/products/10611

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	"_W6lFRWy--_"

show	response	body

Changes	in	3.0	from	2.8:

There	are	quite	some	changes	in	this	in	comparison	to	Version	2.8,	but	few	break	existing	usage:

the	rev	query	parameter	is	gone	(was	duplication	of	If-Match)
the	policy	query	parameter	is	gone	(was	non-sensical)
the	ignoreRevs	query	parameter	is	new,	the	default	true	gives	the	traditional	behavior	as	in	2.8
the	returnNew	and	returnOld	query	parameters	are	new

There	should	be	very	few	changes	to	behavior	happening	in	real-world	situations	or	drivers.	Essentially,	one	has	to	replace	usage	of	the
rev	query	parameter	by	usage	of	the	If-Match	header.	The	non-sensical	combination	of	If-Match	given	and	policy=last	no	longer	works,
but	can	easily	be	achieved	by	leaving	out	the	If-Match	header.

The	collection	name	should	now	be	specified	in	the	URL	path.	The	old	way	with	the	URL	path	/_api/document	and	the	required	query
parameter	collection	still	works.

Update	documents

Working	with	Documents

52

updates	multiple	documents

	PATCH	/_api/document/{collection}	

Request	Body	(required)

A	JSON	representation	of	an	array	of	document	updates	as	objects.

Path	Parameters

collection	(required):	This	URL	parameter	is	the	name	of	the	collection	in	which	the	documents	are	updated.

Query	Parameters

keepNull	(optional):	If	the	intention	is	to	delete	existing	attributes	with	the	patch	command,	the	URL	query	parameter	keepNull	can
be	used	with	a	value	of	false.	This	will	modify	the	behavior	of	the	patch	command	to	remove	any	attributes	from	the	existing
document	that	are	contained	in	the	patch	document	with	an	attribute	value	of	null.

mergeObjects	(optional):	Controls	whether	objects	(not	arrays)	will	be	merged	if	present	in	both	the	existing	and	the	patch
document.	If	set	to	false,	the	value	in	the	patch	document	will	overwrite	the	existing	document's	value.	If	set	to	true,	objects	will	be
merged.	The	default	is	true.

waitForSync	(optional):	Wait	until	the	new	documents	have	been	synced	to	disk.

ignoreRevs	(optional):	By	default,	or	if	this	is	set	to	true,	the	_rev	attributes	in	the	given	documents	are	ignored.	If	this	is	set	to
false,	then	any	_rev	attribute	given	in	a	body	document	is	taken	as	a	precondition.	The	document	is	only	updated	if	the	current
revision	is	the	one	specified.

returnOld	(optional):	Return	additionally	the	complete	previous	revision	of	the	changed	documents	under	the	attribute	old	in	the
result.

returnNew	(optional):	Return	additionally	the	complete	new	documents	under	the	attribute	new	in	the	result.

Partially	updates	documents,	the	documents	to	update	are	specified	by	the	_key	attributes	in	the	body	objects.	The	body	of	the	request
must	contain	a	JSON	array	of	document	updates	with	the	attributes	to	patch	(the	patch	documents).	All	attributes	from	the	patch
documents	will	be	added	to	the	existing	documents	if	they	do	not	yet	exist,	and	overwritten	in	the	existing	documents	if	they	do	exist
there.

Setting	an	attribute	value	to	null	in	the	patch	documents	will	cause	a	value	of	null	to	be	saved	for	the	attribute	by	default.

If	ignoreRevs	is	false	and	there	is	a	_rev	attribute	in	a	document	in	the	body	and	its	value	does	not	match	the	revision	of	the
corresponding	document	in	the	database,	the	precondition	is	violated.

If	the	document	exists	and	can	be	updated,	then	an	HTTP	201	or	an	HTTP	202	is	returned	(depending	on	waitForSync,	see	below).

Optionally,	the	query	parameter	waitForSync	can	be	used	to	force	synchronization	of	the	document	replacement	operation	to	disk	even
in	case	that	the	waitForSync	flag	had	been	disabled	for	the	entire	collection.	Thus,	the	waitForSync	query	parameter	can	be	used	to	force
synchronization	of	just	specific	operations.	To	use	this,	set	the	waitForSync	parameter	to	true.	If	the	waitForSync	parameter	is	not
specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The	waitForSync	query	parameter	cannot	be	used
to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

The	body	of	the	response	contains	a	JSON	array	of	the	same	length	as	the	input	array	with	the	information	about	the	handle	and	the
revision	of	the	updated	documents.	In	each	entry,	the	attribute	_id	contains	the	known	document-handle	of	each	updated	document,	_key
contains	the	key	which	uniquely	identifies	a	document	in	a	given	collection,	and	the	attribute	_rev	contains	the	new	document	revision.	In
case	of	an	error	or	violated	precondition,	an	error	object	with	the	attribute	error	set	to	true	and	the	attribute	errorCode	set	to	the	error
code	is	built.

If	the	query	parameter	returnOld	is	true,	then,	for	each	generated	document,	the	complete	previous	revision	of	the	document	is	returned
under	the	old	attribute	in	the	result.

If	the	query	parameter	returnNew	is	true,	then,	for	each	generated	document,	the	complete	new	document	is	returned	under	the	new
attribute	in	the	result.

Note	that	if	any	precondition	is	violated	or	an	error	occurred	with	some	of	the	documents,	the	return	code	is	still	201	or	202,	but	the
additional	HTTP	header	X-Arango-Error-Codes	is	set,	which	contains	a	map	of	the	error	codes	that	occurred	together	with	their
multiplicities,	as	in:	1200:17,1205:10	which	means	that	in	17	cases	the	error	1200	"revision	conflict"	and	in	10	cases	the	error	1205
"illegal	document	handle"	has	happened.

Working	with	Documents

53

Return	Codes

201:	is	returned	if	the	documents	were	updated	successfully	and	waitForSync	was	true.

202:	is	returned	if	the	documents	were	updated	successfully	and	waitForSync	was	false.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	an	array	of	documents.	The	response	body	contains	an
error	document	in	this	case.

404:	is	returned	if	the	collection	was	not	found.

Changes	in	3.0	from	2.8:

The	multi	document	version	is	new	in	3.0.

Removes	a	document

removes	a	document

	DELETE	/_api/document/{document-handle}	

Path	Parameters

document-handle	(required):	Removes	the	document	identified	by	document-handle.

Query	Parameters

waitForSync	(optional):	Wait	until	deletion	operation	has	been	synced	to	disk.

returnOld	(optional):	Return	additionally	the	complete	previous	revision	of	the	changed	document	under	the	attribute	old	in	the
result.

silent	(optional):	If	set	to	true,	an	empty	object	will	be	returned	as	response.	No	meta-data	will	be	returned	for	the	removed
document.	This	option	can	be	used	to	save	some	network	traffic.

Header	Parameters

If-Match	(optional):	You	can	conditionally	remove	a	document	based	on	a	target	revision	id	by	using	the	if-match	HTTP	header.

If	silent	is	not	set	to	true,	the	body	of	the	response	contains	a	JSON	object	with	the	information	about	the	handle	and	the	revision.	The
attribute	_id	contains	the	known	document-handle	of	the	removed	document,	_key	contains	the	key	which	uniquely	identifies	a	document
in	a	given	collection,	and	the	attribute	_rev	contains	the	document	revision.

If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The
waitForSync	query	parameter	cannot	be	used	to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

If	the	query	parameter	returnOld	is	true,	then	the	complete	previous	revision	of	the	document	is	returned	under	the	old	attribute	in	the
result.

Return	Codes

200:	is	returned	if	the	document	was	removed	successfully	and	waitForSync	was	true.

202:	is	returned	if	the	document	was	removed	successfully	and	waitForSync	was	false.

404:	is	returned	if	the	collection	or	the	document	was	not	found.	The	response	body	contains	an	error	document	in	this	case.

412:	is	returned	if	a	"If-Match"	header	or	rev	is	given	and	the	found	document	has	a	different	version.	The	response	will	also	contain
the	found	document's	current	revision	in	the	_rev	attribute.	Additionally,	the	attributes	_id	and	_key	will	be	returned.

Examples

Using	document	handle:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/document/products/10529

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

Working	with	Documents

54

x-content-type-options:	nosniff

etag:	"_W6lFROO--_"

location:	/_db/_system/_api/document/products/10529

show	response	body
Unknown	document	handle:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/document/products/10573

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Revision	conflict:

shell>	curl	-X	DELETE	--header	'If-Match:	"_W6lFRPe--B"'	--dump	-	

http://localhost:8529/_api/document/products/10539

HTTP/1.1	412	Precondition	Failed

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	"_W6lFRPe--_"

show	response	body

Changes	in	3.0	from	2.8:

There	are	only	very	few	changes	in	this	in	comparison	to	Version	2.8:

the	rev	query	parameter	is	gone	(was	duplication	of	If-Match)
the	policy	query	parameter	is	gone	(was	non-sensical)
the	returnOld	query	parameter	is	new

There	should	be	very	few	changes	to	behavior	happening	in	real-world	situations	or	drivers.	Essentially,	one	has	to	replace	usage	of	the
rev	query	parameter	by	usage	of	the	If-Match	header.	The	non-sensical	combination	of	If-Match	given	and	policy=last	no	longer	works,
but	can	easily	be	achieved	by	leaving	out	the	If-Match	header.

Removes	multiple	documents

removes	multiple	document

	DELETE	/_api/document/{collection}	

Request	Body	(required)

A	JSON	array	of	strings	or	documents.

Path	Parameters

collection	(required):	Collection	from	which	documents	are	removed.

Query	Parameters

waitForSync	(optional):	Wait	until	deletion	operation	has	been	synced	to	disk.

returnOld	(optional):	Return	additionally	the	complete	previous	revision	of	the	changed	document	under	the	attribute	old	in	the
result.

Working	with	Documents

55

ignoreRevs	(optional):	If	set	to	true,	ignore	any	_rev	attribute	in	the	selectors.	No	revision	check	is	performed.

The	body	of	the	request	is	an	array	consisting	of	selectors	for	documents.	A	selector	can	either	be	a	string	with	a	key	or	a	string	with	a
document	handle	or	an	object	with	a	_key	attribute.	This	API	call	removes	all	specified	documents	from	collection.	If	the	selector	is	an
object	and	has	a	_rev	attribute,	it	is	a	precondition	that	the	actual	revision	of	the	removed	document	in	the	collection	is	the	specified	one.

The	body	of	the	response	is	an	array	of	the	same	length	as	the	input	array.	For	each	input	selector,	the	output	contains	a	JSON	object
with	the	information	about	the	outcome	of	the	operation.	If	no	error	occurred,	an	object	is	built	in	which	the	attribute	_id	contains	the
known	document-handle	of	the	removed	document,	_key	contains	the	key	which	uniquely	identifies	a	document	in	a	given	collection,	and
the	attribute	_rev	contains	the	document	revision.	In	case	of	an	error,	an	object	with	the	attribute	error	set	to	true	and	errorCode	set	to
the	error	code	is	built.

If	the	waitForSync	parameter	is	not	specified	or	set	to	false,	then	the	collection's	default	waitForSync	behavior	is	applied.	The
waitForSync	query	parameter	cannot	be	used	to	disable	synchronization	for	collections	that	have	a	default	waitForSync	value	of	true.

If	the	query	parameter	returnOld	is	true,	then	the	complete	previous	revision	of	the	document	is	returned	under	the	old	attribute	in	the
result.

Note	that	if	any	precondition	is	violated	or	an	error	occurred	with	some	of	the	documents,	the	return	code	is	still	200	or	202,	but	the
additional	HTTP	header	X-Arango-Error-Codes	is	set,	which	contains	a	map	of	the	error	codes	that	occurred	together	with	their
multiplicities,	as	in:	1200:17,1205:10	which	means	that	in	17	cases	the	error	1200	"revision	conflict"	and	in	10	cases	the	error	1205
"illegal	document	handle"	has	happened.

Return	Codes

200:	is	returned	if	waitForSync	was	true.

202:	is	returned	if	waitForSync	was	false.

404:	is	returned	if	the	collection	was	not	found.	The	response	body	contains	an	error	document	in	this	case.

Examples

Using	document	handle:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/document/products/10563

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

etag:	"_W6lFRRi--_"

location:	/_db/_system/_api/document/products/10563

show	response	body
Unknown	document	handle:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/document/products/10584

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Revision	conflict:

shell>	curl	-X	DELETE	--header	'If-Match:	"_W6lFRQe--B"'	--dump	-	

http://localhost:8529/_api/document/products/10551

HTTP/1.1	412	Precondition	Failed

Working	with	Documents

56

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	"_W6lFRQe--_"

show	response	body

Changes	in	3.0	from	2.8:

This	variant	is	new	in	3.0.	Note	that	it	requires	a	body	in	the	DELETE	request.

Working	with	Documents

57

HTTP	Interface	for	Edges
This	is	an	introduction	to	ArangoDB's	REST	interface	for	edges.

ArangoDB	offers	graph	functionality;	Edges	are	one	part	of	that.

Edges

58

Address	and	Etag	of	an	Edge
All	documents	in	ArangoDB	have	a	document	handle.	This	handle	uniquely	identifies	a	document.	Any	document	can	be	retrieved	using
its	unique	URI:

http://server:port/_api/document/<document-handle>

Edges	are	a	special	variation	of	documents.	To	access	an	edge	use	the	same	URL	format	as	for	a	document:

http://server:port/_api/document/<document-handle>

For	example,	assumed	that	the	document	handle,	which	is	stored	in	the	_id	attribute	of	the	edge,	is	demo/362549736,	then	the	URL	of
that	edge	is:

http://localhost:8529/_api/document/demo/362549736

The	above	URL	scheme	does	not	specify	a	database	name	explicitly,	so	the	default	database	will	be	used.	To	explicitly	specify	the
database	context,	use	the	following	URL	schema:

http://server:port/_db/<database-name>/_api/document/<document-handle>

Example:

http://localhost:8529/_db/mydb/_api/document/demo/362549736

Note:	that	the	following	examples	use	the	short	URL	format	for	brevity.

Address	and	Etag

59

Working	with	Edges	using	REST
This	is	documentation	to	ArangoDB's	REST	interface	for	edges.

Edges	are	documents	with	two	additional	attributes:	_from	and	_to.	These	attributes	are	mandatory	and	must	contain	the	document-
handle	of	the	from	and	to	vertices	of	an	edge.

Use	the	general	document	REST	api	for	create/read/update/delete.

Read	in-	or	outbound	edges

get	edges

	GET	/_api/edges/{collection-id}	

Path	Parameters

collection-id	(required):	The	id	of	the	collection.

Query	Parameters

vertex	(required):	The	id	of	the	start	vertex.

direction	(optional):	Selects	in	or	out	direction	for	edges.	If	not	set,	any	edges	are	returned.

Returns	an	array	of	edges	starting	or	ending	in	the	vertex	identified	by	vertex-handle.

Return	Codes

200:	is	returned	if	the	edge	collection	was	found	and	edges	were	retrieved.

400:	is	returned	if	the	request	contains	invalid	parameters.

404:	is	returned	if	the	edge	collection	was	not	found.

Examples

Any	direction

shell>	curl	--dump	-	http://localhost:8529/_api/edges/edges?vertex=vertices/1

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
In	edges

shell>	curl	--dump	-	http://localhost:8529/_api/edges/edges?vertex=vertices/1&direction=in

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Out	edges

shell>	curl	--dump	-	http://localhost:8529/_api/edges/edges?

vertex=vertices/1&direction=out

Working	with	Edges

60

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Working	with	Edges

61

General	Graphs
This	chapter	describes	the	REST	interface	for	the	multi-collection	graph	module.	It	allows	you	to	define	a	graph	that	is	spread	across
several	edge	and	document	collections.	There	is	no	need	to	include	the	referenced	collections	within	the	query,	this	module	will	handle	it
for	you.

General	Graph

62

Manage	your	graphs
The	graph	module	provides	functions	dealing	with	graph	structures.	Examples	will	explain	the	REST	API	on	the	social	graph:

List	all	graphs

Lists	all	graphs	known	to	the	graph	module.

	GET	/_api/gharial	

Lists	all	graph	names	stored	in	this	database.

Return	Codes

200:	Is	returned	if	the	module	is	available	and	the	graphs	could	be	listed.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/gharial

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Create	a	graph

Create	a	new	graph	in	the	graph	module.

	POST	/_api/gharial	

The	creation	of	a	graph	requires	the	name	of	the	graph	and	a	definition	of	its	edges.	See	also	edge	definitions.

A	JSON	object	with	these	properties	is	required:

orphanCollections:	An	array	of	additional	vertex	collections.
edgeDefinitions:	An	array	of	definitions	for	the	edge
name:	Name	of	the	graph.
isSmart:	Define	if	the	created	graph	should	be	smart.	This	only	has	effect	in	Enterprise	version.
options:

smartGraphAttribute:	The	attribute	name	that	is	used	to	smartly	shard	the	vertices	of	a	graph.	Every	vertex	in	this	Graph	has
to	have	this	attribute.	Cannot	be	modified	later.
numberOfShards:	The	number	of	shards	that	is	used	for	every	collection	within	this	graph.	Cannot	be	modified	later.

Return	Codes

201:	Is	returned	if	the	graph	could	be	created	and	waitForSync	is	enabled	for	the		_graphs		collection.	The	response	body	contains
the	graph	configuration	that	has	been	stored.

202:	Is	returned	if	the	graph	could	be	created	and	waitForSync	is	disabled	for	the		_graphs		collection.	The	response	body	contains
the	graph	configuration	that	has	been	stored.

409:	Returned	if	there	is	a	conflict	storing	the	graph.	This	can	occur	either	if	a	graph	with	this	name	is	already	stored,	or	if	there	is
one	edge	definition	with	a	the	same	edge	collection	but	a	different	signature	used	in	any	other	graph.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial	<<EOF

Management

63

{	

		"name"	:	"myGraph",	

		"edgeDefinitions"	:	[

				{	

						"collection"	:	"edges",	

						"from"	:	[

								"startVertices"	

],	

						"to"	:	[

								"endVertices"	

]	

				}	

]	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFMBm--_

show	response	body

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/gharial	<<EOF

{	

		"name"	:	"myGraph",	

		"edgeDefinitions"	:	[

				{	

						"collection"	:	"edges",	

						"from"	:	[

								"startVertices"	

],	

						"to"	:	[

								"endVertices"	

]	

				}	

],	

		"isSmart"	:	true,	

		"options"	:	{	

				"numberOfShards"	:	9,	

				"smartGraphAttribute"	:	"region"	

		}	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFMG2--_

show	response	body

Get	a	graph

Management

64

Get	a	graph	from	the	graph	module.

	GET	/_api/gharial/{graph-name}	

Gets	a	graph	from	the	collection	_graphs.	Returns	the	definition	content	of	this	graph.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Return	Codes

200:	Returned	if	the	graph	could	be	found.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/gharial/myGraph

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFMdG--_

show	response	body

Drop	a	graph

delete	an	existing	graph

	DELETE	/_api/gharial/{graph-name}	

Removes	a	graph	from	the	collection	_graphs.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Query	Parameters

dropCollections	(optional):	Drop	collections	of	this	graph	as	well.	Collections	will	only	be	dropped	if	they	are	not	used	in	other
graphs.

Return	Codes

201:	Is	returned	if	the	graph	could	be	dropped	and	waitForSync	is	enabled	for	the		_graphs		collection.

202:	Returned	if	the	graph	could	be	dropped	and	waitForSync	is	disabled	for	the		_graphs		collection.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/gharial/social?

dropCollections=true

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Management

65

List	vertex	collections

Lists	all	vertex	collections	used	in	this	graph.

	GET	/_api/gharial/{graph-name}/vertex	

Lists	all	vertex	collections	within	this	graph.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Return	Codes

200:	Is	returned	if	the	collections	could	be	listed.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/gharial/social/vertex

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Add	vertex	collection

Add	an	additional	vertex	collection	to	the	graph.

	POST	/_api/gharial/{graph-name}/vertex	

Adds	a	vertex	collection	to	the	set	of	collections	of	the	graph.	If	the	collection	does	not	exist,	it	will	be	created.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Return	Codes

201:	Returned	if	the	edge	collection	could	be	added	successfully	and	waitForSync	is	true.

202:	Returned	if	the	edge	collection	could	be	added	successfully	and	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/vertex	<<EOF

{	

		"collection"	:	"otherVertices"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFL7---_

show	response	body

Management

66

Remove	vertex	collection

Remove	a	vertex	collection	form	the	graph.

	DELETE	/_api/gharial/{graph-name}/vertex/{collection-name}	

Removes	a	vertex	collection	from	the	graph	and	optionally	deletes	the	collection,	if	it	is	not	used	in	any	other	graph.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	vertex	collection.

Query	Parameters

dropCollection	(optional):	Drop	the	collection	as	well.	Collection	will	only	be	dropped	if	it	is	not	used	in	other	graphs.

Return	Codes

201:	Returned	if	the	vertex	collection	was	removed	from	the	graph	successfully	and	waitForSync	is	true.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

400:	Returned	if	the	vertex	collection	is	still	used	in	an	edge	definition.	In	this	case	it	cannot	be	removed	from	the	graph	yet,	it	has	to
be	removed	from	the	edge	definition	first.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

You	can	remove	vertex	collections	that	are	not	used	in	any	edge	collection:

shell>	curl	-X	DELETE	--dump	-	

http://localhost:8529/_api/gharial/social/vertex/otherVertices

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFNAK--_

show	response	body
You	cannot	remove	vertex	collections	that	are	used	in	edge	collections:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/gharial/social/vertex/male

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

List	edge	definitions

Lists	all	edge	definitions

	GET	/_api/gharial/{graph-name}/edge	

Lists	all	edge	collections	within	this	graph.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Management

67

Return	Codes

200:	Is	returned	if	the	edge	definitions	could	be	listed.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/gharial/social/edge

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Add	edge	definition

Add	a	new	edge	definition	to	the	graph

	POST	/_api/gharial/{graph-name}/edge	

Adds	an	additional	edge	definition	to	the	graph.

This	edge	definition	has	to	contain	a	collection	and	an	array	of	each	from	and	to	vertex	collections.	An	edge	definition	can	only	be	added	if
this	definition	is	either	not	used	in	any	other	graph,	or	it	is	used	with	exactly	the	same	definition.	It	is	not	possible	to	store	a	definition
"e"	from	"v1"	to	"v2"	in	the	one	graph,	and	"e"	from	"v2"	to	"v1"	in	the	other	graph.

A	JSON	object	with	these	properties	is	required:

to	(string):	One	or	many	vertex	collections	that	can	contain	target	vertices.
from	(string):	One	or	many	vertex	collections	that	can	contain	source	vertices.
collection:	The	name	of	the	edge	collection	to	be	used.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Return	Codes

201:	Returned	if	the	definition	could	be	added	successfully	and	waitForSync	is	enabled	for	the		_graphs		collection.

202:	Returned	if	the	definition	could	be	added	successfully	and	waitForSync	is	disabled	for	the		_graphs		collection.

400:	Returned	if	the	defininition	could	not	be	added,	the	edge	collection	is	used	in	an	other	graph	with	a	different	signature.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/edge	<<EOF

{	

		"collection"	:	"works_in",	

		"from"	:	[

				"female",	

				"male"	

],	

		"to"	:	[

				"city"	

]	

}

EOF

Management

68

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFLt6--_

show	response	body

Replace	an	edge	definition

Replace	an	existing	edge	definition

	PUT	/_api/gharial/{graph-name}/edge/{definition-name}	

Change	one	specific	edge	definition.	This	will	modify	all	occurrences	of	this	definition	in	all	graphs	known	to	your	database.

A	JSON	object	with	these	properties	is	required:

to	(string):	One	or	many	vertex	collections	that	can	contain	target	vertices.
from	(string):	One	or	many	vertex	collections	that	can	contain	source	vertices.
collection:	The	name	of	the	edge	collection	to	be	used.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

definition-name	(required):	The	name	of	the	edge	collection	used	in	the	definition.

Return	Codes

201:	Returned	if	the	request	was	successful	and	waitForSync	is	true.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

400:	Returned	if	no	edge	definition	with	this	name	is	found	in	the	graph.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/edge/relation	<<EOF

{	

		"collection"	:	"relation",	

		"from"	:	[

				"female",	

				"male",	

				"animal"	

],	

		"to"	:	[

				"female",	

				"male",	

				"animal"	

]	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFNHu--_

Management

69

show	response	body

Remove	an	edge	definition	from	the	graph

Remove	an	edge	definition	form	the	graph

	DELETE	/_api/gharial/{graph-name}/edge/{definition-name}	

Remove	one	edge	definition	from	the	graph.	This	will	only	remove	the	edge	collection,	the	vertex	collections	remain	untouched	and	can
still	be	used	in	your	queries.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

definition-name	(required):	The	name	of	the	edge	collection	used	in	the	definition.

Query	Parameters

dropCollection	(optional):	Drop	the	collection	as	well.	Collection	will	only	be	dropped	if	it	is	not	used	in	other	graphs.

Return	Codes

201:	Returned	if	the	edge	definition	could	be	removed	from	the	graph	and	waitForSync	is	true.

202:	Returned	if	the	edge	definition	could	be	removed	from	the	graph	and	waitForSync	is	false.

400:	Returned	if	no	edge	definition	with	this	name	is	found	in	the	graph.

404:	Returned	if	no	graph	with	this	name	could	be	found.

Examples

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFMWm--_

show	response	body

Management

70

Handling	Vertices
Examples	will	explain	the	REST	API	to	the	graph	module	on	the	social	graph:

Create	a	vertex

create	a	new	vertex

	POST	/_api/gharial/{graph-name}/vertex/{collection-name}	

Adds	a	vertex	to	the	given	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	vertex	collection	the	vertex	belongs	to.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

Request	Body	(required)

The	body	has	to	be	the	JSON	object	to	be	stored.

Return	Codes

201:	Returned	if	the	vertex	could	be	added	and	waitForSync	is	true.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	or	no	vertex	collection	with	this	name	could	be	found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/vertex/male	<<EOF

{	

		"name"	:	"Francis"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFL2q--_

show	response	body

Get	a	vertex

fetches	an	existing	vertex

	GET	/_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}	

Gets	a	vertex	from	the	given	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

Vertices

71

collection-name	(required):	The	name	of	the	vertex	collection	the	vertex	belongs	to.

vertex-key	(required):	The	_key	attribute	of	the	vertex.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	returned,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Return	Codes

200:	Returned	if	the	vertex	could	be	found.

404:	Returned	if	no	graph	with	this	name,	no	vertex	collection	or	no	vertex	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFMga--_

show	response	body

Modify	a	vertex

replace	an	existing	vertex

	PATCH	/_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}	

Updates	the	data	of	the	specific	vertex	in	the	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	vertex	collection	the	vertex	belongs	to.

vertex-key	(required):	The	_key	attribute	of	the	vertex.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

keepNull	(optional):	Define	if	values	set	to	null	should	be	stored.	By	default	the	key	is	not	removed	from	the	document.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	updated,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Request	Body	(required)

The	body	has	to	contain	a	JSON	object	containing	exactly	the	attributes	that	should	be	replaced.

Return	Codes

200:	Returned	if	the	vertex	could	be	updated.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

Vertices

72

404:	Returned	if	no	graph	with	this	name,	no	vertex	collection	or	no	vertex	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/vertex/female/alice	<<EOF

{	

		"age"	:	26	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFM12--_

show	response	body

Replace	a	vertex

replaces	an	existing	vertex

	PUT	/_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}	

Replaces	the	data	of	a	vertex	in	the	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	vertex	collection	the	vertex	belongs	to.

vertex-key	(required):	The	_key	attribute	of	the	vertex.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	updated,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Request	Body	(required)

The	body	has	to	be	the	JSON	object	to	be	stored.

Return	Codes

200:	Returned	if	the	vertex	could	be	replaced.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name,	no	vertex	collection	or	no	vertex	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/vertex/female/alice	<<EOF

{	

Vertices

73

		"name"	:	"Alice	Cooper",	

		"age"	:	26	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFNM2--_

show	response	body

Remove	a	vertex

removes	a	vertex	from	a	graph

	DELETE	/_api/gharial/{graph-name}/vertex/{collection-name}/{vertex-key}	

Removes	a	vertex	from	the	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	vertex	collection	the	vertex	belongs	to.

vertex-key	(required):	The	_key	attribute	of	the	vertex.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	updated,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Return	Codes

200:	Returned	if	the	vertex	could	be	removed.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name,	no	vertex	collection	or	no	vertex	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	-X	DELETE	--dump	-	

http://localhost:8529/_api/gharial/social/vertex/female/alice

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Vertices

74

Handling	Edges
Examples	will	explain	the	REST	API	for	manipulating	edges	of	the	graph	module	on	the	knows	graph:

Create	an	edge

Creates	an	edge	in	an	existing	graph

	POST	/_api/gharial/{graph-name}/edge/{collection-name}	

Creates	a	new	edge	in	the	collection.	Within	the	body	the	has	to	contain	a	_from	and	_to	value	referencing	to	valid	vertices	in	the	graph.
Furthermore	the	edge	has	to	be	valid	in	the	definition	of	this	edge	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	edge	collection	the	edge	belongs	to.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

_from	(required):

_to	(required):

Request	Body	(required)

The	body	has	to	be	the	JSON	object	to	be	stored.

Return	Codes

201:	Returned	if	the	edge	could	be	created.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name,	no	edge	collection	or	no	edge	with	this	id	could	be	found.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/edge/relation	<<EOF

{	

		"type"	:	"friend",	

		"_from"	:	"female/alice",	

		"_to"	:	"female/diana"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFLpS--_

show	response	body

Get	an	edge

fetch	an	edge

Edges

75

	GET	/_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}	

Gets	an	edge	from	the	given	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	edge	collection	the	edge	belongs	to.

edge-key	(required):	The	_key	attribute	of	the	vertex.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	returned,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Return	Codes

200:	Returned	if	the	edge	could	be	found.

404:	Returned	if	no	graph	with	this	name,	no	edge	collection	or	no	edge	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/gharial/social/edge/relation/8611

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFMa---F

show	response	body
Examples	will	explain	the	API	on	the	social	graph:

Modify	an	edge

modify	an	existing	edge

	PATCH	/_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}	

Updates	the	data	of	the	specific	edge	in	the	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	edge	collection	the	edge	belongs	to.

edge-key	(required):	The	_key	attribute	of	the	vertex.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

keepNull	(optional):	Define	if	values	set	to	null	should	be	stored.	By	default	the	key	is	not	removed	from	the	document.

Request	Body	(required)

The	body	has	to	be	a	JSON	object	containing	the	attributes	to	be	updated.

Return	Codes

Edges

76

200:	Returned	if	the	edge	could	be	updated.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name,	no	edge	collection	or	no	edge	with	this	id	could	be	found.

Examples

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	

http://localhost:8529/_api/gharial/social/edge/relation/9169	<<EOF

{	

		"since"	:	"01.01.2001"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFM5O--_

show	response	body

Replace	an	edge

replace	the	content	of	an	existing	edge

	PUT	/_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}	

Replaces	the	data	of	an	edge	in	the	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	edge	collection	the	edge	belongs	to.

edge-key	(required):	The	_key	attribute	of	the	vertex.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	updated,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Request	Body	(required)

The	body	has	to	be	the	JSON	object	to	be	stored.

Return	Codes

201:	Returned	if	the	request	was	successful	but	waitForSync	is	true.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name,	no	edge	collection	or	no	edge	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

Edges

77

http://localhost:8529/_api/gharial/social/edge/relation/9250	<<EOF

{	

		"type"	:	"divorced",	

		"_from"	:	"female/alice",	

		"_to"	:	"male/bob"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

content-type:	application/json;	charset=utf-8

etag:	_W6lFM8m--_

show	response	body

Remove	an	edge

removes	an	edge	from	graph

	DELETE	/_api/gharial/{graph-name}/edge/{collection-name}/{edge-key}	

Removes	an	edge	from	the	collection.

Path	Parameters

graph-name	(required):	The	name	of	the	graph.

collection-name	(required):	The	name	of	the	edge	collection	the	edge	belongs	to.

edge-key	(required):	The	_key	attribute	of	the	vertex.

Query	Parameters

waitForSync	(optional):	Define	if	the	request	should	wait	until	synced	to	disk.

Header	Parameters

if-match	(optional):	If	the	"If-Match"	header	is	given,	then	it	must	contain	exactly	one	Etag.	The	document	is	updated,	if	it	has	the
same	revision	as	the	given	Etag.	Otherwise	a	HTTP	412	is	returned.	As	an	alternative	you	can	supply	the	Etag	in	an	attribute	rev	in
the	URL.

Return	Codes

200:	Returned	if	the	edge	could	be	removed.

202:	Returned	if	the	request	was	successful	but	waitForSync	is	false.

404:	Returned	if	no	graph	with	this	name,	no	edge	collection	or	no	edge	with	this	id	could	be	found.

412:	Returned	if	if-match	header	is	given,	but	the	documents	revision	is	different.

Examples

shell>	curl	-X	DELETE	--dump	-	

http://localhost:8529/_api/gharial/social/edge/relation/8330

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Edges

78

Edges

79

HTTP	Interface	for	Traversals

Traversals

ArangoDB's	graph	traversals	are	executed	on	the	server.	Traversals	can	be	initiated	by	clients	by	sending	the	traversal	description	for
execution	to	the	server.

Traversals	in	ArangoDB	are	used	to	walk	over	a	graph	stored	in	one	edge	collection.	It	can	easily	be	described	which	edges	of	the	graph
should	be	followed	and	which	actions	should	be	performed	on	each	visited	vertex.	Furthermore	the	ordering	of	visiting	the	nodes	can	be
specified,	for	instance	depth-first	or	breadth-first	search	are	offered.

Executing	Traversals	via	HTTP

executes	a	traversal

execute	a	server-side	traversal

	POST	/_api/traversal	

Starts	a	traversal	starting	from	a	given	vertex	and	following.	edges	contained	in	a	given	edgeCollection.	The	request	must	contain	the
following	attributes.

A	JSON	object	with	these	properties	is	required:

sort:	body	(JavaScript)	code	of	a	custom	comparison	function	for	the	edges.	The	signature	of	this	function	is	(l,	r)	->	integer	(where
l	and	r	are	edges)	and	must	return	-1	if	l	is	smaller	than,	+1	if	l	is	greater	than,	and	0	if	l	and	r	are	equal.	The	reason	for	this	is	the
following:	The	order	of	edges	returned	for	a	certain	vertex	is	undefined.	This	is	because	there	is	no	natural	order	of	edges	for	a	vertex
with	multiple	connected	edges.	To	explicitly	define	the	order	in	which	edges	on	the	vertex	are	followed,	you	can	specify	an	edge
comparator	function	with	this	attribute.	Note	that	the	value	here	has	to	be	a	string	to	conform	to	the	JSON	standard,	which	in	turn
is	parsed	as	function	body	on	the	server	side.	Furthermore	note	that	this	attribute	is	only	used	for	the	standard	expanders.	If	you
use	your	custom	expander	you	have	to	do	the	sorting	yourself	within	the	expander	code.
direction:	direction	for	traversal

if	set,	must	be	either	"outbound" ,	"inbound" ,	or	"any"
if	not	set,	the	expander	attribute	must	be	specified

minDepth:	ANDed	with	any	existing	filters):	visits	only	nodes	in	at	least	the	given	depth
startVertex:	id	of	the	startVertex,	e.g.	"users/foo" .
visitor:	body	(JavaScript)	code	of	custom	visitor	function	function	signature:	(config,	result,	vertex,	path,	connected)	->	void	The
visitor	function	can	do	anything,	but	its	return	value	is	ignored.	To	populate	a	result,	use	the	result	variable	by	reference.	Note	that
the	connected	argument	is	only	populated	when	the	order	attribute	is	set	to	"preorder-expander" .
itemOrder:	item	iteration	order	can	be	"forward" 	or	"backward"
strategy:	traversal	strategy	can	be	"depthfirst" 	or	"breadthfirst"
filter:	default	is	to	include	all	nodes:	body	(JavaScript	code)	of	custom	filter	function	function	signature:	(config,	vertex,	path)	->
mixed	can	return	four	different	string	values:

"exclude" 	->	this	vertex	will	not	be	visited.
"prune" 	->	the	edges	of	this	vertex	will	not	be	followed.
"" 	or	undefined	->	visit	the	vertex	and	follow	its	edges.
Array	->	containing	any	combination	of	the	above.	If	there	is	at	least	one	"exclude" 	or	"prune" 	respectivly	is	contained,	it's
effect	will	occur.

init:	body	(JavaScript)	code	of	custom	result	initialization	function	function	signature:	(config,	result)	->	void	initialize	any	values
in	result	with	what	is	required
maxIterations:	Maximum	number	of	iterations	in	each	traversal.	This	number	can	be	set	to	prevent	endless	loops	in	traversal	of
cyclic	graphs.	When	a	traversal	performs	as	many	iterations	as	the	maxIterations	value,	the	traversal	will	abort	with	an	error.	If
maxIterations	is	not	set,	a	server-defined	value	may	be	used.
maxDepth:	ANDed	with	any	existing	filters	visits	only	nodes	in	at	most	the	given	depth
uniqueness:	specifies	uniqueness	for	vertices	and	edges	visited.	If	set,	must	be	an	object	like	this:		"uniqueness":	{"vertices":
"none"|"global"|"path",	"edges":	"none"|"global"|"path"}	

Traversals

80

order:	traversal	order	can	be	"preorder" ,	"postorder" 	or	"preorder-expander"
graphName:	name	of	the	graph	that	contains	the	edges.	Either	edgeCollection	or	graphName	has	to	be	given.	In	case	both	values	are
set	the	graphName	is	prefered.
expander:	body	(JavaScript)	code	of	custom	expander	function	must	be	set	if	direction	attribute	is	not	set	function	signature:
(config,	vertex,	path)	->	array	expander	must	return	an	array	of	the	connections	for	vertex	each	connection	is	an	object	with	the
attributes	edge	and	vertex
edgeCollection:	name	of	the	collection	that	contains	the	edges.

If	the	Traversal	is	successfully	executed	HTTP	200	will	be	returned.	Additionally	the	result	object	will	be	returned	by	the	traversal.

For	successful	traversals,	the	returned	JSON	object	has	the	following	properties:

error:	boolean	flag	to	indicate	if	an	error	occurred	(false	in	this	case)

code:	the	HTTP	status	code

result:	the	return	value	of	the	traversal

If	the	traversal	specification	is	either	missing	or	malformed,	the	server	will	respond	with	HTTP	400.

The	body	of	the	response	will	then	contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

code:	the	HTTP	status	code

errorNum:	the	server	error	number

errorMessage:	a	descriptive	error	message

Return	Codes

200:	If	the	traversal	is	fully	executed	HTTP	200	will	be	returned.

400:	If	the	traversal	specification	is	either	missing	or	malformed,	the	server	will	respond	with	HTTP	400.

404:	The	server	will	responded	with	HTTP	404	if	the	specified	edge	collection	does	not	exist,	or	the	specified	start	vertex	cannot	be
found.

500:	The	server	will	responded	with	HTTP	500	when	an	error	occurs	inside	the	traversal	or	if	a	traversal	performs	more	than
maxIterations	iterations.

Examples

In	the	following	examples	the	underlying	graph	will	contain	five	persons	Alice,	Bob,	Charlie,	Dave	and	Eve.	We	will	have	the	following
directed	relations:

Alice	knows	Bob
Bob	knows	Charlie
Bob	knows	Dave
Eve	knows	Alice
Eve	knows	Bob

The	starting	vertex	will	always	be	Alice.

Follow	only	outbound	edges

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound"	

}

EOF

HTTP/1.1	200	OK

Traversals

81

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Follow	only	inbound	edges

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"inbound"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Follow	any	direction	of	edges

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"any",	

		"uniqueness"	:	{	

				"vertices"	:	"none",	

				"edges"	:	"global"	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Excluding	Charlie	and	Bob

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound",	

		"filter"	:	"if	(vertex.name	===	\"Bob\"	||					vertex.name	===	\"Charlie\")	{		return	

\"exclude\";}return;"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

Traversals

82

x-content-type-options:	nosniff

show	response	body
Do	not	follow	edges	from	Bob

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound",	

		"filter"	:	"if	(vertex.name	===	\"Bob\")	{return	\"prune\";}return;"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Visit	only	nodes	in	a	depth	of	at	least	2

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound",	

		"minDepth"	:	2	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Visit	only	nodes	in	a	depth	of	at	most	1

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound",	

		"maxDepth"	:	1	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Traversals

83

Using	a	visitor	function	to	return	vertex	ids	only

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound",	

		"visitor"	:	"result.visited.vertices.push(vertex._id);"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Count	all	visited	nodes	and	return	a	list	of	nodes	only

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"outbound",	

		"init"	:	"result.visited	=	0;	result.myVertices	=	[];",	

		"visitor"	:	"result.visited++;	result.myVertices.push(vertex);"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Expand	only	inbound	edges	of	Alice	and	outbound	edges	of	Eve

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"expander"	:	"var	connections	=	[];if	(vertex.name	===	\"Alice\")	

{config.datasource.getInEdges(vertex).forEach(function	(e)	{connections.push({	vertex:	

require(\"internal\").db._document(e._from),	edge:	e});});}if	(vertex.name	===	\"Eve\")	

{config.datasource.getOutEdges(vertex).forEach(function	(e)	{connections.push({vertex:	

require(\"internal\").db._document(e._to),	edge:	e});});}return	connections;"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Traversals

84

Follow	the	depthfirst	strategy

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"any",	

		"strategy"	:	"depthfirst"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	postorder	ordering

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"any",	

		"order"	:	"postorder"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	backward	item-ordering:

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"any",	

		"itemOrder"	:	"backward"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Edges	should	only	be	included	once	globally,	but	nodes	are	included	every	time	they	are	visited

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

Traversals

85

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"any",	

		"uniqueness"	:	{	

				"vertices"	:	"none",	

				"edges"	:	"global"	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
If	the	underlying	graph	is	cyclic,	maxIterations	should	be	set

The	underlying	graph	has	two	vertices	Alice	and	Bob.	With	the	directed	edges:

Alice	knows	Bob
Bob	knows	Alice

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/traversal	<<EOF

{	

		"startVertex"	:	"persons/alice",	

		"graphName"	:	"knows_graph",	

		"direction"	:	"any",	

		"uniqueness"	:	{	

				"vertices"	:	"none",	

				"edges"	:	"none"	

		},	

		"maxIterations"	:	5	

}

EOF

HTTP/1.1	500	Internal	Server	Error

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
All	examples	were	using	this	graph:

Traversals

86

Traversals

87

HTTP	Interface	for	AQL	Query	Cursors

Database	Cursors

This	is	an	introduction	to	ArangoDB's	HTTP	Interface	for	Queries.	Results	of	AQL	and	simple	queries	are	returned	as	cursors	in	order	to
batch	the	communication	between	server	and	client.	Each	call	returns	a	number	of	documents	in	a	batch	and	an	indication	if	the	current
batch	has	been	the	final	batch.	Depending	on	the	query,	the	total	number	of	documents	in	the	result	set	might	or	might	not	be	known	in
advance.	In	order	to	free	server	resources	the	client	should	delete	the	cursor	as	soon	as	it	is	no	longer	needed.

To	execute	a	query,	the	query	details	need	to	be	shipped	from	the	client	to	the	server	via	an	HTTP	POST	request.

AQL	Query	Cursors

88

Retrieving	query	results
Select	queries	are	executed	on-the-fly	on	the	server	and	the	result	set	will	be	returned	back	to	the	client.

There	are	two	ways	the	client	can	get	the	result	set	from	the	server:

In	a	single	roundtrip
Using	a	cursor

Single	roundtrip

The	server	will	only	transfer	a	certain	number	of	result	documents	back	to	the	client	in	one	roundtrip.	This	number	is	controllable	by	the
client	by	setting	the	batchSize	attribute	when	issuing	the	query.

If	the	complete	result	can	be	transferred	to	the	client	in	one	go,	the	client	does	not	need	to	issue	any	further	request.	The	client	can	check
whether	it	has	retrieved	the	complete	result	set	by	checking	the	hasMore	attribute	of	the	result	set.	If	it	is	set	to	false,	then	the	client	has
fetched	the	complete	result	set	from	the	server.	In	this	case	no	server	side	cursor	will	be	created.

>	curl	--data	@-	-X	POST	--dump	-	http://localhost:8529/_api/cursor

{	"query"	:	"FOR	u	IN	users	LIMIT	2	RETURN	u",	"count"	:	true,	"batchSize"	:	2	}

HTTP/1.1	201	Created

Content-type:	application/json

{

		"hasMore"	:	false,

		"error"	:	false,

		"result"	:	[

				{

						"name"	:	"user1",

						"_rev"	:	"210304551",

						"_key"	:	"210304551",

						"_id"	:	"users/210304551"

				},

				{

						"name"	:	"user2",

						"_rev"	:	"210304552",

						"_key"	:	"210304552",

						"_id"	:	"users/210304552"

				}

],

		"code"	:	201,

		"count"	:	2

}

Using	a	cursor

If	the	result	set	contains	more	documents	than	should	be	transferred	in	a	single	roundtrip	(i.e.	as	set	via	the	batchSize	attribute),	the	server
will	return	the	first	few	documents	and	create	a	temporary	cursor.	The	cursor	identifier	will	also	be	returned	to	the	client.	The	server	will
put	the	cursor	identifier	in	the	id	attribute	of	the	response	object.	Furthermore,	the	hasMore	attribute	of	the	response	object	will	be	set	to
true.	This	is	an	indication	for	the	client	that	there	are	additional	results	to	fetch	from	the	server.

Examples:

Create	and	extract	first	batch:

>	curl	--data	@-	-X	POST	--dump	-	http://localhost:8529/_api/cursor

{	"query"	:	"FOR	u	IN	users	LIMIT	5	RETURN	u",	"count"	:	true,	"batchSize"	:	2	}

HTTP/1.1	201	Created

Content-type:	application/json

{

		"hasMore"	:	true,

		"error"	:	false,

		"id"	:	"26011191",

Query	Results

89

		"result"	:	[

				{

						"name"	:	"user1",

						"_rev"	:	"258801191",

						"_key"	:	"258801191",

						"_id"	:	"users/258801191"

				},

				{

						"name"	:	"user2",

						"_rev"	:	"258801192",

						"_key"	:	"258801192",

						"_id"	:	"users/258801192"

				}

],

		"code"	:	201,

		"count"	:	5

}

Extract	next	batch,	still	have	more:

>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/26011191

HTTP/1.1	200	OK

Content-type:	application/json

{

		"hasMore"	:	true,

		"error"	:	false,

		"id"	:	"26011191",

		"result":	[

				{

						"name"	:	"user3",

						"_rev"	:	"258801193",

						"_key"	:	"258801193",

						"_id"	:	"users/258801193"

				},

				{

						"name"	:	"user4",

						"_rev"	:	"258801194",

						"_key"	:	"258801194",

						"_id"	:	"users/258801194"

				}

],

		"code"	:	200,

		"count"	:	5

}

Extract	next	batch,	done:

>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/26011191

HTTP/1.1	200	OK

Content-type:	application/json

{

		"hasMore"	:	false,

		"error"	:	false,

		"result"	:	[

				{

						"name"	:	"user5",

						"_rev"	:	"258801195",

						"_key"	:	"258801195",

						"_id"	:	"users/258801195"

				}

],

		"code"	:	200,

		"count"	:	5

}

Do	not	do	this	because	hasMore	now	has	a	value	of	false:

>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/26011191

Query	Results

90

HTTP/1.1	404	Not	Found

Content-type:	application/json

{

		"errorNum":	1600,

		"errorMessage":	"cursor	not	found:	disposed	or	unknown	cursor",

		"error":	true,

		"code":	404

}

Modifying	documents

The		_api/cursor		endpoint	can	also	be	used	to	execute	modifying	queries.

The	following	example	appends	a	value	into	the	array		arrayValue		of	the	document	with	key		test		in	the	collection		documents	.
Normal	update	behavior	is	to	replace	the	attribute	completely,	and	using	an	update	AQL	query	with	the		PUSH()		function	allows	to
append	to	the	array.

curl	--data	@-	-X	POST	--dump	http://127.0.0.1:8529/_api/cursor

{	"query":	"FOR	doc	IN	documents	FILTER	doc._key	==	@myKey	UPDATE	doc._key	WITH	{	arrayValue:	PUSH(doc.arrayValue,	@value)	}	IN

	documents","bindVars":	{	"myKey":	"test",	"value":	42	}	}

HTTP/1.1	201	Created

Content-type:	application/json;	charset=utf-8

{

		"result"	:	[],

		"hasMore"	:	false,

		"extra"	:	{

				"stats"	:	{

						"writesExecuted"	:	1,

						"writesIgnored"	:	0,

						"scannedFull"	:	0,

						"scannedIndex"	:	1,

						"filtered"	:	0

				},

				"warnings"	:	[]

		},

		"error"	:	false,

		"code"	:	201

}

Setting	a	memory	limit

To	set	a	memory	limit	for	the	query,	the	memoryLimit	option	can	be	passed	to	the	server.	The	memory	limit	specifies	the	maximum
number	of	bytes	that	the	query	is	allowed	to	use.	When	a	single	AQL	query	reaches	the	specified	limit	value,	the	query	will	be	aborted
with	a	resource	limit	exceeded	exception.	In	a	cluster,	the	memory	accounting	is	done	per	shard,	so	the	limit	value	is	effectively	a	memory
limit	per	query	per	shard.

>	curl	--data	@-	-X	POST	--dump	-	http://localhost:8529/_api/cursor

{	"query"	:	"FOR	i	IN	1..100000	SORT	i	RETURN	i",	"memoryLimit"	:	100000	}

HTTP/1.1	500	Internal	Server	Error

Server:	ArangoDB

Connection:	Keep-Alive

Content-Type:	application/json;	charset=utf-8

Content-Length:	115

{"error":true,"errorMessage":"query	would	use	more	memory	than	allowed	(while	executing)","code":500,"errorNum":32}

If	no	memory	limit	is	specified,	then	the	server	default	value	(controlled	by	startup	option	--query.memory-limit	will	be	used	for
restricting	the	maximum	amount	of	memory	the	query	can	use.	A	memory	limit	value	of	0	means	that	the	maximum	amount	of	memory
for	the	query	is	not	restricted.

Query	Results

91

Accessing	Cursors	via	HTTP

Create	cursor

create	a	cursor	and	return	the	first	results

	POST	/_api/cursor	

A	JSON	object	describing	the	query	and	query	parameters.

A	JSON	object	with	these	properties	is	required:

count:	indicates	whether	the	number	of	documents	in	the	result	set	should	be	returned	in	the	"count"	attribute	of	the	result.
Calculating	the	"count"	attribute	might	have	a	performance	impact	for	some	queries	in	the	future	so	this	option	is	turned	off	by
default,	and	"count"	is	only	returned	when	requested.
batchSize:	maximum	number	of	result	documents	to	be	transferred	from	the	server	to	the	client	in	one	roundtrip.	If	this	attribute	is
not	set,	a	server-controlled	default	value	will	be	used.	A	batchSize	value	of	0	is	disallowed.
cache:	flag	to	determine	whether	the	AQL	query	cache	shall	be	used.	If	set	to	false,	then	any	query	cache	lookup	will	be	skipped	for
the	query.	If	set	to	true,	it	will	lead	to	the	query	cache	being	checked	for	the	query	if	the	query	cache	mode	is	either	on	or	demand.
memoryLimit:	the	maximum	number	of	memory	(measured	in	bytes)	that	the	query	is	allowed	to	use.	If	set,	then	the	query	will	fail
with	error	"resource	limit	exceeded"	in	case	it	allocates	too	much	memory.	A	value	of	0	indicates	that	there	is	no	memory	limit.
ttl:	The	time-to-live	for	the	cursor	(in	seconds).	The	cursor	will	be	removed	on	the	server	automatically	after	the	specified	amount	of
time.	This	is	useful	to	ensure	garbage	collection	of	cursors	that	are	not	fully	fetched	by	clients.	If	not	set,	a	server-defined	value	will
be	used.
query:	contains	the	query	string	to	be	executed
bindVars	(object):	key/value	pairs	representing	the	bind	parameters.
options:

failOnWarning:	When	set	to	true,	the	query	will	throw	an	exception	and	abort	instead	of	producing	a	warning.	This	option
should	be	used	during	development	to	catch	potential	issues	early.	When	the	attribute	is	set	to	false,	warnings	will	not	be
propagated	to	exceptions	and	will	be	returned	with	the	query	result.	There	is	also	a	server	configuration	option		--query.fail-
on-warning		for	setting	the	default	value	for	failOnWarning	so	it	does	not	need	to	be	set	on	a	per-query	level.
profile:	If	set	to	true,	then	the	additional	query	profiling	information	will	be	returned	in	the	sub-attribute	profile	of	the	extra
return	attribute	if	the	query	result	is	not	served	from	the	query	cache.
maxTransactionSize:	Transaction	size	limit	in	bytes.	Honored	by	the	RocksDB	storage	engine	only.
skipInaccessibleCollections:	AQL	queries	(especially	graph	traversals)	will	treat	collection	to	which	a	user	has	no	access
rights	as	if	these	collections	were	empty.	Instead	of	returning	a	forbidden	access	error,	your	queries	will	execute	normally.	This
is	intended	to	help	with	certain	use-cases:	A	graph	contains	several	collections	and	different	users	execute	AQL	queries	on	that
graph.	You	can	now	naturally	limit	the	accessible	results	by	changing	the	access	rights	of	users	on	collections.	This	feature	is
only	available	in	the	Enterprise	Edition.
maxWarningCount:	Limits	the	maximum	number	of	warnings	a	query	will	return.	The	number	of	warnings	a	query	will	return
is	limited	to	10	by	default,	but	that	number	can	be	increased	or	decreased	by	setting	this	attribute.
intermediateCommitCount:	Maximum	number	of	operations	after	which	an	intermediate	commit	is	performed	automatically.
Honored	by	the	RocksDB	storage	engine	only.
satelliteSyncWait:	This	enterprise	parameter	allows	to	configure	how	long	a	DBServer	will	have	time	to	bring	the	satellite
collections	involved	in	the	query	into	sync.	The	default	value	is	60.0	(seconds).	When	the	max	time	has	been	reached	the	query
will	be	stopped.
fullCount:	if	set	to	true	and	the	query	contains	a	LIMIT	clause,	then	the	result	will	have	an	extra	attribute	with	the	sub-
attributes	stats	and	fullCount,		{	...	,	"extra":	{	"stats":	{	"fullCount":	123	}	}	}	.	The	fullCount	attribute	will	contain	the
number	of	documents	in	the	result	before	the	last	LIMIT	in	the	query	was	applied.	It	can	be	used	to	count	the	number	of
documents	that	match	certain	filter	criteria,	but	only	return	a	subset	of	them,	in	one	go.	It	is	thus	similar	to	MySQL's
SQL_CALC_FOUND_ROWS	hint.	Note	that	setting	the	option	will	disable	a	few	LIMIT	optimizations	and	may	lead	to	more
documents	being	processed,	and	thus	make	queries	run	longer.	Note	that	the	fullCount	attribute	will	only	be	present	in	the
result	if	the	query	has	a	LIMIT	clause	and	the	LIMIT	clause	is	actually	used	in	the	query.
intermediateCommitSize:	Maximum	total	size	of	operations	after	which	an	intermediate	commit	is	performed	automatically.
Honored	by	the	RocksDB	storage	engine	only.
optimizer.rules	(string):	A	list	of	to-be-included	or	to-be-excluded	optimizer	rules	can	be	put	into	this	attribute,	telling	the

Accessing	Cursors

92

optimizer	to	include	or	exclude	specific	rules.	To	disable	a	rule,	prefix	its	name	with	a		-	,	to	enable	a	rule,	prefix	it	with	a		+	.
There	is	also	a	pseudo-rule		all	,	which	will	match	all	optimizer	rules.
maxPlans:	Limits	the	maximum	number	of	plans	that	are	created	by	the	AQL	query	optimizer.

The	query	details	include	the	query	string	plus	optional	query	options	and	bind	parameters.	These	values	need	to	be	passed	in	a	JSON
representation	in	the	body	of	the	POST	request.

HTTP	201

A	json	document	with	these	Properties	is	returned:

is	returned	if	the	result	set	can	be	created	by	the	server.

count:	the	total	number	of	result	documents	available	(only	available	if	the	query	was	executed	with	the	count	attribute	set)
code:	the	HTTP	status	code
extra:	an	optional	JSON	object	with	extra	information	about	the	query	result	contained	in	its	stats	sub-attribute.	For	data-
modification	queries,	the	extra.stats	sub-attribute	will	contain	the	number	of	modified	documents	and	the	number	of	documents	that
could	not	be	modified	due	to	an	error	(if	ignoreErrors	query	option	is	specified)
cached:	a	boolean	flag	indicating	whether	the	query	result	was	served	from	the	query	cache	or	not.	If	the	query	result	is	served	from
the	query	cache,	the	extra	return	attribute	will	not	contain	any	stats	sub-attribute	and	no	profile	sub-attribute.
hasMore:	A	boolean	indicator	whether	there	are	more	results	available	for	the	cursor	on	the	server
result	(anonymous	json	object):	an	array	of	result	documents	(might	be	empty	if	query	has	no	results)
error:	A	flag	to	indicate	that	an	error	occurred	(false	in	this	case)
id:	id	of	temporary	cursor	created	on	the	server	(optional,	see	above)

HTTP	400

A	json	document	with	these	Properties	is	returned:

is	returned	if	the	JSON	representation	is	malformed	or	the	query	specification	is	missing	from	the	request.	If	the	JSON	representation	is
malformed	or	the	query	specification	is	missing	from	the	request,	the	server	will	respond	with	HTTP	400.	The	body	of	the	response	will
contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

errorMessage:	a	descriptive	error	message	If	the	query	specification	is	complete,	the	server	will	process	the	query.	If	an	error
occurs	during	query	processing,	the	server	will	respond	with	HTTP	400.	Again,	the	body	of	the	response	will	contain	details	about
the	error.	A	list	of	query	errors	can	be	found	here.
errorNum:	the	server	error	number
code:	the	HTTP	status	code
error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

Return	Codes

201:	is	returned	if	the	result	set	can	be	created	by	the	server.

Response	Body

count:	the	total	number	of	result	documents	available	(only	available	if	the	query	was	executed	with	the	count	attribute	set)
code:	the	HTTP	status	code
extra:	an	optional	JSON	object	with	extra	information	about	the	query	result	contained	in	its	stats	sub-attribute.	For	data-
modification	queries,	the	extra.stats	sub-attribute	will	contain	the	number	of	modified	documents	and	the	number	of	documents	that
could	not	be	modified	due	to	an	error	(if	ignoreErrors	query	option	is	specified)
cached:	a	boolean	flag	indicating	whether	the	query	result	was	served	from	the	query	cache	or	not.	If	the	query	result	is	served	from
the	query	cache,	the	extra	return	attribute	will	not	contain	any	stats	sub-attribute	and	no	profile	sub-attribute.
hasMore:	A	boolean	indicator	whether	there	are	more	results	available	for	the	cursor	on	the	server
result	(anonymous	json	object):	an	array	of	result	documents	(might	be	empty	if	query	has	no	results)
error:	A	flag	to	indicate	that	an	error	occurred	(false	in	this	case)
id:	id	of	temporary	cursor	created	on	the	server	(optional,	see	above)

400:	is	returned	if	the	JSON	representation	is	malformed	or	the	query	specification	is	missing	from	the	request.

If	the	JSON	representation	is	malformed	or	the	query	specification	is	missing	from	the	request,	the	server	will	respond	with	HTTP	400.

Accessing	Cursors

93

The	body	of	the	response	will	contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

Response	Body

errorMessage:	a	descriptive	error	message	If	the	query	specification	is	complete,	the	server	will	process	the	query.	If	an	error
occurs	during	query	processing,	the	server	will	respond	with	HTTP	400.	Again,	the	body	of	the	response	will	contain	details	about
the	error.	A	list	of	query	errors	can	be	found	here.
code:	the	HTTP	status	code
errorNum:	the	server	error	number
error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

If	the	query	specification	is	complete,	the	server	will	process	the	query.	If	an	error	occurs	during	query	processing,	the	server	will
respond	with	HTTP	400.	Again,	the	body	of	the	response	will	contain	details	about	the	error.

A	list	of	query	errors	can	be	found	here.

404:	The	server	will	respond	with	HTTP	404	in	case	a	non-existing	collection	is	accessed	in	the	query.

405:	The	server	will	respond	with	HTTP	405	if	an	unsupported	HTTP	method	is	used.

Examples

Execute	a	query	and	extract	the	result	in	a	single	go

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	p	IN	products	LIMIT	2	RETURN	p",	

		"count"	:	true,	

		"batchSize"	:	2	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Execute	a	query	and	extract	a	part	of	the	result

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	p	IN	products	LIMIT	5	RETURN	p",	

		"count"	:	true,	

		"batchSize"	:	2	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	the	query	option	"fullCount"

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	i	IN	1..1000	FILTER	i	>	500	LIMIT	10	RETURN	i",	

Accessing	Cursors

94

		"count"	:	true,	

		"options"	:	{	

				"fullCount"	:	true	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Enabling	and	disabling	optimizer	rules

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	i	IN	1..10	LET	a	=	1	LET	b	=	2	FILTER	a	+	b	==	3	RETURN	i",	

		"count"	:	true,	

		"options"	:	{	

				"maxPlans"	:	1,	

				"optimizer"	:	{	

						"rules"	:	[

								"-all",	

								"+remove-unnecessary-filters"	

]	

				}	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Execute	a	data-modification	query	and	retrieve	the	number	of	modified	documents

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	p	IN	products	REMOVE	p	IN	products"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Execute	a	data-modification	query	with	option	ignoreErrors

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

Accessing	Cursors

95

		"query"	:	"REMOVE	'bar'	IN	products	OPTIONS	{	ignoreErrors:	true	}"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Bad	query	-	Missing	body

shell>	curl	-X	POST	--dump	-	http://localhost:8529/_api/cursor

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Bad	query	-	Unknown	collection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	u	IN	unknowncoll	LIMIT	2	RETURN	u",	

		"count"	:	true,	

		"batchSize"	:	2	

}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Bad	query	-	Execute	a	data-modification	query	that	attempts	to	remove	a	non-existing	document

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"REMOVE	'foo'	IN	products"	

}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Read	next	batch	from	cursor

return	the	next	results	from	an	existing	cursor

	PUT	/_api/cursor/{cursor-identifier}	

Accessing	Cursors

96

Path	Parameters

cursor-identifier	(required):	The	name	of	the	cursor

If	the	cursor	is	still	alive,	returns	an	object	with	the	following	attributes:

id:	the	cursor-identifier
result:	a	list	of	documents	for	the	current	batch
hasMore:	false	if	this	was	the	last	batch
count:	if	present	the	total	number	of	elements

Note	that	even	if	hasMore	returns	true,	the	next	call	might	still	return	no	documents.	If,	however,	hasMore	is	false,	then	the	cursor	is
exhausted.	Once	the	hasMore	attribute	has	a	value	of	false,	the	client	can	stop.

Return	Codes

200:	The	server	will	respond	with	HTTP	200	in	case	of	success.

400:	If	the	cursor	identifier	is	omitted,	the	server	will	respond	with	HTTP	404.

404:	If	no	cursor	with	the	specified	identifier	can	be	found,	the	server	will	respond	with	HTTP	404.

Examples

Valid	request	for	next	batch

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	p	IN	products	LIMIT	5	RETURN	p",	

		"count"	:	true,	

		"batchSize"	:	2	

}

EOF

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/10400

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Missing	identifier

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Unknown	identifier

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/cursor/123123

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Accessing	Cursors

97

show	response	body

Delete	cursor

dispose	an	existing	cursor

	DELETE	/_api/cursor/{cursor-identifier}	

Path	Parameters

cursor-identifier	(required):	The	id	of	the	cursor

Deletes	the	cursor	and	frees	the	resources	associated	with	it.

The	cursor	will	automatically	be	destroyed	on	the	server	when	the	client	has	retrieved	all	documents	from	it.	The	client	can	also	explicitly
destroy	the	cursor	at	any	earlier	time	using	an	HTTP	DELETE	request.	The	cursor	id	must	be	included	as	part	of	the	URL.

Note:	the	server	will	also	destroy	abandoned	cursors	automatically	after	a	certain	server-controlled	timeout	to	avoid	resource	leakage.

Return	Codes

202:	is	returned	if	the	server	is	aware	of	the	cursor.

404:	is	returned	if	the	server	is	not	aware	of	the	cursor.	It	is	also	returned	if	a	cursor	is	used	after	it	has	been	destroyed.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	p	IN	products	LIMIT	5	RETURN	p",	

		"count"	:	true,	

		"batchSize"	:	2	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Accessing	Cursors

98

HTTP	Interface	for	AQL	Queries

Explaining	and	parsing	queries

ArangoDB	has	an	HTTP	interface	to	syntactically	validate	AQL	queries.	Furthermore,	it	offers	an	HTTP	interface	to	retrieve	the
execution	plan	for	any	valid	AQL	query.

Both	functionalities	do	not	actually	execute	the	supplied	AQL	query,	but	only	inspect	it	and	return	meta	information	about	it.

Explain	an	AQL	query

explain	an	AQL	query	and	return	information	about	it

	POST	/_api/explain	

A	JSON	object	describing	the	query	and	query	parameters.

A	JSON	object	with	these	properties	is	required:

query:	the	query	which	you	want	explained;	If	the	query	references	any	bind	variables,	these	must	also	be	passed	in	the	attribute
bindVars.	Additional	options	for	the	query	can	be	passed	in	the	options	attribute.
options:

optimizer.rules	(string):	an	array	of	to-be-included	or	to-be-excluded	optimizer	rules	can	be	put	into	this	attribute,	telling	the
optimizer	to	include	or	exclude	specific	rules.	To	disable	a	rule,	prefix	its	name	with	a		-	,	to	enable	a	rule,	prefix	it	with	a		+	.
There	is	also	a	pseudo-rule		all	,	which	will	match	all	optimizer	rules.
maxNumberOfPlans:	an	optional	maximum	number	of	plans	that	the	optimizer	is	allowed	to	generate.	Setting	this	attribute	to
a	low	value	allows	to	put	a	cap	on	the	amount	of	work	the	optimizer	does.
allPlans:	if	set	to	true,	all	possible	execution	plans	will	be	returned.	The	default	is	false,	meaning	only	the	optimal	plan	will	be
returned.

bindVars	(object):	key/value	pairs	representing	the	bind	parameters.

To	explain	how	an	AQL	query	would	be	executed	on	the	server,	the	query	string	can	be	sent	to	the	server	via	an	HTTP	POST	request.
The	server	will	then	validate	the	query	and	create	an	execution	plan	for	it.	The	execution	plan	will	be	returned,	but	the	query	will	not	be
executed.

The	execution	plan	that	is	returned	by	the	server	can	be	used	to	estimate	the	probable	performance	of	the	query.	Though	the	actual
performance	will	depend	on	many	different	factors,	the	execution	plan	normally	can	provide	some	rough	estimates	on	the	amount	of
work	the	server	needs	to	do	in	order	to	actually	run	the	query.

By	default,	the	explain	operation	will	return	the	optimal	plan	as	chosen	by	the	query	optimizer	The	optimal	plan	is	the	plan	with	the
lowest	total	estimated	cost.	The	plan	will	be	returned	in	the	attribute	plan	of	the	response	object.	If	the	option	allPlans	is	specified	in	the
request,	the	result	will	contain	all	plans	created	by	the	optimizer.	The	plans	will	then	be	returned	in	the	attribute	plans.

The	result	will	also	contain	an	attribute	warnings,	which	is	an	array	of	warnings	that	occurred	during	optimization	or	execution	plan
creation.	Additionally,	a	stats	attribute	is	contained	in	the	result	with	some	optimizer	statistics.	If	allPlans	is	set	to	false,	the	result	will
contain	an	attribute	cacheable	that	states	whether	the	query	results	can	be	cached	on	the	server	if	the	query	result	cache	were	used.	The
cacheable	attribute	is	not	present	when	allPlans	is	set	to	true.

Each	plan	in	the	result	is	a	JSON	object	with	the	following	attributes:

nodes:	the	array	of	execution	nodes	of	the	plan.	The	array	of	available	node	types	can	be	found	here

estimatedCost:	the	total	estimated	cost	for	the	plan.	If	there	are	multiple	plans,	the	optimizer	will	choose	the	plan	with	the	lowest
total	cost.

collections:	an	array	of	collections	used	in	the	query

rules:	an	array	of	rules	the	optimizer	applied.	An	overview	of	the	available	rules	can	be	found	here

variables:	array	of	variables	used	in	the	query	(note:	this	may	contain	internal	variables	created	by	the	optimizer)

Return	Codes

AQL	Queries

99

200:	If	the	query	is	valid,	the	server	will	respond	with	HTTP	200	and	return	the	optimal	execution	plan	in	the	plan	attribute	of	the
response.	If	option	allPlans	was	set	in	the	request,	an	array	of	plans	will	be	returned	in	the	allPlans	attribute	instead.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,	or	if	the	query	contains	a	parse	error.	The	body	of	the
response	will	contain	the	error	details	embedded	in	a	JSON	object.	Omitting	bind	variables	if	the	query	references	any	will	also
result	in	an	HTTP	400	error.

404:	The	server	will	respond	with	HTTP	404	in	case	a	non-existing	collection	is	accessed	in	the	query.

Examples

Valid	query

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	

		"query"	:	"FOR	p	IN	products	RETURN	p"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
A	plan	with	some	optimizer	rules	applied

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	

		"query"	:	"FOR	p	IN	products	LET	a	=	p.id	FILTER	a	==	4	LET	name	=	p.name	SORT	p.id	

LIMIT	1	RETURN	name"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	some	options

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	

		"query"	:	"FOR	p	IN	products	LET	a	=	p.id	FILTER	a	==	4	LET	name	=	p.name	SORT	p.id	

LIMIT	1	RETURN	name",	

		"options"	:	{	

				"maxNumberOfPlans"	:	2,	

				"allPlans"	:	true,	

				"optimizer"	:	{	

						"rules"	:	[

								"-all",	

								"+use-index-for-sort",	

								"+use-index-range"	

]	

				}	

		}	

AQL	Queries

100

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Returning	all	plans

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	

		"query"	:	"FOR	p	IN	products	FILTER	p.id	==	25	RETURN	p",	

		"options"	:	{	

				"allPlans"	:	true	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
A	query	that	produces	a	warning

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	

		"query"	:	"FOR	i	IN	1..10	RETURN	1	/	0"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Invalid	query	(missing	bind	parameter)

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	

		"query"	:	"FOR	p	IN	products	FILTER	p.id	==	@id	LIMIT	2	RETURN	p.n"	

}

EOF

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

AQL	Queries

101

The	data	returned	in	the	plan	attribute	of	the	result	contains	one	element	per	AQL	top-level	statement	(i.e.		FOR	,		RETURN	,		FILTER	
etc.).	If	the	query	optimizer	removed	some	unnecessary	statements,	the	result	might	also	contain	less	elements	than	there	were	top-level
statements	in	the	AQL	query.

The	following	example	shows	a	query	with	a	non-sensible	filter	condition	that	the	optimizer	has	removed	so	that	there	are	less	top-level
statements.

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/explain	<<EOF

{	"query"	:	"FOR	i	IN	[1,	2,	3]	FILTER	1	==	2	RETURN	i"	}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Parse	an	AQL	query

parse	an	AQL	query	and	return	information	about	it

	POST	/_api/query	

This	endpoint	is	for	query	validation	only.	To	actually	query	the	database,	see		/api/cursor	.

A	JSON	object	with	these	properties	is	required:

query:	To	validate	a	query	string	without	executing	it,	the	query	string	can	be	passed	to	the	server	via	an	HTTP	POST	request.

Return	Codes

200:	If	the	query	is	valid,	the	server	will	respond	with	HTTP	200	and	return	the	names	of	the	bind	parameters	it	found	in	the	query
(if	any)	in	the	bindVars	attribute	of	the	response.	It	will	also	return	an	array	of	the	collections	used	in	the	query	in	the	collections
attribute.	If	a	query	can	be	parsed	successfully,	the	ast	attribute	of	the	returned	JSON	will	contain	the	abstract	syntax	tree
representation	of	the	query.	The	format	of	the	ast	is	subject	to	change	in	future	versions	of	ArangoDB,	but	it	can	be	used	to	inspect
how	ArangoDB	interprets	a	given	query.	Note	that	the	abstract	syntax	tree	will	be	returned	without	any	optimizations	applied	to	it.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,	or	if	the	query	contains	a	parse	error.	The	body	of	the
response	will	contain	the	error	details	embedded	in	a	JSON	object.

Examples

a	Valid	query

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/query	<<EOF

{	"query"	:	"FOR	p	IN	products	FILTER	p.name	==	@name	LIMIT	2	RETURN	p.n"	}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
an	Invalid	query

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/query	<<EOF

{	"query"	:	"FOR	p	IN	products	FILTER	p.name	=	@name	LIMIT	2	RETURN	p.n"	}

EOF

AQL	Queries

102

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Query	tracking

ArangoDB	has	an	HTTP	interface	for	retrieving	the	lists	of	currently	executing	AQL	queries	and	the	list	of	slow	AQL	queries.	In	order	to
make	meaningful	use	of	these	APIs,	query	tracking	needs	to	be	enabled	in	the	database	the	HTTP	request	is	executed	for.

Returns	the	properties	for	the	AQL	query	tracking

returns	the	configuration	for	the	AQL	query	tracking

	GET	/_api/query/properties	

Returns	the	current	query	tracking	configuration.	The	configuration	is	a	JSON	object	with	the	following	properties:

enabled:	if	set	to	true,	then	queries	will	be	tracked.	If	set	to	false,	neither	queries	nor	slow	queries	will	be	tracked.

trackSlowQueries:	if	set	to	true,	then	slow	queries	will	be	tracked	in	the	list	of	slow	queries	if	their	runtime	exceeds	the	value	set	in
slowQueryThreshold.	In	order	for	slow	queries	to	be	tracked,	the	enabled	property	must	also	be	set	to	true.

trackBindVars:	if	set	to	true,	then	bind	variables	used	in	queries	will	be	tracked.

maxSlowQueries:	the	maximum	number	of	slow	queries	to	keep	in	the	list	of	slow	queries.	If	the	list	of	slow	queries	is	full,	the
oldest	entry	in	it	will	be	discarded	when	additional	slow	queries	occur.

slowQueryThreshold:	the	threshold	value	for	treating	a	query	as	slow.	A	query	with	a	runtime	greater	or	equal	to	this	threshold	value
will	be	put	into	the	list	of	slow	queries	when	slow	query	tracking	is	enabled.	The	value	for	slowQueryThreshold	is	specified	in
seconds.

maxQueryStringLength:	the	maximum	query	string	length	to	keep	in	the	list	of	queries.	Query	strings	can	have	arbitrary	lengths,	and
this	property	can	be	used	to	save	memory	in	case	very	long	query	strings	are	used.	The	value	is	specified	in	bytes.

Return	Codes

200:	Is	returned	if	properties	were	retrieved	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,

Changes	the	properties	for	the	AQL	query	tracking

changes	the	configuration	for	the	AQL	query	tracking

	PUT	/_api/query/properties	

A	JSON	object	with	these	properties	is	required:

maxSlowQueries:	The	maximum	number	of	slow	queries	to	keep	in	the	list	of	slow	queries.	If	the	list	of	slow	queries	is	full,	the
oldest	entry	in	it	will	be	discarded	when	additional	slow	queries	occur.
slowQueryThreshold:	The	threshold	value	for	treating	a	query	as	slow.	A	query	with	a	runtime	greater	or	equal	to	this	threshold
value	will	be	put	into	the	list	of	slow	queries	when	slow	query	tracking	is	enabled.	The	value	for	slowQueryThreshold	is	specified	in
seconds.
enabled:	If	set	to	true,	then	queries	will	be	tracked.	If	set	to	false,	neither	queries	nor	slow	queries	will	be	tracked.
maxQueryStringLength:	The	maximum	query	string	length	to	keep	in	the	list	of	queries.	Query	strings	can	have	arbitrary	lengths,
and	this	property	can	be	used	to	save	memory	in	case	very	long	query	strings	are	used.	The	value	is	specified	in	bytes.
trackSlowQueries:	If	set	to	true,	then	slow	queries	will	be	tracked	in	the	list	of	slow	queries	if	their	runtime	exceeds	the	value	set
in	slowQueryThreshold.	In	order	for	slow	queries	to	be	tracked,	the	enabled	property	must	also	be	set	to	true.
trackBindVars:	If	set	to	true,	then	the	bind	variables	used	in	queries	will	be	tracked	along	with	queries.

The	properties	need	to	be	passed	in	the	attribute	properties	in	the	body	of	the	HTTP	request.	properties	needs	to	be	a	JSON	object.

AQL	Queries

103

After	the	properties	have	been	changed,	the	current	set	of	properties	will	be	returned	in	the	HTTP	response.

Return	Codes

200:	Is	returned	if	the	properties	were	changed	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,

Returns	the	currently	running	AQL	queries

returns	a	list	of	currently	running	AQL	queries

	GET	/_api/query/current	

Returns	an	array	containing	the	AQL	queries	currently	running	in	the	selected	database.	Each	query	is	a	JSON	object	with	the	following
attributes:

id:	the	query's	id

query:	the	query	string	(potentially	truncated)

bindVars:	the	bind	parameter	values	used	by	the	query

started:	the	date	and	time	when	the	query	was	started

runTime:	the	query's	run	time	up	to	the	point	the	list	of	queries	was	queried

state:	the	query's	current	execution	state	(as	a	string)

Return	Codes

200:	Is	returned	when	the	list	of	queries	can	be	retrieved	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,

Returns	the	list	of	slow	AQL	queries

returns	a	list	of	slow	running	AQL	queries

	GET	/_api/query/slow	

Returns	an	array	containing	the	last	AQL	queries	that	are	finished	and	have	exceeded	the	slow	query	threshold	in	the	selected	database.
The	maximum	amount	of	queries	in	the	list	can	be	controlled	by	setting	the	query	tracking	property		maxSlowQueries	.	The	threshold	for
treating	a	query	as	slow	can	be	adjusted	by	setting	the	query	tracking	property		slowQueryThreshold	.

Each	query	is	a	JSON	object	with	the	following	attributes:

id:	the	query's	id

query:	the	query	string	(potentially	truncated)

bindVars:	the	bind	parameter	values	used	by	the	query

started:	the	date	and	time	when	the	query	was	started

runTime:	the	query's	total	run	time

state:	the	query's	current	execution	state	(will	always	be	"finished"	for	the	list	of	slow	queries)

Return	Codes

200:	Is	returned	when	the	list	of	queries	can	be	retrieved	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,

Clears	the	list	of	slow	AQL	queries

clears	the	list	of	slow	AQL	queries

	DELETE	/_api/query/slow	

AQL	Queries

104

Clears	the	list	of	slow	AQL	queries

Return	Codes

200:	The	server	will	respond	with	HTTP	200	when	the	list	of	queries	was	cleared	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request.

Killing	queries

Running	AQL	queries	can	also	be	killed	on	the	server.	ArangoDB	provides	a	kill	facility	via	an	HTTP	interface.	To	kill	a	running	query,
its	id	(as	returned	for	the	query	in	the	list	of	currently	running	queries)	must	be	specified.	The	kill	flag	of	the	query	will	then	be	set,	and
the	query	will	be	aborted	as	soon	as	it	reaches	a	cancelation	point.

Kills	a	running	AQL	query

kills	an	AQL	query

	DELETE	/_api/query/{query-id}	

Path	Parameters

query-id	(required):	The	id	of	the	query.

Kills	a	running	query.	The	query	will	be	terminated	at	the	next	cancelation	point.

Return	Codes

200:	The	server	will	respond	with	HTTP	200	when	the	query	was	still	running	when	the	kill	request	was	executed	and	the	query's
kill	flag	was	set.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request.

404:	The	server	will	respond	with	HTTP	404	when	no	query	with	the	specified	id	was	found.

AQL	Queries

105

HTTP	Interface	for	the	AQL	query	cache
This	section	describes	the	API	methods	for	controlling	the	AQL	query	cache.

Clears	any	results	in	the	AQL	query	cache

clears	the	AQL	query	cache

	DELETE	/_api/query-cache	

clears	the	query	cache

Return	Codes

200:	The	server	will	respond	with	HTTP	200	when	the	cache	was	cleared	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request.

Returns	the	global	properties	for	the	AQL	query	cache

returns	the	global	configuration	for	the	AQL	query	cache

	GET	/_api/query-cache/properties	

Returns	the	global	AQL	query	cache	configuration.	The	configuration	is	a	JSON	object	with	the	following	properties:

mode:	the	mode	the	AQL	query	cache	operates	in.	The	mode	is	one	of	the	following	values:	off,	on	or	demand.

maxResults:	the	maximum	number	of	query	results	that	will	be	stored	per	database-specific	cache.

Return	Codes

200:	Is	returned	if	the	properties	can	be	retrieved	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,

Globally	adjusts	the	AQL	query	result	cache	properties

changes	the	configuration	for	the	AQL	query	cache

	PUT	/_api/query-cache/properties	

After	the	properties	have	been	changed,	the	current	set	of	properties	will	be	returned	in	the	HTTP	response.

Note:	changing	the	properties	may	invalidate	all	results	in	the	cache.	The	global	properties	for	AQL	query	cache.	The	properties	need	to
be	passed	in	the	attribute	properties	in	the	body	of	the	HTTP	request.	properties	needs	to	be	a	JSON	object	with	the	following
properties:

A	JSON	object	with	these	properties	is	required:

mode:	the	mode	the	AQL	query	cache	should	operate	in.	Possible	values	are	off,	on	or	demand.
maxResults:	the	maximum	number	of	query	results	that	will	be	stored	per	database-specific	cache.

Return	Codes

200:	Is	returned	if	the	properties	were	changed	successfully.

400:	The	server	will	respond	with	HTTP	400	in	case	of	a	malformed	request,

AQL	Query	Cache

106

HTTP	Interface	for	AQL	User	Functions	Management

AQL	User	Functions	Management

This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	managing	AQL	user	functions.	AQL	user	functions	are	a	means	to	extend	the
functionality	of	ArangoDB's	query	language	(AQL)	with	user-defined	JavaScript	code.

For	an	overview	of	how	AQL	user	functions	and	their	implications,	please	refer	to	the	Extending	AQL	chapter.

The	HTTP	interface	provides	an	API	for	adding,	deleting,	and	listing	previously	registered	AQL	user	functions.

All	user	functions	managed	through	this	interface	will	be	stored	in	the	system	collection	_aqlfunctions.	Documents	in	this	collection
should	not	be	accessed	directly,	but	only	via	the	dedicated	interfaces.

Create	AQL	user	function

create	a	new	AQL	user	function

	POST	/_api/aqlfunction	

A	JSON	object	with	these	properties	is	required:

isDeterministic:	an	optional	boolean	value	to	indicate	that	the	function	results	are	fully	deterministic	(function	return	value	solely
depends	on	the	input	value	and	return	value	is	the	same	for	repeated	calls	with	same	input).	The	isDeterministic	attribute	is
currently	not	used	but	may	be	used	later	for	optimisations.
code:	a	string	representation	of	the	function	body.
name:	the	fully	qualified	name	of	the	user	functions.

In	case	of	success,	the	returned	JSON	object	has	the	following	properties:

error:	boolean	flag	to	indicate	that	an	error	occurred	(false	in	this	case)

code:	the	HTTP	status	code

The	body	of	the	response	will	contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

code:	the	HTTP	status	code

errorNum:	the	server	error	number

errorMessage:	a	descriptive	error	message

Return	Codes

200:	If	the	function	already	existed	and	was	replaced	by	the	call,	the	server	will	respond	with	HTTP	200.

201:	If	the	function	can	be	registered	by	the	server,	the	server	will	respond	with	HTTP	201.

400:	If	the	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request,	the	server	will	respond	with	HTTP
400.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/aqlfunction	<<EOF

{	

		"name"	:	"myfunctions::temperature::celsiustofahrenheit",	

		"code"	:	"function	(celsius)	{	return	celsius	*	1.8	+	32;	}"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

AQL	User	Functions	Management

107

x-content-type-options:	nosniff

{	

		"error"	:	false,	

		"code"	:	201	

}

Remove	existing	AQL	user	function

remove	an	existing	AQL	user	function

	DELETE	/_api/aqlfunction/{name}	

Path	Parameters

name	(required):	the	name	of	the	AQL	user	function.

Query	Parameters

group	(optional):	If	set	to	true,	then	the	function	name	provided	in	name	is	treated	as	a	namespace	prefix,	and	all	functions	in	the
specified	namespace	will	be	deleted.	If	set	to	false,	the	function	name	provided	in	name	must	be	fully	qualified,	including	any
namespaces.

Removes	an	existing	AQL	user	function,	identified	by	name.

In	case	of	success,	the	returned	JSON	object	has	the	following	properties:

error:	boolean	flag	to	indicate	that	an	error	occurred	(false	in	this	case)

code:	the	HTTP	status	code

The	body	of	the	response	will	contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

code:	the	HTTP	status	code

errorNum:	the	server	error	number

errorMessage:	a	descriptive	error	message

Return	Codes

200:	If	the	function	can	be	removed	by	the	server,	the	server	will	respond	with	HTTP	200.

400:	If	the	user	function	name	is	malformed,	the	server	will	respond	with	HTTP	400.

404:	If	the	specified	user	user	function	does	not	exist,	the	server	will	respond	with	HTTP	404.

Examples

deletes	a	function:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/aqlfunction/square::x::y

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"error"	:	false,	

		"code"	:	200	

}

function	not	found:

AQL	User	Functions	Management

108

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/aqlfunction/myfunction::x::y

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Return	registered	AQL	user	functions

gets	all	reqistered	AQL	user	functions

	GET	/_api/aqlfunction	

Query	Parameters

namespace	(optional):	Returns	all	registered	AQL	user	functions	from	namespace	namespace.

Returns	all	registered	AQL	user	functions.

The	call	will	return	a	JSON	array	with	all	user	functions	found.	Each	user	function	will	at	least	have	the	following	attributes:

name:	The	fully	qualified	name	of	the	user	function

code:	A	string	representation	of	the	function	body

Return	Codes

200:	if	success	HTTP	200	is	returned.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/aqlfunction

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		{	

				"name"	:	"myfunctions::temperature::celsiustofahrenheit",	

				"code"	:	"function	(celsius)	{	return	celsius	*	1.8	+	32;	}"	

		}	

]

AQL	User	Functions	Management

109

HTTP	Interface	for	Simple	Queries

Simple	Queries

This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	simple	queries.

Simple	queries	can	be	used	if	the	query	condition	is	straight	forward	simple,	i.e.,	a	document	reference,	all	documents,	a	query-by-
example,	or	a	simple	geo	query.	In	a	simple	query	you	can	specify	exactly	one	collection	and	one	condition.	The	result	can	then	be	sorted
and	can	be	split	into	pages.

Working	with	Simples	Queries	using	HTTP
To	limit	the	amount	of	results	to	be	transferred	in	one	batch,	simple	queries	support	a	batchSize	parameter	that	can	optionally	be	used	to
tell	the	server	to	limit	the	number	of	results	to	be	transferred	in	one	batch	to	a	certain	value.	If	the	query	has	more	results	than	were
transferred	in	one	go,	more	results	are	waiting	on	the	server	so	they	can	be	fetched	subsequently.	If	no	value	for	the	batchSize	parameter
is	specified,	the	server	will	use	a	reasonable	default	value.

If	the	server	has	more	documents	than	should	be	returned	in	a	single	batch,	the	server	will	set	the	hasMore	attribute	in	the	result.	It	will
also	return	the	id	of	the	server-side	cursor	in	the	id	attribute	in	the	result.	This	id	can	be	used	with	the	cursor	API	to	fetch	any
outstanding	results	from	the	server	and	dispose	the	server-side	cursor	afterwards.

Return	all	documents

returns	all	documents	of	a	collection

	PUT	/_api/simple/all	

Request	Body	(required)

Contains	the	query.

Returns	all	documents	of	a	collections.	The	call	expects	a	JSON	object	as	body	with	the	following	attributes:

collection:	The	name	of	the	collection	to	query.

skip:	The	number	of	documents	to	skip	in	the	query	(optional).

limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	(optional)

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Limit	the	amount	of	documents	using	limit

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/all	<<EOF

{	"collection":	"products",	"skip":	2,	"limit"	:	2	}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Simple	Queries

110

show	response	body
Using	a	batchSize	value

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/all	<<EOF

{	"collection":	"products",	"batchSize"	:	3	}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Simple	query	by-example

returns	all	documents	of	a	collection	matching	a	given	example

	PUT	/_api/simple/by-example	

A	JSON	object	with	these	properties	is	required:

skip:	The	number	of	documents	to	skip	in	the	query	(optional).
batchSize:	maximum	number	of	result	documents	to	be	transferred	from	the	server	to	the	client	in	one	roundtrip.	If	this	attribute	is
not	set,	a	server-controlled	default	value	will	be	used.	A	batchSize	value	of	0	is	disallowed.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	(optional)
example:	The	example	document.
collection:	The	name	of	the	collection	to	query.

This	will	find	all	documents	matching	a	given	example.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Matching	an	attribute

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example	

<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"i"	:	1	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Simple	Queries

111

show	response	body
Matching	an	attribute	which	is	a	sub-document

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example	

<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a.j"	:	1	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Matching	an	attribute	within	a	sub-document

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example	

<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Find	documents	matching	an	example

returns	one	document	of	a	collection	matching	a	given	example

	PUT	/_api/simple/first-example	

A	JSON	object	with	these	properties	is	required:

example:	The	example	document.
collection:	The	name	of	the	collection	to	query.

This	will	return	the	first	document	matching	a	given	example.

Returns	a	result	containing	the	document	or	HTTP	404	if	no	document	matched	the	example.

If	more	than	one	document	in	the	collection	matches	the	specified	example,	only	one	of	these	documents	will	be	returned,	and	it	is
undefined	which	of	the	matching	documents	is	returned.

Return	Codes

Simple	Queries

112

200:	is	returned	when	the	query	was	successfully	executed.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

If	a	matching	document	was	found

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"i"	:	1	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
If	no	document	was	found

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"l"	:	1	

		}	

}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Find	documents	by	their	keys

fetches	multiple	documents	by	their	keys

	PUT	/_api/simple/lookup-by-keys	

A	JSON	object	with	these	properties	is	required:

keys	(string):	array	with	the	_keys	of	documents	to	remove.
collection:	The	name	of	the	collection	to	look	in	for	the	documents

Looks	up	the	documents	in	the	specified	collection	using	the	array	of	keys	provided.	All	documents	for	which	a	matching	key	was
specified	in	the	keys	array	and	that	exist	in	the	collection	will	be	returned.	Keys	for	which	no	document	can	be	found	in	the	underlying
collection	are	ignored,	and	no	exception	will	be	thrown	for	them.

Simple	Queries

113

The	body	of	the	response	contains	a	JSON	object	with	a	documents	attribute.	The	documents	attribute	is	an	array	containing	the
matching	documents.	The	order	in	which	matching	documents	are	present	in	the	result	array	is	unspecified.

Return	Codes

200:	is	returned	if	the	operation	was	carried	out	successfully.

404:	is	returned	if	the	collection	was	not	found.	The	response	body	contains	an	error	document	in	this	case.

405:	is	returned	if	the	operation	was	called	with	a	different	HTTP	METHOD	than	PUT.

Examples

Looking	up	existing	documents

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/lookup-by-

keys	<<EOF

{	

		"keys"	:	[

				"test0",	

				"test1",	

				"test2",	

				"test3",	

				"test4",	

				"test5",	

				"test6",	

				"test7",	

				"test8",	

				"test9"	

],	

		"collection"	:	"test"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Looking	up	non-existing	documents

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/lookup-by-

keys	<<EOF

{	

		"keys"	:	[

				"foo",	

				"bar",	

				"baz"	

],	

		"collection"	:	"test"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Simple	Queries

114

show	response	body

Return	a	random	document

returns	a	random	document	from	a	collection

	PUT	/_api/simple/any	

Returns	a	random	document	from	a	collection.	The	call	expects	a	JSON	object	as	body	with	the	following	attributes:

A	JSON	object	with	these	properties	is	required:

collection:	The	identifier	or	name	of	the	collection	to	query.	Returns	a	JSON	object	with	the	document	stored	in	the	attribute
document	if	the	collection	contains	at	least	one	document.	If	the	collection	is	empty,	the	document	attrbute	contains	null.

Return	Codes

200:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/any	<<EOF

{	

		"collection"	:	"products"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Remove	documents	by	their	keys

removes	multiple	documents	by	their	keys

	PUT	/_api/simple/remove-by-keys	

A	JSON	object	with	these	properties	is	required:

keys	(string):	array	with	the	_keys	of	documents	to	remove.
options:

returnOld:	if	set	to	true	and	silent	above	is	false,	then	the	above	information	about	the	removed	documents	contains	the
complete	removed	documents.
silent:	if	set	to	false,	then	the	result	will	contain	an	additional	attribute	old	which	contains	an	array	with	one	entry	for	each
removed	document.	By	default,	these	entries	will	have	the	_id,	_key	and	_rev	attributes.
waitForSync:	if	set	to	true,	then	all	removal	operations	will	instantly	be	synchronized	to	disk.	If	this	is	not	specified,	then	the
collection's	default	sync	behavior	will	be	applied.

collection:	The	name	of	the	collection	to	look	in	for	the	documents	to	remove

Looks	up	the	documents	in	the	specified	collection	using	the	array	of	keys	provided,	and	removes	all	documents	from	the	collection
whose	keys	are	contained	in	the	keys	array.	Keys	for	which	no	document	can	be	found	in	the	underlying	collection	are	ignored,	and	no
exception	will	be	thrown	for	them.

Simple	Queries

115

The	body	of	the	response	contains	a	JSON	object	with	information	how	many	documents	were	removed	(and	how	many	were	not).	The
removed	attribute	will	contain	the	number	of	actually	removed	documents.	The	ignored	attribute	will	contain	the	number	of	keys	in	the
request	for	which	no	matching	document	could	be	found.

Return	Codes

200:	is	returned	if	the	operation	was	carried	out	successfully.	The	number	of	removed	documents	may	still	be	0	in	this	case	if	none
of	the	specified	document	keys	were	found	in	the	collection.

404:	is	returned	if	the	collection	was	not	found.	The	response	body	contains	an	error	document	in	this	case.

405:	is	returned	if	the	operation	was	called	with	a	different	HTTP	METHOD	than	PUT.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-

keys	<<EOF

{	

		"keys"	:	[

				"test0",	

				"test1",	

				"test2",	

				"test3",	

				"test4",	

				"test5",	

				"test6",	

				"test7",	

				"test8",	

				"test9"	

],	

		"collection"	:	"test"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-

keys	<<EOF

{	

		"keys"	:	[

				"foo",	

				"bar",	

				"baz"	

],	

		"collection"	:	"test"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Simple	Queries

116

show	response	body

Remove	documents	by	example

removes	all	documents	of	a	collection	that	match	an	example

	PUT	/_api/simple/remove-by-example	

A	JSON	object	with	these	properties	is	required:

example:	An	example	document	that	all	collection	documents	are	compared	against.
collection:	The	name	of	the	collection	to	remove	from.
options:

limit:	an	optional	value	that	determines	how	many	documents	to	delete	at	most.	If	limit	is	specified	but	is	less	than	the	number
of	documents	in	the	collection,	it	is	undefined	which	of	the	documents	will	be	deleted.
waitForSync:	if	set	to	true,	then	all	removal	operations	will	instantly	be	synchronized	to	disk.	If	this	is	not	specified,	then	the
collection's	default	sync	behavior	will	be	applied.

This	will	find	all	documents	in	the	collection	that	match	the	specified	example	object.

Note:	the	limit	attribute	is	not	supported	on	sharded	collections.	Using	it	will	result	in	an	error.

Returns	the	number	of	documents	that	were	deleted.

Return	Codes

200:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	Parameter:	waitForSync	and	limit

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

Simple	Queries

117

						"j"	:	1	

				}	

		},	

		"waitForSync"	:	true,	

		"limit"	:	2	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	Parameter:	waitForSync	and	limit	with	new	signature

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/remove-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		},	

		"options"	:	{	

				"waitForSync"	:	true,	

				"limit"	:	2	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
replaces	the	body	of	all	documents	of	a	collection	that	match	an	example	@RESTHEADER{PUT	/_api/simple/replace-by-example,
Replace	documents	by	example}

A	JSON	object	with	these	properties	is	required:

options:
limit:	an	optional	value	that	determines	how	many	documents	to	replace	at	most.	If	limit	is	specified	but	is	less	than	the
number	of	documents	in	the	collection,	it	is	undefined	which	of	the	documents	will	be	replaced.
waitForSync:	if	set	to	true,	then	all	removal	operations	will	instantly	be	synchronized	to	disk.	If	this	is	not	specified,	then	the
collection's	default	sync	behavior	will	be	applied.

example:	An	example	document	that	all	collection	documents	are	compared	against.
collection:	The	name	of	the	collection	to	replace	within.
newValue:	The	replacement	document	that	will	get	inserted	in	place	of	the	"old"	documents.

This	will	find	all	documents	in	the	collection	that	match	the	specified	example	object,	and	replace	the	entire	document	body	with	the	new
value	specified.	Note	that	document	meta-attributes	such	as	_id,	_key,	_from,	_to	etc.	cannot	be	replaced.

Note:	the	limit	attribute	is	not	supported	on	sharded	collections.	Using	it	will	result	in	an	error.

Returns	the	number	of	documents	that	were	replaced.

Simple	Queries

118

Return	Codes

200:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/replace-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		},	

		"newValue"	:	{	

				"foo"	:	"bar"	

		},	

		"limit"	:	3	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	new	Signature	for	attributes	WaitForSync	and	limit

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/replace-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		},	

		"newValue"	:	{	

				"foo"	:	"bar"	

		},	

		"options"	:	{	

				"limit"	:	3,	

				"waitForSync"	:	true	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Simple	Queries

119

show	response	body
partially	updates	the	body	of	all	documents	of	a	collection	that	match	an	example	@RESTHEADER{PUT	/_api/simple/update-by-
example,	Update	documents	by	example}

A	JSON	object	with	these	properties	is	required:

options:
keepNull:	This	parameter	can	be	used	to	modify	the	behavior	when	handling	null	values.	Normally,	null	values	are	stored	in
the	database.	By	setting	the	keepNull	parameter	to	false,	this	behavior	can	be	changed	so	that	all	attributes	in	data	with	null
values	will	be	removed	from	the	updated	document.
mergeObjects:	Controls	whether	objects	(not	arrays)	will	be	merged	if	present	in	both	the	existing	and	the	patch	document.	If
set	to	false,	the	value	in	the	patch	document	will	overwrite	the	existing	document's	value.	If	set	to	true,	objects	will	be	merged.
The	default	is	true.
limit:	an	optional	value	that	determines	how	many	documents	to	update	at	most.	If	limit	is	specified	but	is	less	than	the
number	of	documents	in	the	collection,	it	is	undefined	which	of	the	documents	will	be	updated.
waitForSync:	if	set	to	true,	then	all	removal	operations	will	instantly	be	synchronized	to	disk.	If	this	is	not	specified,	then	the
collection's	default	sync	behavior	will	be	applied.

example:	An	example	document	that	all	collection	documents	are	compared	against.
collection:	The	name	of	the	collection	to	update	within.
newValue:	A	document	containing	all	the	attributes	to	update	in	the	found	documents.

This	will	find	all	documents	in	the	collection	that	match	the	specified	example	object,	and	partially	update	the	document	body	with	the
new	value	specified.	Note	that	document	meta-attributes	such	as	_id,	_key,	_from,	_to	etc.	cannot	be	replaced.

Note:	the	limit	attribute	is	not	supported	on	sharded	collections.	Using	it	will	result	in	an	error.

Returns	the	number	of	documents	that	were	updated.

Return	Codes

200:	is	returned	if	the	collection	was	updated	successfully	and	waitForSync	was	true.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

using	old	syntax	for	options

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/update-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		},	

		"newValue"	:	{	

				"a"	:	{	

						"j"	:	22	

				}	

		},	

		"limit"	:	3	

}

EOF

HTTP/1.1	200	OK

Simple	Queries

120

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
using	new	signature	for	options

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/update-by-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		},	

		"newValue"	:	{	

				"a"	:	{	

						"j"	:	22	

				}	

		},	

		"options"	:	{	

				"limit"	:	3,	

				"waitForSync"	:	true	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Simple	range	query

returns	all	documents	of	a	collection	within	a	range

	PUT	/_api/simple/range	

A	JSON	object	with	these	properties	is	required:

right:	The	upper	bound.
attribute:	The	attribute	path	to	check.
collection:	The	name	of	the	collection	to	query.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	(optional)
closed:	If	true,	use	interval	including	left	and	right,	otherwise	exclude	right,	but	include	left.
skip:	The	number	of	documents	to	skip	in	the	query	(optional).
left:	The	lower	bound.

This	will	find	all	documents	within	a	given	range.	In	order	to	execute	a	range	query,	a	skip-list	index	on	the	queried	attribute	must	be
present.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	range	simple	query	is	deprecated	as	of	ArangoDB	2.6.	The	function	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	within	a	specific	range	is	to	use	an	AQL	query	as	follows:

Simple	Queries

121

FOR	doc	IN	@@collection	

		FILTER	doc.value	>=	@left	&&	doc.value	<	@right	

		LIMIT	@skip,	@limit	

		RETURN	doc`

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown	or	no	suitable	index	for	the	range	query	is	present.	The	response
body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/range	<<EOF

{	

		"collection"	:	"products",	

		"attribute"	:	"i",	

		"left"	:	2,	

		"right"	:	4	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Returns	documents	near	a	coordinate

returns	all	documents	of	a	collection	near	a	given	location

	PUT	/_api/simple/near	

A	JSON	object	with	these	properties	is	required:

distance:	If	given,	the	attribute	key	used	to	return	the	distance	to	the	given	coordinate.	(optional).	If	specified,	distances	are
returned	in	meters.
skip:	The	number	of	documents	to	skip	in	the	query.	(optional)
longitude:	The	longitude	of	the	coordinate.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	The	default	is	100.	(optional)
collection:	The	name	of	the	collection	to	query.
latitude:	The	latitude	of	the	coordinate.
geo:	If	given,	the	identifier	of	the	geo-index	to	use.	(optional)

The	default	will	find	at	most	100	documents	near	the	given	coordinate.	The	returned	array	is	sorted	according	to	the	distance,	with	the
nearest	document	being	first	in	the	return	array.	If	there	are	near	documents	of	equal	distance,	documents	are	chosen	randomly	from	this
set	until	the	limit	is	reached.

In	order	to	use	the	near	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	than	one	geo-spatial	index,	you	can	use	the	geo	field	to	select	a	particular	index.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	near	simple	query	is	deprecated	as	of	ArangoDB	2.6.	This	API	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	issue	an	AQL	query	using	the	NEAR	function	as
follows:

Simple	Queries

122

FOR	doc	IN	NEAR(@@collection,	@latitude,	@longitude,	@limit)

		RETURN	doc`

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Without	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	2	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
With	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	3,	

		"distance"	:	"distance"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Find	documents	within	a	radius	around	a	coordinate

returns	all	documents	of	a	collection	within	a	given	radius

	PUT	/_api/simple/within	

A	JSON	object	with	these	properties	is	required:

Simple	Queries

123

distance:	If	given,	the	attribute	key	used	to	return	the	distance	to	the	given	coordinate.	(optional).	If	specified,	distances	are
returned	in	meters.
skip:	The	number	of	documents	to	skip	in	the	query.	(optional)
longitude:	The	longitude	of	the	coordinate.
radius:	The	maximal	radius	(in	meters).
collection:	The	name	of	the	collection	to	query.
latitude:	The	latitude	of	the	coordinate.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	The	default	is	100.	(optional)
geo:	If	given,	the	identifier	of	the	geo-index	to	use.	(optional)

This	will	find	all	documents	within	a	given	radius	around	the	coordinate	(latitude,	longitude).	The	returned	list	is	sorted	by	distance.

In	order	to	use	the	within	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	than	one	geo-spatial	index,	you	can	use	the	geo	field	to	select	a	particular	index.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	within	simple	query	is	deprecated	as	of	ArangoDB	2.6.	This	API	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	issue	an	AQL	query	using	the	WITHIN	function	as
follows:

FOR	doc	IN	WITHIN(@@collection,	@latitude,	@longitude,	@radius,	@distanceAttributeName)

		RETURN	doc

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Without	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	2,	

		"radius"	:	500	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
With	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

Simple	Queries

124

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	3,	

		"distance"	:	"distance",	

		"radius"	:	300	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Within	rectangle	query

returns	all	documents	of	a	collection	within	a	rectangle

	PUT	/_api/simple/within-rectangle	

A	JSON	object	with	these	properties	is	required:

latitude1:	The	latitude	of	the	first	rectangle	coordinate.
skip:	The	number	of	documents	to	skip	in	the	query.	(optional)
latitude2:	The	latitude	of	the	second	rectangle	coordinate.
longitude2:	The	longitude	of	the	second	rectangle	coordinate.
longitude1:	The	longitude	of	the	first	rectangle	coordinate.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	The	default	is	100.	(optional)
collection:	The	name	of	the	collection	to	query.
geo:	If	given,	the	identifier	of	the	geo-index	to	use.	(optional)

This	will	find	all	documents	within	the	specified	rectangle	(determined	by	the	given	coordinates	(latitude1,	longitude1,	latitude2,
longitude2).

In	order	to	use	the	within-rectangle	query,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	than	one	geo-spatial	index,	you	can	use	the	geo	field	to	select	a	particular	index.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/within-

rectangle	<<EOF

{	

		"collection"	:	"products",	

		"latitude1"	:	0,	

		"longitude1"	:	0,	

		"latitude2"	:	0.2,	

		"longitude2"	:	0.2,	

		"skip"	:	1,	

		"limit"	:	2	

}

Simple	Queries

125

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Fulltext	index	query

returns	documents	of	a	collection	as	a	result	of	a	fulltext	query

	PUT	/_api/simple/fulltext	

A	JSON	object	with	these	properties	is	required:

index:	The	identifier	of	the	fulltext-index	to	use.
attribute:	The	attribute	that	contains	the	texts.
collection:	The	name	of	the	collection	to	query.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	(optional)
skip:	The	number	of	documents	to	skip	in	the	query	(optional).
query:	The	fulltext	query.	Please	refer	to	Fulltext	queries	for	details.

This	will	find	all	documents	from	the	collection	that	match	the	fulltext	query	specified	in	query.

In	order	to	use	the	fulltext	operator,	a	fulltext	index	must	be	defined	for	the	collection	and	the	specified	attribute.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	fulltext	simple	query	is	deprecated	as	of	ArangoDB	2.6.	This	API	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	issue	an	AQL	query	using	the	FULLTEXT	AQL
function	as	follows:

FOR	doc	IN	FULLTEXT(@@collection,	@attributeName,	@queryString,	@limit)	

		RETURN	doc

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/fulltext	

<<EOF

{	

		"collection"	:	"products",	

		"attribute"	:	"text",	

		"query"	:	"word"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Simple	Queries

126

show	response	body

Simple	Queries

127

HTTP	Interface	for	Async	Results	Management

Request	Execution

ArangoDB	provides	various	methods	of	executing	client	requests.	Clients	can	choose	the	appropriate	method	on	a	per-request	level	based
on	their	throughput,	control	flow,	and	durability	requirements.

Blocking	execution

ArangoDB	is	a	multi-threaded	server,	allowing	the	processing	of	multiple	client	requests	at	the	same	time.	Communication	handling	and
the	actual	work	can	be	performed	by	multiple	worker	threads	in	parallel.

Though	multiple	clients	can	connect	and	send	their	requests	in	parallel	to	ArangoDB,	clients	may	need	to	wait	for	their	requests	to	be
processed.

By	default,	the	server	will	fully	process	an	incoming	request	and	then	return	the	result	to	the	client.	The	client	must	wait	for	the	server's
response	before	it	can	send	additional	requests	over	the	connection.	For	clients	that	are	single-threaded	or	not	event-driven,	waiting	for
the	full	server	response	may	be	non-optimal.

Furthermore,	please	note	that	even	if	the	client	closes	the	HTTP	connection,	the	request	running	on	the	server	will	still	continue	until	it	is
complete	and	only	then	notice	that	the	client	no	longer	listens.	Thus	closing	the	connection	does	not	help	to	abort	a	long	running	query!
See	below	under	Async	Execution	and	later	Result	Retrieval	and	HttpJobPutCancel	for	details.

Fire	and	Forget

To	mitigate	client	blocking	issues,	ArangoDB	since	version	1.4.	offers	a	generic	mechanism	for	non-blocking	requests:	if	clients	add	the
HTTP	header	x-arango-async:	true	to	their	requests,	ArangoDB	will	put	the	request	into	an	in-memory	task	queue	and	return	an	HTTP
202	(accepted)	response	to	the	client	instantly.	The	server	will	execute	the	tasks	from	the	queue	asynchronously,	decoupling	the	client
requests	and	the	actual	work.

This	allows	for	much	higher	throughput	than	if	clients	would	wait	for	the	server's	response.	The	downside	is	that	the	response	that	is
sent	to	the	client	is	always	the	same	(a	generic	HTTP	202)	and	clients	cannot	make	a	decision	based	on	the	actual	operation's	result	at
this	point.	In	fact,	the	operation	might	have	not	even	been	executed	at	the	time	the	generic	response	has	reached	the	client.	Clients	can
thus	not	rely	on	their	requests	having	been	processed	successfully.

The	asynchronous	task	queue	on	the	server	is	not	persisted,	meaning	not-yet	processed	tasks	from	the	queue	will	be	lost	in	case	of	a
crash.	However,	the	client	will	not	know	whether	they	were	processed	or	not.

Clients	should	thus	not	send	the	extra	header	when	they	have	strict	durability	requirements	or	if	they	rely	on	result	of	the	sent	operation
for	further	actions.

The	maximum	number	of	queued	tasks	is	determined	by	the	startup	option	-scheduler.maximal-queue-size.	If	more	than	this	number	of
tasks	are	already	queued,	the	server	will	reject	the	request	with	an	HTTP	500	error.

Finally,	please	note	that	it	is	not	possible	to	cancel	such	a	fire	and	forget	job,	since	you	won't	get	any	handle	to	identify	it	later	on.	If	you
need	to	cancel	requests,	use	Async	Execution	and	later	Result	Retrieval	and	HttpJobPutCancel	below.

Async	Execution	and	later	Result	Retrieval

By	adding	the	HTTP	header	x-arango-async:	store	to	a	request,	clients	can	instruct	the	ArangoDB	server	to	execute	the	operation
asynchronously	as	above,	but	also	store	the	operation	result	in	memory	for	a	later	retrieval.	The	server	will	return	a	job	id	in	the	HTTP
response	header	x-arango-async-id.	The	client	can	use	this	id	in	conjunction	with	the	HTTP	API	at	/_api/job,	which	is	described	in	detail
in	this	manual.

Clients	can	ask	the	ArangoDB	server	via	the	async	jobs	API	which	results	are	ready	for	retrieval,	and	which	are	not.	Clients	can	also	use
the	async	jobs	API	to	retrieve	the	original	results	of	an	already	executed	async	job	by	passing	it	the	originally	returned	job	id.	The	server
will	then	return	the	job	result	as	if	the	job	was	executed	normally.	Furthermore,	clients	can	cancel	running	async	jobs	by	their	job	id,	see
HttpJobPutCancel.

Async	Result	Handling

128

ArangoDB	will	keep	all	results	of	jobs	initiated	with	the	x-arango-async:	store	header.	Results	are	removed	from	the	server	only	if	a
client	explicitly	asks	the	server	for	a	specific	result.

The	async	jobs	API	also	provides	methods	for	garbage	collection	that	clients	can	use	to	get	rid	of	"old"	not	fetched	results.	Clients	should
call	this	method	periodically	because	ArangoDB	does	not	artificially	limit	the	number	of	not-yet-fetched	results.

It	is	thus	a	client	responsibility	to	store	only	as	many	results	as	needed	and	to	fetch	available	results	as	soon	as	possible,	or	at	least	to
clean	up	not	fetched	results	from	time	to	time.

The	job	queue	and	the	results	are	kept	in	memory	only	on	the	server,	so	they	will	be	lost	in	case	of	a	crash.

Canceling	asynchronous	jobs

As	mentioned	above	it	is	possible	to	cancel	an	asynchronously	running	job	using	its	job	ID.	This	is	done	with	a	PUT	request	as	described
in	HttpJobPutCancel.

However,	a	few	words	of	explanation	about	what	happens	behind	the	scenes	are	in	order.	Firstly,	a	running	async	query	can	internally	be
executed	by	C++	code	or	by	JavaScript	code.	For	example	CRUD	operations	are	executed	directly	in	C++,	whereas	AQL	queries	and
transactions	are	executed	by	JavaScript	code.	The	job	cancelation	only	works	for	JavaScript	code,	since	the	mechanism	used	is	simply	to
trigger	an	uncatchable	exception	in	the	JavaScript	thread,	which	will	be	caught	on	the	C++	level,	which	in	turn	leads	to	the	cancelation	of
the	job.	No	result	can	be	retrieved	later,	since	all	data	about	the	request	is	discarded.

If	you	cancel	a	job	running	on	a	coordinator	of	a	cluster	(Sharding),	then	only	the	code	running	on	the	coordinator	is	stopped,	there	may
remain	tasks	within	the	cluster	which	have	already	been	distributed	to	the	DBservers	and	it	is	currently	not	possible	to	cancel	them	as
well.

Async	Execution	and	Authentication

If	a	request	requires	authentication,	the	authentication	procedure	is	run	before	queueing.	The	request	will	only	be	queued	if	it	valid
credentials	and	the	authentication	succeeds.	If	the	request	does	not	contain	valid	credentials,	it	will	not	be	queued	but	rejected	instantly	in
the	same	way	as	a	"regular",	non-queued	request.

Managing	Async	Results	via	HTTP

Return	result	of	an	async	job

fetches	a	job	result	and	removes	it	from	the	queue

	PUT	/_api/job/{job-id}	

Path	Parameters

job-id	(required):	The	async	job	id.

Returns	the	result	of	an	async	job	identified	by	job-id.	If	the	async	job	result	is	present	on	the	server,	the	result	will	be	removed	from	the
list	of	result.	That	means	this	method	can	be	called	for	each	job-id	once.	The	method	will	return	the	original	job	result's	headers	and	body,
plus	the	additional	HTTP	header	x-arango-async-job-id.	If	this	header	is	present,	then	the	job	was	found	and	the	response	contains	the
original	job's	result.	If	the	header	is	not	present,	the	job	was	not	found	and	the	response	contains	status	information	from	the	job	manager.

Return	Codes

204:	is	returned	if	the	job	requested	via	job-id	is	still	in	the	queue	of	pending	(or	not	yet	finished)	jobs.	In	this	case,	no	x-arango-
async-id	HTTP	header	will	be	returned.

400:	is	returned	if	no	job-id	was	specified	in	the	request.	In	this	case,	no	x-arango-async-id	HTTP	header	will	be	returned.

404:	is	returned	if	the	job	was	not	found	or	already	deleted	or	fetched	from	the	job	result	list.	In	this	case,	no	x-arango-async-id
HTTP	header	will	be	returned.

Examples

Not	providing	a	job-id:

Async	Result	Handling

129

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Providing	a	job-id	for	a	non-existing	job:

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/notthere

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Fetching	the	result	of	an	HTTP	GET	job:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180404

content-type:	text/plain;	charset=utf-8

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/152809866180404

HTTP/1.1	200	OK

x-content-type-options:	nosniff

x-arango-async-id:	152809866180404

content-type:	application/json;	charset=utf-8

show	response	body
Fetching	the	result	of	an	HTTP	POST	job	that	failed:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--data-binary	@-	--dump	-	

http://localhost:8529/_api/collection	<<EOF

{	

		"name"	:	"	this	name	is	invalid	"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180409

content-type:	text/plain;	charset=utf-8

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/152809866180409

HTTP/1.1	400	Bad	Request

Async	Result	Handling

130

x-content-type-options:	nosniff

x-arango-async-id:	152809866180409

content-type:	application/json;	charset=utf-8

show	response	body

Cancel	async	job

cancels	an	async	job

	PUT	/_api/job/{job-id}/cancel	

Path	Parameters

job-id	(required):	The	async	job	id.

Cancels	the	currently	running	job	identified	by	job-id.	Note	that	it	still	might	take	some	time	to	actually	cancel	the	running	async	job.

Return	Codes

200:	cancel	has	been	initiated.

400:	is	returned	if	no	job-id	was	specified	in	the	request.	In	this	case,	no	x-arango-async-id	HTTP	header	will	be	returned.

404:	is	returned	if	the	job	was	not	found	or	already	deleted	or	fetched	from	the	job	result	list.	In	this	case,	no	x-arango-async-id
HTTP	header	will	be	returned.

Examples

shell>	curl	-X	POST	--header	'x-arango-async:	store'	--data-binary	@-	--dump	-	

http://localhost:8529/_api/cursor	<<EOF

{	

		"query"	:	"FOR	i	IN	1..10	FOR	j	IN	1..10	LET	x	=	sleep(1.0)	FILTER	i	==	5	&&	j	==	5	

RETURN	42"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180367

content-type:	text/plain;	charset=utf-8

shell>	curl	--dump	-	http://localhost:8529/_api/job/pending

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		"152809866180367"	

]

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/152809866180367/cancel

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Async	Result	Handling

131

Deletes	async	job

deletes	an	async	job	result

	DELETE	/_api/job/{type}	

Path	Parameters

type	(required):	The	type	of	jobs	to	delete.	type	can	be:
all:	Deletes	all	jobs	results.	Currently	executing	or	queued	async	jobs	will	not	be	stopped	by	this	call.
expired:	Deletes	expired	results.	To	determine	the	expiration	status	of	a	result,	pass	the	stamp	query	parameter.	stamp	needs	to	be	a
UNIX	timestamp,	and	all	async	job	results	created	at	a	lower	timestamp	will	be	deleted.
an	actual	job-id:	In	this	case,	the	call	will	remove	the	result	of	the	specified	async	job.	If	the	job	is	currently	executing	or	queued,	it
will	not	be	aborted.

Query	Parameters

stamp	(optional):	A	UNIX	timestamp	specifying	the	expiration	threshold	when	type	is	expired.

Deletes	either	all	job	results,	expired	job	results,	or	the	result	of	a	specific	job.	Clients	can	use	this	method	to	perform	an	eventual	garbage
collection	of	job	results.

Return	Codes

200:	is	returned	if	the	deletion	operation	was	carried	out	successfully.	This	code	will	also	be	returned	if	no	results	were	deleted.

400:	is	returned	if	type	is	not	specified	or	has	an	invalid	value.

404:	is	returned	if	type	is	a	job-id	but	no	async	job	with	the	specified	id	was	found.

Examples

Deleting	all	jobs:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180376

content-type:	text/plain;	charset=utf-8

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/all

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"result"	:	true	

}

Deleting	expired	jobs:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180381

content-type:	text/plain;	charset=utf-8

Async	Result	Handling

132

shell>	curl	--dump	-	http://localhost:8529/_admin/time

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Deleting	the	result	of	a	specific	job:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180390

content-type:	text/plain;	charset=utf-8

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/152809866180390

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"result"	:	true	

}

Deleting	the	result	of	a	non-existing	job:

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/AreYouThere

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Returns	async	job

Returns	the	status	of	a	specific	job

	GET	/_api/job/{job-id}	

Path	Parameters

job-id	(required):	The	async	job	id.

Returns	the	processing	status	of	the	specified	job.	The	processing	status	can	be	determined	by	peeking	into	the	HTTP	response	code	of
the	response.

Return	Codes

200:	is	returned	if	the	job	requested	via	job-id	has	been	executed	and	its	result	is	ready	to	fetch.

204:	is	returned	if	the	job	requested	via	job-id	is	still	in	the	queue	of	pending	(or	not	yet	finished)	jobs.

404:	is	returned	if	the	job	was	not	found	or	already	deleted	or	fetched	from	the	job	result	list.

Async	Result	Handling

133

Examples

Querying	the	status	of	a	done	job:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180431

content-type:	text/plain;	charset=utf-8

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/job/152809866180431

HTTP/1.1	200	OK

x-content-type-options:	nosniff

x-arango-async-id:	152809866180431

content-type:	application/json;	charset=utf-8

show	response	body
Querying	the	status	of	a	pending	job:	(therefore	we	create	a	long	runnging	job...)

shell>	curl	-X	POST	--header	'x-arango-async:	store'	--data-binary	@-	--dump	-	

http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"read"	:	[

						"_frontend"	

]	

		},	

		"action"	:	"function	()	{require('internal').sleep(15.0);}"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180436

content-type:	text/plain;	charset=utf-8

shell>	curl	--dump	-	http://localhost:8529/_api/job/152809866180436

HTTP/1.1	204	No	Content

content-type:	text/plain;	charset=utf-8

x-content-type-options:	nosniff

Returns	list	of	async	jobs

Returns	the	ids	of	job	results	with	a	specific	status

	GET	/_api/job/{type}	

Path	Parameters

type	(required):	The	type	of	jobs	to	return.	The	type	can	be	either	done	or	pending.	Setting	the	type	to	done	will	make	the	method
return	the	ids	of	already	completed	async	jobs	for	which	results	can	be	fetched.	Setting	the	type	to	pending	will	return	the	ids	of	not

Async	Result	Handling

134

yet	finished	async	jobs.

Query	Parameters

count	(optional):

The	maximum	number	of	ids	to	return	per	call.	If	not	specified,	a	server-defined	maximum	value	will	be	used.

Returns	the	list	of	ids	of	async	jobs	with	a	specific	status	(either	done	or	pending).	The	list	can	be	used	by	the	client	to	get	an	overview
of	the	job	system	status	and	to	retrieve	completed	job	results	later.

Return	Codes

200:	is	returned	if	the	list	can	be	compiled	successfully.	Note:	the	list	might	be	empty.

400:	is	returned	if	type	is	not	specified	or	has	an	invalid	value.

Examples

Fetching	the	list	of	done	jobs:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180414

content-type:	text/plain;	charset=utf-8

shell>	curl	--dump	-	http://localhost:8529/_api/job/done

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		"152809866180414"	

]

Fetching	the	list	of	pending	jobs:

shell>	curl	-X	PUT	--header	'x-arango-async:	store'	--dump	-	

http://localhost:8529/_api/version

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180419

content-type:	text/plain;	charset=utf-8

shell>	curl	--dump	-	http://localhost:8529/_api/job/pending

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[]

Querying	the	status	of	a	pending	job:	(we	create	a	sleep	job	therefore...)

shell>	curl	-X	POST	--header	'x-arango-async:	store'	--data-binary	@-	--dump	-	

Async	Result	Handling

135

http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"read"	:	[

						"_frontend"	

]	

		},	

		"action"	:	"function	()	{require('internal').sleep(15.0);}"	

}

EOF

HTTP/1.1	202	Accepted

x-content-type-options:	nosniff

x-arango-async-id:	152809866180424

content-type:	text/plain;	charset=utf-8

shell>	curl	--dump	-	http://localhost:8529/_api/job/pending

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		"152809866180424"	

]

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/job/152809866180424

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"result"	:	true	

}

Async	Result	Handling

136

HTTP	Interface	for	Bulk	Imports
ArangoDB	provides	an	HTTP	interface	to	import	multiple	documents	at	once	into	a	collection.	This	is	known	as	a	bulk	import.

The	data	uploaded	must	be	provided	in	JSON	format.	There	are	two	mechanisms	to	import	the	data:

self-contained	JSON	documents:	in	this	case,	each	document	contains	all	attribute	names	and	values.	Attribute	names	may	be
completely	different	among	the	documents	uploaded
attribute	names	plus	document	data:	in	this	case,	the	first	array	must	contain	the	attribute	names	of	the	documents	that	follow.	The
following	arrays	containing	only	the	attribute	values.	Attribute	values	will	be	mapped	to	the	attribute	names	by	positions.

The	endpoint	address	is	/_api/import	for	both	input	mechanisms.	Data	must	be	sent	to	this	URL	using	an	HTTP	POST	request.	The	data
to	import	must	be	contained	in	the	body	of	the	POST	request.

The	collection	query	parameter	must	be	used	to	specify	the	target	collection	for	the	import.	Importing	data	into	a	non-existing	collection
will	produce	an	error.

The	waitForSync	query	parameter	can	be	set	to	true	to	make	the	import	only	return	if	all	documents	have	been	synced	to	disk.

The	complete	query	parameter	can	be	set	to	true	to	make	the	entire	import	fail	if	any	of	the	uploaded	documents	is	invalid	and	cannot	be
imported.	In	this	case,	no	documents	will	be	imported	by	the	import	run,	even	if	a	failure	happens	at	the	end	of	the	import.

If	complete	has	a	value	other	than	true,	valid	documents	will	be	imported	while	invalid	documents	will	be	rejected,	meaning	only	some	of
the	uploaded	documents	might	have	been	imported.

The	details	query	parameter	can	be	set	to	true	to	make	the	import	API	return	details	about	documents	that	could	not	be	imported.	If
details	is	true,	then	the	result	will	also	contain	a	details	attribute	which	is	an	array	of	detailed	error	messages.	If	the	details	is	set	to	false
or	omitted,	no	details	will	be	returned.

imports	document	values

imports	documents	from	JSON-encoded	lists

	POST	/_api/import#document	

Request	Body	(required)

The	body	must	consist	of	JSON-encoded	arrays	of	attribute	values,	with	one	line	per	document.	The	first	row	of	the	request	must	be	a
JSON-encoded	array	of	attribute	names.	These	attribute	names	are	used	for	the	data	in	the	subsequent	lines.

Query	Parameters

collection	(required):	The	collection	name.

fromPrefix	(optional):	An	optional	prefix	for	the	values	in		_from		attributes.	If	specified,	the	value	is	automatically	prepended	to
each		_from		input	value.	This	allows	specifying	just	the	keys	for		_from	.

toPrefix	(optional):	An	optional	prefix	for	the	values	in		_to		attributes.	If	specified,	the	value	is	automatically	prepended	to	each
	_to		input	value.	This	allows	specifying	just	the	keys	for		_to	.

overwrite	(optional):	If	this	parameter	has	a	value	of		true		or		yes	,	then	all	data	in	the	collection	will	be	removed	prior	to	the
import.	Note	that	any	existing	index	definitions	will	be	preseved.

waitForSync	(optional):	Wait	until	documents	have	been	synced	to	disk	before	returning.

onDuplicate	(optional):	Controls	what	action	is	carried	out	in	case	of	a	unique	key	constraint	violation.	Possible	values	are:

error:	this	will	not	import	the	current	document	because	of	the	unique	key	constraint	violation.	This	is	the	default	setting.
update:	this	will	update	an	existing	document	in	the	database	with	the	data	specified	in	the	request.	Attributes	of	the	existing
document	that	are	not	present	in	the	request	will	be	preseved.
replace:	this	will	replace	an	existing	document	in	the	database	with	the	data	specified	in	the	request.
ignore:	this	will	not	update	an	existing	document	and	simply	ignore	the	error	caused	by	the	unique	key	constraint	violation.

Bulk	Import	/	Export

137

Note	that	update,	replace	and	ignore	will	only	work	when	the	import	document	in	the	request	contains	the	_key	attribute.	update	and
replace	may	also	fail	because	of	secondary	unique	key	constraint	violations.

complete	(optional):	If	set	to		true		or		yes	,	it	will	make	the	whole	import	fail	if	any	error	occurs.	Otherwise	the	import	will
continue	even	if	some	documents	cannot	be	imported.

details	(optional):	If	set	to		true		or		yes	,	the	result	will	include	an	attribute		details		with	details	about	documents	that	could	not
be	imported.

NOTE	Swagger	examples	won't	work	due	to	the	anchor.

Creates	documents	in	the	collection	identified	by		collection-name	.	The	first	line	of	the	request	body	must	contain	a	JSON-encoded
array	of	attribute	names.	All	following	lines	in	the	request	body	must	contain	JSON-encoded	arrays	of	attribute	values.	Each	line	is
interpreted	as	a	separate	document,	and	the	values	specified	will	be	mapped	to	the	array	of	attribute	names	specified	in	the	first	header
line.

The	response	is	a	JSON	object	with	the	following	attributes:

	created	:	number	of	documents	imported.

	errors	:	number	of	documents	that	were	not	imported	due	to	an	error.

	empty	:	number	of	empty	lines	found	in	the	input	(will	only	contain	a	value	greater	zero	for	types		documents		or		auto).

	updated	:	number	of	updated/replaced	documents	(in	case		onDuplicate		was	set	to	either		update		or		replace).

	ignored	:	number	of	failed	but	ignored	insert	operations	(in	case		onDuplicate		was	set	to		ignore).

	details	:	if	query	parameter		details		is	set	to	true,	the	result	will	contain	a		details		attribute	which	is	an	array	with	more
detailed	information	about	which	documents	could	not	be	inserted.

Return	Codes

201:	is	returned	if	all	documents	could	be	imported	successfully.

400:	is	returned	if		type		contains	an	invalid	value,	no		collection		is	specified,	the	documents	are	incorrectly	encoded,	or	the
request	is	malformed.

404:	is	returned	if		collection		or	the		_from		or		_to		attributes	of	an	imported	edge	refer	to	an	unknown	collection.

409:	is	returned	if	the	import	would	trigger	a	unique	key	violation	and		complete		is	set	to		true	.

500:	is	returned	if	the	server	cannot	auto-generate	a	document	key	(out	of	keys	error)	for	a	document	with	no	user-defined	key.

Examples

Importing	two	documents,	with	attributes		_key	,		value1		and		value2		each.	One	line	in	the	import	data	is	empty

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products	<<EOF

["_key",	"value1",	"value2"]

["abc",	25,	"test"]

["foo",	"bar",	"baz"]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Importing	into	an	edge	collection,	with	attributes		_from	,		_to		and		name	

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

Bulk	Import	/	Export

138

collection=links	<<EOF

["_from",	"_to",	"name"]

["products/123","products/234",	"some	name"]

["products/332",	"products/abc",	"other	name"]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Importing	into	an	edge	collection,	omitting		_from		or		_to	

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=links&details=true	<<EOF

["name"]

["some	name"]

["other	name"]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Violating	a	unique	constraint,	but	allow	partial	imports

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&details=true	<<EOF

["_key",	"value1",	"value2"]

["abc",	25,	"test"]

["abc",	"bar",	"baz"]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Violating	a	unique	constraint,	not	allowing	partial	imports

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&complete=true	<<EOF

["_key",	"value1",	"value2"]

["abc",	25,	"test"]

["abc",	"bar",	"baz"]

EOF

HTTP/1.1	409	Conflict

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Bulk	Import	/	Export

139

show	response	body
Using	a	non-existing	collection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products	<<EOF

["_key",	"value1",	"value2"]

["abc",	25,	"test"]

["foo",	"bar",	"baz"]

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	a	malformed	body

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products	<<EOF

{	"_key":	"foo",	"value1":	"bar"	}

EOF

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

imports	documents	from	JSON

imports	documents	from	JSON

	POST	/_api/import#json	

Request	Body	(required)

The	body	must	either	be	a	JSON-encoded	array	of	objects	or	a	string	with	multiple	JSON	objects	separated	by	newlines.

Query	Parameters

type	(required):	Determines	how	the	body	of	the	request	will	be	interpreted.		type		can	have	the	following	values:
	documents	:	when	this	type	is	used,	each	line	in	the	request	body	is	expected	to	be	an	individual	JSON-encoded	document.	Multiple
JSON	objects	in	the	request	body	need	to	be	separated	by	newlines.
	list	:	when	this	type	is	used,	the	request	body	must	contain	a	single	JSON-encoded	array	of	individual	objects	to	import.
	auto	:	if	set,	this	will	automatically	determine	the	body	type	(either		documents		or		list).

collection	(required):	The	collection	name.

fromPrefix	(optional):	An	optional	prefix	for	the	values	in		_from		attributes.	If	specified,	the	value	is	automatically	prepended	to
each		_from		input	value.	This	allows	specifying	just	the	keys	for		_from	.

toPrefix	(optional):	An	optional	prefix	for	the	values	in		_to		attributes.	If	specified,	the	value	is	automatically	prepended	to	each
	_to		input	value.	This	allows	specifying	just	the	keys	for		_to	.

overwrite	(optional):	If	this	parameter	has	a	value	of		true		or		yes	,	then	all	data	in	the	collection	will	be	removed	prior	to	the
import.	Note	that	any	existing	index	definitions	will	be	preseved.

waitForSync	(optional):	Wait	until	documents	have	been	synced	to	disk	before	returning.

Bulk	Import	/	Export

140

onDuplicate	(optional):	Controls	what	action	is	carried	out	in	case	of	a	unique	key	constraint	violation.	Possible	values	are:

error:	this	will	not	import	the	current	document	because	of	the	unique	key	constraint	violation.	This	is	the	default	setting.
update:	this	will	update	an	existing	document	in	the	database	with	the	data	specified	in	the	request.	Attributes	of	the	existing
document	that	are	not	present	in	the	request	will	be	preseved.
replace:	this	will	replace	an	existing	document	in	the	database	with	the	data	specified	in	the	request.
ignore:	this	will	not	update	an	existing	document	and	simply	ignore	the	error	caused	by	a	unique	key	constraint	violation.

Note	that	that	update,	replace	and	ignore	will	only	work	when	the	import	document	in	the	request	contains	the	_key	attribute.	update
and	replace	may	also	fail	because	of	secondary	unique	key	constraint	violations.

complete	(optional):	If	set	to		true		or		yes	,	it	will	make	the	whole	import	fail	if	any	error	occurs.	Otherwise	the	import	will
continue	even	if	some	documents	cannot	be	imported.

details	(optional):	If	set	to		true		or		yes	,	the	result	will	include	an	attribute		details		with	details	about	documents	that	could	not
be	imported.

NOTE	Swagger	examples	won't	work	due	to	the	anchor.

Creates	documents	in	the	collection	identified	by		collection-name	.	The	JSON	representations	of	the	documents	must	be	passed	as	the
body	of	the	POST	request.	The	request	body	can	either	consist	of	multiple	lines,	with	each	line	being	a	single	stand-alone	JSON	object,
or	a	singe	JSON	array	with	sub-objects.

The	response	is	a	JSON	object	with	the	following	attributes:

	created	:	number	of	documents	imported.

	errors	:	number	of	documents	that	were	not	imported	due	to	an	error.

	empty	:	number	of	empty	lines	found	in	the	input	(will	only	contain	a	value	greater	zero	for	types		documents		or		auto).

	updated	:	number	of	updated/replaced	documents	(in	case		onDuplicate		was	set	to	either		update		or		replace).

	ignored	:	number	of	failed	but	ignored	insert	operations	(in	case		onDuplicate		was	set	to		ignore).

	details	:	if	query	parameter		details		is	set	to	true,	the	result	will	contain	a		details		attribute	which	is	an	array	with	more
detailed	information	about	which	documents	could	not	be	inserted.

Return	Codes

201:	is	returned	if	all	documents	could	be	imported	successfully.

400:	is	returned	if		type		contains	an	invalid	value,	no		collection		is	specified,	the	documents	are	incorrectly	encoded,	or	the
request	is	malformed.

404:	is	returned	if		collection		or	the		_from		or		_to		attributes	of	an	imported	edge	refer	to	an	unknown	collection.

409:	is	returned	if	the	import	would	trigger	a	unique	key	violation	and		complete		is	set	to		true	.

500:	is	returned	if	the	server	cannot	auto-generate	a	document	key	(out	of	keys	error)	for	a	document	with	no	user-defined	key.

Examples

Importing	documents	with	heterogenous	attributes	from	a	JSON	array

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=list	<<EOF

[

		{	

				"_key"	:	"abc",	

				"value1"	:	25,	

				"value2"	:	"test",	

				"allowed"	:	true	

		},	

		{	

				"_key"	:	"foo",	

Bulk	Import	/	Export

141

				"name"	:	"baz"	

		},	

		{	

				"name"	:	{	

						"detailed"	:	"detailed	name",	

						"short"	:	"short	name"	

				}	

		}	

]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Importing	documents	from	individual	JSON	lines

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=documents	<<EOF

{	"_key":	"abc",	"value1":	25,	"value2":	"test","allowed":	true	}

{	"_key":	"foo",	"name":	"baz"	}

{	"name":	{	"detailed":	"detailed	name",	"short":	"short	name"	}	}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	the	auto	type	detection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=auto	<<EOF

[

		{	

				"_key"	:	"abc",	

				"value1"	:	25,	

				"value2"	:	"test",	

				"allowed"	:	true	

		},	

		{	

				"_key"	:	"foo",	

				"name"	:	"baz"	

		},	

		{	

				"name"	:	{	

						"detailed"	:	"detailed	name",	

						"short"	:	"short	name"	

				}	

		}	

Bulk	Import	/	Export

142

]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Importing	into	an	edge	collection,	with	attributes		_from	,		_to		and		name	

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=links&type=documents	<<EOF

{	"_from":	"products/123",	"_to":	"products/234"	}

{"_from":	"products/332",	"_to":	"products/abc",			"name":	"other	name"	}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Importing	into	an	edge	collection,	omitting		_from		or		_to	

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=links&type=list&details=true	<<EOF

[

		{	

				"name"	:	"some	name"	

		}	

]

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Violating	a	unique	constraint,	but	allow	partial	imports

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=documents&details=true	<<EOF

{	"_key":	"abc",	"value1":	25,	"value2":	"test"	}

{	"_key":	"abc",	"value1":	"bar",	"value2":	"baz"	}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Violating	a	unique	constraint,	not	allowing	partial	imports

Bulk	Import	/	Export

143

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=documents&complete=true	<<EOF

{	"_key":	"abc",	"value1":	25,	"value2":	"test"	}

{	"_key":	"abc",	"value1":	"bar",	"value2":	"baz"	}

EOF

HTTP/1.1	409	Conflict

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	a	non-existing	collection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=documents	<<EOF

{	"name":	"test"	}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Using	a	malformed	body

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/import?

collection=products&type=list	<<EOF

{	}

EOF

HTTP/1.1	400	Bad	Request

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Bulk	Import	/	Export

144

Importing	Self-Contained	JSON	Documents
This	import	method	allows	uploading	self-contained	JSON	documents.	The	documents	must	be	uploaded	in	the	body	of	the	HTTP
POST	request.	Each	line	of	the	body	will	be	interpreted	as	one	stand-alone	document.	Empty	lines	in	the	body	are	allowed	but	will	be
skipped.	Using	this	format,	the	documents	are	imported	line-wise.

Example	input	data:	{	"_key":	"key1",	...	}	{	"_key":	"key2",	...	}	...

To	use	this	method,	the	type	query	parameter	should	be	set	to	documents.

It	is	also	possible	to	upload	self-contained	JSON	documents	that	are	embedded	into	a	JSON	array.	Each	element	from	the	array	will	be
treated	as	a	document	and	be	imported.

Example	input	data	for	this	case:

[

		{	"_key":	"key1",	...	},

		{	"_key":	"key2",	...	},

		...

]

This	format	does	not	require	each	document	to	be	on	a	separate	line,	and	any	whitespace	in	the	JSON	data	is	allowed.	It	can	be	used	to
import	a	JSON-formatted	result	array	(e.g.	from	arangosh)	back	into	ArangoDB.	Using	this	format	requires	ArangoDB	to	parse	the
complete	array	and	keep	it	in	memory	for	the	duration	of	the	import.	This	might	be	more	resource-intensive	than	the	line-wise
processing.

To	use	this	method,	the	type	query	parameter	should	be	set	to	array.

Setting	the	type	query	parameter	to	auto	will	make	the	server	auto-detect	whether	the	data	are	line-wise	JSON	documents	(type	=
documents)	or	a	JSON	array	(type	=	array).

Examples

curl	--data-binary	@-	-X	POST	--dump	-	"http://localhost:8529/_api/import?type=documents&collection=test"

{	"name"	:	"test",	"gender"	:	"male",	"age"	:	39	}

{	"type"	:	"bird",	"name"	:	"robin"	}

HTTP/1.1	201	Created

Server:	ArangoDB

Connection:	Keep-Alive

Content-type:	application/json;	charset=utf-8

{"error":false,"created":2,"empty":0,"errors":0}

The	server	will	respond	with	an	HTTP	201	if	everything	went	well.	The	number	of	documents	imported	will	be	returned	in	the	created
attribute	of	the	response.	If	any	documents	were	skipped	or	incorrectly	formatted,	this	will	be	returned	in	the	errors	attribute.	There	will
also	be	an	attribute	empty	in	the	response,	which	will	contain	a	value	of	0.

If	the	details	parameter	was	set	to	true	in	the	request,	the	response	will	also	contain	an	attribute	details	which	is	an	array	of	details	about
errors	that	occurred	on	the	server	side	during	the	import.	This	array	might	be	empty	if	no	errors	occurred.

JSON	Documents

145

Importing	Headers	and	Values
When	using	this	type	of	import,	the	attribute	names	of	the	documents	to	be	imported	are	specified	separate	from	the	actual	document
value	data.	The	first	line	of	the	HTTP	POST	request	body	must	be	a	JSON	array	containing	the	attribute	names	for	the	documents	that
follow.	The	following	lines	are	interpreted	as	the	document	data.	Each	document	must	be	a	JSON	array	of	values.	No	attribute	names	are
needed	or	allowed	in	this	data	section.

Examples

curl	--data-binary	@-	-X	POST	--dump	-	"http://localhost:8529/_api/import?collection=test"

["firstName",	"lastName",	"age",	"gender"]

["Joe",	"Public",	42,	"male"]

["Jane",	"Doe",	31,	"female"]

HTTP/1.1	201	Created

Server:	ArangoDB

Connection:	Keep-Alive

Content-type:	application/json;	charset=utf-8

{"error":false,"created":2,"empty":0,"errors":0}

The	server	will	again	respond	with	an	HTTP	201	if	everything	went	well.	The	number	of	documents	imported	will	be	returned	in	the
created	attribute	of	the	response.	If	any	documents	were	skipped	or	incorrectly	formatted,	this	will	be	returned	in	the	errors	attribute.
The	number	of	empty	lines	in	the	input	file	will	be	returned	in	the	empty	attribute.

If	the	details	parameter	was	set	to	true	in	the	request,	the	response	will	also	contain	an	attribute	details	which	is	an	array	of	details	about
errors	that	occurred	on	the	server	side	during	the	import.	This	array	might	be	empty	if	no	errors	occurred.

Importing	into	Edge	Collections

Please	note	that	when	importing	documents	into	an	edge	collection,	it	is	mandatory	that	all	imported	documents	contain	the	_from	and
_to	attributes,	and	that	these	contain	references	to	existing	collections.

Headers	&	Values

146

HTTP	Interface	for	Batch	Requests
Clients	normally	send	individual	operations	to	ArangoDB	in	individual	HTTP	requests.	This	is	straightforward	and	simple,	but	has	the
disadvantage	that	the	network	overhead	can	be	significant	if	many	small	requests	are	issued	in	a	row.

To	mitigate	this	problem,	ArangoDB	offers	a	batch	request	API	that	clients	can	use	to	send	multiple	operations	in	one	batch	to
ArangoDB.	This	method	is	especially	useful	when	the	client	has	to	send	many	HTTP	requests	with	a	small	body/payload	and	the
individual	request	results	do	not	depend	on	each	other.

Clients	can	use	ArangoDB's	batch	API	by	issuing	a	multipart	HTTP	POST	request	to	the	URL	/_api/batch	handler.	The	handler	will
accept	the	request	if	the	Content-type	is	multipart/form-data	and	a	boundary	string	is	specified.	ArangoDB	will	then	decompose	the
batch	request	into	its	individual	parts	using	this	boundary.	This	also	means	that	the	boundary	string	itself	must	not	be	contained	in	any	of
the	parts.	When	ArangoDB	has	split	the	multipart	request	into	its	individual	parts,	it	will	process	all	parts	sequentially	as	if	it	were	a
standalone	request.	When	all	parts	are	processed,	ArangoDB	will	generate	a	multipart	HTTP	response	that	contains	one	part	for	each
part	operation	result.	For	example,	if	you	send	a	multipart	request	with	5	parts,	ArangoDB	will	send	back	a	multipart	response	with	5
parts	as	well.

The	server	expects	each	part	message	to	start	with	exactly	the	following	"header":

Content-type:	application/x-arango-batchpart

You	can	optionally	specify	a	Content-Id	"header"	to	uniquely	identify	each	part	message.	The	server	will	return	the	Content-Id	in	its
response	if	it	is	specified.	Otherwise,	the	server	will	not	send	a	Content-Id	"header"	back.	The	server	will	not	validate	the	uniqueness	of
the	Content-Id.	After	the	mandatory	Content-type	and	the	optional	Content-Id	header,	two	Windows	line	breaks	(i.e.	\r\n\r\n)	must
follow.	Any	deviation	of	this	structure	might	lead	to	the	part	being	rejected	or	incorrectly	interpreted.	The	part	request	payload,
formatted	as	a	regular	HTTP	request,	must	follow	the	two	Windows	line	breaks	literal	directly.

Note	that	the	literal	Content-type:	application/x-arango-batchpart	technically	is	the	header	of	the	MIME	part,	and	the	HTTP	request
(including	its	headers)	is	the	body	part	of	the	MIME	part.

An	actual	part	request	should	start	with	the	HTTP	method,	the	called	URL,	and	the	HTTP	protocol	version	as	usual,	followed	by
arbitrary	HTTP	headers.	Its	body	should	follow	after	the	usual	\r\n\r\n	literal.	Part	requests	are	therefore	regular	HTTP	requests,	only
embedded	inside	a	multipart	message.

The	following	example	will	send	a	batch	with	3	individual	document	creation	operations.	The	boundary	used	in	this	example	is
XXXsubpartXXX.

Examples

>	curl	-X	POST	--data-binary	@-	--header	"Content-type:	multipart/form-data;	boundary=XXXsubpartXXX"	http://localhost:8529/_api

/batch

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

Content-Id:	1

POST	/_api/document?collection=xyz	HTTP/1.1

{"a":1,"b":2,"c":3}

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

Content-Id:	2

POST	/_api/document?collection=xyz	HTTP/1.1

{"a":1,"b":2,"c":3,"d":4}

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

Content-Id:	3

POST	/_api/document?collection=xyz	HTTP/1.1

{"a":1,"b":2,"c":3,"d":4,"e":5}

--XXXsubpartXXX--

Batch	Requests

147

The	server	will	then	respond	with	one	multipart	message,	containing	the	overall	status	and	the	individual	results	for	the	part	operations.
The	overall	status	should	be	200	except	there	was	an	error	while	inspecting	and	processing	the	multipart	message.	The	overall	status
therefore	does	not	indicate	the	success	of	each	part	operation,	but	only	indicates	whether	the	multipart	message	could	be	handled
successfully.

Each	part	operation	will	return	its	own	status	value.	As	the	part	operation	results	are	regular	HTTP	responses	(just	included	in	one
multipart	response),	the	part	operation	status	is	returned	as	a	HTTP	status	code.	The	status	codes	of	the	part	operations	are	exactly	the
same	as	if	you	called	the	individual	operations	standalone.	Each	part	operation	might	also	return	arbitrary	HTTP	headers	and	a
body/payload:

Examples

HTTP/1.1	200	OK

Connection:	Keep-Alive

Content-type:	multipart/form-data;	boundary=XXXsubpartXXX

Content-length:	1055

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

Content-Id:	1

HTTP/1.1	202	Accepted

Content-type:	application/json;	charset=utf-8

Etag:	"9514299"

Content-length:	53

{"error":false,"_id":"xyz/9514299","_key":"9514299","_rev":"9514299"}

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

Content-Id:	2

HTTP/1.1	202	Accepted

Content-type:	application/json;	charset=utf-8

Etag:	"9579835"

Content-length:	53

{"error":false,"_id":"xyz/9579835","_key":"9579835","_rev":"9579835"}

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

Content-Id:	3

HTTP/1.1	202	Accepted

Content-type:	application/json;	charset=utf-8

Etag:	"9645371"

Content-length:	53

{"error":false,"_id":"xyz/9645371","_key":"9645371","_rev":"9645371"}

--XXXsubpartXXX--

In	the	above	example,	the	server	returned	an	overall	status	code	of	200,	and	each	part	response	contains	its	own	status	value	(202	in	the
example):

When	constructing	the	multipart	HTTP	response,	the	server	will	use	the	same	boundary	that	the	client	supplied.	If	any	of	the	part
responses	has	a	status	code	of	400	or	greater,	the	server	will	also	return	an	HTTP	header	x-arango-errors	containing	the	overall	number
of	part	requests	that	produced	errors:

Examples

>	curl	-X	POST	--data-binary	@-	--header	"Content-type:	multipart/form-data;	boundary=XXXsubpartXXX"	http://localhost:8529/_api

/batch

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

POST	/_api/document?collection=nonexisting

{"a":1,"b":2,"c":3}

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

POST	/_api/document?collection=xyz

Batch	Requests

148

{"a":1,"b":2,"c":3,"d":4}

--XXXsubpartXXX--

In	this	example,	the	overall	response	code	is	200,	but	as	some	of	the	part	request	failed	(with	status	code	404),	the	x-arango-errors
header	of	the	overall	response	is	1:

Examples

HTTP/1.1	200	OK

x-arango-errors:	1

Content-type:	multipart/form-data;	boundary=XXXsubpartXXX

Content-length:	711

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

HTTP/1.1	404	Not	Found

Content-type:	application/json;	charset=utf-8

Content-length:	111

{"error":true,"code":404,"errorNum":1203,"errorMessage":"collection	\/_api\/collection\/nonexisting	not	found"}

--XXXsubpartXXX

Content-type:	application/x-arango-batchpart

HTTP/1.1	202	Accepted

Content-type:	application/json;	charset=utf-8

Etag:	"9841979"

Content-length:	53

{"error":false,"_id":"xyz/9841979","_key":"9841979","_rev":"9841979"}

--XXXsubpartXXX--

Please	note	that	the	database	used	for	all	part	operations	of	a	batch	request	is	determined	by	scanning	the	original	URL	(the	URL	that
contains	/_api/batch).	It	is	not	possible	to	override	the	database	name	in	part	operations	of	a	batch.	When	doing	so,	any	other	database
name	used	in	a	batch	part	will	be	ignored.

executes	a	batch	request

executes	a	batch	request

	POST	/_api/batch	

Request	Body	(required)

The	multipart	batch	request,	consisting	of	the	envelope	and	the	individual	batch	parts.

Executes	a	batch	request.	A	batch	request	can	contain	any	number	of	other	requests	that	can	be	sent	to	ArangoDB	in	isolation.	The
benefit	of	using	batch	requests	is	that	batching	requests	requires	less	client/server	roundtrips	than	when	sending	isolated	requests.

All	parts	of	a	batch	request	are	executed	serially	on	the	server.	The	server	will	return	the	results	of	all	parts	in	a	single	response	when	all
parts	are	finished.

Technically,	a	batch	request	is	a	multipart	HTTP	request,	with	content-type		multipart/form-data	.	A	batch	request	consists	of	an
envelope	and	the	individual	batch	part	actions.	Batch	part	actions	are	"regular"	HTTP	requests,	including	full	header	and	an	optional
body.	Multiple	batch	parts	are	separated	by	a	boundary	identifier.	The	boundary	identifier	is	declared	in	the	batch	envelope.	The	MIME
content-type	for	each	individual	batch	part	must	be		application/x-arango-batchpart	.

Please	note	that	when	constructing	the	individual	batch	parts,	you	must	use	CRLF	(\	\)	as	the	line	terminator	as	in	regular	HTTP
messages.

The	response	sent	by	the	server	will	be	an		HTTP	200		response,	with	an	optional	error	summary	header		x-arango-errors	.	This	header
contains	the	number	of	batch	part	operations	that	failed	with	an	HTTP	error	code	of	at	least	400.	This	header	is	only	present	in	the
response	if	the	number	of	errors	is	greater	than	zero.

The	response	sent	by	the	server	is	a	multipart	response,	too.	It	contains	the	individual	HTTP	responses	for	all	batch	parts,	including	the
full	HTTP	result	header	(with	status	code	and	other	potential	headers)	and	an	optional	result	body.	The	individual	batch	parts	in	the
result	are	seperated	using	the	same	boundary	value	as	specified	in	the	request.

Batch	Requests

149

The	order	of	batch	parts	in	the	response	will	be	the	same	as	in	the	original	client	request.	Client	can	additionally	use	the		Content-Id	
MIME	header	in	a	batch	part	to	define	an	individual	id	for	each	batch	part.	The	server	will	return	this	id	is	the	batch	part	responses,	too.

Return	Codes

200:	is	returned	if	the	batch	was	received	successfully.	HTTP	200	is	returned	even	if	one	or	multiple	batch	part	actions	failed.

400:	is	returned	if	the	batch	envelope	is	malformed	or	incorrectly	formatted.	This	code	will	also	be	returned	if	the	content-type	of
the	overall	batch	request	or	the	individual	MIME	parts	is	not	as	expected.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Examples

Sending	a	batch	request	with	five	batch	parts:

GET	/_api/version
DELETE	/_api/collection/products
POST	/_api/collection/products
GET	/_api/collection/products/figures
DELETE	/_api/collection/products

The	boundary	(SomeBoundaryValue)	is	passed	to	the	server	in	the	HTTP		Content-Type		HTTP	header.	Please	note	the	reply	is	not
displayed	all	accurate.

shell>	curl	-X	POST	--header	'Content-Type:	multipart/form-data;	

boundary=SomeBoundaryValue'	--data-binary	@-	--dump	-	http://localhost:8529/_api/batch	

<<EOF

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

Content-Id:	myId1

GET	/_api/version	HTTP/1.1

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

Content-Id:	myId2

DELETE	/_api/collection/products	HTTP/1.1

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

Content-Id:	someId

POST	/_api/collection/products	HTTP/1.1

{"name":	"products"	}

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

Content-Id:	nextId

GET	/_api/collection/products/figures	HTTP/1.1

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

Content-Id:	otherId

DELETE	/_api/collection/products	HTTP/1.1

--SomeBoundaryValue--

EOF

HTTP/1.1	200	OK

Batch	Requests

150

x-content-type-options:	nosniff

content-type:	multipart/form-data;	boundary=SomeBoundaryValue

x-arango-errors:	1

"--SomeBoundaryValue\r\nContent-Type:	application/x-arango-batchpart\r\nContent-Id:	

myId1\r\n\r\nHTTP/1.1	200	OK\r\nServer:	\r\nConnection:	\r\nContent-Type:	

application/json;	charset=utf-8\r\nContent-Length:	

60\r\n\r\n{\"server\":\"arango\",\"version\":\"3.3.10\",\"license\":\"community\"}\r\n--

SomeBoundaryValue\r\nContent-Type:	application/x-arango-batchpart\r\nContent-Id:	

myId2\r\n\r\nHTTP/1.1	404	Not	Found\r\nServer:	\r\nConnection:	\r\nContent-Type:	

application/json;	charset=utf-8\r\nContent-Length:	

79\r\n\r\n{\"error\":true,\"errorMessage\":\"collection	not	

found\",\"code\":404,\"errorNum\":1203}\r\n--SomeBoundaryValue\r\nContent-Type:	

application/x-arango-batchpart\r\nContent-Id:	someId\r\n\r\nHTTP/1.1	200	OK\r\nServer:	

\r\nConnection:	\r\nContent-Type:	application/json;	charset=utf-8\r\nContent-Length:	

324\r\n\r\n{\"code\":200,\"error\":false,\"status\":3,\"statusString\":\"loaded\",\"name\"

:\"products\",\"keyOptions\":

{\"type\":\"traditional\",\"allowUserKeys\":true,\"lastValue\":0},\"type\":2,\"indexBucket

s\":8,\"globallyUniqueId\":\"hA8C60838B9D7/9841\",\"doCompact\":true,\"waitForSync\":false

,\"id\":\"9841\",\"isSystem\":false,\"journalSize\":33554432,\"isVolatile\":false}\r\n--

SomeBoundaryValue\r\nContent-Type:	application/x-arango-batchpart\r\nContent-Id:	

nextId\r\n\r\nHTTP/1.1	200	OK\r\nServer:	\r\nLocation:	

/_api/collection/products/figures\r\nConnection:	\r\nContent-Type:	application/json;	

charset=utf-8\r\nContent-Length:	

831\r\n\r\n{\"code\":200,\"error\":false,\"statusString\":\"loaded\",\"name\":\"products\"

,\"keyOptions\":

{\"type\":\"traditional\",\"allowUserKeys\":true,\"lastValue\":0},\"journalSize\":33554432

,\"isVolatile\":false,\"isSystem\":false,\"status\":3,\"count\":0,\"figures\":

{\"indexes\":{\"count\":1,\"size\":32128},\"documentReferences\":0,\"waitingFor\":\"-

\",\"alive\":{\"count\":0,\"size\":0},\"dead\":

{\"count\":0,\"size\":0,\"deletion\":0},\"compactionStatus\":{\"message\":\"compaction	not	

yet	started\",\"time\":\"2018-06-

04T07:51:09Z\",\"count\":0,\"filesCombined\":0,\"bytesRead\":0,\"bytesWritten\":0},\"dataf

iles\":{\"count\":0,\"fileSize\":0},\"journals\":

{\"count\":0,\"fileSize\":0},\"compactors\":{\"count\":0,\"fileSize\":0},\"revisions\":

{\"count\":0,\"size\":48192},\"lastTick\":0,\"uncollectedLogfileEntries\":0},\"doCompact\"

:true,\"globallyUniqueId\":\"hA8C60838B9D7/9841\",\"type\":2,\"indexBuckets\":8,\"waitForS

ync\":false,\"id\":\"9841\"}\r\n--SomeBoundaryValue\r\nContent-Type:	application/x-arango-

batchpart\r\nContent-Id:	otherId\r\n\r\nHTTP/1.1	200	OK\r\nServer:	\r\nConnection:	

\r\nContent-Type:	application/json;	charset=utf-8\r\nContent-Length:	

38\r\n\r\n{\"code\":200,\"error\":false,\"id\":\"9841\"}\r\n--SomeBoundaryValue--"

Sending	a	batch	request,	setting	the	boundary	implicitly	(the	server	will	in	this	case	try	to	find	the	boundary	at	the	beginning	of	the
request	body).

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/batch	<<EOF

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

DELETE	/_api/collection/notexisting1	HTTP/1.1

--SomeBoundaryValue

Content-Type:	application/x-arango-batchpart

DELETE	_api/collection/notexisting2	HTTP/1.1

--SomeBoundaryValue--

Batch	Requests

151

EOF

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	

x-arango-errors:	2

"--SomeBoundaryValue\r\nContent-Type:	application/x-arango-batchpart\r\n\r\nHTTP/1.1	404	

Not	Found\r\nServer:	\r\nConnection:	\r\nContent-Type:	application/json;	charset=utf-

8\r\nContent-Length:	79\r\n\r\n{\"error\":true,\"errorMessage\":\"collection	not	

found\",\"code\":404,\"errorNum\":1203}\r\n--SomeBoundaryValue\r\nContent-Type:	

application/x-arango-batchpart\r\n\r\nHTTP/1.1	404	Not	Found\r\nServer:	\r\nConnection:	

\r\nContent-Type:	application/json;	charset=utf-8\r\nContent-Length:	

101\r\n\r\n{\"error\":true,\"code\":404,\"errorNum\":404,\"errorMessage\":\"unknown	path	

'_api/collection/notexisting2'\"}\r\n--SomeBoundaryValue--"

Batch	Requests

152

HTTP	Interface	for	Exporting	Documents

Create	export	cursor

export	all	documents	from	a	collection,	using	a	cursor

	POST	/_api/export	

A	JSON	object	with	these	properties	is	required:

count:	boolean	flag	that	indicates	whether	the	number	of	documents	in	the	result	set	should	be	returned	in	the	"count"	attribute	of
the	result	(optional).	Calculating	the	"count"	attribute	might	in	the	future	have	a	performance	impact	so	this	option	is	turned	off	by
default,	and	"count"	is	only	returned	when	requested.
restrict:

fields	(string):	Contains	an	array	of	attribute	names	to	include	or	exclude.	Matching	of	attribute	names	for	inclusion	or
exclusion	will	be	done	on	the	top	level	only.	Specifying	names	of	nested	attributes	is	not	supported	at	the	moment.
type:	has	to	be	be	set	to	either	include	or	exclude	depending	on	which	you	want	to	use

batchSize:	maximum	number	of	result	documents	to	be	transferred	from	the	server	to	the	client	in	one	roundtrip	(optional).	If	this
attribute	is	not	set,	a	server-controlled	default	value	will	be	used.
flush:	if	set	to	true,	a	WAL	flush	operation	will	be	executed	prior	to	the	export.	The	flush	operation	will	start	copying	documents
from	the	WAL	to	the	collection's	datafiles.	There	will	be	an	additional	wait	time	of	up	to	flushWait	seconds	after	the	flush	to	allow
the	WAL	collector	to	change	the	adjusted	document	meta-data	to	point	into	the	datafiles,	too.	The	default	value	is	false	(i.e.	no	flush)
so	most	recently	inserted	or	updated	documents	from	the	collection	might	be	missing	in	the	export.
flushWait:	maximum	wait	time	in	seconds	after	a	flush	operation.	The	default	value	is	10.	This	option	only	has	an	effect	when	flush
is	set	to	true.
limit:	an	optional	limit	value,	determining	the	maximum	number	of	documents	to	be	included	in	the	cursor.	Omitting	the	limit
attribute	or	setting	it	to	0	will	lead	to	no	limit	being	used.	If	a	limit	is	used,	it	is	undefined	which	documents	from	the	collection	will
be	included	in	the	export	and	which	will	be	excluded.	This	is	because	there	is	no	natural	order	of	documents	in	a	collection.
ttl:	an	optional	time-to-live	for	the	cursor	(in	seconds).	The	cursor	will	be	removed	on	the	server	automatically	after	the	specified
amount	of	time.	This	is	useful	to	ensure	garbage	collection	of	cursors	that	are	not	fully	fetched	by	clients.	If	not	set,	a	server-defined
value	will	be	used.

A	call	to	this	method	creates	a	cursor	containing	all	documents	in	the	specified	collection.	In	contrast	to	other	data-producing	APIs,	the
internal	data	structures	produced	by	the	export	API	are	more	lightweight,	so	it	is	the	preferred	way	to	retrieve	all	documents	from	a
collection.

Documents	are	returned	in	a	similar	manner	as	in	the		/_api/cursor		REST	API.	If	all	documents	of	the	collection	fit	into	the	first	batch,
then	no	cursor	will	be	created,	and	the	result	object's	hasMore	attribute	will	be	set	to	false.	If	not	all	documents	fit	into	the	first	batch,
then	the	result	object's	hasMore	attribute	will	be	set	to	true,	and	the	id	attribute	of	the	result	will	contain	a	cursor	id.

The	order	in	which	the	documents	are	returned	is	not	specified.

By	default,	only	those	documents	from	the	collection	will	be	returned	that	are	stored	in	the	collection's	datafiles.	Documents	that	are
present	in	the	write-ahead	log	(WAL)	at	the	time	the	export	is	run	will	not	be	exported.

To	export	these	documents	as	well,	the	caller	can	issue	a	WAL	flush	request	before	calling	the	export	API	or	set	the	flush	attribute.
Setting	the	flush	option	will	trigger	a	WAL	flush	before	the	export	so	documents	get	copied	from	the	WAL	to	the	collection	datafiles.

If	the	result	set	can	be	created	by	the	server,	the	server	will	respond	with	HTTP	201.	The	body	of	the	response	will	contain	a	JSON
object	with	the	result	set.

The	returned	JSON	object	has	the	following	properties:

error:	boolean	flag	to	indicate	that	an	error	occurred	(false	in	this	case)

code:	the	HTTP	status	code

result:	an	array	of	result	documents	(might	be	empty	if	the	collection	was	empty)

hasMore:	a	boolean	indicator	whether	there	are	more	results	available	for	the	cursor	on	the	server

count:	the	total	number	of	result	documents	available	(only	available	if	the	query	was	executed	with	the	count	attribute	set)

Exporting	data

153

id:	id	of	temporary	cursor	created	on	the	server	(optional,	see	above)

If	the	JSON	representation	is	malformed	or	the	query	specification	is	missing	from	the	request,	the	server	will	respond	with	HTTP	400.

The	body	of	the	response	will	contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

code:	the	HTTP	status	code

errorNum:	the	server	error	number

errorMessage:	a	descriptive	error	message

Clients	should	always	delete	an	export	cursor	result	as	early	as	possible	because	a	lingering	export	cursor	will	prevent	the	underlying
collection	from	being	compacted	or	unloaded.	By	default,	unused	cursors	will	be	deleted	automatically	after	a	server-defined	idle	time,	and
clients	can	adjust	this	idle	time	by	setting	the	ttl	value.

Note:	this	API	is	currently	not	supported	on	cluster	coordinators.

Query	Parameters

collection	(required):	The	name	of	the	collection	to	export.

Return	Codes

201:	is	returned	if	the	result	set	can	be	created	by	the	server.

400:	is	returned	if	the	JSON	representation	is	malformed	or	the	query	specification	is	missing	from	the	request.

404:	The	server	will	respond	with	HTTP	404	in	case	a	non-existing	collection	is	accessed	in	the	query.

405:	The	server	will	respond	with	HTTP	405	if	an	unsupported	HTTP	method	is	used.

501:	The	server	will	respond	with	HTTP	501	if	this	API	is	called	on	a	cluster	coordinator.

Exporting	data

154

HTTP	Interface	for	Indexes

Indexes

This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	indexes	in	general.	There	are	special	sections	for	various	index	types.

Index

Indexes	are	used	to	allow	fast	access	to	documents.	For	each	collection	there	is	always	the	primary	index	which	is	a	hash	index	for	the
document	key	(_key	attribute).	This	index	cannot	be	dropped	or	changed.	edge	collections	will	also	have	an	automatically	created	edges
index,	which	cannot	be	modified.	This	index	provides	quick	access	to	documents	via	the		_from		and		_to		attributes.

Most	user-land	indexes	can	be	created	by	defining	the	names	of	the	attributes	which	should	be	indexed.	Some	index	types	allow	indexing
just	one	attribute	(e.g.	fulltext	index)	whereas	other	index	types	allow	indexing	multiple	attributes.

Using	the	system	attribute		_id		in	user-defined	indexes	is	not	supported	by	any	index	type.

Index	Handle

An	index	handle	uniquely	identifies	an	index	in	the	database.	It	is	a	string	and	consists	of	a	collection	name	and	an	index	identifier
separated	by	/.	Geo	Index:	A	geo	index	is	used	to	find	places	on	the	surface	of	the	earth	fast.	Hash	Index:	A	hash	index	is	used	to	find
documents	based	on	examples.	A	hash	index	can	be	created	for	one	or	multiple	document	attributes.	A	hash	index	will	only	be	used	by
queries	if	all	indexed	attributes	are	present	in	the	example	or	search	query,	and	if	all	attributes	are	compared	using	the	equality	(==
operator).	That	means	the	hash	index	does	not	support	range	queries.

If	the	index	is	declared	unique,	then	access	to	the	indexed	attributes	should	be	fast.	The	performance	degrades	if	the	indexed	attribute(s)
contain(s)	only	very	few	distinct	values.

Edges	Index

An	edges	index	is	automatically	created	for	edge	collections.	It	contains	connections	between	vertex	documents	and	is	invoked	when	the
connecting	edges	of	a	vertex	are	queried.	There	is	no	way	to	explicitly	create	or	delete	edge	indexes.

Skiplist	Index

A	skiplist	is	a	sorted	index	that	can	be	used	to	find	individual	documents	or	ranges	of	documents.

Persistent	Index

A	persistent	index	is	a	sorted	index	that	can	be	used	for	finding	individual	documents	or	ranges	of	documents.	In	constrast	to	the	other
indexes,	the	contents	of	a	persistent	index	are	stored	on	disk	and	thus	do	not	need	to	be	rebuilt	in	memory	from	the	documents	when	the
collection	is	loaded.

Fulltext	Index:

A	fulltext	index	can	be	used	to	find	words,	or	prefixes	of	words	inside	documents.	A	fulltext	index	can	be	set	on	one	attribute	only,	and
will	index	all	words	contained	in	documents	that	have	a	textual	value	in	this	attribute.	Only	words	with	a	(specifiable)	minimum	length	are
indexed.	Word	tokenization	is	done	using	the	word	boundary	analysis	provided	by	libicu,	which	is	taking	into	account	the	selected
language	provided	at	server	start.	Words	are	indexed	in	their	lower-cased	form.	The	index	supports	complete	match	queries	(full	words)
and	prefix	queries.

The	basic	operations	(create,	read,	update,	delete)	for	documents	are	mapped	to	the	standard	HTTP	methods	(POST,	GET,	PUT,
DELETE).

Address	of	an	Index

Indexes

155

All	indexes	in	ArangoDB	have	an	unique	handle.	This	index	handle	identifies	an	index	and	is	managed	by	ArangoDB.	All	indexes	are	found
under	the	URI

http://server:port/_api/index/index-handle

For	example:	Assume	that	the	index	handle	is	demo/63563528	then	the	URL	of	that	index	is:

http://localhost:8529/_api/index/demo/63563528

Indexes

156

Working	with	Indexes	using	HTTP

Read	index

returns	an	index

	GET	/_api/index/{index-handle}	

Path	Parameters

index-handle	(required):	The	index-handle.

The	result	is	an	object	describing	the	index.	It	has	at	least	the	following	attributes:

id:	the	identifier	of	the	index

type:	the	index	type

All	other	attributes	are	type-dependent.	For	example,	some	indexes	provide	unique	or	sparse	flags,	whereas	others	don't.	Some	indexes
also	provide	a	selectivity	estimate	in	the	selectivityEstimate	attribute	of	the	result.

Return	Codes

200:	If	the	index	exists,	then	a	HTTP	200	is	returned.

404:	If	the	index	does	not	exist,	then	a	HTTP	404	is	returned.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/index/products/0

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Create	index

creates	an	index

	POST	/_api/index#general	

Query	Parameters

collection	(required):	The	collection	name.

Request	Body	(required)

NOTE	Swagger	examples	won't	work	due	to	the	anchor.

Creates	a	new	index	in	the	collection	collection.	Expects	an	object	containing	the	index	details.

The	type	of	the	index	to	be	created	must	specified	in	the	type	attribute	of	the	index	details.	Depending	on	the	index	type,	additional	other
attributes	may	need	to	specified	in	the	request	in	order	to	create	the	index.

Indexes	require	the	to	be	indexed	attribute(s)	in	the	fields	attribute	of	the	index	details.	Depending	on	the	index	type,	a	single	attribute	or
multiple	attributes	can	be	indexed.	In	the	latter	case,	an	array	of	strings	is	expected.

Indexing	the	system	attribute	_id	is	not	supported	for	user-defined	indexes.	Manually	creating	an	index	using	_id	as	an	index	attribute	will
fail	with	an	error.

Working	with	Indexes

157

Some	indexes	can	be	created	as	unique	or	non-unique	variants.	Uniqueness	can	be	controlled	for	most	indexes	by	specifying	the	unique
flag	in	the	index	details.	Setting	it	to	true	will	create	a	unique	index.	Setting	it	to	false	or	omitting	the	unique	attribute	will	create	a	non-
unique	index.

Note:	The	following	index	types	do	not	support	uniqueness,	and	using	the	unique	attribute	with	these	types	may	lead	to	an	error:

geo	indexes
fulltext	indexes

Note:	Unique	indexes	on	non-shard	keys	are	not	supported	in	a	cluster.

Hash,	skiplist	and	persistent	indexes	can	optionally	be	created	in	a	sparse	variant.	A	sparse	index	will	be	created	if	the	sparse	attribute	in
the	index	details	is	set	to	true.	Sparse	indexes	do	not	index	documents	for	which	any	of	the	index	attributes	is	either	not	set	or	is	null.

The	optional	attribute	deduplicate	is	supported	by	array	indexes	of	type	hash	or	skiplist.	It	controls	whether	inserting	duplicate	index
values	from	the	same	document	into	a	unique	array	index	will	lead	to	a	unique	constraint	error	or	not.	The	default	value	is	true,	so	only	a
single	instance	of	each	non-unique	index	value	will	be	inserted	into	the	index	per	document.	Trying	to	insert	a	value	into	the	index	that
already	exists	in	the	index	will	always	fail,	regardless	of	the	value	of	this	attribute.

Return	Codes

200:	If	the	index	already	exists,	then	an	HTTP	200	is	returned.

201:	If	the	index	does	not	already	exist	and	could	be	created,	then	an	HTTP	201	is	returned.

400:	If	an	invalid	index	description	is	posted	or	attributes	are	used	that	the	target	index	will	not	support,	then	an	HTTP	400	is
returned.

404:	If	collection	is	unknown,	then	an	HTTP	404	is	returned.

Delete	index

deletes	an	index

	DELETE	/_api/index/{index-handle}	

Path	Parameters

index-handle	(required):	The	index	handle.

Deletes	an	index	with	index-handle.

Return	Codes

200:	If	the	index	could	be	deleted,	then	an	HTTP	200	is	returned.

404:	If	the	index-handle	is	unknown,	then	an	HTTP	404	is	returned.

Examples

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/index/products/11236

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Read	all	indexes	of	a	collection

returns	all	indexes	of	a	collection

	GET	/_api/index	

Query	Parameters

Working	with	Indexes

158

collection	(required):	The	collection	name.

Returns	an	object	with	an	attribute	indexes	containing	an	array	of	all	index	descriptions	for	the	given	collection.	The	same	information	is
also	available	in	the	identifiers	as	an	object	with	the	index	handles	as	keys.

Return	Codes

200:	returns	a	JSON	object	containing	a	list	of	indexes	on	that	collection.

Examples

Return	information	about	all	indexes

shell>	curl	--dump	-	http://localhost:8529/_api/index?collection=products

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Working	with	Indexes

159

Working	with	Hash	Indexes
If	a	suitable	hash	index	exists,	then	/_api/simple/by-example	will	use	this	index	to	execute	a	query-by-example.

Create	hash	index

creates	a	hash	index

	POST	/_api/index#hash	

Query	Parameters

collection-name	(required):	The	collection	name.

A	JSON	object	with	these	properties	is	required:

fields	(string):	an	array	of	attribute	paths.
unique:	if	true,	then	create	a	unique	index.
type:	must	be	equal	to	"hash" .
sparse:	if	true,	then	create	a	sparse	index.
deduplicate:	if	false,	the	deduplication	of	array	values	is	turned	off.

NOTE	Swagger	examples	won't	work	due	to	the	anchor.

Creates	a	hash	index	for	the	collection	collection-name	if	it	does	not	already	exist.	The	call	expects	an	object	containing	the	index	details.

In	a	sparse	index	all	documents	will	be	excluded	from	the	index	that	do	not	contain	at	least	one	of	the	specified	index	attributes	(i.e.	fields)
or	that	have	a	value	of	null	in	any	of	the	specified	index	attributes.	Such	documents	will	not	be	indexed,	and	not	be	taken	into	account	for
uniqueness	checks	if	the	unique	flag	is	set.

In	a	non-sparse	index,	these	documents	will	be	indexed	(for	non-present	indexed	attributes,	a	value	of	null	will	be	used)	and	will	be	taken
into	account	for	uniqueness	checks	if	the	unique	flag	is	set.

Note:	unique	indexes	on	non-shard	keys	are	not	supported	in	a	cluster.

Return	Codes

200:	If	the	index	already	exists,	then	a	HTTP	200	is	returned.

201:	If	the	index	does	not	already	exist	and	could	be	created,	then	a	HTTP	201	is	returned.

400:	If	the	collection	already	contains	documents	and	you	try	to	create	a	unique	hash	index	in	such	a	way	that	there	are	documents
violating	the	uniqueness,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Creating	an	unique	constraint

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"hash",	

		"unique"	:	true,	

		"fields"	:	[

				"a",	

				"b"	

]	

}

EOF

HTTP/1.1	201	Created

Hash

160

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Creating	a	non-unique	hash	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"hash",	

		"unique"	:	false,	

		"fields"	:	[

				"a",	

				"b"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Creating	a	sparse	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"hash",	

		"unique"	:	false,	

		"sparse"	:	true,	

		"fields"	:	[

				"a"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Simple	query	by-example

returns	all	documents	of	a	collection	matching	a	given	example

	PUT	/_api/simple/by-example	

A	JSON	object	with	these	properties	is	required:

skip:	The	number	of	documents	to	skip	in	the	query	(optional).
batchSize:	maximum	number	of	result	documents	to	be	transferred	from	the	server	to	the	client	in	one	roundtrip.	If	this	attribute	is
not	set,	a	server-controlled	default	value	will	be	used.	A	batchSize	value	of	0	is	disallowed.

Hash

161

limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	(optional)
example:	The	example	document.
collection:	The	name	of	the	collection	to	query.

This	will	find	all	documents	matching	a	given	example.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Matching	an	attribute

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example	

<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"i"	:	1	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Matching	an	attribute	which	is	a	sub-document

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example	

<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a.j"	:	1	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Matching	an	attribute	within	a	sub-document

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/by-example	

<<EOF

Hash

162

{	

		"collection"	:	"products",	

		"example"	:	{	

				"a"	:	{	

						"j"	:	1	

				}	

		}	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Find	documents	matching	an	example

returns	one	document	of	a	collection	matching	a	given	example

	PUT	/_api/simple/first-example	

A	JSON	object	with	these	properties	is	required:

example:	The	example	document.
collection:	The	name	of	the	collection	to	query.

This	will	return	the	first	document	matching	a	given	example.

Returns	a	result	containing	the	document	or	HTTP	404	if	no	document	matched	the	example.

If	more	than	one	document	in	the	collection	matches	the	specified	example,	only	one	of	these	documents	will	be	returned,	and	it	is
undefined	which	of	the	matching	documents	is	returned.

Return	Codes

200:	is	returned	when	the	query	was	successfully	executed.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

If	a	matching	document	was	found

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"i"	:	1	

		}	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Hash

163

show	response	body
If	no	document	was	found

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/first-

example	<<EOF

{	

		"collection"	:	"products",	

		"example"	:	{	

				"l"	:	1	

		}	

}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Hash

164

Working	with	Skiplist	Indexes
If	a	suitable	skip-list	index	exists,	then	/_api/simple/range	and	other	operations	will	use	this	index	to	execute	queries.

Create	skip	list

creates	a	skip-list

	POST	/_api/index#skiplist	

Query	Parameters

collection-name	(required):	The	collection	name.

A	JSON	object	with	these	properties	is	required:

fields	(string):	an	array	of	attribute	paths.
unique:	if	true,	then	create	a	unique	index.
type:	must	be	equal	to	"skiplist" .
sparse:	if	true,	then	create	a	sparse	index.
deduplicate:	if	false,	the	deduplication	of	array	values	is	turned	off.

Creates	a	skip-list	index	for	the	collection	collection-name,	if	it	does	not	already	exist.	The	call	expects	an	object	containing	the	index
details.

In	a	sparse	index	all	documents	will	be	excluded	from	the	index	that	do	not	contain	at	least	one	of	the	specified	index	attributes	(i.e.	fields)
or	that	have	a	value	of	null	in	any	of	the	specified	index	attributes.	Such	documents	will	not	be	indexed,	and	not	be	taken	into	account	for
uniqueness	checks	if	the	unique	flag	is	set.

In	a	non-sparse	index,	these	documents	will	be	indexed	(for	non-present	indexed	attributes,	a	value	of	null	will	be	used)	and	will	be	taken
into	account	for	uniqueness	checks	if	the	unique	flag	is	set.

Note:	unique	indexes	on	non-shard	keys	are	not	supported	in	a	cluster.

Return	Codes

200:	If	the	index	already	exists,	then	a	HTTP	200	is	returned.

201:	If	the	index	does	not	already	exist	and	could	be	created,	then	a	HTTP	201	is	returned.

400:	If	the	collection	already	contains	documents	and	you	try	to	create	a	unique	skip-list	index	in	such	a	way	that	there	are
documents	violating	the	uniqueness,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Creating	a	skiplist	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"skiplist",	

		"unique"	:	false,	

		"fields"	:	[

				"a",	

				"b"	

]	

}

EOF

HTTP/1.1	201	Created

Skiplist

165

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Creating	a	sparse	skiplist	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"skiplist",	

		"unique"	:	false,	

		"sparse"	:	true,	

		"fields"	:	[

				"a"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Skiplist

166

Working	with	Persistent	Indexes
If	a	suitable	persistent	index	exists,	then	/_api/simple/range	and	other	operations	will	use	this	index	to	execute	queries.

Create	a	persistent	index

creates	a	persistent	index

	POST	/_api/index#persistent	

Query	Parameters

collection-name	(required):	The	collection	name.

A	JSON	object	with	these	properties	is	required:

fields	(string):	an	array	of	attribute	paths.
unique:	if	true,	then	create	a	unique	index.
type:	must	be	equal	to	"persistent" .
sparse:	if	true,	then	create	a	sparse	index.

Creates	a	persistent	index	for	the	collection	collection-name,	if	it	does	not	already	exist.	The	call	expects	an	object	containing	the	index
details.

In	a	sparse	index	all	documents	will	be	excluded	from	the	index	that	do	not	contain	at	least	one	of	the	specified	index	attributes	(i.e.	fields)
or	that	have	a	value	of	null	in	any	of	the	specified	index	attributes.	Such	documents	will	not	be	indexed,	and	not	be	taken	into	account	for
uniqueness	checks	if	the	unique	flag	is	set.

In	a	non-sparse	index,	these	documents	will	be	indexed	(for	non-present	indexed	attributes,	a	value	of	null	will	be	used)	and	will	be	taken
into	account	for	uniqueness	checks	if	the	unique	flag	is	set.

Note:	unique	indexes	on	non-shard	keys	are	not	supported	in	a	cluster.

Return	Codes

200:	If	the	index	already	exists,	then	a	HTTP	200	is	returned.

201:	If	the	index	does	not	already	exist	and	could	be	created,	then	a	HTTP	201	is	returned.

400:	If	the	collection	already	contains	documents	and	you	try	to	create	a	unique	persistent	index	in	such	a	way	that	there	are
documents	violating	the	uniqueness,	then	a	HTTP	400	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Creating	a	persistent	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"persistent",	

		"unique"	:	false,	

		"fields"	:	[

				"a",	

				"b"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

Persistent

167

x-content-type-options:	nosniff

show	response	body
Creating	a	sparse	persistent	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"persistent",	

		"unique"	:	false,	

		"sparse"	:	true,	

		"fields"	:	[

				"a"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Persistent

168

Working	with	Geo	Indexes

Create	geo-spatial	index

creates	a	geo	index

	POST	/_api/index#geo	

Query	Parameters

collection	(required):	The	collection	name.

A	JSON	object	with	these	properties	is	required:

fields	(string):	An	array	with	one	or	two	attribute	paths.	If	it	is	an	array	with	one	attribute	path	location,	then	a	geo-spatial	index	on
all	documents	is	created	using	location	as	path	to	the	coordinates.	The	value	of	the	attribute	must	be	an	array	with	at	least	two
double	values.	The	array	must	contain	the	latitude	(first	value)	and	the	longitude	(second	value).	All	documents,	which	do	not	have
the	attribute	path	or	with	value	that	are	not	suitable,	are	ignored.	If	it	is	an	array	with	two	attribute	paths	latitude	and	longitude,	then
a	geo-spatial	index	on	all	documents	is	created	using	latitude	and	longitude	as	paths	the	latitude	and	the	longitude.	The	value	of	the
attribute	latitude	and	of	the	attribute	longitude	must	a	double.	All	documents,	which	do	not	have	the	attribute	paths	or	which	values
are	not	suitable,	are	ignored.
type:	must	be	equal	to	"geo" .
geoJson:	If	a	geo-spatial	index	on	a	location	is	constructed	and	geoJson	is	true,	then	the	order	within	the	array	is	longitude	followed
by	latitude.	This	corresponds	to	the	format	described	in	http://geojson.org/geojson-spec.html#positions

NOTE	Swagger	examples	won't	work	due	to	the	anchor.

Creates	a	geo-spatial	index	in	the	collection	collection-name,	if	it	does	not	already	exist.	Expects	an	object	containing	the	index	details.

Geo	indexes	are	always	sparse,	meaning	that	documents	that	do	not	contain	the	index	attributes	or	have	non-numeric	values	in	the	index
attributes	will	not	be	indexed.

Return	Codes

200:	If	the	index	already	exists,	then	a	HTTP	200	is	returned.

201:	If	the	index	does	not	already	exist	and	could	be	created,	then	a	HTTP	201	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Creating	a	geo	index	with	a	location	attribute

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"geo",	

		"fields"	:	[

				"b"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Creating	a	geo	index	with	latitude	and	longitude	attributes

Geo

169

http://geojson.org/geojson-spec.html#positions

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"geo",	

		"fields"	:	[

				"e",	

				"f"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Returns	documents	near	a	coordinate

returns	all	documents	of	a	collection	near	a	given	location

	PUT	/_api/simple/near	

A	JSON	object	with	these	properties	is	required:

distance:	If	given,	the	attribute	key	used	to	return	the	distance	to	the	given	coordinate.	(optional).	If	specified,	distances	are
returned	in	meters.
skip:	The	number	of	documents	to	skip	in	the	query.	(optional)
longitude:	The	longitude	of	the	coordinate.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	The	default	is	100.	(optional)
collection:	The	name	of	the	collection	to	query.
latitude:	The	latitude	of	the	coordinate.
geo:	If	given,	the	identifier	of	the	geo-index	to	use.	(optional)

The	default	will	find	at	most	100	documents	near	the	given	coordinate.	The	returned	array	is	sorted	according	to	the	distance,	with	the
nearest	document	being	first	in	the	return	array.	If	there	are	near	documents	of	equal	distance,	documents	are	chosen	randomly	from	this
set	until	the	limit	is	reached.

In	order	to	use	the	near	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	than	one	geo-spatial	index,	you	can	use	the	geo	field	to	select	a	particular	index.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	near	simple	query	is	deprecated	as	of	ArangoDB	2.6.	This	API	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	issue	an	AQL	query	using	the	NEAR	function	as
follows:

FOR	doc	IN	NEAR(@@collection,	@latitude,	@longitude,	@limit)

		RETURN	doc`

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Geo

170

Without	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	2	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
With	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	3,	

		"distance"	:	"distance"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Find	documents	within	a	radius	around	a	coordinate

returns	all	documents	of	a	collection	within	a	given	radius

	PUT	/_api/simple/within	

A	JSON	object	with	these	properties	is	required:

distance:	If	given,	the	attribute	key	used	to	return	the	distance	to	the	given	coordinate.	(optional).	If	specified,	distances	are
returned	in	meters.
skip:	The	number	of	documents	to	skip	in	the	query.	(optional)
longitude:	The	longitude	of	the	coordinate.
radius:	The	maximal	radius	(in	meters).
collection:	The	name	of	the	collection	to	query.
latitude:	The	latitude	of	the	coordinate.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	The	default	is	100.	(optional)
geo:	If	given,	the	identifier	of	the	geo-index	to	use.	(optional)

This	will	find	all	documents	within	a	given	radius	around	the	coordinate	(latitude,	longitude).	The	returned	list	is	sorted	by	distance.

Geo

171

In	order	to	use	the	within	operator,	a	geo	index	must	be	defined	for	the	collection.	This	index	also	defines	which	attribute	holds	the
coordinates	for	the	document.	If	you	have	more	than	one	geo-spatial	index,	you	can	use	the	geo	field	to	select	a	particular	index.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	within	simple	query	is	deprecated	as	of	ArangoDB	2.6.	This	API	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	issue	an	AQL	query	using	the	WITHIN	function	as
follows:

FOR	doc	IN	WITHIN(@@collection,	@latitude,	@longitude,	@radius,	@distanceAttributeName)

		RETURN	doc

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

Without	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	2,	

		"radius"	:	500	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
With	distance

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/near	<<EOF

{	

		"collection"	:	"products",	

		"latitude"	:	0,	

		"longitude"	:	0,	

		"skip"	:	1,	

		"limit"	:	3,	

		"distance"	:	"distance",	

		"radius"	:	300	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Geo

172

show	response	body

Geo

173

Fulltext
If	a	fulltext	index	exists,	then	/_api/simple/fulltext	will	use	this	index	to	execute	the	specified	fulltext	query.

Create	fulltext	index

creates	a	fulltext	index

	POST	/_api/index#fulltext	

Query	Parameters

collection-name	(required):	The	collection	name.

A	JSON	object	with	these	properties	is	required:

fields	(string):	an	array	of	attribute	names.	Currently,	the	array	is	limited	to	exactly	one	attribute.
type:	must	be	equal	to	"fulltext" .
minLength:	Minimum	character	length	of	words	to	index.	Will	default	to	a	server-defined	value	if	unspecified.	It	is	thus
recommended	to	set	this	value	explicitly	when	creating	the	index.

NOTE	Swagger	examples	won't	work	due	to	the	anchor.

Creates	a	fulltext	index	for	the	collection	collection-name,	if	it	does	not	already	exist.	The	call	expects	an	object	containing	the	index
details.

Return	Codes

200:	If	the	index	already	exists,	then	a	HTTP	200	is	returned.

201:	If	the	index	does	not	already	exist	and	could	be	created,	then	a	HTTP	201	is	returned.

404:	If	the	collection-name	is	unknown,	then	a	HTTP	404	is	returned.

Examples

Creating	a	fulltext	index

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/index?

collection=products	<<EOF

{	

		"type"	:	"fulltext",	

		"fields"	:	[

				"text"	

]	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Fulltext	index	query

returns	documents	of	a	collection	as	a	result	of	a	fulltext	query

	PUT	/_api/simple/fulltext	

A	JSON	object	with	these	properties	is	required:

Fulltext

174

index:	The	identifier	of	the	fulltext-index	to	use.
attribute:	The	attribute	that	contains	the	texts.
collection:	The	name	of	the	collection	to	query.
limit:	The	maximal	amount	of	documents	to	return.	The	skip	is	applied	before	the	limit	restriction.	(optional)
skip:	The	number	of	documents	to	skip	in	the	query	(optional).
query:	The	fulltext	query.	Please	refer	to	Fulltext	queries	for	details.

This	will	find	all	documents	from	the	collection	that	match	the	fulltext	query	specified	in	query.

In	order	to	use	the	fulltext	operator,	a	fulltext	index	must	be	defined	for	the	collection	and	the	specified	attribute.

Returns	a	cursor	containing	the	result,	see	Http	Cursor	for	details.

Note:	the	fulltext	simple	query	is	deprecated	as	of	ArangoDB	2.6.	This	API	may	be	removed	in	future	versions	of	ArangoDB.	The
preferred	way	for	retrieving	documents	from	a	collection	using	the	near	operator	is	to	issue	an	AQL	query	using	the	FULLTEXT	AQL
function	as	follows:

FOR	doc	IN	FULLTEXT(@@collection,	@attributeName,	@queryString,	@limit)	

		RETURN	doc

Return	Codes

201:	is	returned	if	the	query	was	executed	successfully.

400:	is	returned	if	the	body	does	not	contain	a	valid	JSON	representation	of	a	query.	The	response	body	contains	an	error	document
in	this	case.

404:	is	returned	if	the	collection	specified	by	collection	is	unknown.	The	response	body	contains	an	error	document	in	this	case.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/simple/fulltext	

<<EOF

{	

		"collection"	:	"products",	

		"attribute"	:	"text",	

		"query"	:	"word"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Fulltext

175

HTTP	Interface	for	Transactions

Transactions

ArangoDB's	transactions	are	executed	on	the	server.	Transactions	can	be	initiated	by	clients	by	sending	the	transaction	description	for
execution	to	the	server.

Transactions	in	ArangoDB	do	not	offer	separate	BEGIN,	COMMIT	and	ROLLBACK	operations	as	they	are	available	in	many	other
database	products.	Instead,	ArangoDB	transactions	are	described	by	a	JavaScript	function,	and	the	code	inside	the	JavaScript	function
will	then	be	executed	transactionally.	At	the	end	of	the	function,	the	transaction	is	automatically	committed,	and	all	changes	done	by	the
transaction	will	be	persisted.	If	an	exception	is	thrown	during	transaction	execution,	all	operations	performed	in	the	transaction	are	rolled
back.

For	a	more	detailed	description	of	how	transactions	work	in	ArangoDB	please	refer	to	Transactions.

Execute	transaction

execute	a	server-side	transaction

	POST	/_api/transaction	

A	JSON	object	with	these	properties	is	required:

maxTransactionSize:	Transaction	size	limit	in	bytes.	Honored	by	the	RocksDB	storage	engine	only.
lockTimeout:	an	optional	numeric	value	that	can	be	used	to	set	a	timeout	for	waiting	on	collection	locks.	If	not	specified,	a	default
value	will	be	used.	Setting	lockTimeout	to	0	will	make	ArangoDB	not	time	out	waiting	for	a	lock.
waitForSync:	an	optional	boolean	flag	that,	if	set,	will	force	the	transaction	to	write	all	data	to	disk	before	returning.
intermediateCommitCount:	Maximum	number	of	operations	after	which	an	intermediate	commit	is	performed	automatically.
Honored	by	the	RocksDB	storage	engine	only.
params:	optional	arguments	passed	to	action.
intermediateCommitSize:	Maximum	total	size	of	operations	after	which	an	intermediate	commit	is	performed	automatically.
Honored	by	the	RocksDB	storage	engine	only.
action:	the	actual	transaction	operations	to	be	executed,	in	the	form	of	stringified	JavaScript	code.	The	code	will	be	executed	on
server	side,	with	late	binding.	It	is	thus	critical	that	the	code	specified	in	action	properly	sets	up	all	the	variables	it	needs.	If	the	code
specified	in	action	ends	with	a	return	statement,	the	value	returned	will	also	be	returned	by	the	REST	API	in	the	result	attribute	if
the	transaction	committed	successfully.
collections:	collections	must	be	a	JSON	object	that	can	have	either	or	both	sub-attributes	read	and	write,	each	being	an	array	of
collection	names	or	a	single	collection	name	as	string.	Collections	that	will	be	written	to	in	the	transaction	must	be	declared	with	the
write	attribute	or	it	will	fail,	whereas	non-declared	collections	from	which	is	solely	read	will	be	added	lazily.	The	optional	sub-
attribute	allowImplicit	can	be	set	to	false	to	let	transactions	fail	in	case	of	undeclared	collections	for	reading.	Collections	for	reading
should	be	fully	declared	if	possible,	to	avoid	deadlocks.

The	transaction	description	must	be	passed	in	the	body	of	the	POST	request.

If	the	transaction	is	fully	executed	and	committed	on	the	server,	HTTP	200	will	be	returned.	Additionally,	the	return	value	of	the	code
defined	in	action	will	be	returned	in	the	result	attribute.

For	successfully	committed	transactions,	the	returned	JSON	object	has	the	following	properties:

error:	boolean	flag	to	indicate	if	an	error	occurred	(false	in	this	case)

code:	the	HTTP	status	code

result:	the	return	value	of	the	transaction

If	the	transaction	specification	is	either	missing	or	malformed,	the	server	will	respond	with	HTTP	400.

The	body	of	the	response	will	then	contain	a	JSON	object	with	additional	error	details.	The	object	has	the	following	attributes:

error:	boolean	flag	to	indicate	that	an	error	occurred	(true	in	this	case)

code:	the	HTTP	status	code

Transactions

176

errorNum:	the	server	error	number

errorMessage:	a	descriptive	error	message

If	a	transaction	fails	to	commit,	either	by	an	exception	thrown	in	the	action	code,	or	by	an	internal	error,	the	server	will	respond	with	an
error.	Any	other	errors	will	be	returned	with	any	of	the	return	codes	HTTP	400,	HTTP	409,	or	HTTP	500.

Return	Codes

200:	If	the	transaction	is	fully	executed	and	committed	on	the	server,	HTTP	200	will	be	returned.

400:	If	the	transaction	specification	is	either	missing	or	malformed,	the	server	will	respond	with	HTTP	400.

404:	If	the	transaction	specification	contains	an	unknown	collection,	the	server	will	respond	with	HTTP	404.

500:	Exceptions	thrown	by	users	will	make	the	server	respond	with	a	return	code	of	HTTP	500

Examples

Executing	a	transaction	on	a	single	collection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"write"	:	"products"	

		},	

		"action"	:	"function	()	{	var	db	=	require('@arangodb').db;	db.products.save({});		

return	db.products.count();	}"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Executing	a	transaction	using	multiple	collections

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"write"	:	[

						"products",	

						"materials"	

]	

		},	

		"action"	:	"function	()	{var	db	=	

require('@arangodb').db;db.products.save({});db.materials.save({});return	'worked!';}"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Aborting	a	transaction	due	to	an	internal	error

Transactions

177

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"write"	:	"products"	

		},	

		"action"	:	"function	()	{var	db	=	require('@arangodb').db;db.products.save({	_key:	

'abc'});db.products.save({	_key:	'abc'});}"	

}

EOF

HTTP/1.1	409	Conflict

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Aborting	a	transaction	by	explicitly	throwing	an	exception

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"read"	:	"products"	

		},	

		"action"	:	"function	()	{	throw	'doh!';	}"	

}

EOF

HTTP/1.1	500	Internal	Server	Error

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Referring	to	a	non-existing	collection

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/transaction	<<EOF

{	

		"collections"	:	{	

				"read"	:	"products"	

		},	

		"action"	:	"function	()	{	return	true;	}"	

}

EOF

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Transactions

178

HTTP	Interface	for	Replication

Replication

This	is	an	introduction	to	ArangoDB's	HTTP	replication	interface.	The	replication	architecture	and	components	are	described	in	more
details	in	Replication.

The	HTTP	replication	interface	serves	four	main	purposes:

fetch	initial	data	from	a	server	(e.g.	for	a	backup,	or	for	the	initial	synchronization	of	data	before	starting	the	continuous	replication
applier)
querying	the	state	of	a	master
fetch	continuous	changes	from	a	master	(used	for	incremental	synchronization	of	changes)
administer	the	replication	applier	(starting,	stopping,	configuring,	querying	state)	on	a	slave

Please	note	that	all	replication	operations	work	on	a	per-database	level.	If	an	ArangoDB	server	contains	more	than	one	database,	the
replication	system	must	be	configured	individually	per	database,	and	replicating	the	data	of	multiple	databases	will	require	multiple
operations.

Replication

179

Replication	Dump	Commands
The	inventory	method	can	be	used	to	query	an	ArangoDB	database's	current	set	of	collections	plus	their	indexes.	Clients	can	use	this
method	to	get	an	overview	of	which	collections	are	present	in	the	database.	They	can	use	this	information	to	either	start	a	full	or	a	partial
synchronization	of	data,	e.g.	to	initiate	a	backup	or	the	incremental	data	synchronization.

Return	inventory	of	collections	and	indexes

Returns	an	overview	of	collections	and	their	indexes

	GET	/_api/replication/inventory	

Query	Parameters

includeSystem	(optional):	Include	system	collections	in	the	result.	The	default	value	is	true.

Returns	the	array	of	collections	and	indexes	available	on	the	server.	This	array	can	be	used	by	replication	clients	to	initiate	an	initial	sync
with	the	server.

The	response	will	contain	a	JSON	object	with	the	collection	and	state	and	tick	attributes.

collections	is	an	array	of	collections	with	the	following	sub-attributes:

parameters:	the	collection	properties

indexes:	an	array	of	the	indexes	of	a	the	collection.	Primary	indexes	and	edge	indexes	are	not	included	in	this	array.

The	state	attribute	contains	the	current	state	of	the	replication	logger.	It	contains	the	following	sub-attributes:

running:	whether	or	not	the	replication	logger	is	currently	active.	Note:	since	ArangoDB	2.2,	the	value	will	always	be	true

lastLogTick:	the	value	of	the	last	tick	the	replication	logger	has	written

time:	the	current	time	on	the	server

Replication	clients	should	note	the	lastLogTick	value	returned.	They	can	then	fetch	collections'	data	using	the	dump	method	up	to	the
value	of	lastLogTick,	and	query	the	continuous	replication	log	for	log	events	after	this	tick	value.

To	create	a	full	copy	of	the	collections	on	the	server,	a	replication	client	can	execute	these	steps:

call	the	/inventory	API	method.	This	returns	the	lastLogTick	value	and	the	array	of	collections	and	indexes	from	the	server.

for	each	collection	returned	by	/inventory,	create	the	collection	locally	and	call	/dump	to	stream	the	collection	data	to	the	client,	up	to
the	value	of	lastLogTick.	After	that,	the	client	can	create	the	indexes	on	the	collections	as	they	were	reported	by	/inventory.

If	the	clients	wants	to	continuously	stream	replication	log	events	from	the	logger	server,	the	following	additional	steps	need	to	be	carried
out:

the	client	should	call	/logger-follow	initially	to	fetch	the	first	batch	of	replication	events	that	were	logged	after	the	client's	call	to
/inventory.

The	call	to	/logger-follow	should	use	a	from	parameter	with	the	value	of	the	lastLogTick	as	reported	by	/inventory.	The	call	to
/logger-follow	will	return	the	x-arango-replication-lastincluded	which	will	contain	the	last	tick	value	included	in	the	response.

the	client	can	then	continuously	call	/logger-follow	to	incrementally	fetch	new	replication	events	that	occurred	after	the	last	transfer.

Calls	should	use	a	from	parameter	with	the	value	of	the	x-arango-replication-lastincluded	header	of	the	previous	response.	If	there
are	no	more	replication	events,	the	response	will	be	empty	and	clients	can	go	to	sleep	for	a	while	and	try	again	later.

Note:	on	a	coordinator,	this	request	must	have	the	query	parameter	DBserver	which	must	be	an	ID	of	a	DBserver.	The	very	same	request
is	forwarded	synchronously	to	that	DBserver.	It	is	an	error	if	this	attribute	is	not	bound	in	the	coordinator	case.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Replication	Dump

180

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/replication/inventory

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
With	some	additional	indexes:

shell>	curl	--dump	-	http://localhost:8529/_api/replication/inventory

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
The	batch	method	will	create	a	snapshot	of	the	current	state	that	then	can	be	dumped.	A	batchId	is	required	when	using	the	dump	api
with	rocksdb.

Create	new	dump	batch

handle	a	dump	batch	command

	POST	/_api/replication/batch	

Note:	These	calls	are	uninteresting	to	users.

A	JSON	object	with	these	properties	is	required:

ttl:	the	time-to-live	for	the	new	batch	(in	seconds)	A	JSON	object	with	the	batch	configuration.

Creates	a	new	dump	batch	and	returns	the	batch's	id.

The	response	is	a	JSON	object	with	the	following	attributes:

id:	the	id	of	the	batch

Note:	on	a	coordinator,	this	request	must	have	the	query	parameter	DBserver	which	must	be	an	ID	of	a	DBserver.	The	very	same	request
is	forwarded	synchronously	to	that	DBserver.	It	is	an	error	if	this	attribute	is	not	bound	in	the	coordinator	case.

Return	Codes

200:	is	returned	if	the	batch	was	created	successfully.

400:	is	returned	if	the	ttl	value	is	invalid	or	if	DBserver	attribute	is	not	specified	or	illegal	on	a	coordinator.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Deletes	an	existing	dump	batch

handle	a	dump	batch	command

	DELETE	/_api/replication/batch/{id}	

Note:	These	calls	are	uninteresting	to	users.

Path	Parameters

id	(required):	The	id	of	the	batch.

Replication	Dump

181

Deletes	the	existing	dump	batch,	allowing	compaction	and	cleanup	to	resume.

Note:	on	a	coordinator,	this	request	must	have	the	query	parameter	DBserver	which	must	be	an	ID	of	a	DBserver.	The	very	same	request
is	forwarded	synchronously	to	that	DBserver.	It	is	an	error	if	this	attribute	is	not	bound	in	the	coordinator	case.

Return	Codes

204:	is	returned	if	the	batch	was	deleted	successfully.

400:	is	returned	if	the	batch	was	not	found.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Prolong	existing	dump	batch

handle	a	dump	batch	command

	PUT	/_api/replication/batch/{id}	

Note:	These	calls	are	uninteresting	to	users.

A	JSON	object	with	these	properties	is	required:

ttl:	the	time-to-live	for	the	new	batch	(in	seconds)

Extends	the	ttl	of	an	existing	dump	batch,	using	the	batch's	id	and	the	provided	ttl	value.

If	the	batch's	ttl	can	be	extended	successfully,	the	response	is	empty.

Note:	on	a	coordinator,	this	request	must	have	the	query	parameter	DBserver	which	must	be	an	ID	of	a	DBserver.	The	very	same	request
is	forwarded	synchronously	to	that	DBserver.	It	is	an	error	if	this	attribute	is	not	bound	in	the	coordinator	case.

Path	Parameters

id	(required):	The	id	of	the	batch.

Return	Codes

204:	is	returned	if	the	batch's	ttl	was	extended	successfully.

400:	is	returned	if	the	ttl	value	is	invalid	or	the	batch	was	not	found.

405:	is	returned	when	an	invalid	HTTP	method	is	used.	The	dump	method	can	be	used	to	fetch	data	from	a	specific	collection.	As
the	results	of	the	dump	command	can	be	huge,	dump	may	not	return	all	data	from	a	collection	at	once.	Instead,	the	dump	command
may	be	called	repeatedly	by	replication	clients	until	there	is	no	more	data	to	fetch.	The	dump	command	will	not	only	return	the
current	documents	in	the	collection,	but	also	document	updates	and	deletions.

Please	note	that	the	dump	method	will	only	return	documents,	updates	and	deletions	from	a	collection's	journals	and	datafiles.	Operations
that	are	stored	in	the	write-ahead	log	only	will	not	be	returned.	In	order	to	ensure	that	these	operations	are	included	in	a	dump,	the	write-
ahead	log	must	be	flushed	first.

To	get	to	an	identical	state	of	data,	replication	clients	should	apply	the	individual	parts	of	the	dump	results	in	the	same	order	as	they	are
provided.

Return	data	of	a	collection

returns	the	whole	content	of	one	collection

	GET	/_api/replication/dump	

Query	Parameters

collection	(required):	The	name	or	id	of	the	collection	to	dump.

chunkSize	(optional):	Approximate	maximum	size	of	the	returned	result.

batchId	(required):	rocksdb	only	-	The	id	of	the	snapshot	to	use

from	(optional):	mmfiles	only	-	Lower	bound	tick	value	for	results.

Replication	Dump

182

to	(optional):	mmfiles	only	-	Upper	bound	tick	value	for	results.

includeSystem	(optional):	mmfiles	only	-	Include	system	collections	in	the	result.	The	default	value	is	true.

ticks	(optional):	mmfiles	only	-	Whether	or	not	to	include	tick	values	in	the	dump.	The	default	value	is	true.

flush	(optional):	mmfiles	only	-	Whether	or	not	to	flush	the	WAL	before	dumping.	The	default	value	is	true.

Returns	the	data	from	the	collection	for	the	requested	range.

When	the	from	query	parameter	is	not	used,	collection	events	are	returned	from	the	beginning.	When	the	from	parameter	is	used,	the
result	will	only	contain	collection	entries	which	have	higher	tick	values	than	the	specified	from	value	(note:	the	log	entry	with	a	tick	value
equal	to	from	will	be	excluded).

The	to	query	parameter	can	be	used	to	optionally	restrict	the	upper	bound	of	the	result	to	a	certain	tick	value.	If	used,	the	result	will	only
contain	collection	entries	with	tick	values	up	to	(including)	to.

The	chunkSize	query	parameter	can	be	used	to	control	the	size	of	the	result.	It	must	be	specified	in	bytes.	The	chunkSize	value	will	only
be	honored	approximately.	Otherwise	a	too	low	chunkSize	value	could	cause	the	server	to	not	be	able	to	put	just	one	entry	into	the	result
and	return	it.	Therefore,	the	chunkSize	value	will	only	be	consulted	after	an	entry	has	been	written	into	the	result.	If	the	result	size	is	then
bigger	than	chunkSize,	the	server	will	respond	with	as	many	entries	as	there	are	in	the	response	already.	If	the	result	size	is	still	smaller
than	chunkSize,	the	server	will	try	to	return	more	data	if	there's	more	data	left	to	return.

If	chunkSize	is	not	specified,	some	server-side	default	value	will	be	used.

The	Content-Type	of	the	result	is	application/x-arango-dump.	This	is	an	easy-to-process	format,	with	all	entries	going	onto	separate	lines
in	the	response	body.

Each	line	itself	is	a	JSON	object,	with	at	least	the	following	attributes:

tick:	the	operation's	tick	attribute

key:	the	key	of	the	document/edge	or	the	key	used	in	the	deletion	operation

rev:	the	revision	id	of	the	document/edge	or	the	deletion	operation

data:	the	actual	document/edge	data	for	types	2300	and	2301.	The	full	document/edge	data	will	be	returned	even	for	updates.

type:	the	type	of	entry.	Possible	values	for	type	are:

2300:	document	insertion/update

2301:	edge	insertion/update

2302:	document/edge	deletion

Note:	there	will	be	no	distinction	between	inserts	and	updates	when	calling	this	method.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully	and	data	was	returned.	The	header		x-arango-replication-lastincluded		is
set	to	the	tick	of	the	last	document	returned.

204:	is	returned	if	the	request	was	executed	successfully,	but	there	was	no	content	available.	The	header		x-arango-replication-
lastincluded		is		0		in	this	case.

400:	is	returned	if	either	the	from	or	to	values	are	invalid.

404:	is	returned	when	the	collection	could	not	be	found.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

Empty	collection:

shell>	curl	--dump	-	http://localhost:8529/_api/replication/dump?collection=testCollection

Replication	Dump

183

HTTP/1.1	204	No	Content

x-content-type-options:	nosniff

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	false

x-arango-replication-lastincluded:	0

Non-empty	collection:

shell>	curl	--dump	-	http://localhost:8529/_api/replication/dump?collection=testCollection

HTTP/1.1	200	OK

x-content-type-options:	nosniff

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	false

x-arango-replication-lastincluded:	11274

"{\"tick\":\"11268\",\"type\":2300,\"data\":

{\"_id\":\"testCollection/123456\",\"_key\":\"123456\",\"_rev\":\"_W6lFUFa--

_\",\"b\":1,\"c\":false,\"d\":\"additional	

value\"}}\n{\"tick\":\"11272\",\"type\":2302,\"data\":

{\"_key\":\"foobar\",\"_rev\":\"_W6lFUFa--

D\"}}\n{\"tick\":\"11274\",\"type\":2302,\"data\":

{\"_key\":\"abcdef\",\"_rev\":\"_W6lFUFa--F\"}}\n"

Synchronize	data	from	a	remote	endpoint

start	a	replication

	PUT	/_api/replication/sync	

A	JSON	object	with	these	properties	is	required:

username:	an	optional	ArangoDB	username	to	use	when	connecting	to	the	endpoint.
includeSystem:	whether	or	not	system	collection	operations	will	be	applied
endpoint:	the	master	endpoint	to	connect	to	(e.g.	"tcp://192.168.173.13:8529").
initialSyncMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	initial	synchronization	will	wait	for	a	response	from	the
master	when	fetching	initial	collection	data.	This	wait	time	can	be	used	to	control	after	what	time	the	initial	synchronization	will	give
up	waiting	for	a	response	and	fail.	This	value	will	be	ignored	if	set	to	0.
database:	the	database	name	on	the	master	(if	not	specified,	defaults	to	the	name	of	the	local	current	database).
restrictType:	an	optional	string	value	for	collection	filtering.	When	specified,	the	allowed	values	are	include	or	exclude.
incremental:	if	set	to	true,	then	an	incremental	synchronization	method	will	be	used	for	synchronizing	data	in	collections.	This
method	is	useful	when	collections	already	exist	locally,	and	only	the	remaining	differences	need	to	be	transferred	from	the	remote
endpoint.	In	this	case,	the	incremental	synchronization	can	be	faster	than	a	full	synchronization.	The	default	value	is	false,	meaning
that	the	complete	data	from	the	remote	collection	will	be	transferred.
restrictCollections	(string):	an	optional	array	of	collections	for	use	with	restrictType.	If	restrictType	is	include,	only	the	specified
collections	will	be	sychronised.	If	restrictType	is	exclude,	all	but	the	specified	collections	will	be	synchronized.
password:	the	password	to	use	when	connecting	to	the	endpoint.

Starts	a	full	data	synchronization	from	a	remote	endpoint	into	the	local	ArangoDB	database.

The	sync	method	can	be	used	by	replication	clients	to	connect	an	ArangoDB	database	to	a	remote	endpoint,	fetch	the	remote	list	of
collections	and	indexes,	and	collection	data.	It	will	thus	create	a	local	backup	of	the	state	of	data	at	the	remote	ArangoDB	database.	sync
works	on	a	per-database	level.

sync	will	first	fetch	the	list	of	collections	and	indexes	from	the	remote	endpoint.	It	does	so	by	calling	the	inventory	API	of	the	remote
database.	It	will	then	purge	data	in	the	local	ArangoDB	database,	and	after	start	will	transfer	collection	data	from	the	remote	database	to
the	local	ArangoDB	database.	It	will	extract	data	from	the	remote	database	by	calling	the	remote	database's	dump	API	until	all	data	are

Replication	Dump

184

fetched.

In	case	of	success,	the	body	of	the	response	is	a	JSON	object	with	the	following	attributes:

collections:	an	array	of	collections	that	were	transferred	from	the	endpoint

lastLogTick:	the	last	log	tick	on	the	endpoint	at	the	time	the	transfer	was	started.	Use	this	value	as	the	from	value	when	starting	the
continuous	synchronization	later.

WARNING:	calling	this	method	will	sychronize	data	from	the	collections	found	on	the	remote	endpoint	to	the	local	ArangoDB	database.
All	data	in	the	local	collections	will	be	purged	and	replaced	with	data	from	the	endpoint.

Use	with	caution!

Note:	this	method	is	not	supported	on	a	coordinator	in	a	cluster.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

400:	is	returned	if	the	configuration	is	incomplete	or	malformed.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	during	sychronization.

501:	is	returned	when	this	operation	is	called	on	a	coordinator	in	a	cluster.

Return	cluster	inventory	of	collections	and	indexes

returs	an	overview	of	collections	and	indexes	in	a	cluster

	GET	/_api/replication/clusterInventory	

Query	Parameters

includeSystem	(optional):	Include	system	collections	in	the	result.	The	default	value	is	true.

Returns	the	array	of	collections	and	indexes	available	on	the	cluster.

The	response	will	be	an	array	of	JSON	objects,	one	for	each	collection.	Each	collection	containscontains	exactly	two	keys	"parameters"
and	"indexes".	This	information	comes	from	Plan/Collections/{DB-Name}/	in	the	agency,	just	that	the	indexes*	attribute	there	is	relocated
to	adjust	it	to	the	data	format	of	arangodump.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Replication	Dump

185

Replication	Logger	Commands
Previous	versions	of	ArangoDB	allowed	starting,	stopping	and	configuring	the	replication	logger.	These	commands	are	superfluous	in
ArangoDB	2.2	as	all	data-modification	operations	are	written	to	the	server's	write-ahead	log	and	are	not	handled	by	a	separate	logger
anymore.

The	only	useful	operations	remaining	since	ArangoDB	2.2	are	to	query	the	current	state	of	the	logger	and	to	fetch	the	latest	changes
written	by	the	logger.	The	operations	will	return	the	state	and	data	from	the	write-ahead	log.

Return	replication	logger	state

returns	the	state	of	the	replication	logger

	GET	/_api/replication/logger-state	

Returns	the	current	state	of	the	server's	replication	logger.	The	state	will	include	information	about	whether	the	logger	is	running	and
about	the	last	logged	tick	value.	This	tick	value	is	important	for	incremental	fetching	of	data.

The	body	of	the	response	contains	a	JSON	object	with	the	following	attributes:

state:	the	current	logger	state	as	a	JSON	object	with	the	following	sub-attributes:

running:	whether	or	not	the	logger	is	running

lastLogTick:	the	tick	value	of	the	latest	tick	the	logger	has	logged.	This	value	can	be	used	for	incremental	fetching	of	log	data.

totalEvents:	total	number	of	events	logged	since	the	server	was	started.	The	value	is	not	reset	between	multiple	stops	and	re-
starts	of	the	logger.

time:	the	current	date	and	time	on	the	logger	server

server:	a	JSON	object	with	the	following	sub-attributes:

version:	the	logger	server's	version

serverId:	the	logger	server's	id

clients:	returns	the	last	fetch	status	by	replication	clients	connected	to	the	logger.	Each	client	is	returned	as	a	JSON	object	with	the
following	attributes:

serverId:	server	id	of	client

lastServedTick:	last	tick	value	served	to	this	client	via	the	logger-follow	API

time:	date	and	time	when	this	client	last	called	the	logger-follow	API

Return	Codes

200:	is	returned	if	the	logger	state	could	be	determined	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	the	logger	state	could	not	be	determined.

Examples

Returns	the	state	of	the	replication	logger.

shell>	curl	--dump	-	http://localhost:8529/_api/replication/logger-state

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Replication	Logger

186

show	response	body
To	query	the	latest	changes	logged	by	the	replication	logger,	the	HTTP	interface	also	provides	the		logger-follow		method.

This	method	should	be	used	by	replication	clients	to	incrementally	fetch	updates	from	an	ArangoDB	database.

Returns	log	entries

Fetch	log	lines	from	the	server

	GET	/_api/replication/logger-follow	

Query	Parameters

from	(optional):	Lower	bound	tick	value	for	results.

to	(optional):	Upper	bound	tick	value	for	results.

chunkSize	(optional):	Approximate	maximum	size	of	the	returned	result.

includeSystem	(optional):	Include	system	collections	in	the	result.	The	default	value	is	true.

Returns	data	from	the	server's	replication	log.	This	method	can	be	called	by	replication	clients	after	an	initial	synchronization	of	data.	The
method	will	return	all	"recent"	log	entries	from	the	logger	server,	and	the	clients	can	replay	and	apply	these	entries	locally	so	they	get	to
the	same	data	state	as	the	logger	server.

Clients	can	call	this	method	repeatedly	to	incrementally	fetch	all	changes	from	the	logger	server.	In	this	case,	they	should	provide	the
from	value	so	they	will	only	get	returned	the	log	events	since	their	last	fetch.

When	the	from	query	parameter	is	not	used,	the	logger	server	will	return	log	entries	starting	at	the	beginning	of	its	replication	log.	When
the	from	parameter	is	used,	the	logger	server	will	only	return	log	entries	which	have	higher	tick	values	than	the	specified	from	value	(note:
the	log	entry	with	a	tick	value	equal	to	from	will	be	excluded).	Use	the	from	value	when	incrementally	fetching	log	data.

The	to	query	parameter	can	be	used	to	optionally	restrict	the	upper	bound	of	the	result	to	a	certain	tick	value.	If	used,	the	result	will
contain	only	log	events	with	tick	values	up	to	(including)	to.	In	incremental	fetching,	there	is	no	need	to	use	the	to	parameter.	It	only
makes	sense	in	special	situations,	when	only	parts	of	the	change	log	are	required.

The	chunkSize	query	parameter	can	be	used	to	control	the	size	of	the	result.	It	must	be	specified	in	bytes.	The	chunkSize	value	will	only
be	honored	approximately.	Otherwise	a	too	low	chunkSize	value	could	cause	the	server	to	not	be	able	to	put	just	one	log	entry	into	the
result	and	return	it.	Therefore,	the	chunkSize	value	will	only	be	consulted	after	a	log	entry	has	been	written	into	the	result.	If	the	result
size	is	then	bigger	than	chunkSize,	the	server	will	respond	with	as	many	log	entries	as	there	are	in	the	response	already.	If	the	result	size
is	still	smaller	than	chunkSize,	the	server	will	try	to	return	more	data	if	there's	more	data	left	to	return.

If	chunkSize	is	not	specified,	some	server-side	default	value	will	be	used.

The	Content-Type	of	the	result	is	application/x-arango-dump.	This	is	an	easy-to-process	format,	with	all	log	events	going	onto	separate
lines	in	the	response	body.	Each	log	event	itself	is	a	JSON	object,	with	at	least	the	following	attributes:

tick:	the	log	event	tick	value

type:	the	log	event	type

Individual	log	events	will	also	have	additional	attributes,	depending	on	the	event	type.	A	few	common	attributes	which	are	used	for
multiple	events	types	are:

cid:	id	of	the	collection	the	event	was	for

tid:	id	of	the	transaction	the	event	was	contained	in

key:	document	key

rev:	document	revision	id

data:	the	original	document	data

A	more	detailed	description	of	the	individual	replication	event	types	and	their	data	structures	can	be	found	in	the	manual.

The	response	will	also	contain	the	following	HTTP	headers:

Replication	Logger

187

x-arango-replication-active:	whether	or	not	the	logger	is	active.	Clients	can	use	this	flag	as	an	indication	for	their	polling	frequency.
If	the	logger	is	not	active	and	there	are	no	more	replication	events	available,	it	might	be	sensible	for	a	client	to	abort,	or	to	go	to	sleep
for	a	long	time	and	try	again	later	to	check	whether	the	logger	has	been	activated.

x-arango-replication-lastincluded:	the	tick	value	of	the	last	included	value	in	the	result.	In	incremental	log	fetching,	this	value	can	be
used	as	the	from	value	for	the	following	request.	Note	that	if	the	result	is	empty,	the	value	will	be	0.	This	value	should	not	be	used
as	from	value	by	clients	in	the	next	request	(otherwise	the	server	would	return	the	log	events	from	the	start	of	the	log	again).

x-arango-replication-lasttick:	the	last	tick	value	the	logger	server	has	logged	(not	necessarily	included	in	the	result).	By	comparing
the	the	last	tick	and	last	included	tick	values,	clients	have	an	approximate	indication	of	how	many	events	there	are	still	left	to	fetch.

x-arango-replication-checkmore:	whether	or	not	there	already	exists	more	log	data	which	the	client	could	fetch	immediately.	If	there
is	more	log	data	available,	the	client	could	call	logger-follow	again	with	an	adjusted	from	value	to	fetch	remaining	log	entries	until
there	are	no	more.

If	there	isn't	any	more	log	data	to	fetch,	the	client	might	decide	to	go	to	sleep	for	a	while	before	calling	the	logger	again.

Note:	this	method	is	not	supported	on	a	coordinator	in	a	cluster.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully,	and	there	are	log	events	available	for	the	requested	range.	The	response
body	will	not	be	empty	in	this	case.

204:	is	returned	if	the	request	was	executed	successfully,	but	there	are	no	log	events	available	for	the	requested	range.	The	response
body	will	be	empty	in	this	case.

400:	is	returned	if	either	the	from	or	to	values	are	invalid.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

501:	is	returned	when	this	operation	is	called	on	a	coordinator	in	a	cluster.

Examples

No	log	events	available

shell>	curl	--dump	-	http://localhost:8529/_api/replication/logger-follow?from=11321

HTTP/1.1	204	No	Content

x-arango-replication-frompresent:	true

x-arango-replication-lastscanned:	11321

x-content-type-options:	nosniff

x-arango-replication-lastincluded:	0

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	false

x-arango-replication-lasttick:	11321

x-arango-replication-active:	true

A	few	log	events

shell>	curl	--dump	-	http://localhost:8529/_api/replication/logger-follow?from=11321

HTTP/1.1	200	OK

x-arango-replication-frompresent:	true

x-arango-replication-lastscanned:	11334

x-content-type-options:	nosniff

x-arango-replication-lastincluded:	11334

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	false

Replication	Logger

188

x-arango-replication-lasttick:	11334

x-arango-replication-active:	true

"

{\"tick\":\"11323\",\"type\":2000,\"database\":\"1\",\"cid\":\"11322\",\"cname\":\"product

s\",\"data\":

{\"allowUserKeys\":true,\"cid\":\"11322\",\"count\":0,\"deleted\":false,\"doCompact\":true

,\"globallyUniqueId\":\"hA8C60838B9D7/11322\",\"id\":\"11322\",\"indexBuckets\":8,\"indexe

s\":[{\"fields\":

[\"_key\"],\"id\":\"0\",\"selectivityEstimate\":1,\"sparse\":false,\"type\":\"primary\",\"

unique\":true}],\"isSmart\":false,\"isSystem\":false,\"isVolatile\":false,\"journalSize\":

33554432,\"keyOptions\":

{\"allowUserKeys\":true,\"lastValue\":0,\"type\":\"traditional\"},\"name\":\"products\",\"

numberOfShards\":1,\"planId\":\"11322\",\"replicationFactor\":1,\"shardKeys\":

[\"_key\"],\"shards\":

{},\"status\":3,\"type\":2,\"version\":6,\"waitForSync\":false}}\n{\"tick\":\"11327\",\"ty

pe\":2300,\"tid\":\"0\",\"database\":\"1\",\"cid\":\"11322\",\"cname\":\"products\",\"data

\":{\"_id\":\"_unknown/p1\",\"_key\":\"p1\",\"_rev\":\"_W6lFXFO--_\",\"name\":\"flux	

compensator\"}}\n{\"tick\":\"11329\",\"type\":2300,\"tid\":\"0\",\"database\":\"1\",\"cid\

":\"11322\",\"cname\":\"products\",\"data\":

{\"_id\":\"_unknown/p2\",\"_key\":\"p2\",\"_rev\":\"_W6lFXFO--

B\",\"hp\":5100,\"name\":\"hybrid	

hovercraft\"}}\n{\"tick\":\"11331\",\"type\":2302,\"tid\":\"0\",\"database\":\"1\",\"cid\"

:\"11322\",\"cname\":\"products\",\"data\":{\"_key\":\"p1\",\"_rev\":\"_W6lFXFS--

_\"}}\n{\"tick\":\"11333\",\"type\":2300,\"tid\":\"0\",\"database\":\"1\",\"cid\":\"11322\

",\"cname\":\"products\",\"data\":

{\"_id\":\"_unknown/p2\",\"_key\":\"p2\",\"_rev\":\"_W6lFXFS--

B\",\"hp\":5100,\"name\":\"broken	

hovercraft\"}}\n{\"tick\":\"11334\",\"type\":2001,\"database\":\"1\",\"cid\":\"11322\",\"c

name\":\"products\",\"data\":

{\"cuid\":\"hA8C60838B9D7/11322\",\"id\":\"11322\",\"name\":\"products\"}}\n"

More	events	than	would	fit	into	the	response

shell>	curl	--dump	-	http://localhost:8529/_api/replication/logger-follow?

from=11308&chunkSize=400

HTTP/1.1	200	OK

x-arango-replication-frompresent:	true

x-arango-replication-lastscanned:	11310

x-content-type-options:	nosniff

x-arango-replication-lastincluded:	11310

content-type:	application/x-arango-dump;	charset=utf-8

x-arango-replication-checkmore:	true

x-arango-replication-lasttick:	11321

x-arango-replication-active:	true

"

{\"tick\":\"11310\",\"type\":2000,\"database\":\"1\",\"cid\":\"11309\",\"cname\":\"product

s\",\"data\":

{\"allowUserKeys\":true,\"cid\":\"11309\",\"count\":0,\"deleted\":false,\"doCompact\":true

,\"globallyUniqueId\":\"hA8C60838B9D7/11309\",\"id\":\"11309\",\"indexBuckets\":8,\"indexe

s\":[{\"fields\":

[\"_key\"],\"id\":\"0\",\"selectivityEstimate\":1,\"sparse\":false,\"type\":\"primary\",\"

unique\":true}],\"isSmart\":false,\"isSystem\":false,\"isVolatile\":false,\"journalSize\":

33554432,\"keyOptions\":

Replication	Logger

189

{\"allowUserKeys\":true,\"lastValue\":0,\"type\":\"traditional\"},\"name\":\"products\",\"

numberOfShards\":1,\"planId\":\"11309\",\"replicationFactor\":1,\"shardKeys\":

[\"_key\"],\"shards\":{},\"status\":3,\"type\":2,\"version\":6,\"waitForSync\":false}}\n"

To	check	what	range	of	changes	is	available	(identified	by	tick	values),	the	HTTP	interface	provides	the	methods		logger-first-tick		and
	logger-tick-ranges	.	Replication	clients	can	use	the	methods	to	determine	if	certain	data	(identified	by	a	tick	date)	is	still	available	on
the	master.

Returns	the	first	available	tick	value

Return	the	first	available	tick	value	from	the	server

	GET	/_api/replication/logger-first-tick	

Returns	the	first	available	tick	value	that	can	be	served	from	the	server's	replication	log.	This	method	can	be	called	by	replication	clients
after	to	determine	if	certain	data	(identified	by	a	tick	value)	is	still	available	for	replication.

The	result	is	a	JSON	object	containing	the	attribute	firstTick.	This	attribute	contains	the	minimum	tick	value	available	in	the	server's
replication	log.

Note:	this	method	is	not	supported	on	a	coordinator	in	a	cluster.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

501:	is	returned	when	this	operation	is	called	on	a	coordinator	in	a	cluster.

Examples

Returning	the	first	available	tick

shell>	curl	--dump	-	http://localhost:8529/_api/replication/logger-first-tick

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

"{\"firstTick\":\"5\"}"

Return	the	tick	ranges	available	in	the	WAL	logfiles

returns	the	tick	value	ranges	available	in	the	logfiles

	GET	/_api/replication/logger-tick-ranges	

Returns	the	currently	available	ranges	of	tick	values	for	all	currently	available	WAL	logfiles.	The	tick	values	can	be	used	to	determine	if
certain	data	(identified	by	tick	value)	are	still	available	for	replication.

The	body	of	the	response	contains	a	JSON	array.	Each	array	member	is	an	object	that	describes	a	single	logfile.	Each	object	has	the
following	attributes:

datafile:	name	of	the	logfile

status:	status	of	the	datafile,	in	textual	form	(e.g.	"sealed",	"open")

tickMin:	minimum	tick	value	contained	in	logfile

tickMax:	maximum	tick	value	contained	in	logfile

Return	Codes

Replication	Logger

190

200:	is	returned	if	the	tick	ranges	could	be	determined	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	the	logger	state	could	not	be	determined.

501:	is	returned	when	this	operation	is	called	on	a	coordinator	in	a	cluster.

Examples

Returns	the	available	tick	ranges.

shell>	curl	--dump	-	http://localhost:8529/_api/replication/logger-tick-ranges

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		{	

				"datafile"	:	"/tmp/arangosh_aFcSh5/tmp-9239-3002331047/data/journals/logfile-3.db",	

				"status"	:	"collected",	

				"tickMin"	:	"5",	

				"tickMax"	:	"10202"	

		},	

		{	

				"datafile"	:	"/tmp/arangosh_aFcSh5/tmp-9239-3002331047/data/journals/logfile-39.db",	

				"status"	:	"collected",	

				"tickMin"	:	"10208",	

				"tickMax"	:	"10272"	

		},	

		{	

				"datafile"	:	"/tmp/arangosh_aFcSh5/tmp-9239-3002331047/data/journals/logfile-86.db",	

				"status"	:	"collected",	

				"tickMin"	:	"10278",	

				"tickMax"	:	"11274"	

		},	

		{	

				"datafile"	:	"/tmp/arangosh_aFcSh5/tmp-9239-3002331047/data/journals/logfile-

10205.db",	

				"status"	:	"collected",	

				"tickMin"	:	"11281",	

				"tickMax"	:	"11283"	

		},	

		{	

				"datafile"	:	"/tmp/arangosh_aFcSh5/tmp-9239-3002331047/data/journals/logfile-

10275.db",	

				"status"	:	"open",	

				"tickMin"	:	"11288",	

				"tickMax"	:	"11334"	

		}	

]

Replication	Logger

191

Replication	Applier	Commands
The	applier	commands	allow	to	remotely	start,	stop,	and	query	the	state	and	configuration	of	an	ArangoDB	database's	replication
applier.

Return	configuration	of	replication	applier

fetch	the	current	replication	configuration

	GET	/_api/replication/applier-config	

Returns	the	configuration	of	the	replication	applier.

The	body	of	the	response	is	a	JSON	object	with	the	configuration.	The	following	attributes	may	be	present	in	the	configuration:

endpoint:	the	logger	server	to	connect	to	(e.g.	"tcp://192.168.173.13:8529").

database:	the	name	of	the	database	to	connect	to	(e.g.	"_system").

username:	an	optional	ArangoDB	username	to	use	when	connecting	to	the	endpoint.

password:	the	password	to	use	when	connecting	to	the	endpoint.

maxConnectRetries:	the	maximum	number	of	connection	attempts	the	applier	will	make	in	a	row.	If	the	applier	cannot	establish	a
connection	to	the	endpoint	in	this	number	of	attempts,	it	will	stop	itself.

connectTimeout:	the	timeout	(in	seconds)	when	attempting	to	connect	to	the	endpoint.	This	value	is	used	for	each	connection
attempt.

requestTimeout:	the	timeout	(in	seconds)	for	individual	requests	to	the	endpoint.

chunkSize:	the	requested	maximum	size	for	log	transfer	packets	that	is	used	when	the	endpoint	is	contacted.

autoStart:	whether	or	not	to	auto-start	the	replication	applier	on	(next	and	following)	server	starts

adaptivePolling:	whether	or	not	the	replication	applier	will	use	adaptive	polling.

includeSystem:	whether	or	not	system	collection	operations	will	be	applied

autoResync:	whether	or	not	the	slave	should	perform	a	full	automatic	resynchronization	with	the	master	in	case	the	master	cannot
serve	log	data	requested	by	the	slave,	or	when	the	replication	is	started	and	no	tick	value	can	be	found.

autoResyncRetries:	number	of	resynchronization	retries	that	will	be	performed	in	a	row	when	automatic	resynchronization	is	enabled
and	kicks	in.	Setting	this	to	0	will	effectively	disable	autoResync.	Setting	it	to	some	other	value	will	limit	the	number	of	retries	that
are	performed.	This	helps	preventing	endless	retries	in	case	resynchronizations	always	fail.

initialSyncMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	initial	synchronization	will	wait	for	a	response	from	the
master	when	fetching	initial	collection	data.	This	wait	time	can	be	used	to	control	after	what	time	the	initial	synchronization	will	give
up	waiting	for	a	response	and	fail.	This	value	is	relevant	even	for	continuous	replication	when	autoResync	is	set	to	true	because	this
may	re-start	the	initial	synchronization	when	the	master	cannot	provide	log	data	the	slave	requires.	This	value	will	be	ignored	if	set
to	0.

connectionRetryWaitTime:	the	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	it	retries	connecting	to	the	master	in
case	of	connection	problems.	This	value	will	be	ignored	if	set	to	0.

idleMinWaitTime:	the	minimum	wait	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	fetching	more	log	data	from	the
master	in	case	the	master	has	already	sent	all	its	log	data.	This	wait	time	can	be	used	to	control	the	frequency	with	which	the
replication	applier	sends	HTTP	log	fetch	requests	to	the	master	in	case	there	is	no	write	activity	on	the	master.	This	value	will	be
ignored	if	set	to	0.

idleMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	fetching	more	log	data	from	the
master	in	case	the	master	has	already	sent	all	its	log	data	and	there	have	been	previous	log	fetch	attempts	that	resulted	in	no	more	log
data.	This	wait	time	can	be	used	to	control	the	maximum	frequency	with	which	the	replication	applier	sends	HTTP	log	fetch

Replication	Applier

192

requests	to	the	master	in	case	there	is	no	write	activity	on	the	master	for	longer	periods.	This	configuration	value	will	only	be	used	if
the	option	adaptivePolling	is	set	to	true.	This	value	will	be	ignored	if	set	to	0.

requireFromPresent:	if	set	to	true,	then	the	replication	applier	will	check	at	start	whether	the	start	tick	from	which	it	starts	or
resumes	replication	is	still	present	on	the	master.	If	not,	then	there	would	be	data	loss.	If	requireFromPresent	is	true,	the	replication
applier	will	abort	with	an	appropriate	error	message.	If	set	to	false,	then	the	replication	applier	will	still	start,	and	ignore	the	data
loss.

verbose:	if	set	to	true,	then	a	log	line	will	be	emitted	for	all	operations	performed	by	the	replication	applier.	This	should	be	used	for
debugging	replication	problems	only.

restrictType:	the	configuration	for	restrictCollections

restrictCollections:	the	optional	array	of	collections	to	include	or	exclude,	based	on	the	setting	of	restrictType

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/replication/applier-config

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Adjust	configuration	of	replication	applier

set	configuration	values	of	an	applier

	PUT	/_api/replication/applier-config	

A	JSON	object	with	these	properties	is	required:

username:	an	optional	ArangoDB	username	to	use	when	connecting	to	the	endpoint.
includeSystem:	whether	or	not	system	collection	operations	will	be	applied
endpoint:	the	logger	server	to	connect	to	(e.g.	"tcp://192.168.173.13:8529").	The	endpoint	must	be	specified.
verbose:	if	set	to	true,	then	a	log	line	will	be	emitted	for	all	operations	performed	by	the	replication	applier.	This	should	be	used	for
debugging	replication	problems	only.
connectTimeout:	the	timeout	(in	seconds)	when	attempting	to	connect	to	the	endpoint.	This	value	is	used	for	each	connection
attempt.
autoResync:	whether	or	not	the	slave	should	perform	a	full	automatic	resynchronization	with	the	master	in	case	the	master	cannot
serve	log	data	requested	by	the	slave,	or	when	the	replication	is	started	and	no	tick	value	can	be	found.
database:	the	name	of	the	database	on	the	endpoint.	If	not	specified,	defaults	to	the	current	local	database	name.
idleMinWaitTime:	the	minimum	wait	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	fetching	more	log	data	from
the	master	in	case	the	master	has	already	sent	all	its	log	data.	This	wait	time	can	be	used	to	control	the	frequency	with	which	the
replication	applier	sends	HTTP	log	fetch	requests	to	the	master	in	case	there	is	no	write	activity	on	the	master.	This	value	will	be
ignored	if	set	to	0.
requestTimeout:	the	timeout	(in	seconds)	for	individual	requests	to	the	endpoint.
requireFromPresent:	if	set	to	true,	then	the	replication	applier	will	check	at	start	whether	the	start	tick	from	which	it	starts	or
resumes	replication	is	still	present	on	the	master.	If	not,	then	there	would	be	data	loss.	If	requireFromPresent	is	true,	the	replication
applier	will	abort	with	an	appropriate	error	message.	If	set	to	false,	then	the	replication	applier	will	still	start,	and	ignore	the	data
loss.
idleMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	fetching	more	log	data	from

Replication	Applier

193

the	master	in	case	the	master	has	already	sent	all	its	log	data	and	there	have	been	previous	log	fetch	attempts	that	resulted	in	no	more

log	data.	This	wait	time	can	be	used	to	control	the	maximum	frequency	with	which	the	replication	applier	sends	HTTP	log	fetch
requests	to	the	master	in	case	there	is	no	write	activity	on	the	master	for	longer	periods.	This	configuration	value	will	only	be	used	if
the	option	adaptivePolling	is	set	to	true.	This	value	will	be	ignored	if	set	to	0.
restrictCollections	(string):	the	array	of	collections	to	include	or	exclude,	based	on	the	setting	of	restrictType
restrictType:	the	configuration	for	restrictCollections;	Has	to	be	either	include	or	exclude
initialSyncMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	initial	synchronization	will	wait	for	a	response	from	the
master	when	fetching	initial	collection	data.	This	wait	time	can	be	used	to	control	after	what	time	the	initial	synchronization	will	give
up	waiting	for	a	response	and	fail.	This	value	is	relevant	even	for	continuous	replication	when	autoResync	is	set	to	true	because	this
may	re-start	the	initial	synchronization	when	the	master	cannot	provide	log	data	the	slave	requires.	This	value	will	be	ignored	if	set
to	0.
maxConnectRetries:	the	maximum	number	of	connection	attempts	the	applier	will	make	in	a	row.	If	the	applier	cannot	establish	a
connection	to	the	endpoint	in	this	number	of	attempts,	it	will	stop	itself.
autoStart:	whether	or	not	to	auto-start	the	replication	applier	on	(next	and	following)	server	starts
adaptivePolling:	if	set	to	true,	the	replication	applier	will	fall	to	sleep	for	an	increasingly	long	period	in	case	the	logger	server	at	the
endpoint	does	not	have	any	more	replication	events	to	apply.	Using	adaptive	polling	is	thus	useful	to	reduce	the	amount	of	work	for
both	the	applier	and	the	logger	server	for	cases	when	there	are	only	infrequent	changes.	The	downside	is	that	when	using	adaptive
polling,	it	might	take	longer	for	the	replication	applier	to	detect	that	there	are	new	replication	events	on	the	logger	server.	Setting
adaptivePolling	to	false	will	make	the	replication	applier	contact	the	logger	server	in	a	constant	interval,	regardless	of	whether	the
logger	server	provides	updates	frequently	or	seldom.
password:	the	password	to	use	when	connecting	to	the	endpoint.
connectionRetryWaitTime:	the	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	it	retries	connecting	to	the	master	in
case	of	connection	problems.	This	value	will	be	ignored	if	set	to	0.
autoResyncRetries:	number	of	resynchronization	retries	that	will	be	performed	in	a	row	when	automatic	resynchronization	is
enabled	and	kicks	in.	Setting	this	to	0	will	effectively	disable	autoResync.	Setting	it	to	some	other	value	will	limit	the	number	of
retries	that	are	performed.	This	helps	preventing	endless	retries	in	case	resynchronizations	always	fail.
chunkSize:	the	requested	maximum	size	for	log	transfer	packets	that	is	used	when	the	endpoint	is	contacted.

Sets	the	configuration	of	the	replication	applier.	The	configuration	can	only	be	changed	while	the	applier	is	not	running.	The	updated
configuration	will	be	saved	immediately	but	only	become	active	with	the	next	start	of	the	applier.

In	case	of	success,	the	body	of	the	response	is	a	JSON	object	with	the	updated	configuration.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

400:	is	returned	if	the	configuration	is	incomplete	or	malformed,	or	if	the	replication	applier	is	currently	running.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/replication/applier-config	<<EOF

{	

		"endpoint"	:	"tcp://127.0.0.1:8529",	

		"username"	:	"replicationApplier",	

		"password"	:	"applier1234@foxx",	

		"chunkSize"	:	4194304,	

		"autoStart"	:	false,	

		"adaptivePolling"	:	true	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Replication	Applier

194

show	response	body

Start	replication	applier

start	the	replication	applier

	PUT	/_api/replication/applier-start	

Query	Parameters

from	(optional):	The	remote	lastLogTick	value	from	which	to	start	applying.	If	not	specified,	the	last	saved	tick	from	the	previous
applier	run	is	used.	If	there	is	no	previous	applier	state	saved,	the	applier	will	start	at	the	beginning	of	the	logger	server's	log.

Starts	the	replication	applier.	This	will	return	immediately	if	the	replication	applier	is	already	running.

If	the	replication	applier	is	not	already	running,	the	applier	configuration	will	be	checked,	and	if	it	is	complete,	the	applier	will	be	started
in	a	background	thread.	This	means	that	even	if	the	applier	will	encounter	any	errors	while	running,	they	will	not	be	reported	in	the
response	to	this	method.

To	detect	replication	applier	errors	after	the	applier	was	started,	use	the	/_api/replication/applier-state	API	instead.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

400:	is	returned	if	the	replication	applier	is	not	fully	configured	or	the	configuration	is	invalid.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/replication/applier-start

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Stop	replication	applier

stop	the	replication

	PUT	/_api/replication/applier-stop	

Stops	the	replication	applier.	This	will	return	immediately	if	the	replication	applier	is	not	running.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

shell>	curl	-X	PUT	--dump	-	http://localhost:8529/_api/replication/applier-stop

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

Replication	Applier

195

x-content-type-options:	nosniff

show	response	body

State	of	the	replication	applier

output	the	current	status	of	the	replication

	GET	/_api/replication/applier-state	

Returns	the	state	of	the	replication	applier,	regardless	of	whether	the	applier	is	currently	running	or	not.

The	response	is	a	JSON	object	with	the	following	attributes:

state:	a	JSON	object	with	the	following	sub-attributes:

running:	whether	or	not	the	applier	is	active	and	running

lastAppliedContinuousTick:	the	last	tick	value	from	the	continuous	replication	log	the	applier	has	applied.

lastProcessedContinuousTick:	the	last	tick	value	from	the	continuous	replication	log	the	applier	has	processed.

Regularly,	the	last	applied	and	last	processed	tick	values	should	be	identical.	For	transactional	operations,	the	replication
applier	will	first	process	incoming	log	events	before	applying	them,	so	the	processed	tick	value	might	be	higher	than	the
applied	tick	value.	This	will	be	the	case	until	the	applier	encounters	the	transaction	commit	log	event	for	the	transaction.

lastAvailableContinuousTick:	the	last	tick	value	the	logger	server	can	provide.

time:	the	time	on	the	applier	server.

totalRequests:	the	total	number	of	requests	the	applier	has	made	to	the	endpoint.

totalFailedConnects:	the	total	number	of	failed	connection	attempts	the	applier	has	made.

totalEvents:	the	total	number	of	log	events	the	applier	has	processed.

totalOperationsExcluded:	the	total	number	of	log	events	excluded	because	of	restrictCollections.

progress:	a	JSON	object	with	details	about	the	replication	applier	progress.	It	contains	the	following	sub-attributes	if	there	is
progress	to	report:

message:	a	textual	description	of	the	progress

time:	the	date	and	time	the	progress	was	logged

failedConnects:	the	current	number	of	failed	connection	attempts

lastError:	a	JSON	object	with	details	about	the	last	error	that	happened	on	the	applier.	It	contains	the	following	sub-attributes
if	there	was	an	error:

errorNum:	a	numerical	error	code

errorMessage:	a	textual	error	description

time:	the	date	and	time	the	error	occurred

In	case	no	error	has	occurred,	lastError	will	be	empty.

server:	a	JSON	object	with	the	following	sub-attributes:

version:	the	applier	server's	version

serverId:	the	applier	server's	id

endpoint:	the	endpoint	the	applier	is	connected	to	(if	applier	is	active)	or	will	connect	to	(if	applier	is	currently	inactive)

database:	the	name	of	the	database	the	applier	is	connected	to	(if	applier	is	active)	or	will	connect	to	(if	applier	is	currently	inactive)

Return	Codes

Replication	Applier

196

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

Fetching	the	state	of	an	inactive	applier:

shell>	curl	--dump	-	http://localhost:8529/_api/replication/applier-state

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Fetching	the	state	of	an	active	applier:

shell>	curl	--dump	-	http://localhost:8529/_api/replication/applier-state

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Turn	the	server	into	a	slave	of	another

Changes	role	to	slave

	PUT	/_api/replication/make-slave	

A	JSON	object	with	these	properties	is	required:

username:	an	optional	ArangoDB	username	to	use	when	connecting	to	the	master.
includeSystem:	whether	or	not	system	collection	operations	will	be	applied
endpoint:	the	master	endpoint	to	connect	to	(e.g.	"tcp://192.168.173.13:8529").
verbose:	if	set	to	true,	then	a	log	line	will	be	emitted	for	all	operations	performed	by	the	replication	applier.	This	should	be	used	for
debugging	replication	problems	only.
connectTimeout:	the	timeout	(in	seconds)	when	attempting	to	connect	to	the	endpoint.	This	value	is	used	for	each	connection
attempt.
autoResync:	whether	or	not	the	slave	should	perform	an	automatic	resynchronization	with	the	master	in	case	the	master	cannot
serve	log	data	requested	by	the	slave,	or	when	the	replication	is	started	and	no	tick	value	can	be	found.
database:	the	database	name	on	the	master	(if	not	specified,	defaults	to	the	name	of	the	local	current	database).
idleMinWaitTime:	the	minimum	wait	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	fetching	more	log	data	from
the	master	in	case	the	master	has	already	sent	all	its	log	data.	This	wait	time	can	be	used	to	control	the	frequency	with	which	the
replication	applier	sends	HTTP	log	fetch	requests	to	the	master	in	case	there	is	no	write	activity	on	the	master.	This	value	will	be
ignored	if	set	to	0.
requestTimeout:	the	timeout	(in	seconds)	for	individual	requests	to	the	endpoint.
restrictType:	an	optional	string	value	for	collection	filtering.	When	specified,	the	allowed	values	are	include	or	exclude.
idleMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	fetching	more	log	data	from
the	master	in	case	the	master	has	already	sent	all	its	log	data	and	there	have	been	previous	log	fetch	attempts	that	resulted	in	no	more
log	data.	This	wait	time	can	be	used	to	control	the	maximum	frequency	with	which	the	replication	applier	sends	HTTP	log	fetch
requests	to	the	master	in	case	there	is	no	write	activity	on	the	master	for	longer	periods.	This	configuration	value	will	only	be	used	if
the	option	adaptivePolling	is	set	to	true.	This	value	will	be	ignored	if	set	to	0.
initialSyncMaxWaitTime:	the	maximum	wait	time	(in	seconds)	that	the	initial	synchronization	will	wait	for	a	response	from	the

Replication	Applier

197

master	when	fetching	initial	collection	data.	This	wait	time	can	be	used	to	control	after	what	time	the	initial	synchronization	will	give
up	waiting	for	a	response	and	fail.	This	value	is	relevant	even	for	continuous	replication	when	autoResync	is	set	to	true	because	this
may	re-start	the	initial	synchronization	when	the	master	cannot	provide	log	data	the	slave	requires.	This	value	will	be	ignored	if	set
to	0.
restrictCollections	(string):	an	optional	array	of	collections	for	use	with	restrictType.	If	restrictType	is	include,	only	the	specified
collections	will	be	sychronised.	If	restrictType	is	exclude,	all	but	the	specified	collections	will	be	synchronized.
requireFromPresent:	if	set	to	true,	then	the	replication	applier	will	check	at	start	of	its	continuous	replication	if	the	start	tick	from
the	dump	phase	is	still	present	on	the	master.	If	not,	then	there	would	be	data	loss.	If	requireFromPresent	is	true,	the	replication
applier	will	abort	with	an	appropriate	error	message.	If	set	to	false,	then	the	replication	applier	will	still	start,	and	ignore	the	data
loss.
adaptivePolling:	whether	or	not	the	replication	applier	will	use	adaptive	polling.
maxConnectRetries:	the	maximum	number	of	connection	attempts	the	applier	will	make	in	a	row.	If	the	applier	cannot	establish	a
connection	to	the	endpoint	in	this	number	of	attempts,	it	will	stop	itself.
password:	the	password	to	use	when	connecting	to	the	master.
connectionRetryWaitTime:	the	time	(in	seconds)	that	the	applier	will	intentionally	idle	before	it	retries	connecting	to	the	master	in
case	of	connection	problems.	This	value	will	be	ignored	if	set	to	0.
autoResyncRetries:	number	of	resynchronization	retries	that	will	be	performed	in	a	row	when	automatic	resynchronization	is
enabled	and	kicks	in.	Setting	this	to	0	will	effectively	disable	autoResync.	Setting	it	to	some	other	value	will	limit	the	number	of
retries	that	are	performed.	This	helps	preventing	endless	retries	in	case	resynchronizations	always	fail.
chunkSize:	the	requested	maximum	size	for	log	transfer	packets	that	is	used	when	the	endpoint	is	contacted.

Starts	a	full	data	synchronization	from	a	remote	endpoint	into	the	local	ArangoDB	database	and	afterwards	starts	the	continuous
replication.	The	operation	works	on	a	per-database	level.

All	local	database	data	will	be	removed	prior	to	the	synchronization.

In	case	of	success,	the	body	of	the	response	is	a	JSON	object	with	the	following	attributes:

state:	a	JSON	object	with	the	following	sub-attributes:

running:	whether	or	not	the	applier	is	active	and	running

lastAppliedContinuousTick:	the	last	tick	value	from	the	continuous	replication	log	the	applier	has	applied.

lastProcessedContinuousTick:	the	last	tick	value	from	the	continuous	replication	log	the	applier	has	processed.

Regularly,	the	last	applied	and	last	processed	tick	values	should	be	identical.	For	transactional	operations,	the	replication
applier	will	first	process	incoming	log	events	before	applying	them,	so	the	processed	tick	value	might	be	higher	than	the
applied	tick	value.	This	will	be	the	case	until	the	applier	encounters	the	transaction	commit	log	event	for	the	transaction.

lastAvailableContinuousTick:	the	last	tick	value	the	logger	server	can	provide.

time:	the	time	on	the	applier	server.

totalRequests:	the	total	number	of	requests	the	applier	has	made	to	the	endpoint.

totalFailedConnects:	the	total	number	of	failed	connection	attempts	the	applier	has	made.

totalEvents:	the	total	number	of	log	events	the	applier	has	processed.

totalOperationsExcluded:	the	total	number	of	log	events	excluded	because	of	restrictCollections.

progress:	a	JSON	object	with	details	about	the	replication	applier	progress.	It	contains	the	following	sub-attributes	if	there	is
progress	to	report:

message:	a	textual	description	of	the	progress

time:	the	date	and	time	the	progress	was	logged

failedConnects:	the	current	number	of	failed	connection	attempts

lastError:	a	JSON	object	with	details	about	the	last	error	that	happened	on	the	applier.	It	contains	the	following	sub-attributes
if	there	was	an	error:

errorNum:	a	numerical	error	code

Replication	Applier

198

errorMessage:	a	textual	error	description

time:	the	date	and	time	the	error	occurred

In	case	no	error	has	occurred,	lastError	will	be	empty.

server:	a	JSON	object	with	the	following	sub-attributes:

version:	the	applier	server's	version

serverId:	the	applier	server's	id

endpoint:	the	endpoint	the	applier	is	connected	to	(if	applier	is	active)	or	will	connect	to	(if	applier	is	currently	inactive)

database:	the	name	of	the	database	the	applier	is	connected	to	(if	applier	is	active)	or	will	connect	to	(if	applier	is	currently	inactive)

WARNING:	calling	this	method	will	sychronize	data	from	the	collections	found	on	the	remote	master	to	the	local	ArangoDB	database.
All	data	in	the	local	collections	will	be	purged	and	replaced	with	data	from	the	master.

Use	with	caution!

Please	also	keep	in	mind	that	this	command	may	take	a	long	time	to	complete	and	return.	This	is	because	it	will	first	do	a	full	data
synchronization	with	the	master,	which	will	take	time	roughly	proportional	to	the	amount	of	data.

Note:	this	method	is	not	supported	on	a	coordinator	in	a	cluster.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

400:	is	returned	if	the	configuration	is	incomplete	or	malformed.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	during	sychronization	or	when	starting	the	continuous	replication.

501:	is	returned	when	this	operation	is	called	on	a	coordinator	in	a	cluster.

Replication	Applier

199

Other	Replication	Commands

Return	server	id

fetch	this	server's	unique	identifier

	GET	/_api/replication/server-id	

Returns	the	servers	id.	The	id	is	also	returned	by	other	replication	API	methods,	and	this	method	is	an	easy	means	of	determining	a
server's	id.

The	body	of	the	response	is	a	JSON	object	with	the	attribute	serverId.	The	server	id	is	returned	as	a	string.

Return	Codes

200:	is	returned	if	the	request	was	executed	successfully.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	an	error	occurred	while	assembling	the	response.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/replication/server-id

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"serverId"	:	"185568494926295"	

}

Other	Replication	Commands

200

HTTP	Interface	for	Sharding
Sharding	only	should	be	used	by	developers!

Execute	cluster	roundtrip

executes	a	cluster	roundtrip	for	sharding

	GET	/_admin/cluster-test	

Executes	a	cluster	roundtrip	from	a	coordinator	to	a	DB	server	and	back.	This	call	only	works	in	a	coordinator	node	in	a	cluster.	One	can
and	should	append	an	arbitrary	path	to	the	URL	and	the	part	after	/_admin/cluster-test	is	used	as	the	path	of	the	HTTP	request	which	is
sent	from	the	coordinator	to	a	DB	node.	Likewise,	any	form	data	appended	to	the	URL	is	forwarded	in	the	request	to	the	DB	node.	This
handler	takes	care	of	all	request	types	(see	below)	and	uses	the	same	request	type	in	its	request	to	the	DB	node.

The	following	HTTP	headers	are	interpreted	in	a	special	way:

X-Shard-ID:	This	specifies	the	ID	of	the	shard	to	which	the	cluster	request	is	sent	and	thus	tells	the	system	to	which	DB	server	to
send	the	cluster	request.	Note	that	the	mapping	from	the	shard	ID	to	the	responsible	server	has	to	be	defined	in	the	agency	under
Current/ShardLocation/.	One	has	to	give	this	header,	otherwise	the	system	does	not	know	where	to	send	the	request.
X-Client-Transaction-ID:	the	value	of	this	header	is	taken	as	the	client	transaction	ID	for	the	request
X-Timeout:	specifies	a	timeout	in	seconds	for	the	cluster	operation.	If	the	answer	does	not	arrive	within	the	specified	timeout,	an
corresponding	error	is	returned	and	any	subsequent	real	answer	is	ignored.	The	default	if	not	given	is	24	hours.
X-Synchronous-Mode:	If	set	to	true	the	test	function	uses	synchronous	mode,	otherwise	the	default	asynchronous	operation	mode	is
used.	This	is	mainly	for	debugging	purposes.
Host:	This	header	is	ignored	and	not	forwarded	to	the	DB	server.
User-Agent:	This	header	is	ignored	and	not	forwarded	to	the	DB	server.

All	other	HTTP	headers	and	the	body	of	the	request	(if	present,	see	other	HTTP	methods	below)	are	forwarded	as	given	in	the	original
request.

In	asynchronous	mode	the	DB	server	answers	with	an	HTTP	request	of	its	own,	in	synchronous	mode	it	sends	a	HTTP	response.	In
both	cases	the	headers	and	the	body	are	used	to	produce	the	HTTP	response	of	this	API	call.

Return	Codes

The	return	code	can	be	anything	the	cluster	request	returns,	as	well	as:

200:	is	returned	when	everything	went	well,	or	if	a	timeout	occurred.	In	the	latter	case	a	body	of	type	application/json	indicating	the
timeout	is	returned.

403:	is	returned	if	ArangoDB	is	not	running	in	cluster	mode.

404:	is	returned	if	ArangoDB	was	not	compiled	for	cluster	operation.

Execute	cluster	roundtrip

executes	a	cluster	roundtrip	for	sharding

	POST	/_admin/cluster-test	

Request	Body	(required)

The	body	can	be	any	type	and	is	simply	forwarded.

See	GET	method.

Return	Codes

200:	is	returned	when	everything	went	well.

Execute	cluster	roundtrip

Sharding

201

executes	a	cluster	roundtrip	for	sharding

	PUT	/_admin/cluster-test	

Request	Body	(required)

See	GET	method.	The	body	can	be	any	type	and	is	simply	forwarded.

Return	Codes

200:	is	returned	when	everything	went	well.

Delete	cluster	roundtrip

executes	a	cluster	roundtrip	for	sharding

	DELETE	/_admin/cluster-test	

See	GET	method.

Return	Codes

200:	is	returned	when	everything	went	well.

Update	cluster	roundtrip

executes	a	cluster	roundtrip	for	sharding

	PATCH	/_admin/cluster-test	

Request	Body	(required)

See	GET	method.	The	body	can	be	any	type	and	is	simply	forwarded.

Return	Codes

200:	is	returned	when	everything	went	well.

Execute	cluster	roundtrip

executes	a	cluster	roundtrip	for	sharding

	HEAD	/_admin/cluster-test	

See	GET	method.

Return	Codes

200:	is	returned	when	everything	went	well.

Check	port

allows	to	check	whether	a	given	port	is	usable

	GET	/_admin/clusterCheckPort	

Query	Parameters

port	(required):

Checks	whether	the	requested	port	is	usable.

Return	Codes

200:	is	returned	when	everything	went	well.

400:	the	parameter	port	was	not	given	or	is	no	integer.

Sharding

202

HTTP	Interface	for	Administration	and	Monitoring
This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	administration	and	monitoring	of	the	server.

Read	global	logs	from	the	server

returns	the	server	logs

	GET	/_admin/log	

Query	Parameters

upto	(optional):	Returns	all	log	entries	up	to	log	level	upto.	Note	that	upto	must	be:
fatal	or	0
error	or	1
warning	or	2
info	or	3
debug	or	4	The	default	value	is	info.

level	(optional):	Returns	all	log	entries	of	log	level	level.	Note	that	the	query	parameters	upto	and	level	are	mutually	exclusive.

start	(optional):	Returns	all	log	entries	such	that	their	log	entry	identifier	(lid	value)	is	greater	or	equal	to	start.

size	(optional):	Restricts	the	result	to	at	most	size	log	entries.

offset	(optional):	Starts	to	return	log	entries	skipping	the	first	offset	log	entries.	offset	and	size	can	be	used	for	pagination.

search	(optional):	Only	return	the	log	entries	containing	the	text	specified	in	search.

sort	(optional):	Sort	the	log	entries	either	ascending	(if	sort	is	asc)	or	descending	(if	sort	is	desc)	according	to	their	lid	values.	Note
that	the	lid	imposes	a	chronological	order.	The	default	value	is	asc.

Returns	fatal,	error,	warning	or	info	log	messages	from	the	server's	global	log.	The	result	is	a	JSON	object	with	the	following	attributes:

HTTP	200

A	json	document	with	these	Properties	is	returned:

lid	(string):	a	list	of	log	entry	identifiers.	Each	log	message	is	uniquely	identified	by	its	@LIT{lid}	and	the	identifiers	are	in
ascending	order.
level:	A	list	of	the	loglevels	for	all	log	entries.
timestamp	(string):	a	list	of	the	timestamps	as	seconds	since	1970-01-01	for	all	log	entries.
topic:	a	list	of	the	topics	of	all	log	entries
text:	a	list	of	the	texts	of	all	log	entries
totalAmount:	the	total	amount	of	log	entries	before	pagination.

Return	Codes

200:

Response	Body

lid	(string):	a	list	of	log	entry	identifiers.	Each	log	message	is	uniquely	identified	by	its	@LIT{lid}	and	the	identifiers	are	in
ascending	order.
level:	A	list	of	the	loglevels	for	all	log	entries.
text:	a	list	of	the	texts	of	all	log	entries
topic:	a	list	of	the	topics	of	all	log	entries
timestamp	(string):	a	list	of	the	timestamps	as	seconds	since	1970-01-01	for	all	log	entries.
totalAmount:	the	total	amount	of	log	entries	before	pagination.

400:	is	returned	if	invalid	values	are	specified	for	upto	or	level.

500:	is	returned	if	the	server	cannot	generate	the	result	due	to	an	out-of-memory	error.

Monitoring

203

Return	the	current	server	loglevel

returns	the	current	loglevel	settings

	GET	/_admin/log/level	

Returns	the	server's	current	loglevel	settings.	The	result	is	a	JSON	object	with	the	log	topics	being	the	object	keys,	and	the	log	levels
being	the	object	values.

Return	Codes

200:	is	returned	if	the	request	is	valid

500:	is	returned	if	the	server	cannot	generate	the	result	due	to	an	out-of-memory	error.

Modify	and	return	the	current	server	loglevel

modifies	the	current	loglevel	settings

	PUT	/_admin/log/level	

Modifies	and	returns	the	server's	current	loglevel	settings.	The	request	body	must	be	a	JSON	object	with	the	log	topics	being	the	object
keys	and	the	log	levels	being	the	object	values.

The	result	is	a	JSON	object	with	the	adjusted	log	topics	being	the	object	keys,	and	the	adjusted	log	levels	being	the	object	values.

It	can	set	the	loglevel	of	all	facilities	by	only	specifying	the	loglevel	as	string	without	json.

Possible	loglevels	are:

FATAL	-	There	will	be	no	way	out	of	this.	ArangoDB	will	go	down	after	this	message.
ERROR	-	This	is	an	error.	you	should	investigate	and	fix	it.	It	may	harm	your	production.
WARNING	-	This	may	be	serious	application-wise,	but	we	don't	know.
INFO	-	Something	has	happened,	take	notice,	but	no	drama	attached.
DEBUG	-	output	debug	messages
TRACE	-	trace	-	prepare	your	log	to	be	flooded	-	don't	use	in	production.

A	JSON	object	with	these	properties	is	required:

audit-service:	One	of	the	possible	loglevels.
cache:	One	of	the	possible	loglevels.
syscall:	One	of	the	possible	loglevels.
communication:	One	of	the	possible	loglevels.
audit-authentication:	One	of	the	possible	loglevels.
agencycomm:	One	of	the	possible	loglevels.
startup:	One	of	the	possible	loglevels.
general:	One	of	the	possible	loglevels.
cluster:	One	of	the	possible	loglevels.
audit-view:	One	of	the	possible	loglevels.
collector:	One	of	the	possible	loglevels.
audit-documentation:	One	of	the	possible	loglevels.
engines:	One	of	the	possible	loglevels.
trx:	One	of	the	possible	loglevels.
mmap:	One	of	the	possible	loglevels.
agency:	One	of	the	possible	loglevels.
authentication:	One	of	the	possible	loglevels.
memory:	One	of	the	possible	loglevels.
performance:	One	of	the	possible	loglevels.
config:	One	of	the	possible	loglevels.
authorization:	One	of	the	possible	loglevels.
development:	One	of	the	possible	loglevels.
datafiles:	One	of	the	possible	loglevels.
views:	One	of	the	possible	loglevels.

Monitoring

204

ldap:	One	of	the	possible	loglevels.
replication:	One	of	the	possible	loglevels.
threads:	One	of	the	possible	loglevels.
audit-database:	One	of	the	possible	loglevels.
v8:	One	of	the	possible	loglevels.
ssl:	One	of	the	possible	loglevels.
pregel:	One	of	the	possible	loglevels.
audit-collection:	One	of	the	possible	loglevels.
rocksdb:	One	of	the	possible	loglevels.
supervision:	One	of	the	possible	loglevels.
graphs:	One	of	the	possible	loglevels.
compactor:	One	of	the	possible	loglevels.
queries:	One	of	the	possible	loglevels.
heartbeat:	One	of	the	possible	loglevels.
requests:	One	of	the	possible	loglevels.

Return	Codes

200:	is	returned	if	the	request	is	valid

400:	is	returned	when	the	request	body	contains	invalid	JSON.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

500:	is	returned	if	the	server	cannot	generate	the	result	due	to	an	out-of-memory	error.

Reloads	the	routing	information

Reload	the	routing	table.

	POST	/_admin/routing/reload	

Reloads	the	routing	information	from	the	collection	routing.

Return	Codes

200:	Routing	information	was	reloaded	successfully.

Read	the	statistics

return	the	statistics	information

	GET	/_admin/statistics	

Returns	the	statistics	information.	The	returned	object	contains	the	statistics	figures	grouped	together	according	to	the	description
returned	by	_admin/statistics-description.	For	instance,	to	access	a	figure	userTime	from	the	group	system,	you	first	select	the	sub-object
describing	the	group	stored	in	system	and	in	that	sub-object	the	value	for	userTime	is	stored	in	the	attribute	of	the	same	name.

In	case	of	a	distribution,	the	returned	object	contains	the	total	count	in	count	and	the	distribution	list	in	counts.	The	sum	(or	total)	of	the
individual	values	is	returned	in	sum.

Return	Codes

200:	Statistics	were	returned	successfully.

Examples

shell>	curl	--dump	-	http://localhost:8529/_admin/statistics

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Monitoring

205

show	response	body

Statistics	description

fetch	descriptive	info	of	statistics

	GET	/_admin/statistics-description	

Returns	a	description	of	the	statistics	returned	by	/_admin/statistics.	The	returned	objects	contains	an	array	of	statistics	groups	in	the
attribute	groups	and	an	array	of	statistics	figures	in	the	attribute	figures.

A	statistics	group	is	described	by

group:	The	identifier	of	the	group.
name:	The	name	of	the	group.
description:	A	description	of	the	group.

A	statistics	figure	is	described	by

group:	The	identifier	of	the	group	to	which	this	figure	belongs.
identifier:	The	identifier	of	the	figure.	It	is	unique	within	the	group.
name:	The	name	of	the	figure.
description:	A	description	of	the	figure.
type:	Either	current,	accumulated,	or	distribution.
cuts:	The	distribution	vector.
units:	Units	in	which	the	figure	is	measured.

Return	Codes

200:	Description	was	returned	successfully.

Examples

shell>	curl	--dump	-	http://localhost:8529/_admin/statistics-description

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Return	role	of	a	server	in	a	cluster

Get	to	know	whether	this	server	is	a	Coordinator	or	DB-Server

	GET	/_admin/server/role	

Returns	the	role	of	a	server	in	a	cluster.	The	role	is	returned	in	the	role	attribute	of	the	result.	Possible	return	values	for	role	are:

SINGLE:	the	server	is	a	standalone	server	without	clustering
COORDINATOR:	the	server	is	a	coordinator	in	a	cluster
PRIMARY:	the	server	is	a	primary	database	server	in	a	cluster
SECONDARY:	the	server	is	a	secondary	database	server	in	a	cluster
AGENT:	the	server	is	an	agency	node	in	a	cluster
UNDEFINED:	in	a	cluster,	UNDEFINED	is	returned	if	the	server	role	cannot	be	determined.

Return	Codes

200:	Is	returned	in	all	cases.

Return	id	of	a	server	in	a	cluster

Get	to	know	the	internal	id	of	the	server

Monitoring

206

	GET	/_admin/server/id	

Returns	the	id	of	a	server	in	a	cluster.	The	request	will	fail	if	the	server	is	not	running	in	cluster	mode.

Return	Codes

200:	Is	returned	when	the	server	is	running	in	cluster	mode.

500:	Is	returned	when	the	server	is	not	running	in	cluster	mode.

Return	whether	or	not	a	server	is	available

Return	whether	or	not	a	server	is	available

	GET	/_admin/server/availability	

Return	availability	information	about	a	server.

This	is	a	public	API	so	it	does	not	require	authentication.	It	is	meant	to	be	used	only	in	the	context	of	server	monitoring	only.

Return	Codes

200:	This	API	will	return	HTTP	200	in	case	the	server	is	up	and	running	and	usable	for	arbitrary	operations,	is	not	set	to	read-only
mode	and	is	currently	not	a	follower	in	case	of	an	active	failover	setup.

503:	HTTP	503	will	be	returned	in	case	the	server	is	during	startup	or	during	shutdown,	is	set	to	read-only	mode	or	is	currently	a
follower	in	an	active	failover	setup.

Cluster

Queries	statistics	of	DBserver

allows	to	query	the	statistics	of	a	DBserver	in	the	cluster

	GET	/_admin/clusterStatistics	

Query	Parameters

DBserver	(required):

Queries	the	statistics	of	the	given	DBserver

Return	Codes

200:	is	returned	when	everything	went	well.

400:	the	parameter	DBserver	was	not	given	or	is	not	the	ID	of	a	DBserver

403:	server	is	not	a	coordinator.

Queries	the	health	of	cluster	for	monitoring

Returns	the	health	of	the	cluster	as	assessed	by	the	supervision	(agency)

	GET	/_admin/cluster/health	

Queries	the	health	of	the	cluster	for	monitoring	purposes.	The	response	is	a	JSON	object,	containing	the	standard		code	,		error	,
	errorNum	,	and		errorMessage		fields	as	appropriate.	The	endpoint-specific	fields	are	as	follows:

	ClusterId	:	A	UUID	string	identifying	the	cluster
	Health	:	An	object	containing	a	descriptive	sub-object	for	each	node	in	the	cluster.	Each	entry	in		Health		will	be	keyed	by	the
node	ID	and	contain	the	the	following	attributes:

	Endpoint	:	A	string	representing	the	network	endpoint	of	the	server.
	Role	:	The	role	the	server	plays.	Possible	values	are		"AGENT"	,		"COORDINATOR"	,	and		"DBSERVER"	.
	CanBeDeleted	:	Boolean	representing	whether	the	node	can	safely	be	removed	from	the	cluster.

Additionally,	if	the	node	is	a	Coordinator	or	DBServer,	it	will	also	have	the	following	attributes:

Monitoring

207

	Status	:	A	string	indicating	the	health	of	the	node	as	assessed	by	the	supervision	(agency).	This	should	be	considered	primary
source	of	truth	for	node	health.	If	the	node	is	responding	normally	to	requests,	it	is		"GOOD"	.	If	it	has	missed	one	heartbeat,	it	is
	"BAD"	.	If	it	has	been	declared	failed	by	the	supervision,	which	occurs	after	missing	heartbeats	for	about	15	seconds,	it	will	be
marked		"FAILED"	.
	SyncStatus	:	The	last	sync	status	reported	by	the	node.	This	value	is	primarily	used	to	determine	the	value	of		Status	.
Possible	values	include		"UNKNOWN"	,		"UNDEFINED"	,		"STARTUP"	,		"STOPPING"	,		"STOPPED"	,		"SERVING"	,		"SHUTDOWN"	.
	ShortName	:	A	string	representing	the	shortname	of	the	server,	e.g.		"DBServer1"	.
	Timestamp	:	ISO	8601	timestamp	specifying	the	last	heartbeat	received.
	Host	:	An	optional	string,	specifying	the	host	machine	if	known.

Return	Codes

200:	is	returned	when	everything	went	well.

Monitoring

208

HTTP	Interface	for	Endpoints
The	API		/_api/endpoint		is	deprecated.	For	cluster	mode	there	is		/_api/cluster/endpoints		to	find	all	current	coordinator	endpoints
(see	below).

The	ArangoDB	server	can	listen	for	incoming	requests	on	multiple	endpoints.

The	endpoints	are	normally	specified	either	in	ArangoDB's	configuration	file	or	on	the	command-line,	using	the	"--server.endpoint"
option.	The	default	endpoint	for	ArangoDB	is	tcp://127.0.0.1:8529	or	tcp://localhost:8529.

Please	note	that	all	endpoint	management	operations	can	only	be	accessed	via	the	default	database	(_system)	and	none	of	the	other
databases.

Asking	about	Endpoints	via	HTTP

Get	information	about	all	coordinator	endpoints

This	API	call	returns	information	about	all	coordinator	endpoints	(cluster	only).

	GET	/_api/cluster/endpoints	

Returns	an	object	with	an	attribute		endpoints	,	which	contains	an	array	of	objects,	which	each	have	the	attribute		endpoint	,	whose
value	is	a	string	with	the	endpoint	description.	There	is	an	entry	for	each	coordinator	in	the	cluster.	This	method	only	works	on
coordinators	in	cluster	mode.	In	case	of	an	error	the		error		attribute	is	set	to		true	.

Return	Codes

200:	is	returned	when	everything	went	well.

403:	server	is	not	a	coordinator	or	method	was	not	GET.

Return	list	of	all	endpoints

This	API	call	returns	the	list	of	all	endpoints	(single	server).

	GET	/_api/endpoint	

THIS	API	IS	DEPRECATED

Returns	an	array	of	all	configured	endpoints	the	server	is	listening	on.

The	result	is	a	JSON	array	of	JSON	objects,	each	with	`"entrypoint"'	as	the	only	attribute,	and	with	the	value	being	a	string	describing
the	endpoint.

Note:	retrieving	the	array	of	all	endpoints	is	allowed	in	the	system	database	only.	Calling	this	action	in	any	other	database	will	make	the
server	return	an	error.

Return	Codes

200:	is	returned	when	the	array	of	endpoints	can	be	determined	successfully.

400:	is	returned	if	the	action	is	not	carried	out	in	the	system	database.

405:	The	server	will	respond	with	HTTP	405	if	an	unsupported	HTTP	method	is	used.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/endpoint

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Endpoints

209

[

		{	

				"endpoint"	:	"http://127.0.0.1:14936"	

		}	

]

Endpoints

210

Foxx	HTTP	API
These	routes	allow	manipulating	the	Foxx	services	installed	in	a	database.

For	more	information	on	Foxx	and	its	JavaScript	APIs	see	the	Foxx	chapter	of	the	main	documentation.

Foxx	Services

211

Foxx	Service	Management
This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	managing	Foxx	services.

List	installed	services

list	installed	services

	GET	/_api/foxx	

Fetches	a	list	of	services	installed	in	the	current	database.

Returns	a	list	of	objects	with	the	following	attributes:

mount:	the	mount	path	of	the	service
development:	true	if	the	service	is	running	in	development	mode
legacy:	true	if	the	service	is	running	in	2.8	legacy	compatibility	mode
provides:	the	service	manifest's	provides	value	or	an	empty	object

Additionally	the	object	may	contain	the	following	attributes	if	they	have	been	set	on	the	manifest:

name:	a	string	identifying	the	service	type
version:	a	semver-compatible	version	string

Query	Parameters

excludeSystem	(optional):	Whether	or	not	system	services	should	be	excluded	from	the	result.

Return	Codes

200:	Returned	if	the	request	was	successful.

Service	description

service	metadata

	GET	/_api/foxx/service	

Fetches	detailed	information	for	the	service	at	the	given	mount	path.

Returns	an	object	with	the	following	attributes:

mount:	the	mount	path	of	the	service
path:	the	local	file	system	path	of	the	service
development:	true	if	the	service	is	running	in	development	mode
legacy:	true	if	the	service	is	running	in	2.8	legacy	compatibility	mode
manifest:	the	normalized	JSON	manifest	of	the	service

Additionally	the	object	may	contain	the	following	attributes	if	they	have	been	set	on	the	manifest:

name:	a	string	identifying	the	service	type
version:	a	semver-compatible	version	string

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	successful.

400:	Returned	if	the	mount	path	is	unknown.

Install	new	service

Management

212

install	new	service

	POST	/_api/foxx	

Installs	the	given	new	service	at	the	given	mount	path.

The	request	body	can	be	any	of	the	following	formats:

	application/zip	:	a	raw	zip	bundle	containing	a	service
	application/javascript	:	a	standalone	JavaScript	file
	application/json	:	a	service	definition	as	JSON
	multipart/form-data	:	a	service	definition	as	a	multipart	form

A	service	definition	is	an	object	or	form	with	the	following	properties	or	fields:

configuration:	a	JSON	object	describing	configuration	values
dependencies:	a	JSON	object	describing	dependency	settings
source:	a	fully	qualified	URL	or	an	absolute	path	on	the	server's	file	system

When	using	multipart	data,	the	source	field	can	also	alternatively	be	a	file	field	containing	either	a	zip	bundle	or	a	standalone	JavaScript
file.

When	using	a	standalone	JavaScript	file	the	given	file	will	be	executed	to	define	our	service's	HTTP	endpoints.	It	is	the	same	which	would
be	defined	in	the	field		main		of	the	service	manifest.

If	source	is	a	URL,	the	URL	must	be	reachable	from	the	server.	If	source	is	a	file	system	path,	the	path	will	be	resolved	on	the	server.	In
either	case	the	path	or	URL	is	expected	to	resolve	to	a	zip	bundle,	JavaScript	file	or	(in	case	of	a	file	system	path)	directory.

Note	that	when	using	file	system	paths	in	a	cluster	with	multiple	coordinators	the	file	system	path	must	resolve	to	equivalent	files	on
every	coordinator.

Query	Parameters

mount	(required):	Mount	path	the	service	should	be	installed	at.

development	(optional):	Set	to		true		to	enable	development	mode.

setup	(optional):	Set	to		false		to	not	run	the	service's	setup	script.

legacy	(optional):	Set	to		true		to	install	the	service	in	2.8	legacy	compatibility	mode.

Return	Codes

201:	Returned	if	the	request	was	successful.

Uninstall	service

uninstall	service

	DELETE	/_api/foxx/service	

Removes	the	service	at	the	given	mount	path	from	the	database	and	file	system.

Returns	an	empty	response	on	success.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

teardown	(optional):	Set	to		false		to	not	run	the	service's	teardown	script.

Return	Codes

204:	Returned	if	the	request	was	successful.

Replace	service

replace	a	service

	PUT	/_api/foxx/service	

Management

213

Removes	the	service	at	the	given	mount	path	from	the	database	and	file	system.	Then	installs	the	given	new	service	at	the	same	mount
path.

This	is	a	slightly	safer	equivalent	to	performing	an	uninstall	of	the	old	service	followed	by	installing	the	new	service.	The	new	service's
main	and	script	files	(if	any)	will	be	checked	for	basic	syntax	errors	before	the	old	service	is	removed.

The	request	body	can	be	any	of	the	following	formats:

	application/zip	:	a	raw	zip	bundle	containing	a	service
	application/javascript	:	a	standalone	JavaScript	file
	application/json	:	a	service	definition	as	JSON
	multipart/form-data	:	a	service	definition	as	a	multipart	form

A	service	definition	is	an	object	or	form	with	the	following	properties	or	fields:

configuration:	a	JSON	object	describing	configuration	values
dependencies:	a	JSON	object	describing	dependency	settings
source:	a	fully	qualified	URL	or	an	absolute	path	on	the	server's	file	system

When	using	multipart	data,	the	source	field	can	also	alternatively	be	a	file	field	containing	either	a	zip	bundle	or	a	standalone	JavaScript
file.

When	using	a	standalone	JavaScript	file	the	given	file	will	be	executed	to	define	our	service's	HTTP	endpoints.	It	is	the	same	which	would
be	defined	in	the	field		main		of	the	service	manifest.

If	source	is	a	URL,	the	URL	must	be	reachable	from	the	server.	If	source	is	a	file	system	path,	the	path	will	be	resolved	on	the	server.	In
either	case	the	path	or	URL	is	expected	to	resolve	to	a	zip	bundle,	JavaScript	file	or	(in	case	of	a	file	system	path)	directory.

Note	that	when	using	file	system	paths	in	a	cluster	with	multiple	coordinators	the	file	system	path	must	resolve	to	equivalent	files	on
every	coordinator.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

teardown	(optional):	Set	to		false		to	not	run	the	old	service's	teardown	script.

setup	(optional):	Set	to		false		to	not	run	the	new	service's	setup	script.

legacy	(optional):	Set	to		true		to	install	the	new	service	in	2.8	legacy	compatibility	mode.

force	(optional):	Set	to		true		to	force	service	install	even	if	no	service	is	installed	under	given	mount.

Return	Codes

200:	Returned	if	the	request	was	successful.

Upgrade	service

upgrade	a	service

	PATCH	/_api/foxx/service	

Installs	the	given	new	service	on	top	of	the	service	currently	installed	at	the	given	mount	path.	This	is	only	recommended	for	switching
between	different	versions	of	the	same	service.

Unlike	replacing	a	service,	upgrading	a	service	retains	the	old	service's	configuration	and	dependencies	(if	any)	and	should	therefore	only
be	used	to	migrate	an	existing	service	to	a	newer	or	equivalent	service.

The	request	body	can	be	any	of	the	following	formats:

	application/zip	:	a	raw	zip	bundle	containing	a	service
	application/javascript	:	a	standalone	JavaScript	file
	application/json	:	a	service	definition	as	JSON
	multipart/form-data	:	a	service	definition	as	a	multipart	form

A	service	definition	is	an	object	or	form	with	the	following	properties	or	fields:

Management

214

configuration:	a	JSON	object	describing	configuration	values
dependencies:	a	JSON	object	describing	dependency	settings
source:	a	fully	qualified	URL	or	an	absolute	path	on	the	server's	file	system

When	using	multipart	data,	the	source	field	can	also	alternatively	be	a	file	field	containing	either	a	zip	bundle	or	a	standalone	JavaScript
file.

When	using	a	standalone	JavaScript	file	the	given	file	will	be	executed	to	define	our	service's	HTTP	endpoints.	It	is	the	same	which	would
be	defined	in	the	field		main		of	the	service	manifest.

If	source	is	a	URL,	the	URL	must	be	reachable	from	the	server.	If	source	is	a	file	system	path,	the	path	will	be	resolved	on	the	server.	In
either	case	the	path	or	URL	is	expected	to	resolve	to	a	zip	bundle,	JavaScript	file	or	(in	case	of	a	file	system	path)	directory.

Note	that	when	using	file	system	paths	in	a	cluster	with	multiple	coordinators	the	file	system	path	must	resolve	to	equivalent	files	on
every	coordinator.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

teardown	(optional):	Set	to		true		to	run	the	old	service's	teardown	script.

setup	(optional):	Set	to		false		to	not	run	the	new	service's	setup	script.

legacy	(optional):	Set	to		true		to	install	the	new	service	in	2.8	legacy	compatibility	mode.

Return	Codes

200:	Returned	if	the	request	was	successful.

Management

215

Foxx	Service	configuration	/	dependencies
This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	managing	Foxx	services	configuration	and	dependencies.

Get	configuration	options

get	configuration	options

	GET	/_api/foxx/configuration	

Fetches	the	current	configuration	for	the	service	at	the	given	mount	path.

Returns	an	object	mapping	the	configuration	option	names	to	their	definitions	including	a	human-friendly	title	and	the	current	value	(if
any).

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Update	configuration	options

update	configuration	options

	PATCH	/_api/foxx/configuration	

Replaces	the	given	service's	configuration.

Returns	an	object	mapping	all	configuration	option	names	to	their	new	values.

Request	Body	(required)

A	JSON	object	mapping	configuration	option	names	to	their	new	values.	Any	omitted	options	will	be	ignored.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

200:	Returned	if	the	request	was	sucessful.

Replace	configuration	options

replace	configuration	options

	PUT	/_api/foxx/configuration	

Replaces	the	given	service's	configuration	completely.

Returns	an	object	mapping	all	configuration	option	names	to	their	new	values.

Request	Body	(required)

A	JSON	object	mapping	configuration	option	names	to	their	new	values.	Any	omitted	options	will	be	reset	to	their	default	values	or
marked	as	unconfigured.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

200:	Returned	if	the	request	was	sucessful.

Get	dependency	options

get	dependency	options

Configuration

216

	GET	/_api/foxx/dependencies	

Fetches	the	current	dependencies	for	service	at	the	given	mount	path.

Returns	an	object	mapping	the	dependency	names	to	their	definitions	including	a	human-friendly	title	and	the	current	mount	path	(if
any).

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Update	dependencies	options

update	dependencies	options

	PATCH	/_api/foxx/dependencies	

Replaces	the	given	service's	dependencies.

Returns	an	object	mapping	all	dependency	names	to	their	new	mount	paths.

Request	Body	(required)

A	JSON	object	mapping	dependency	names	to	their	new	mount	paths.	Any	omitted	dependencies	will	be	ignored.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

200:	Returned	if	the	request	was	sucessful.

Replace	dependencies	options

replace	dependencies	options

	PUT	/_api/foxx/dependencies	

Replaces	the	given	service's	dependencies	completely.

Returns	an	object	mapping	all	dependency	names	to	their	new	mount	paths.

Request	Body	(required)

A	JSON	object	mapping	dependency	names	to	their	new	mount	paths.	Any	omitted	dependencies	will	be	disabled.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

200:	Returned	if	the	request	was	sucessful.

Configuration

217

Foxx	Service	Miscellaneous

List	service	scripts

list	service	scripts

	GET	/_api/foxx/scripts	

Fetches	a	list	of	the	scripts	defined	by	the	service.

Returns	an	object	mapping	the	raw	script	names	to	human-friendly	names.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Run	service	script

run	service	script

	POST	/_api/foxx/scripts/{name}	

Runs	the	given	script	for	the	service	at	the	given	mount	path.

Returns	the	exports	of	the	script,	if	any.

Request	Body	(optional)

An	arbitrary	JSON	value	that	will	be	parsed	and	passed	to	the	script	as	its	first	argument.

Query	Parameters

name	(required):	Name	of	the	script	to	run.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Run	service	tests

run	service	tests

	POST	/_api/foxx/tests	

Runs	the	tests	for	the	service	at	the	given	mount	path	and	returns	the	results.

Supported	test	reporters	are:

default:	a	simple	list	of	test	cases
suite:	an	object	of	test	cases	nested	in	suites
stream:	a	raw	stream	of	test	results
xunit:	an	XUnit/JUnit	compatible	structure
tap:	a	raw	TAP	compatible	stream

The	Accept	request	header	can	be	used	to	further	control	the	response	format:

When	using	the	stream	reporter		application/x-ldjson		will	result	in	the	response	body	being	formatted	as	a	newline-delimited	JSON
stream.

When	using	the	tap	reporter		text/plain		or		text/*		will	result	in	the	response	body	being	formatted	as	a	plain	text	TAP	report.

Miscellaneous

218

When	using	the	xunit	reporter		application/xml		or		text/xml		will	result	in	the	response	body	being	formatted	as	XML	instead	of
JSONML.

Otherwise	the	response	body	will	be	formatted	as	non-prettyprinted	JSON.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

reporter	(optional):	Test	reporter	to	use.

idiomatic	(optional):	Use	the	matching	format	for	the	reporter,	regardless	of	the	Accept	header.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Enable	development	mode

enable	development	mode

	POST	/_api/foxx/development	

Puts	the	service	into	development	mode.

While	the	service	is	running	in	development	mode	the	service	will	be	reloaded	from	the	filesystem	and	its	setup	script	(if	any)	will	be	re-
executed	every	time	the	service	handles	a	request.

When	running	ArangoDB	in	a	cluster	with	multiple	coordinators	note	that	changes	to	the	filesystem	on	one	coordinator	will	not	be
reflected	across	the	other	coordinators.	This	means	you	should	treat	your	coordinators	as	inconsistent	as	long	as	any	service	is	running	in
development	mode.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Disable	development	mode

disable	development	mode

	DELETE	/_api/foxx/development	

Puts	the	service	at	the	given	mount	path	into	production	mode.

When	running	ArangoDB	in	a	cluster	with	multiple	coordinators	this	will	replace	the	service	on	all	other	coordinators	with	the	version	on
this	coordinator.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Service	README

service	README

	GET	/_api/foxx/readme	

Fetches	the	service's	README	or	README.md	file's	contents	if	any.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Miscellaneous

219

Return	Codes

200:	Returned	if	the	request	was	sucessful.

204:	Returned	if	no	README	file	was	found.

Swagger	description

swagger	description

	GET	/_api/foxx/swagger	

Fetches	the	Swagger	API	description	for	the	service	at	the	given	mount	path.

The	response	body	will	be	an	OpenAPI	2.0	compatible	JSON	description	of	the	service	API.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

Download	service	bundle

download	service	bundle

	POST	/_api/foxx/download	

Downloads	a	zip	bundle	of	the	service	directory.

When	development	mode	is	enabled,	this	always	creates	a	new	bundle.

Otherwise	the	bundle	will	represent	the	version	of	a	service	that	is	installed	on	that	ArangoDB	instance.

Query	Parameters

mount	(required):	Mount	path	of	the	installed	service.

Return	Codes

200:	Returned	if	the	request	was	sucessful.

400:	Returned	if	the	mount	path	is	unknown.

Commit	local	service	state

commit	local	service	state

	POST	/_api/foxx/commit	

Commits	the	local	service	state	of	the	coordinator	to	the	database.

This	can	be	used	to	resolve	service	conflicts	between	coordinators	that	can	not	be	fixed	automatically	due	to	missing	data.

Query	Parameters

replace	(optional):	Overwrite	existing	service	files	in	database	even	if	they	already	exist.

204:	Returned	if	the	request	was	sucessful.

Miscellaneous

220

HTTP	Interface	for	User	Management
This	is	an	introduction	to	ArangoDB's	HTTP	interface	for	managing	users.

The	interface	provides	a	simple	means	to	add,	update,	and	remove	users.	All	users	managed	through	this	interface	will	be	stored	in	the
system	collection	_users.	You	should	never	manipulate	the	_users	collection	directly.

This	specialized	interface	intentionally	does	not	provide	all	functionality	that	is	available	in	the	regular	document	REST	API.

Please	note	that	user	operations	are	not	included	in	ArangoDB's	replication.

Create	User

Create	a	new	user.

	POST	/_api/user	

A	JSON	object	with	these	properties	is	required:

passwd:	The	user	password	as	a	string.	If	no	password	is	specified,	the	empty	string	will	be	used.	If	you	pass	the	special	value
ARANGODB_DEFAULT_ROOT_PASSWORD,	then	the	password	will	be	set	the	value	stored	in	the	environment	variable
	ARANGODB_DEFAULT_ROOT_PASSWORD	.	This	can	be	used	to	pass	an	instance	variable	into	ArangoDB.	For	example,	the	instance	identifier
from	Amazon.
active:	An	optional	flag	that	specifies	whether	the	user	is	active.	If	not	specified,	this	will	default	to	true
user:	The	name	of	the	user	as	a	string.	This	is	mandatory.
extra:	An	optional	JSON	object	with	arbitrary	extra	data	about	the	user.

Create	a	new	user.	You	need	server	access	level	Administrate	in	order	to	execute	this	REST	call.

Return	Codes

201:	Returned	if	the	user	can	be	added	by	the	server

400:	If	the	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

409:	Returned	if	a	user	with	the	same	name	already	exists.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/user	<<EOF

{	

		"user"	:	"admin@example",	

		"passwd"	:	"secure"	

}

EOF

HTTP/1.1	201	Created

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Set	the	database	access	level

Set	the	database	access	level.

	PUT	/_api/user/{user}/database/{dbname}	

User	Management

221

A	JSON	object	with	these	properties	is	required:

grant:	Use	"rw"	to	set	the	database	access	level	to	Administrate	.	Use	"ro"	to	set	the	database	access	level	to	Access.	Use	"none"	to
set	the	database	access	level	to	No	access.

Sets	the	database	access	levels	for	the	database	dbname	of	user	user.	You	need	the	Administrate	server	access	level	in	order	to	execute	this
REST	call.

Path	Parameters

user	(required):	The	name	of	the	user.

dbname	(required):	The	name	of	the	database.

Return	Codes

200:	Returned	if	the	access	level	was	changed	successfully.

400:	If	the	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/user/admin@myapp/database/_system	<<EOF

{	

		"grant"	:	"rw"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Set	the	collection	access	level

Set	the	collection	access	level.

	PUT	/_api/user/{user}/database/{dbname}/{collection}	

A	JSON	object	with	these	properties	is	required:

grant:	Use	"rw"	to	set	the	collection	level	access	to	Read/Write.	Use	"ro"	to	set	the	collection	level	access	to	Read	Only.	Use	"none"
to	set	the	collection	level	access	to	No	access.

Sets	the	collection	access	level	for	the	collection	in	the	database	dbname	for	user	user.	You	need	the	Administrate	server	access	level	in
order	to	execute	this	REST	call.

Path	Parameters

user	(required):	The	name	of	the	user.

dbname	(required):	The	name	of	the	database.

collection	(required):	The	name	of	the	collection.

Return	Codes

200:	Returned	if	the	access	permissions	were	changed	successfully.

400:	If	the	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request.

User	Management

222

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	

http://localhost:8529/_api/user/admin@myapp/database/_system/reports	<<EOF

{	

		"grant"	:	"rw"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Clear	the	database	access	level

Clear	the	database	access	level,	revert	back	to	the	default	access	level

	DELETE	/_api/user/{user}/database/{dbname}	

Path	Parameters

user	(required):	The	name	of	the	user.

dbname	(required):	The	name	of	the	database.

Clears	the	database	access	level	for	the	database	dbname	of	user	user.	As	consequence	the	default	database	access	level	is	used.	If	there	is
no	defined	default	database	access	level,	it	defaults	to	No	access.	You	need	permission	to	the	_system	database	in	order	to	execute	this
REST	call.

Return	Codes

202:	Returned	if	the	access	permissions	were	changed	successfully.

400:	If	the	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request.

Examples

shell>	curl	-X	DELETE	--dump	-	

http://localhost:8529/_api/user/admin@myapp/database/_system

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

"{\"error\":false,\"code\":202}"

Clear	the	collection	access	level

Clear	the	collection	access	level,	revert	back	to	the	default	access	level

	DELETE	/_api/user/{user}/database/{dbname}/{collection}	

Path	Parameters

user	(required):	The	name	of	the	user.

User	Management

223

dbname	(required):	The	name	of	the	database.

collection	(required):	The	name	of	the	collection.

Clears	the	collection	access	level	for	the	collection	collection	in	the	database	dbname	of	user	user.	As	consequence	the	default	collection
access	level	is	used.	If	there	is	no	defined	default	collection	access	level,	it	defaults	to	No	access.	You	need	permissions	to	the	_system
database	in	order	to	execute	this	REST	call.

Return	Codes

202:	Returned	if	the	access	permissions	were	changed	successfully.

400:	If	there	was	an	error

Examples

shell>	curl	-X	DELETE	--dump	-	

http://localhost:8529/_api/user/admin@myapp/database/_system/reports

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

"{\"error\":false,\"code\":202}"

List	the	accessible	databases	for	a	user

List	the	accessible	databases	for	a	user

	GET	/_api/user/{user}/database/	

Path	Parameters

user	(required):	The	name	of	the	user	for	which	you	want	to	query	the	databases.

Query	Parameters

full	(optional):	Return	the	full	set	of	access	levels	for	all	databases	and	all	collections.

Fetch	the	list	of	databases	available	to	the	specified	user.	You	need	Administrate	for	the	server	access	level	in	order	to	execute	this	REST
call.

The	call	will	return	a	JSON	object	with	the	per-database	access	privileges	for	the	specified	user.	The	result	object	will	contain	the
databases	names	as	object	keys,	and	the	associated	privileges	for	the	database	as	values.

In	case	you	specified	full,	the	result	will	contain	the	permissions	for	the	databases	as	well	as	the	permissions	for	the	collections.

Return	Codes

200:	Returned	if	the	list	of	available	databases	can	be	returned.

400:	If	the	access	privileges	are	not	right	etc.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/user/anotherAdmin@secapp/database/

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

User	Management

224

show	response	body
With	the	full	response	format:

shell>	curl	--dump	-	http://localhost:8529/_api/user/anotherAdmin@secapp/database?

full=true

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Get	the	database	access	level

Get	specific	database	access	level

	GET	/_api/user/{user}/database/{database}	

Path	Parameters

user	(required):	The	name	of	the	user	for	which	you	want	to	query	the	databases.

database	(required):	The	name	of	the	database	to	query

Fetch	the	database	access	level	for	a	specific	database

Return	Codes

200:	Returned	if	the	acccess	level	can	be	returned

400:	If	the	access	privileges	are	not	right	etc.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Get	the	specific	collection	access	level

Get	the	collection	access	level

	GET	/_api/user/{user}/database/{database}/{collection}	

Path	Parameters

user	(required):	The	name	of	the	user	for	which	you	want	to	query	the	databases.

database	(required):	The	name	of	the	database	to	query

collection	(required):	The	name	of	the	collection

Returns	the	collection	access	level	for	a	specific	collection

Return	Codes

User	Management

225

200:	Returned	if	the	acccess	level	can	be	returned

400:	If	the	access	privileges	are	not	right	etc.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

Examples

shell>	curl	--dump	-	

http://localhost:8529/_api/user/anotherAdmin@secapp/database/_system/_users

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Replace	User

Replace	an	existing	user.

	PUT	/_api/user/{user}	

Path	Parameters

user	(required):	The	name	of	the	user

A	JSON	object	with	these	properties	is	required:

passwd:	The	user	password	as	a	string.	Specifying	a	password	is	mandatory,	but	the	empty	string	is	allowed	for	passwords
active:	An	optional	flag	that	specifies	whether	the	user	is	active.	If	not	specified,	this	will	default	to	true
extra:	An	optional	JSON	object	with	arbitrary	extra	data	about	the	user.

Replaces	the	data	of	an	existing	user.	The	name	of	an	existing	user	must	be	specified	in	user.	You	need	server	access	level	Administrate	in
order	to	execute	this	REST	call.	Additionally,	a	user	can	change	his/her	own	data.

Return	Codes

200:	Is	returned	if	the	user	data	can	be	replaced	by	the	server.

400:	The	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

404:	The	specified	user	does	not	exist

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/user/admin@myapp	

<<EOF

{	

		"passwd"	:	"secure"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

User	Management

226

show	response	body

Modify	User

Modify	attributes	of	an	existing	user

	PATCH	/_api/user/{user}	

Path	Parameters

user	(required):	The	name	of	the	user

A	JSON	object	with	these	properties	is	required:

passwd:	The	user	password	as	a	string.	Specifying	a	password	is	mandatory,	but	the	empty	string	is	allowed	for	passwords
active:	An	optional	flag	that	specifies	whether	the	user	is	active.	If	not	specified,	this	will	default	to	true
extra:	An	optional	JSON	object	with	arbitrary	extra	data	about	the	user.

Partially	updates	the	data	of	an	existing	user.	The	name	of	an	existing	user	must	be	specified	in	user.	You	need	server	access	level
Administrate	in	order	to	execute	this	REST	call.	Additionally,	a	user	can	change	his/her	own	data.

Return	Codes

200:	Is	returned	if	the	user	data	can	be	replaced	by	the	server.

400:	The	JSON	representation	is	malformed	or	mandatory	data	is	missing	from	the	request.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

404:	The	specified	user	does	not	exist

Examples

shell>	curl	-X	PATCH	--data-binary	@-	--dump	-	http://localhost:8529/_api/user/admin@myapp	

<<EOF

{	

		"passwd"	:	"secure"	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Remove	User

delete	a	user	permanently.

	DELETE	/_api/user/{user}	

Path	Parameters

user	(required):	The	name	of	the	user

Removes	an	existing	user,	identified	by	user.	You	need	Administrate	for	the	server	access	level	in	order	to	execute	this	REST	call.

Return	Codes

202:	Is	returned	if	the	user	was	removed	by	the	server

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

User	Management

227

403:	Returned	if	you	have	No	access	server	access	level.

404:	The	specified	user	does	not	exist

Examples

shell>	curl	-X	DELETE	--data-binary	@-	--dump	-	

http://localhost:8529/_api/user/userToDelete@myapp	<<EOF

{	

}

EOF

HTTP/1.1	202	Accepted

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"error"	:	false,	

		"code"	:	202	

}

Fetch	User

fetch	the	properties	of	a	user.

	GET	/_api/user/{user}	

Path	Parameters

user	(required):	The	name	of	the	user

Fetches	data	about	the	specified	user.	You	can	fetch	information	about	yourself	or	you	need	the	Administrate	server	access	level	in	order
to	execute	this	REST	call.

Return	Codes

200:	The	user	was	found.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

404:	The	user	with	the	specified	name	does	not	exist.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/user/admin@myapp

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

List	available	Users

fetch	the	properties	of	a	user.

	GET	/_api/user/	

Fetches	data	about	all	users.	You	need	the	Administrate	server	access	level	in	order	to	execute	this	REST	call.	Otherwise,	you	will	only
get	information	about	yourself.

User	Management

228

The	call	will	return	a	JSON	object	with	at	least	the	following	attributes	on	success:

user:	The	name	of	the	user	as	a	string.
active:	An	optional	flag	that	specifies	whether	the	user	is	active.
extra:	An	optional	JSON	object	with	arbitrary	extra	data	about	the	user.

Return	Codes

200:	The	users	that	were	found.

401:	Returned	if	you	have	No	access	database	access	level	to	the	_system	database.

403:	Returned	if	you	have	No	access	server	access	level.

Examples

shell>	curl	--dump	-	http://localhost:8529/_api/user

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

User	Management

229

HTTP	tasks	Interface
Following	you	have	ArangoDB's	HTTP	Interface	for	Tasks.

There	are	also	some	examples	provided	for	every	API	action.

Fetch	all	tasks	or	one	task

Retrieves	all	currently	active	server	tasks

	GET	/_api/tasks/	

fetches	all	existing	tasks	on	the	server

200:	The	list	of	tasks

Examples

Fetching	all	tasks

shell>	curl	--dump	-	http://localhost:8529/_api/tasks

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

[

		{	

				"id"	:	"statistics-average-collector",	

				"name"	:	"statistics-average-collector",	

				"created"	:	1528098673.533914,	

				"type"	:	"periodic",	

				"period"	:	900,	

				"offset"	:	20,	

				"command"	:	"(function	(params)	{	require('@arangodb/statistics').historianAverage();	

})(params);",	

				"database"	:	"_system"	

		},	

		{	

				"id"	:	"statistics-collector",	

				"name"	:	"statistics-collector",	

				"created"	:	1528098673.5338154,	

				"type"	:	"periodic",	

				"period"	:	10,	

				"offset"	:	1,	

				"command"	:	"(function	(params)	{	require('@arangodb/statistics').historian();	})

(params);",	

				"database"	:	"_system"	

		},	

		{	

				"id"	:	"statistics-gc",	

				"name"	:	"statistics-gc",	

				"created"	:	1528098673.534004,	

				"type"	:	"periodic",	

				"period"	:	450,	

				"offset"	:	140.173449,	

				"command"	:	"(function	(params)	{	require('@arangodb/statistics').garbageCollector();	

Tasks

230

})(params);",	

				"database"	:	"_system"	

		},	

		{	

				"id"	:	"85",	

				"name"	:	"user-defined	task",	

				"created"	:	1528098663.5900621,	

				"type"	:	"periodic",	

				"period"	:	1,	

				"offset"	:	0.000001,	

				"command"	:	"(function	(params)	{	(function	()	{\n								

require('@arangodb/foxx/queues/manager').manage();\n						})(params)	})(params);",	

				"database"	:	"_system"	

		}	

]

Fetch	one	task	with	id

Retrieves	one	currently	active	server	task

	GET	/_api/tasks/{id}	

id	(required):	The	id	of	the	task	to	fetch.

fetches	one	existing	tasks	on	the	server	specified	by	id

200:	The	requested	task

Examples

Fetching	a	single	task	by	its	id

shell>	curl	--dump	-	http://localhost:8529/_api/tasks/statistics-average-collector

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
trying	to	fetch	a	non-existing	task

shell>	curl	--dump	-	http://localhost:8529/_api/tasks/non-existing-task

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

creates	a	task

creates	a	new	task

	POST	/_api/tasks	

A	JSON	object	with	these	properties	is	required:

params:	The	parameters	to	be	passed	into	command

Tasks

231

offset:	Number	of	seconds	initial	delay
command:	The	JavaScript	code	to	be	executed
name:	The	name	of	the	task
period:	number	of	seconds	between	the	executions

creates	a	new	task	with	a	generated	id

Return	Codes

400:	If	the	post	body	is	not	accurate,	a	HTTP	400	is	returned.

Examples

shell>	curl	-X	POST	--data-binary	@-	--dump	-	http://localhost:8529/_api/tasks/	<<EOF

{	

		"name"	:	"SampleTask",	

		"command"	:	"(function(params)	{	require('@arangodb').print(params);	})(params)",	

		"params"	:	{	

				"foo"	:	"bar",	

				"bar"	:	"foo"	

		},	

		"period"	:	2	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

creates	a	task	with	id

registers	a	new	task	with	a	pre-defined	id

	PUT	/_api/tasks/{id}	

id	(required):	The	id	of	the	task	to	create

A	JSON	object	with	these	properties	is	required:

params:	The	parameters	to	be	passed	into	command
offset:	Number	of	seconds	initial	delay
command:	The	JavaScript	code	to	be	executed
name:	The	name	of	the	task
period:	number	of	seconds	between	the	executions

registers	a	new	task	with	the	specified	id

Return	Codes

400:	If	the	task	id	already	exists	or	the	rest	body	is	not	accurate,	HTTP	400	is	returned.

Examples

shell>	curl	-X	PUT	--data-binary	@-	--dump	-	http://localhost:8529/_api/tasks/sampleTask	

<<EOF

{	

		"id"	:	"SampleTask",	

		"name"	:	"SampleTask",	

		"command"	:	"(function(params)	{	require('@arangodb').print(params);	})(params)",	

Tasks

232

		"params"	:	{	

				"foo"	:	"bar",	

				"bar"	:	"foo"	

		},	

		"period"	:	2	

}

EOF

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

deletes	the	task	with	id

deletes	one	currently	active	server	task

	DELETE	/_api/tasks/{id}	

id	(required):	The	id	of	the	task	to	delete.

Deletes	the	task	identified	by	id	on	the	server.

Return	Codes

404:	If	the	task	id	is	unknown,	then	an	HTTP	404	is	returned.

Examples

trying	to	delete	non	existing	task

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/tasks/NoTaskWithThatName

HTTP/1.1	404	Not	Found

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Remove	existing	Task

shell>	curl	-X	DELETE	--dump	-	http://localhost:8529/_api/tasks/SampleTask

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

{	

		"error"	:	false,	

		"code"	:	200	

}

Tasks

233

HTTP	Interface	for	Agency	feature

Configuration

At	all	times,	i.e.	regardless	of	the	state	of	the	agents	and	the	current	health	of	the	RAFT	consensus,	one	can	invoke	the	configuration	API:

curl	http://$SERVER:$PORT/_api/agency/config

Here,	and	in	all	subsequent	calls,	we	assume	that		$SERVER		is	replaced	by	the	server	name	and		$PORT		is	replaced	by	the	port	number.
We	use		curl		throughout	for	the	examples,	but	any	client	library	performing	HTTP	requests	should	do.	The	output	might	look
somewhat	like	this

{

		"term":	1,

		"leaderId":	"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",

		"lastCommitted":	1,

		"lastAcked":	{

				"ac129027-b440-4c4f-84e9-75c042942171":	0.21,

				"c54dbb8a-723d-4c82-98de-8c841a14a112":	0.21,

				"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98":	0

		},

		"configuration":	{

				"pool":	{

						"ac129027-b440-4c4f-84e9-75c042942171":	"tcp://localhost:8531",

						"c54dbb8a-723d-4c82-98de-8c841a14a112":	"tcp://localhost:8530",

						"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98":	"tcp://localhost:8529"

				},

				"active":	[

						"ac129027-b440-4c4f-84e9-75c042942171",

						"c54dbb8a-723d-4c82-98de-8c841a14a112",

						"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98"

],

				"id":	"f5d11cde-8468-4fd2-8747-b4ef5c7dfa98",

				"agency	size":	3,

				"pool	size":	3,

				"endpoint":	"tcp://localhost:8529",

				"min	ping":	0.5,

				"max	ping":	2.5,

				"supervision":	false,

				"supervision	frequency":	5,

				"compaction	step	size":	1000,

				"supervision	grace	period":	120

		}

}

This	is	the	actual	output	of	a	healthy	agency.	The	configuration	of	the	agency	is	found	in	the		configuration		section	as	you	might	have
guessed.	It	is	populated	by	static	information	on	the	startup	parameters	like		agency	size	,	the	once	generated		unique	id		etc.	It	holds
information	on	the	invariants	of	the	RAFT	algorithm	and	data	compaction.

The	remaining	data	reflect	the	variant	entities	in	RAFT,	as		term		and		leaderId	,	also	some	debug	information	on	how	long	the	last
leadership	vote	was	received	from	any	particular	agency	member.	Low	term	numbers	on	a	healthy	network	are	an	indication	of	good
operation	environemnt,	while	often	increasing	term	numbers	indicate,	that	the	network	environemnt	and	stability	suggest	to	raise	the
RAFT	parameters		min	ping		and	'max	ping'	accordingly.

Key-Value	store	APIs

Generally,	all	document	IO	to	and	from	the	key-value	store	consists	of	JSON	arrays.	The	outer	Array	is	an	envelope	for	multiple	read	or
write	transactions.	The	results	are	arrays	are	an	envelope	around	the	results	corresponding	to	the	order	of	the	incoming	transactions.

Consider	the	following	write	operation	into	a	prestine	agency:

curl	-L	http://$SERVER:$PORT/_api/agency/write	-d	'[[{"a":{"op":"set","new":{"b":{"c":[1,2,3]},"e":12}},"d":{"op":"set","new":f

alse}}]]'

Agency

234

[{results:[1]}]

And	the	subsequent	read	operation

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/"]]'

[

		{

				"a":	{

						"b":	{

								"c":	[1,2,3]

						},

						"e":	12

				},

				"d":	false

		}

]

In	the	first	step	we	commited	a	single	transaction	that	commits	the	JSON	document	inside	the	inner	transaction	array	to	the	agency.	The
result	is		[1]	,	which	is	the	replicated	log	index.	Repeated	invocation	will	yield	growing	log	numbers	2,	3,	4,	etc.

The	read	access	is	a	complete	access	to	the	key-value	store	indicated	by	access	to	it's	root	element	and	returns	the	result	as	an	array
corresponding	to	the	outermost	array	in	the	read	transaction.

Let's	dig	in	some	deeper.

Read	API

Let's	start	with	the	above	initialised	key-value	store	in	the	following.	Let	us	visit	the	following	read	operations:

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/a/b"]]'

[

		{

				"a":	{

						"b":	{

								"c":	[1,2,3]

						}

				}

		}

]

And

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/a/b/c"]]'

[

		{

				"a":	{

						"b":	{

								"c":	[1,2,3]

						}

				}

		}

]

Note	that	the	above	results	are	identical,	meaning	that	results	obtained	from	the	agencyare	always	return	with	full	path.

The	second	outer	array	brackets	in	read	operations	correspond	to	transactions,	meaning	that	the	result	is	guaranteed	to	have	been	acquired
without	a	write	transaction	in	between:

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/a/e"],["/d","/a/b"]]'

Agency

235

[

		{

				"a":	{

						"e":	12

				}

		},

		{

				"a":	{

						"b":	{

								"c":	[1,2,3

]

						}

				},

				"d":	false

		}

]

While	the	first	transaction	consists	of	a	single	read	access	to	the	key-value-store	thus	strechting	the	meaning	of	the	word	transaction,	the
second	bracket	actually	hold	two	disjunct	read	accesses,	which	have	been	joined	within	zero-time,	i.e.	without	a	write	access	in	between.
That	is	to	say	that		"/d"		cannot	have	changed	before		"/a/b"		had	been	acquired.

Let's	try	to	fetch	a	value	from	the	key-value-store,	which	does	not	exist:

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/a/b/d"]]'

[

		{

				"a":	{

						"b":	{}

				}

		}

]

The	result	returns	the	cross	section	of	the	requested	path	and	the	key-value-store	contents.		"/a/b"		exists,	but	there	is	no	key
	"/a/b/d"	.	Thus	the	following	transaction	will	yield:

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/a/b/d","/d"]]'

[

		{

				"a":	{

						"b":	{}

				},

				"d":	false

		}

]

And	this	last	read	operation	should	return:

curl	-L	http://$SERVER:$PORT/_api/agency/read	-d	'[["/a/b/c"],["/a/b/d"],["/a/x/y"],["/y"],["/a/b","/a/x"]]'

[

		{"a":{"b":{"c":[1,2,3]}}},

		{"a":{"b":{}}},

		{"a":{}},

		{},

		{"a":{"b":{"c":[1,2,3]}}}

]

Write	API

Agency

236

The	write	API	must	obviously	be	more	versatile	and	needs	a	more	detailed	appreciation.	Write	operations	are	arrays	of	transactions	with
preconditions,	i.e.		[[U,P]]	,	where	the	system	tries	to	apply	all	updates	in	the	outer	array	in	turn,	rejecting	those	whose	precondition	is
not	fulfilled	by	the	current	state.	It	is	guaranteed	that	the	transactions	in	the	write	request	are	sequenced	adjacent	to	each	other	(with	no
intervention	from	other	write	requests).	Only	the	ones	with	failed	preconditions	are	left	out.

For		P	,	the	value	of	a	key	is	an	object	with	attributes		"old"	,		"oldNot"	,		"oldEmpty"		or		"isArray"	.	With		"old"		one	can	specify	a
JSON	value	that	has	to	be	present	for	the	condition	to	be	fulfilled.	With		"oldNot"		one	may	check	for	a	value	to	not	be	equal	to	the	test.
While	with		"oldEmpty"	,	which	can	take	a	boolean	value,	one	can	specify	that	the	key	value	needs	to	be	not	set		true		or	set	to	an
arbitrary	value		false	.	With		"isArray"		one	can	specify	that	the	value	must	be	an	array.	As	a	shortcut,		"old"		values	of	scalar	or	array
type	may	be	stored	directly	in	the	attribute.	Examples:

{	"/a/b/c":	{	"old":	[1,2,3]	}}

is	a	precondition	specifying	that	the	previous	value	of	the	key		"/a/b/c"		key	must	be		[1,2,3]	.	If	and	only	if	the	value	of	the
precondition	is	not	an	object	we	provide	a	notation,	where	the	keywork		old		may	be	omitted.	Thus,	the	above	check	may	be	shortcut	as

{	"/a/b/c":	[1,	2,	3]	}

Consider	the	agency	in	initialised	as	above	let's	review	the	responses	from	the	agency	as	follows:

curl	-L	http://$SERVER:$PORT/_api/agency/write	-d	'[[{"/a/b/c":{"op":"set","new":[1,2,3,4]},"/a/b/pi":{"op":"set","new":"some	t

ext"}},{"/a/b/c":{"old":[1,2,3]}}]]'

{

		"results":	[19]

}

The	condition	is	fulfilled	in	the	first	run	and	would	be	wrong	in	a	second	returning

{

		"results":	[0]

}

	0		as	a	result	means	that	the	precondition	failed	and	no	"real"	log	number	was	returned.

{	"/a/e":	{	"oldEmpty":	false	}	}

means	that	the	value	of	the	key		"a/e"		must	be	set	(to	something,	which	can	be		null	!).	The	condition

{	"/a/e":	{	"oldEmpty":	true	}	}

means	that	the	value	of	the	key		"a/e"		must	be	unset.	The	condition

{	"/a/b/c":	{	"isArray":	true	}	}

means	that	the	value	of	the	key		"a/b/c"		must	be	an	array.

The	update	value	U	is	an	object,	the	attribute	names	are	again	key	strings	and	the	values	are	objects	with	optional	attributes		"new"	,
	"op"		and		"ttl"	.	They	have	the	following	meaning:

	"op"		determines	the	operation,	possible	values	are		"set"		(the	default,	if	left	out),		"delete"	,		"increment"	,		"decrement"	,		"push"	,
	"pop"	,		"shift"		or		"prepend"	

	"new"		is	the	new	value,	can	be	omitted	for	the		"delete"		operation	and	for		"increment"		and		"decrement"	,	where		1		is	implied

	"ttl"	,	if	present,	the	new	value	that	is	being	set	gets	a	time	to	live	in	seconds,	given	by	a	numeric	value	in	this	attribute.	It	is	only
guaranteed	that	the	actual	removal	of	the	value	is	done	according	to	the	system	clock,	so	up	to	clock	skew	between	servers.	The	removal
is	done	by	an	additional	write	transaction	that	is	automatically	generated	between	the	regular	writes.

Agency

237

Additional	rule:	If	none	of		"new"		and		"op"		is	set	or	the	value	is	not	even	an	object,	then	this	is	to	be	interpreted	as	if	it	were

{	"op":	"set",	"new":	<VALUE>	}

which	amounts	to	setting	the	value	with	no	precondition.

Examples:

{	"/a":	{	"op":	"set",	"new":	12	}	}

sets	the	value	of	the	key		"/a"		to		12	.	The	same	could	have	been	achieved	by

{	"/a":	12	}

or	by

{	"/a":	{	"new":	12}	}

The	operation

{	"/a/b":	{	"new":	{	"c":	[1,2,3,4]	}	}	}

sets	the	key		"/a/b"		to		{"c":	[1,2,3,4]}	.	Note	that	in	the	above	example	this	is	the	same	as	setting	the	value	of		"/a/b/c"		to
	[1,2,3,4]	.	The	difference	is,	that	if		a/b		had	other	sub	attributes,	then	this	transaction	would	delete	all	these	other	attributes	and	make
	"/a/b"		equal	to		{"c":	[1,2,3,4]}	,	whereas	setting		"/a/b/c"		to		[1,2,3,4]		would	retain	all	attributes	other	than		"c"		in		"/a/b"	.

Here	are	some	more	examples	for	full	transactions	(update/precondition	pairs).	The	transaction

[{	"/a/b":	{	"new":	{	"c":	[1,2,3,4]	}	}	},

		{	"/a/b":	{	"old":	{	"c":	[1,2,3]	}	}	}]

sets	the	key		"/a/b"		to		{"c":[1,2,3,4]}		if	and	only	if	it	was		{"c":[1,2,3]}		before.	Note	that	this	fails	if		"/a/b"		had	other
attributes	than		"c"	.	The	transaction

[{	"/x":	{	"op":	"delete"	}	},

		{	"/x":	{	"old":	false	}	}]

clears	the	value	of	the	key		"/x"		if	this	old	value	was	false.

[{	"/y":	{	"new":	13	},

		{	"/y":	{	"oldEmpty":	true	}	}	}

sets	the	value	of		"/y"		to		13	,	but	only,	if	it	was	unset	before.

[{	"/z":	{	"op":	"push",	"new":	"Max"	}	}]

appends	the	string		"Max"		to	the	end	of	the	list	stored	in	the		"z"		attribute,	or	creates	an	array		["Max"]		in		"z"		if	it	was	unset	or	not
an	array.

[{	"/u":	{	"op":	"pop"	}	}]

removes	the	last	entry	of	the	array	stored	under		"u"	,	if	the	value	of		"u"		is	not	set	or	not	an	array.

HTTP-headers	for	write	operations

	X-ArangoDB-Agency-Mode		with	possible	values		"waitForCommitted"	,		"waitForSequenced"		and		"noWait"	.

Agency

238

In	the	first	case	the	write	operation	only	returns	when	the	commit	to	the	replicated	log	has	actually	happened.	In	the	second	case	the
write	operation	returns	when	the	write	transactions	that	fulfilled	their	preconditions	have	been	sequenced	and	thus	it	is	known,	which	of
the	write	transactions	in	the	given	array	had	fulfilled	preconditions.	In	both	cases	the	body	is	a	JSON	array	containing	the	indexes	of	the
transactions	in	the	list	that	had	fulfilled	preconditions.

In	the	last	case,		"noWait"	,	the	operation	returns	immediately,	an	empty	body	is	returned.	To	get	any	information	about	the	result	of	the
operation	one	has	to	specify	a	tag	(see	below)	and	ask	about	the	status	later	on.

	X-ArangoDB-Agency-Tag		with	an	arbitrary	UTF-8	string	value.

Observers

External	services	to	the	agency	may	announce	themselves	or	others	to	be	observers	of	arbitrary	existing	or	future	keys	in	the	key-value-
store.	The	agency	must	then	inform	the	observing	service	of	any	changes	to	the	subtree	below	the	observed	key.	The	notification	is	done
by	virtue	of	POST	requests	to	a	required	valid	URL.

In	order	to	observe	any	future	modification	below	say		"/a/b/c"	,	a	observer	is	announced	through	posting	the	below	document	to	the
agency’s	write	REST	handler:

[{	"/a/b/c":	

				{	"op":		"observe",	

						"url":	"http://<host>:<port>/<path>"	

				}

		}]

The	observer	is	notified	of	any	changes	to	that	target	until	such	time	that	it	removes	itself	as	an	observer	of	that	key	through

[{	"/a/b/c":	

				{	"op":		"unobserve",	

						"url":	“http://<host>:<port>/<path>"	}	}]

Note	that	the	last	document	removes	all	observations	from	entities	below		"/a/b/c"	.	In	particular,	issuing

[{	"/":	"unobserve",	"url":	"http://<host>:<port>/<path>"}]

will	result	in	the	removal	of	all	observations	for	URL		"http://<host>:<port>/<path>"	.	The	notifying	POST	requests	are	submitted
immediately	with	any	complete	array	of	changes	to	the	read	db	of	the	leader	of	create,	modify	and	delete	events	accordingly;	The	body

{	"term":	"5",	

		"index":	167,

		"/":	{	

				"/a/b/c"	:	{	"op":	"modify",	"old":	1,	"new":	2	}	},

				"/constants/euler"	:	{"op":	"create",	"new":	2.718281828459046	},

				"/constants/pi":	{	"op":	"delete"	}	}	}

Agency

239

HTTP	Interface	for	Miscellaneous	functions
This	is	an	overview	of	ArangoDB's	HTTP	interface	for	miscellaneous	functions.

Return	server	version

returns	the	server	version	number

	GET	/_api/version	

Query	Parameters

details	(optional):	If	set	to	true,	the	response	will	contain	a	details	attribute	with	additional	information	about	included	components
and	their	versions.	The	attribute	names	and	internals	of	the	details	object	may	vary	depending	on	platform	and	ArangoDB	version.

Returns	the	server	name	and	version	number.	The	response	is	a	JSON	object	with	the	following	attributes:

HTTP	200

A	json	document	with	these	Properties	is	returned:

is	returned	in	all	cases.

version:	the	server	version	string.	The	string	has	the	format	"major.minor.sub".	major	and	minor	will	be	numeric,	and	sub	may
contain	a	number	or	a	textual	version.
details:	an	optional	JSON	object	with	additional	details.	This	is	returned	only	if	the	details	query	parameter	is	set	to	true	in	the
request.
server:	will	always	contain	arango

Return	Codes

200:	is	returned	in	all	cases.

Response	Body

version:	the	server	version	string.	The	string	has	the	format	"major.minor.sub".	major	and	minor	will	be	numeric,	and	sub	may
contain	a	number	or	a	textual	version.
details:	an	optional	JSON	object	with	additional	details.	This	is	returned	only	if	the	details	query	parameter	is	set	to	true	in	the
request.
server:	will	always	contain	arango

Examples

Return	the	version	information

shell>	curl	--dump	-	http://localhost:8529/_api/version

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body
Return	the	version	information	with	details

shell>	curl	--dump	-	http://localhost:8529/_api/version?details=true

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

Miscellaneous	functions

240

show	response	body

Return	server	database	engine	type

returns	the	engine	the	type	the	server	is	running	with

	GET	/_api/engine	

Returns	the	storage	engine	the	server	is	configured	to	use.	The	response	is	a	JSON	object	with	the	following	attributes:

HTTP	200

A	json	document	with	these	Properties	is	returned:

is	returned	in	all	cases.

name:	will	be	mmfiles	or	rocksdb

Return	Codes

200:	is	returned	in	all	cases.

Response	Body

name:	will	be	mmfiles	or	rocksdb

Examples

Return	the	active	storage	engine

shell>	curl	--dump	-	http://localhost:8529/_api/engine

HTTP/1.1	200	OK

content-type:	application/json;	charset=utf-8

x-content-type-options:	nosniff

show	response	body

Flushes	the	write-ahead	log

Sync	the	WAL	to	disk.

	PUT	/_admin/wal/flush	

Query	Parameters

waitForSync	(optional):	Whether	or	not	the	operation	should	block	until	the	not-yet	synchronized	data	in	the	write-ahead	log	was
synchronized	to	disk.

waitForCollector	(optional):	Whether	or	not	the	operation	should	block	until	the	data	in	the	flushed	log	has	been	collected	by	the
write-ahead	log	garbage	collector.	Note	that	setting	this	option	to	true	might	block	for	a	long	time	if	there	are	long-running
transactions	and	the	write-ahead	log	garbage	collector	cannot	finish	garbage	collection.

Flushes	the	write-ahead	log.	By	flushing	the	currently	active	write-ahead	logfile,	the	data	in	it	can	be	transferred	to	collection	journals	and
datafiles.	This	is	useful	to	ensure	that	all	data	for	a	collection	is	present	in	the	collection	journals	and	datafiles,	for	example,	when
dumping	the	data	of	a	collection.

Return	Codes

200:	Is	returned	if	the	operation	succeeds.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Miscellaneous	functions

241

Retrieves	the	configuration	of	the	write-ahead	log

fetch	the	current	configuration.

	GET	/_admin/wal/properties	

Retrieves	the	configuration	of	the	write-ahead	log.	The	result	is	a	JSON	object	with	the	following	attributes:

allowOversizeEntries:	whether	or	not	operations	that	are	bigger	than	a	single	logfile	can	be	executed	and	stored
logfileSize:	the	size	of	each	write-ahead	logfile
historicLogfiles:	the	maximum	number	of	historic	logfiles	to	keep
reserveLogfiles:	the	maximum	number	of	reserve	logfiles	that	ArangoDB	allocates	in	the	background
syncInterval:	the	interval	for	automatic	synchronization	of	not-yet	synchronized	write-ahead	log	data	(in	milliseconds)
throttleWait:	the	maximum	wait	time	that	operations	will	wait	before	they	get	aborted	if	case	of	write-throttling	(in	milliseconds)
throttleWhenPending:	the	number	of	unprocessed	garbage-collection	operations	that,	when	reached,	will	activate	write-throttling.	A
value	of	0	means	that	write-throttling	will	not	be	triggered.

Return	Codes

200:	Is	returned	if	the	operation	succeeds.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Configures	the	write-ahead	log

configure	parameters	of	the	wal

	PUT	/_admin/wal/properties	

Configures	the	behavior	of	the	write-ahead	log.	The	body	of	the	request	must	be	a	JSON	object	with	the	following	attributes:

allowOversizeEntries:	whether	or	not	operations	that	are	bigger	than	a	single	logfile	can	be	executed	and	stored
logfileSize:	the	size	of	each	write-ahead	logfile
historicLogfiles:	the	maximum	number	of	historic	logfiles	to	keep
reserveLogfiles:	the	maximum	number	of	reserve	logfiles	that	ArangoDB	allocates	in	the	background
throttleWait:	the	maximum	wait	time	that	operations	will	wait	before	they	get	aborted	if	case	of	write-throttling	(in	milliseconds)
throttleWhenPending:	the	number	of	unprocessed	garbage-collection	operations	that,	when	reached,	will	activate	write-throttling.	A
value	of	0	means	that	write-throttling	will	not	be	triggered.

Specifying	any	of	the	above	attributes	is	optional.	Not	specified	attributes	will	be	ignored	and	the	configuration	for	them	will	not	be
modified.

Return	Codes

200:	Is	returned	if	the	operation	succeeds.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Returns	information	about	the	currently	running	transactions

returns	information	about	the	currently	running	transactions

	GET	/_admin/wal/transactions	

Returns	information	about	the	currently	running	transactions.	The	result	is	a	JSON	object	with	the	following	attributes:

runningTransactions:	number	of	currently	running	transactions
minLastCollected:	minimum	id	of	the	last	collected	logfile	(at	the	start	of	each	running	transaction).	This	is	null	if	no	transaction	is
running.
minLastSealed:	minimum	id	of	the	last	sealed	logfile	(at	the	start	of	each	running	transaction).	This	is	null	if	no	transaction	is
running.

Return	Codes

200:	Is	returned	if	the	operation	succeeds.

405:	is	returned	when	an	invalid	HTTP	method	is	used.

Miscellaneous	functions

242

Return	system	time

Get	the	current	time	of	the	system

	GET	/_admin/time	

The	call	returns	an	object	with	the	attribute	time.	This	contains	the	current	system	time	as	a	Unix	timestamp	with	microsecond	precision.

Return	Codes

200:	Time	was	returned	successfully.

Return	current	request

Send	back	what	was	sent	in,	headers,	post	body	etc.

	GET	/_admin/echo	

The	call	returns	an	object	with	the	following	attributes:

headers:	object	with	HTTP	headers	received

requestType:	the	HTTP	request	method	(e.g.	GET)

parameters:	object	with	query	parameters	received

Return	Codes

200:	Echo	was	returned	successfully.

Return	the	required	version	of	the	database

returns	the	version	of	the	database.

	GET	/_admin/database/target-version	

Returns	the	database-version	that	this	server	requires.	The	version	is	returned	in	the	version	attribute	of	the	result.

Return	Codes

200:	Is	returned	in	all	cases.

Initiate	shutdown	sequence

initiates	the	shutdown	sequence

	DELETE	/_admin/shutdown	

This	call	initiates	a	clean	shutdown	sequence.	Requires	administrive	privileges

Return	Codes

200:	is	returned	in	all	cases.

Runs	tests	on	server

show	the	available	unittests	on	the	server.

	POST	/_admin/test	

Request	Body	(required)

A	JSON	object	containing	an	attribute	tests	which	lists	the	files	containing	the	test	suites.

Executes	the	specified	tests	on	the	server	and	returns	an	object	with	the	test	results.	The	object	has	an	attribute	"error"	which	states
whether	any	error	occurred.	The	object	also	has	an	attribute	"passed"	which	indicates	which	tests	passed	and	which	did	not.

Return	Codes

200:	is	returned	when	everything	went	well.

Miscellaneous	functions

243

Execute	program

Execute	a	script	on	the	server.

	POST	/_admin/execute	

Request	Body	(required)

The	body	to	be	executed.

Executes	the	javascript	code	in	the	body	on	the	server	as	the	body	of	a	function	with	no	arguments.	If	you	have	a	return	statement	then
the	return	value	you	produce	will	be	returned	as	content	type	application/json.	If	the	parameter	returnAsJSON	is	set	to	true,	the	result
will	be	a	JSON	object	describing	the	return	value	directly,	otherwise	a	string	produced	by	JSON.stringify	will	be	returned.

Note	that	this	API	endpoint	will	only	be	present	if	the	server	was	started	with	the	option		--javascript.allow-admin-execute	true	.

The	default	value	of	this	option	is		false	,	which	disables	the	execution	of	user-defined	code	and	disables	this	API	endpoint	entirely.
This	is	also	the	recommended	setting	for	production.

Return	Codes

200:	is	returned	when	everything	went	well.

Return	status	information

returns	status	information	of	the	server.

	GET	/_admin/status	

Returns	status	information	about	the	server.

This	is	intended	for	manual	use	by	the	support	and	should	never	be	used	for	monitoring	or	automatic	tests.	The	results	are	subject	to
change	without	notice.

The	call	returns	an	object	with	the	following	attributes:

server:	always	arango.

license:	either	community	or	enterprise.

version:	the	server	version	as	string.

mode	:	either	server	or	console.

host:	the	hostname,	see	ServerState.

serverInfo.role:	either	SINGLE,	COORDINATOR,	PRIMARY,	AGENT.

serverInfo.writeOpsEnabled:	boolean,	true	if	writes	are	enabled.

serverInfo.maintenance:	boolean,	true	if	maintenace	mode	is	enabled.

agency.endpoints:	a	list	of	possible	agency	endpoints.

An	agent,	coordinator	or	primary	will	also	have

serverInfo.persistedId:	the	persisted	ide,	e.	g.	"CRDN-e427b441-5087-4a9a-9983-2fb1682f3e2a" .

A	coordinator	or	primary	will	also	have

serverInfo.state:	SERVING

serverInfo.address:	the	address	of	the	server,	e.	g.	tcp://[::1]:8530.

serverInfo.serverId:	the	server	ide,	e.	g.	"CRDN-e427b441-5087-4a9a-9983-2fb1682f3e2a" .

A	coordintor	will	also	have

coordinator.foxxmaster:	the	server	id	of	the	foxx	master.

coordinator.isFoxxmaster:	boolean,	true	if	the	server	is	the	foxx	master.

Miscellaneous	functions

244

An	agent	will	also	have

agent.id:	server	id	of	this	agent.

agent.leaderId:	server	id	of	the	leader.

agent.leading:	boolean,	true	if	leading.

agent.endpoint:	the	endpoint	of	this	agent.

agent.term:	current	term	number.

Return	Codes

200:	Status	information	was	returned	successfully.

Miscellaneous	functions

245

Repair	Jobs

distributeShardsLike

Before	versions	3.2.12	and	3.3.4	there	was	a	bug	in	the	collection	creation	which	could	lead	to	a	violation	of	the	property	that	its	shards
were	distributed	on	the	DBServers	exactly	as	the	prototype	collection	from	the		distributeShardsLike		setting.

Please	read	everything	carefully	before	using	this	API!

There	is	a	job	that	can	restore	this	property	safely.	However,	while	the	job	is	running,

the		replicationFactor		must	not	be	changed	for	any	affected	collection	or	prototype	collection	(i.e.	set	in		distributeShardsLike	,
including	SmartGraphs),
neither	should	shards	be	moved	of	one	of	those	prototypes
and	shutdown	of	DBServers	should	be	avoided	during	the	repairs.	Also	only	one	repair	job	should	run	at	any	given	time.	Failure	to
meet	those	requirements	will	mostly	cause	the	job	to	abort,	but	still	allow	to	restart	it	safely.	However,	changing	the
	replicationFactor		during	repairs	may	leave	it	in	a	state	that	is	not	repairable	without	manual	intervention!

Shutting	down	the	coordinator	which	executes	the	job	will	abort	it,	but	it	can	safely	be	restarted	on	another	coordinator.	However,	there
may	still	be	a	shard	move	ongoing	even	after	the	job	stopped.	If	the	job	is	started	again	before	the	move	is	finished,	repairing	the	affected
collection	will	fail,	but	the	repair	can	be	restarted	safely.

If	there	is	any	affected	collection	which		replicationFactor		is	equal	to	the	total	number	of	DBServers,	the	repairs	might	abort.	In	this
case,	it	is	necessary	to	reduce	the		replicationFactor		by	one	(or	add	a	DBServer).	The	job	will	not	do	that	automatically.

Generally,	the	job	will	abort	if	any	of	its	assumptions	fail,	at	the	start	or	during	the	repairs.	It	can	be	started	again	and	will	resume	from
the	current	state.

Testing	with		GET	/_admin/repairs/distributeShardsLike	

Using		GET		will	not	trigger	any	repairs,	but	only	calculate	and	return	the	operations	necessary	to	repair	the	cluster.	This	way,	you	can
also	check	if	there	is	something	to	repair.

$	wget	-qSO	-	http://localhost:8529/_admin/repair/distributeShardsLike	|	jq	.

		HTTP/1.1	200	OK

		X-Content-Type-Options:	nosniff

		Server:	ArangoDB

		Connection:	Keep-Alive

		Content-Type:	application/json;	charset=utf-8

		Content-Length:	53

{

		"error":	false,

		"code":	200,

		"message":	"Nothing	to	do."

}

In	the	example	above,	all	collections	with		distributeShardsLike		have	their	shards	distributed	correctly.	The	response	if	something	is
broken	looks	like	this:

{

		"error":	false,

		"code":	200,

		"collections":	{

				"_system/someCollection":	{

						"PlannedOperations":	[

								{

										"BeginRepairsOperation":	{

												"database":	"_system",

												"collection":	"someCollection",

												"distributeShardsLike":	"aPrototypeCollection",

												"renameDistributeShardsLike":	true,

												"replicationFactor":	4

										}

Repair	jobs

246

								},

								{

										"MoveShardOperation":	{

												"database":	"_system",

												"collection":	"someCollection",

												"shard":	"s2000109",

												"from":	"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",

												"to":	"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",

												"isLeader":	false

										}

								},

								{

										"MoveShardOperation":	{

												"database":	"_system",

												"collection":	"someCollection",

												"shard":	"s2000109",

												"from":	"PRMR-ee3d7af6-1fbf-4ab7-bfd1-56d0a1c1c9b9",

												"to":	"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",

												"isLeader":	true

										}

								},

								{

										"FixServerOrderOperation":	{

												"database":	"_system",

												"collection":	"someCollection",

												"distributeShardsLike":	"aPrototypeCollection",

												"shard":	"s2000109",

												"distributeShardsLikeShard":	"s2000092",

												"leader":	"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",

												"followers":	[

														"PRMR-99c2ac17-f417-4710-82aa-8350417dd089",

														"PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e",

														"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a"

],

												"distributeShardsLikeFollowers":	[

														"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",

														"PRMR-99c2ac17-f417-4710-82aa-8350417dd089",

														"PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e"

]

										}

								},

								{

										"FinishRepairsOperation":	{

												"database":	"_system",

												"collection":	"someCollection",

												"distributeShardsLike":	"aPrototypeCollection",

												"shards":	[

														{

																"shard":	"s2000109",

																"protoShard":	"s2000092",

																"dbServers":	[

																		"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",

																		"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",

																		"PRMR-99c2ac17-f417-4710-82aa-8350417dd089",

																		"PRMR-3b0b85de-882b-4eb2-bbf2-ef1018bdc81e"

]

														},

														{

																"shard":	"s2000110",

																"protoShard":	"s2000093",

																"dbServers":	[

																		"PRMR-d3e62c96-c3f7-4766-bac6-f3bf8026f59a",

																		"PRMR-ee3d7af6-1fbf-4ab7-bfd1-56d0a1c1c9b9",

																		"PRMR-6b8c84be-1e80-4085-9065-177c6e31a702",

																		"PRMR-99c2ac17-f417-4710-82aa-8350417dd089"

]

														},

[...]

]

										}

								}

],

						"error":	false

				}

		}

}

Repair	jobs

247

If	something	is	to	be	repaired,	the	response	will	have	the	property		collections		with	an	entry		<db>/<collection>		for	each	collection
which	has	to	be	repaired.	Each	collection	also	as	a	separate		error		property	which	will	be		true		iff	an	error	occured	for	this	collection
(and		false		otherwise).	If		error		is		true	,	the	properties		errorNum		and		errorMessage		will	also	be	set,	and	in	some	cases	also
	errorDetails		with	additional	information	on	how	to	handle	a	specific	error.

Repairing	with		POST	/_admin/repairs/distributeShardsLike	

As	this	job	possibly	has	to	move	a	lot	of	data	around,	it	can	take	a	while	depending	on	the	size	of	the	affected	collections.	So	this	should
not	be	called	synchronously,	but	only	via	Async	Results:	i.e.,	set	the	header		x-arango-async:	store		to	put	the	job	into	background	and
get	its	results	later.	Otherwise	the	request	will	most	probably	result	in	a	timeout	and	the	response	will	be	lost!	The	job	will	still	continue
unless	the	coordinator	is	stopped,	but	there	is	no	way	to	find	out	if	it	is	still	running,	or	get	success	or	error	information	afterwards.

Starting	the	job	in	background	can	be	done	like	so:

$	wget	--method=POST	--header='x-arango-async:	store'	-qSO	-	http://localhost:8529/_admin/repair/distributeShardsLike	

		HTTP/1.1	202	Accepted

		X-Content-Type-Options:	nosniff

		X-Arango-Async-Id:	152223973119118

		Server:	ArangoDB

		Connection:	Keep-Alive

		Content-Type:	text/plain;	charset=utf-8

		Content-Length:	0

This	line	is	of	notable	importance:

		X-Arango-Async-Id:	152223973119118

as	it	contains	the	job	id	which	can	be	used	to	fetch	the	state	and	results	of	the	job	later.		GET	ting		/_api/job/pending		and
	/_api/job/done		will	list	job	ids	of	jobs	that	are	pending	or	done,	respectively.

This	can	also	be	done	with	the		GET		method	for	testing.

The	job	api	must	be	used	to	fetch	the	state	and	results.	It	will	return	a		204		while	the	job	is	running.	The	actual	response	will	be	returned
only	once,	after	that	the	job	is	deleted	and	the	api	will	return	a		404	.	It	is	therefore	recommended	to	write	the	response	directly	to	a	file
for	later	inspection.	Fetching	the	result	is	done	by	calling		/_api/job		via		PUT	:

$	wget	--method=PUT	-qSO	-	http://localhost:8529/_api/job/152223973119118	|	jq	.

		HTTP/1.1	200	OK

		X-Content-Type-Options:	nosniff

		X-Arango-Async-Id:	152223973119118

		Server:	ArangoDB

		Connection:	Keep-Alive

		Content-Type:	application/json;	charset=utf-8

		Content-Length:	53

{

		"error":	false,

		"code":	200,

		"message":	"Nothing	to	do."

}

The	final	response	will	look	like	the	response	of	the		GET		call.	If	an	error	occured	the	response	should	contain	details	on	how	to	proceed.
If	in	doubt,	ask	as	on	Slack:	https://arangodb.com/community/

Repair	jobs

248

https://arangodb.com/community/

	Introduction
	General HTTP Handling
	HTTP Interface
	Databases
	To-Endpoint
	Management
	Notes on Databases

	Collections
	Creating
	Getting Information
	Modifying

	Documents
	Basics and Terminology
	Working with Documents

	Edges
	Address and Etag
	Working with Edges

	General Graph
	Management
	Vertices
	Edges

	Traversals
	AQL Query Cursors
	Query Results
	Accessing Cursors

	AQL Queries
	AQL Query Cache
	AQL User Functions Management
	Simple Queries
	Async Result Handling
	Bulk Import / Export
	JSON Documents
	Headers & Values
	Batch Requests
	Exporting data

	Indexes
	Working with Indexes
	Hash
	Skiplist
	Persistent
	Geo
	Fulltext

	Transactions
	Replication
	Replication Dump
	Replication Logger
	Replication Applier
	Other Replication Commands

	Sharding
	Monitoring
	Endpoints
	Foxx Services
	Management
	Configuration
	Miscellaneous

	User Management
	Tasks
	Agency
	Miscellaneous functions
	Repair jobs

