
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.5

1.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.7.9

1.7.10

1.7.11

1.7.12

1.7.13

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

Table	of	Contents
Introduction

Tutorial

Basic	CRUD

Matching	documents

Sorting	and	limiting

Joining	together

Graph	traversal

Geospatial	queries

How	to	invoke	AQL

with	Arangosh

with	the	Web	Interface

AQL	Fundamentals

AQL	Syntax

Data	types

Bind	Parameters

Type	and	value	order

Accessing	data	from	collections

Query	Results

Query	Errors

Operators

Data	Queries

High	level	Operations

FOR

RETURN

FILTER

SORT

LIMIT

LET

COLLECT

REMOVE

UPDATE

REPLACE

INSERT

UPSERT

WITH

Functions

Type	cast

String

Numeric

Date

Array

1

1.8.6

1.8.7

1.8.8

1.8.9

1.9

1.9.1

1.9.2

1.9.3

1.10

1.10.1

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

1.11.6

1.11.7

1.11.8

1.12

1.12.1

1.12.2

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

1.14

Object	/	Document

Geo

Fulltext

Miscellaneous

Graphs

Traversals	explained

Traversals

Shortest	Path

Advanced	Features

Array	Operators

Usual	Query	Patterns

Counting

Data-modification	queries

Subqueries

Projections	and	filters

Joins

Grouping

Traversals

Queries	without	collections

User	Functions

Conventions

Registering	Functions

Execution	and	Performance

Query	statistics

Parsing	queries

Explaining	queries

Optimizing	queries

Caching	query	results

Common	Errors

2

Introduction
The	ArangoDB	query	language	(AQL)	can	be	used	to	retrieve	and	modify	data	that	are	stored	in	ArangoDB.

Want	to	learn	AQL	for	the	first	time?	Be	sure	to	check	out	the	Tutorial	before	you	head	off	to	the	in-depth	documentation!

The	general	workflow	when	executing	a	query	is	as	follows:

A	client	application	ships	an	AQL	query	to	the	ArangoDB	server.	The	query	text	contains	everything	ArangoDB	needs	to	compile
the	result	set
ArangoDB	will	parse	the	query,	execute	it	and	compile	the	results.	If	the	query	is	invalid	or	cannot	be	executed,	the	server	will	return
an	error	that	the	client	can	process	and	react	to.	If	the	query	can	be	executed	successfully,	the	server	will	return	the	query	results	(if
any)	to	the	client

AQL	is	mainly	a	declarative	language,	meaning	that	a	query	expresses	what	result	should	be	achieved	but	not	how	it	should	be	achieved.
AQL	aims	to	be	human-readable	and	therefore	uses	keywords	from	the	English	language.	Another	design	goal	of	AQL	was	client
independency,	meaning	that	the	language	and	syntax	are	the	same	for	all	clients,	no	matter	what	programming	language	the	clients	may
use.	Further	design	goals	of	AQL	were	the	support	of	complex	query	patterns	and	the	different	data	models	ArangoDB	offers.

In	its	purpose,	AQL	is	similar	to	the	Structured	Query	Language	(SQL).	AQL	supports	reading	and	modifying	collection	data,	but	it
doesn't	support	data-definition	operations	such	as	creating	and	dropping	databases,	collections	and	indexes.	It	is	a	pure	data	manipulation
language	(DML),	not	a	data	definition	language	(DDL)	or	a	data	control	language	(DCL).

The	syntax	of	AQL	queries	is	different	to	SQL,	even	if	some	keywords	overlap.	Nevertheless,	AQL	should	be	easy	to	understand	for
anyone	with	an	SQL	background.

For	some	example	queries,	please	refer	to	the	chapters	Data	Queries,	Usual	query	patterns	and	Tutorial.

Introduction

3

AQL	tutorial
This	is	an	introduction	to	ArangoDB's	query	language	AQL,	built	around	a	small	dataset	of	characters	from	the	novel	and	fantasy	drama
television	series	Game	of	Thrones	(as	of	season	1).	It	includes	character	traits	in	two	languages,	some	family	relations,	and	last	but	not
least	a	small	set	of	filming	locations,	which	makes	for	an	interesting	mix	of	data	to	work	with.

There	is	no	need	to	import	the	data	before	you	start.	It	is	provided	as	part	of	the	AQL	queries	in	this	tutorial.	You	can	interact	with
ArangoDB	using	its	web	interface	to	manage	collections	and	execute	the	queries.

Chapters

Basic	CRUD
Matching	documents
Sorting	and	limiting
Joining	together
Graph	traversal
Geospatial	queries

Dataset

Characters

The	dataset	features	43	characters	with	their	name,	surname,	age,	alive	status	and	trait	references.	The	surname	and	age	properties	are	not
always	present.	The	column	traits	(resolved)	is	not	part	of	the	actual	data	used	in	this	tutorial,	but	included	for	your	convenience.

Tutorial

4

Traits

There	are	18	unique	traits.	Each	trait	has	a	random	letter	as	document	key.	The	trait	labels	come	in	English	and	German.

Tutorial

5

Locations

This	small	collection	of	8	filming	locations	comes	with	two	attributes,	a	name	and	a	coordinate.	The	coordinates	are	modeled	as	number
arrays,	comprised	of	a	latitude	and	a	longitude	value	each.

Tutorial

6

CRUD
Create	documents
Read	documents
Update	documents
Delete	documents

Create	documents

Before	we	can	insert	documents	with	AQL,	we	need	a	place	to	put	them	in	-	a	collection.	Collections	can	be	managed	via	the	web
interface,	arangosh	or	a	driver.	It	is	not	possible	to	do	so	with	AQL	however.

Click	on	COLLECTIONS	in	the	web	interface,	then	Add	Collection	and	type		Characters		as	name.	Confirm	with	Save.	The	new
collection	should	appear	in	the	list.

Next,	click	on	QUERIES.	To	create	the	first	document	for	collection	with	AQL,	use	the	following	AQL	query,	which	you	can	paste	into
the	query	textbox	and	run	by	clicking	Execute:

Basic	CRUD

7

INSERT	{

				"name":	"Ned",

				"surname":	"Stark",

				"alive":	true,

				"age":	41,

				"traits":	["A","H","C","N","P"]

}	INTO	Characters

The	syntax	is		INSERT	document	INTO	collectionName	.	The	document	is	an	object	like	you	may	know	it	from	JavaScript	or	JSON,	which
is	comprised	of	attribute	key	and	value	pairs.	The	quotes	around	the	attribute	keys	are	optional	in	AQL.	Keys	are	always	character
sequences	(strings),	whereas	attribute	values	can	have	different	types:

null
boolean	(true,	false)
number	(integer	and	floating	point)
string
array
object

Name	and	surname	of	the	character	document	we	inserted	are	both	string	values.	The	alive	state	uses	a	boolean.	Age	is	a	numeric	value.
The	traits	are	an	array	of	strings.	The	entire	document	is	an	object.

Let's	add	a	bunch	of	other	characters	in	a	single	query:

LET	data	=	[

				{	"name":	"Robert",	"surname":	"Baratheon",	"alive":	false,	"traits":	["A","H","C"]	},

				{	"name":	"Jaime",	"surname":	"Lannister",	"alive":	true,	"age":	36,	"traits":	["A","F","B"]	},

				{	"name":	"Catelyn",	"surname":	"Stark",	"alive":	false,	"age":	40,	"traits":	["D","H","C"]	},

				{	"name":	"Cersei",	"surname":	"Lannister",	"alive":	true,	"age":	36,	"traits":	["H","E","F"]	},

				{	"name":	"Daenerys",	"surname":	"Targaryen",	"alive":	true,	"age":	16,	"traits":	["D","H","C"]	},

				{	"name":	"Jorah",	"surname":	"Mormont",	"alive":	false,	"traits":	["A","B","C","F"]	},

				{	"name":	"Petyr",	"surname":	"Baelish",	"alive":	false,	"traits":	["E","G","F"]	},

				{	"name":	"Viserys",	"surname":	"Targaryen",	"alive":	false,	"traits":	["O","L","N"]	},

				{	"name":	"Jon",	"surname":	"Snow",	"alive":	true,	"age":	16,	"traits":	["A","B","C","F"]	},

				{	"name":	"Sansa",	"surname":	"Stark",	"alive":	true,	"age":	13,	"traits":	["D","I","J"]	},

				{	"name":	"Arya",	"surname":	"Stark",	"alive":	true,	"age":	11,	"traits":	["C","K","L"]	},

				{	"name":	"Robb",	"surname":	"Stark",	"alive":	false,	"traits":	["A","B","C","K"]	},

				{	"name":	"Theon",	"surname":	"Greyjoy",	"alive":	true,	"age":	16,	"traits":	["E","R","K"]	},

				{	"name":	"Bran",	"surname":	"Stark",	"alive":	true,	"age":	10,	"traits":	["L","J"]	},

				{	"name":	"Joffrey",	"surname":	"Baratheon",	"alive":	false,	"age":	19,	"traits":	["I","L","O"]	},

				{	"name":	"Sandor",	"surname":	"Clegane",	"alive":	true,	"traits":	["A","P","K","F"]	},

				{	"name":	"Tyrion",	"surname":	"Lannister",	"alive":	true,	"age":	32,	"traits":	["F","K","M","N"]	},

				{	"name":	"Khal",	"surname":	"Drogo",	"alive":	false,	"traits":	["A","C","O","P"]	},

				{	"name":	"Tywin",	"surname":	"Lannister",	"alive":	false,	"traits":	["O","M","H","F"]	},

Basic	CRUD

8

				{	"name":	"Davos",	"surname":	"Seaworth",	"alive":	true,	"age":	49,	"traits":	["C","K","P","F"]	},

				{	"name":	"Samwell",	"surname":	"Tarly",	"alive":	true,	"age":	17,	"traits":	["C","L","I"]	},

				{	"name":	"Stannis",	"surname":	"Baratheon",	"alive":	false,	"traits":	["H","O","P","M"]	},

				{	"name":	"Melisandre",	"alive":	true,	"traits":	["G","E","H"]	},

				{	"name":	"Margaery",	"surname":	"Tyrell",	"alive":	false,	"traits":	["M","D","B"]	},

				{	"name":	"Jeor",	"surname":	"Mormont",	"alive":	false,	"traits":	["C","H","M","P"]	},

				{	"name":	"Bronn",	"alive":	true,	"traits":	["K","E","C"]	},

				{	"name":	"Varys",	"alive":	true,	"traits":	["M","F","N","E"]	},

				{	"name":	"Shae",	"alive":	false,	"traits":	["M","D","G"]	},

				{	"name":	"Talisa",	"surname":	"Maegyr",	"alive":	false,	"traits":	["D","C","B"]	},

				{	"name":	"Gendry",	"alive":	false,	"traits":	["K","C","A"]	},

				{	"name":	"Ygritte",	"alive":	false,	"traits":	["A","P","K"]	},

				{	"name":	"Tormund",	"surname":	"Giantsbane",	"alive":	true,	"traits":	["C","P","A","I"]	},

				{	"name":	"Gilly",	"alive":	true,	"traits":	["L","J"]	},

				{	"name":	"Brienne",	"surname":	"Tarth",	"alive":	true,	"age":	32,	"traits":	["P","C","A","K"]	},

				{	"name":	"Ramsay",	"surname":	"Bolton",	"alive":	true,	"traits":	["E","O","G","A"]	},

				{	"name":	"Ellaria",	"surname":	"Sand",	"alive":	true,	"traits":	["P","O","A","E"]	},

				{	"name":	"Daario",	"surname":	"Naharis",	"alive":	true,	"traits":	["K","P","A"]	},

				{	"name":	"Missandei",	"alive":	true,	"traits":	["D","L","C","M"]	},

				{	"name":	"Tommen",	"surname":	"Baratheon",	"alive":	true,	"traits":	["I","L","B"]	},

				{	"name":	"Jaqen",	"surname":	"H'ghar",	"alive":	true,	"traits":	["H","F","K"]	},

				{	"name":	"Roose",	"surname":	"Bolton",	"alive":	true,	"traits":	["H","E","F","A"]	},

				{	"name":	"The	High	Sparrow",	"alive":	true,	"traits":	["H","M","F","O"]	}

]

FOR	d	IN	data

				INSERT	d	INTO	Characters

The		LET		keyword	defines	a	variable	with	name	data	and	an	array	of	objects	as	value,	so		LET	variableName	=	valueExpression		and	the
expression	being	a	literal	array	definition	like		[{...},	{...},	...]	.

	FOR	variableName	IN	expression		is	used	to	iterate	over	each	element	of	the	data	array.	In	each	loop,	one	element	is	assigned	to	the
variable	d.	This	variable	is	then	used	in	the		INSERT		statement	instead	of	a	literal	object	definition.	What	is	does	is	basically:

INSERT	{

				"name":	"Robert",

				"surname":	"Baratheon",

				"alive":	false,

				"traits":	["A","H","C"]

}	INTO	Characters

INSERT	{

				"name":	"Jaime",

				"surname":	"Lannister",

				"alive":	true,

				"age":	36,

				"traits":	["A","F","B"]

}	INTO	Characters

...

Note:	AQL	does	not	permit	multiple		INSERT		operations	that	target	the	same	collection	in	in	a	single	query.	It	is	allowed	as	body	of	a
	FOR		loop	however,	inserting	multiple	documents	like	we	did	with	above	query.

Read	documents

There	are	a	couple	of	documents	in	the	Characters	collection	by	now.	We	can	retrieve	them	all	using	a		FOR		loop	again.	This	time
however,	we	use	it	to	go	through	all	documents	in	the	collection	instead	of	an	array:

FOR	c	IN	Characters

				RETURN	c

The	syntax	of	the	loop	is		FOR	variableName	IN	collectionName	.	For	each	document	in	the	collection,	c	is	assigned	a	document,	which	is
then	returned	as	per	the	loop	body.	The	query	returns	all	characters	we	previously	stored.

Among	them	should	be	Ned	Stark,	similar	to	this	example:

Basic	CRUD

9

		{

				"_key":	"2861650",

				"_id":	"Characters/2861650",

				"_rev":	"_V1bzsXa---",

				"name":	"Ned",

				"surname":	"Stark",

				"alive":	true,

				"age":	41,

				"traits":	["A","H","C","N","P"]

		},

The	document	features	the	four	attributes	we	stored,	plus	three	more	added	by	the	database	system.	Each	document	needs	a	unique
	_key	,	which	identifies	it	within	a	collection.	The		_id		is	a	computed	property,	a	concatenation	of	the	collection	name,	a	forward	slash
	/		and	the	document	key.	It	uniquely	identies	a	document	within	a	database.		_rev		is	a	revision	ID	managed	by	the	system.

Document	keys	can	be	provided	by	the	user	upon	document	creation,	or	a	unique	value	is	assigned	automatically.	It	can	not	be	changed
later.	All	three	system	attributes	starting	with	an	underscore		_		are	read-only.

We	can	use	either	the	document	key	or	the	document	ID	to	retrieve	a	specific	document	with	the	help	of	an	AQL	function		DOCUMENT()	:

RETURN	DOCUMENT("Characters",	"2861650")

//	---	or	---

RETURN	DOCUMENT("Characters/2861650")

[

		{

				"_key":	"2861650",

				"_id":	"Characters/2861650",

				"_rev":	"_V1bzsXa---",

				"name":	"Ned",

				"surname":	"Stark",

				"alive":	true,

				"age":	41,

				"traits":	["A","H","C","N","P"]

		}

]

Note:	Document	keys	will	be	different	for	you.	Change	the	queries	accordingly.	Here,		"2861650"		is	the	key	for	the	Ned	Stark	document,
and		"2861653"		for	Catelyn	Stark.

The		DOCUMENT()		function	also	allows	to	fetch	multiple	documents	at	once:

RETURN	DOCUMENT("Characters",	["2861650",	"2861653"])

//	---	or	---

RETURN	DOCUMENT(["Characters/2861650",	"Characters/2861653"])

[

		[

				{

						"_key":	"2861650",

						"_id":	"Characters/2861650",

						"_rev":	"_V1bzsXa---",

						"name":	"Ned",

						"surname":	"Stark",

						"alive":	true,

						"age":	41,

						"traits":	["A","H","C","N","P"]

				},

				{

						"_key":	"2861653",

						"_id":	"Characters/2861653",

						"_rev":	"_V1bzsXa--B",

						"name":	"Catelyn",

						"surname":	"Stark",

						"alive":	false,

						"age":	40,

						"traits":	["D","H","C"]

				}

Basic	CRUD

10

]

]

See	the		DOCUMENT()		function	documentation	for	more	details.

Update	documents

According	to	our	Ned	Stark	document,	he	is	alive.	When	we	get	to	know	that	he	died,	we	need	to	change	the		alive		attribute.	Let	us
modify	the	existing	document:

UPDATE	"2861650"	WITH	{	alive:	false	}	IN	Characters

The	syntax	is		UPDATE	documentKey	WITH	object	IN	collectionName	.	It	updates	the	specified	document	with	the	attributes	listed	(or	adds
them	if	they	don't	exist),	but	leaves	the	rest	untouched.	To	replace	the	entire	document	content,	you	may	use		REPLACE		instead	of
	UPDATE	:

REPLACE	"2861650"	WITH	{

				name:	"Ned",

				surname:	"Stark",

				alive:	false,

				age:	41,

				traits:	["A","H","C","N","P"]

}	IN	Characters

This	also	works	in	a	loop,	to	add	a	new	attribute	to	all	documents	for	instance:

FOR	c	IN	Characters

				UPDATE	c	WITH	{	season:	1	}	IN	Characters

A	variable	is	used	instead	of	a	literal	document	key,	to	update	each	document.	The	query	adds	an	attribute		season		to	the	documents'
top-level.	You	can	inspect	the	result	by	re-running	the	query	that	returns	all	documents	in	collection:

FOR	c	IN	Characters

				RETURN	c

[

		[

				{

						"_key":	"2861650",

						"_id":	"Characters/2861650",

						"_rev":	"_V1bzsXa---",

						"name":	"Ned",

						"surname":	"Stark",

						"alive":	false,

						"age":	41,

						"traits":	["A","H","C","N","P"],

						"season":	1

				},

				{

						"_key":	"2861653",

						"_id":	"Characters/2861653",

						"_rev":	"_V1bzsXa--B",

						"name":	"Catelyn",

						"surname":	"Stark",

						"alive":	false,

						"age":	40,

						"traits":	["D","H","C"],

						"season":	1

				},

				{

								...

				}

]

]

Basic	CRUD

11

Delete	documents

To	fully	remove	documents	from	a	collection,	there	is	the		REMOVE		operation.	It	works	similar	to	the	other	modification	operations,	yet
without	a		WITH		clause:

REMOVE	"2861650"	IN	Characters

It	can	also	be	used	in	a	loop	body	to	effectively	truncate	a	collection:

FOR	c	IN	Characters

				REMOVE	c	IN	Characters

Note:	re-run	the	insert	queries	at	the	top	with	all	character	documents	before	you	continue	with	the	next	chapter,	to	have	data	to	work
with	again.

Basic	CRUD

12

Matching	documents
So	far,	we	either	looked	up	a	single	document,	or	returned	the	entire	character	collection.	For	the	lookup,	we	used	the		DOCUMENT()	
function,	which	means	we	can	only	find	documents	by	their	key	or	ID.

To	find	documents	that	fulfill	certain	criteria	more	complex	than	key	equality,	there	is	the		FILTER		operation	in	AQL,	which	enables	us
to	formulate	arbitrary	conditions	for	documents	to	match.

Equality	condition

FOR	c	IN	Characters

				FILTER	c.name	==	"Ned"

				RETURN	c

The	filter	condition	reads	like:	"the	attribute	name	of	a	character	document	must	be	equal	to	the	string	Ned".	If	the	condition	applies,
character	document	gets	returned.	This	works	with	any	attribute	likewise:

FOR	c	IN	Characters

				FILTER	c.surname	==	"Stark"

				RETURN	c

Range	conditions
Strict	equality	is	one	possible	condition	we	can	state.	There	are	plenty	of	other	conditions	we	can	formulate	however.	For	example,	we
could	ask	for	all	young	characters:

FOR	c	IN	Characters

				FILTER	c.age	>=	13

				RETURN	c.name

[

		"Joffrey",

		"Tyrion",

		"Samwell",

		"Ned",

		"Catelyn",

		"Cersei",

		"Jon",

		"Sansa",

		"Brienne",

		"Theon",

		"Davos",

		"Jaime",

		"Daenerys"

]

The	operator		>=		stands	for	greater-or-equal,	so	every	character	of	age	13	or	older	is	returned	(only	their	name	in	the	example).	We	can
return	names	and	age	of	all	characters	younger	than	13	by	changing	the	operator	to	less-than	and	using	the	object	syntax	to	define	a	subset
of	attributes	to	return:

FOR	c	IN	Characters

				FILTER	c.age	<	13

				RETURN	{	name:	c.name,	age:	c.age	}

[

		{	"name":	"Tommen",	"age":	null	},

		{	"name":	"Arya",	"age":	11	},

		{	"name":	"Roose",	"age":	null	},

Matching	documents

13

		...

]

You	may	notice	that	it	returns	name	and	age	of	30	characters,	most	with	an	age	of		null	.	The	reason	for	this	is,	that		null		is	the
fallback	value	if	an	attribute	is	requested	by	the	query,	but	no	such	attribute	exists	in	the	document,	and	the		null		is	compares	to
numbers	as	lower	(see	Type	and	value	order).	Hence,	it	accidentally	fulfills	the	age	criterion		c.age	<	13		(null	<	13).

Multiple	conditions

To	not	let	documents	pass	the	filter	without	an	age	attribute,	we	can	add	a	second	criterion:

FOR	c	IN	Characters

				FILTER	c.age	<	13

				FILTER	c.age	!=	null

				RETURN	{	name:	c.name,	age:	c.age	}

[

		{	"name":	"Arya",	"age":	11	},

		{	"name":	"Bran",	"age":	10	}

]

This	could	equally	be	written	with	a	boolean		AND		operator	as:

FOR	c	IN	Characters

				FILTER	c.age	<	13	AND	c.age	!=	null

				RETURN	{	name:	c.name,	age:	c.age	}

And	the	second	condition	could	as	well	be		c.age	>	null	.

Alternative	conditions

If	you	want	documents	to	fulfill	one	or	another	condition,	possibly	for	different	attributes	as	well,	use		OR	:

FOR	c	IN	Characters

				FILTER	c.name	==	"Jon"	OR	c.name	==	"Joffrey"

				RETURN	{	name:	c.name,	surname:	c.surname	}

[

		{	"name":	"Joffrey",	"surname":	"Baratheon"	},

		{	"name":	"Jon",	"surname":	"Snow"	}

]

See	more	details	about	Filter	operations.

Matching	documents

14

Sorting	and	limiting

Cap	the	result	count

It	may	not	always	be	necessary	to	return	all	documents,	that	a		FOR		loop	would	normally	return.	In	those	cases,	we	can	limit	the	amount
of	documents	with	a		LIMIT()		operation:

FOR	c	IN	Characters

				LIMIT	5

				RETURN	c.name

[

		"Joffrey",

		"Tommen",

		"Tyrion",

		"Roose",

		"Tywin"

]

	LIMIT		is	followed	by	a	number	for	the	maximum	document	count.	There	is	a	second	syntax	however,	which	allows	you	to	skip	a	certain
amount	of	record	and	return	the	next	n	documents:

FOR	c	IN	Characters

				LIMIT	2,	5

				RETURN	c.name

[

		"Tyrion",

		"Roose",

		"Tywin",

		"Samwell",

		"Melisandre"

]

See	how	the	second	query	skipped	the	first	two	names	and	returned	the	next	five	(both	results	feature	Tyrion,	Roose	and	Tywin).

Sort	by	name

The	order	in	which	matching	records	were	returned	by	the	queries	shown	until	here	was	basically	random.	To	return	them	in	a	defined
order,	we	can	add	a		SORT()		operation.	It	can	have	a	big	impact	on	the	result	if	combined	with	a		LIMIT()	,	because	the	result	becomes
predictable	if	you	sort	first.

FOR	c	IN	Characters

				SORT	c.name

				LIMIT	10

				RETURN	c.name

[

		"Arya",

		"Bran",

		"Brienne",

		"Bronn",

		"Catelyn",

		"Cersei",

		"Daario",

		"Daenerys",

		"Davos",

		"Ellaria"

]

Sorting	and	limiting

15

See	how	it	sorted	by	name,	then	returned	the	ten	alphabetically	first	coming	names.	We	can	reverse	the	sort	order	with		DESC		like
descending:

FOR	c	IN	Characters

				SORT	c.name	DESC

				LIMIT	10

				RETURN	c.name

[

		"Ygritte",

		"Viserys",

		"Varys",

		"Tywin",

		"Tyrion",

		"Tormund",

		"Tommen",

		"Theon",

		"The	High	Sparrow",

		"Talisa"

]

The	first	sort	was	ascending,	which	is	the	default	order.	Because	it	is	the	default,	it	is	not	required	to	explicitly	ask	for		ASC		order.

Sort	by	multiple	attributes
Assume	we	want	to	sort	by	surname.	Many	of	the	characters	share	a	surname.	The	result	order	among	characters	with	the	same	surname
is	undefined.	We	can	first	sort	by	surname,	then	name	to	determine	the	order:

FOR	c	IN	Characters

				FILTER	c.surname

				SORT	c.surname,	c.name

				LIMIT	10

				RETURN	{

								surname:	c.surname,

								name:	c.name

				}

[

				{	"surname":	"Baelish",	"name":	"Petyr"	},

				{	"surname":	"Baratheon",	"name":	"Joffrey"	},

				{	"surname":	"Baratheon",	"name":	"Robert"	},

				{	"surname":	"Baratheon",	"name":	"Stannis"	},

				{	"surname":	"Baratheon",	"name":	"Tommen"	},

				{	"surname":	"Bolton",	"name":	"Ramsay"	},

				{	"surname":	"Bolton",	"name":	"Roose"	},

				{	"surname":	"Clegane",	"name":	"Sandor"	},

				{	"surname":	"Drogo",	"name":	"Khal"	},

				{	"surname":	"Giantsbane",	"name":	"Tormund"	}

]

Overall,	the	documents	are	sorted	by	last	name.	If	the	surname	is	the	same	for	two	characters,	the	name	values	are	compared	and	the
result	sorted.

Note	that	a	filter	is	applied	before	sorting,	to	only	let	documents	through,	that	actually	feature	a	surname	value	(many	don't	have	it	and
would	cause		null		values	in	the	result).

Sort	by	age

The	order	can	also	be	determined	by	a	numeric	value,	such	as	the	age:

FOR	c	IN	Characters

				FILTER	c.age

Sorting	and	limiting

16

				SORT	c.age

				LIMIT	10

				RETURN	{

								name:	c.name,

								age:	c.age

				}

[

				{	"name":	"Bran",	"age":	10	},

				{	"name":	"Arya",	"age":	11	},

				{	"name":	"Sansa",	"age":	13	},

				{	"name":	"Jon",	"age":	16	},

				{	"name":	"Theon",	"age":	16	},

				{	"name":	"Daenerys",	"age":	16	},

				{	"name":	"Samwell",	"age":	17	},

				{	"name":	"Joffrey",	"age":	19	},

				{	"name":	"Tyrion",	"age":	32	},

				{	"name":	"Brienne",	"age":	32	}

]

A	filter	is	applied	to	avoid	documents	without	age	attribute.	The	remaining	documents	are	sorted	by	age	in	ascending	order,	and	the	name
and	age	of	the	ten	youngest	characters	are	returned.

See	the	SORT	operation	and	LIMIT	operation	documentation	for	more	details.

Sorting	and	limiting

17

Joining	together

References	to	other	documents

The	character	data	we	imported	has	an	attribute	traits	for	each	character,	which	is	an	array	of	strings.	It	does	not	store	character	features
directly	however:

{

				"name":	"Ned",

				"surname":	"Stark",

				"alive":	false,

				"age":	41,

				"traits":	["A","H","C","N","P"]

}

It	is	rather	a	list	of	letters	without	an	apparent	meaning.	The	idea	here	is	that	traits	is	supposed	to	store	documents	keys	of	another
collection,	which	we	can	use	to	resolve	the	letters	to	labels	such	as	"strong".	The	benefit	of	using	another	collection	for	the	actual	traits	is,
that	we	can	easily	query	for	all	existing	traits	later	on	and	store	labels	in	multiple	languages	for	instance	in	a	central	place.	If	we	would
embed	traits	directly...

{

				"name":	"Ned",

				"surname":	"Stark",

				"alive":	false,

				"age":	41,

				"traits":	[

								{

												"de":	"stark",

												"en":	"strong"

								},

								{

												"de":	"einflussreich",

												"en":	"powerful"

								},

								{

												"de":	"loyal",

												"en":	"loyal"

								},

								{

												"de":	"rational",

												"en":	"rational"

								},

								{

												"de":	"mutig",

												"en":	"brave"

								}

]

}

...	it	becomes	really	hard	to	maintain	traits.	If	you	were	to	rename	or	translate	one	of	them,	you	would	need	to	find	all	other	character
documents	with	the	same	trait	and	perform	the	changes	there	too.	If	we	only	refer	to	a	trait	in	another	collection,	it	is	as	easy	as	updating
a	single	document.

Joining	together

18

Importing	traits

Below	you	find	the	traits	data.	Follow	the	pattern	shown	in	Create	documents	to	import	it:

Create	a	document	collection	Traits
Assign	the	data	to	a	variable	in	AQL,		LET	data	=	[...]	
Use	a		FOR		loop	to	iterate	over	each	array	element	of	the	data
	INSERT		the	element		INTO	Traits	

Joining	together

19

[

				{	"_key":	"A",	"en":	"strong",	"de":	"stark"	},

				{	"_key":	"B",	"en":	"polite",	"de":	"freundlich"	},

				{	"_key":	"C",	"en":	"loyal",	"de":	"loyal"	},

				{	"_key":	"D",	"en":	"beautiful",	"de":	"schön"	},

				{	"_key":	"E",	"en":	"sneaky",	"de":	"hinterlistig"	},

				{	"_key":	"F",	"en":	"experienced",	"de":	"erfahren"	},

				{	"_key":	"G",	"en":	"corrupt",	"de":	"korrupt"	},

				{	"_key":	"H",	"en":	"powerful",	"de":	"einflussreich"	},

				{	"_key":	"I",	"en":	"naive",	"de":	"naiv"	},

				{	"_key":	"J",	"en":	"unmarried",	"de":	"unverheiratet"	},

				{	"_key":	"K",	"en":	"skillful",	"de":	"geschickt"	},

				{	"_key":	"L",	"en":	"young",	"de":	"jung"	},

				{	"_key":	"M",	"en":	"smart",	"de":	"klug"	},

				{	"_key":	"N",	"en":	"rational",	"de":	"rational"	},

				{	"_key":	"O",	"en":	"ruthless",	"de":	"skrupellos"	},

				{	"_key":	"P",	"en":	"brave",	"de":	"mutig"	},

				{	"_key":	"Q",	"en":	"mighty",	"de":	"mächtig"	},

				{	"_key":	"R",	"en":	"weak",	"de":	"schwach"	}

]

Resolving	traits

Let's	start	simple	by	returning	only	the	traits	attribute	of	each	character:

FOR	c	IN	Characters

				RETURN	c.traits

[

				{	"traits":	["A","H","C","N","P"]	},

				{	"traits":	["D","H","C"]	},

				...

]

Also	see	the	Fundamentals	of	Objects	/	Documents	about	attribute	access.

We	can	use	the	traits	array	together	with	the		DOCUMENT()		function	to	use	the	elements	as	document	keys	and	look	up	them	up	in	the
Traits	collection:

FOR	c	IN	Characters

				RETURN	DOCUMENT("Traits",	c.traits)

Joining	together

20

[

		[

				{

						"_key":	"A",

						"_id":	"Traits/A",

						"_rev":	"_V5oRUS2---",

						"en":	"strong",

						"de":	"stark"

				},

				{

						"_key":	"H",

						"_id":	"Traits/H",

						"_rev":	"_V5oRUS6--E",

						"en":	"powerful",

						"de":	"einflussreich"

				},

				{

						"_key":	"C",

						"_id":	"Traits/C",

						"_rev":	"_V5oRUS6--_",

						"en":	"loyal",

						"de":	"loyal"

				},

				{

						"_key":	"N",

						"_id":	"Traits/N",

						"_rev":	"_V5oRUT---D",

						"en":	"rational",

						"de":	"rational"

				},

				{

						"_key":	"P",

						"_id":	"Traits/P",

						"_rev":	"_V5oRUTC---",

						"en":	"brave",

						"de":	"mutig"

				}

],

		[

				{

						"_key":	"D",

						"_id":	"Traits/D",

						"_rev":	"_V5oRUS6--A",

						"en":	"beautiful",

						"de":	"schön"

				},

				{

						"_key":	"H",

						"_id":	"Traits/H",

						"_rev":	"_V5oRUS6--E",

						"en":	"powerful",

						"de":	"einflussreich"

				},

				{

						"_key":	"C",

						"_id":	"Traits/C",

						"_rev":	"_V5oRUS6--_",

						"en":	"loyal",

						"de":	"loyal"

				}

],

		...

]

This	is	a	bit	too	much	information,	so	let's	only	return	English	labels	using	the	array	expansion	notation:

FOR	c	IN	Characters

				RETURN	DOCUMENT("Traits",	c.traits)[*].en

[

		[

				"strong",

Joining	together

21

				"powerful",

				"loyal",

				"rational",

				"brave"

],

		[

				"beautiful",

				"powerful",

				"loyal"

],

		...

]

Merging	characters	and	traits
Great,	we	resolved	the	letters	to	meaningful	traits!	But	we	also	need	to	know	to	which	character	they	belong.	Thus,	we	need	to	merge
both	the	character	document	and	the	data	from	trait	document:

FOR	c	IN	Characters

				RETURN	MERGE(c,	{	traits:	DOCUMENT("Traits",	c.traits)[*].en	})

[

		{

				"_id":	"Characters/2861650",

				"_key":	"2861650",

				"_rev":	"_V1bzsXa---",

				"age":	41,

				"alive":	false,

				"name":	"Ned",

				"surname":	"Stark",

				"traits":	[

						"strong",

						"powerful",

						"loyal",

						"rational",

						"brave"

]

		},

		{

				"_id":	"Characters/2861653",

				"_key":	"2861653",

				"_rev":	"_V1bzsXa--B",

				"age":	40,

				"alive":	false,

				"name":	"Catelyn",

				"surname":	"Stark",

				"traits":	[

						"beautiful",

						"powerful",

						"loyal"

]

		},

		...

]

The		MERGE()		functions	merges	objects	together.	Because	we	used	an	object		{	traits:	...	}		which	has	the	same	attribute	name	traits
as	the	original	character	attribute,	the	latter	is	overwritten	by	the	merge.

Joining	together

22

Traversal
Relations	such	as	between	parents	and	children	can	be	modeled	as	graph.	In	ArangoDB,	two	documents	(a	parent	and	a	child	character
document)	can	be	linked	by	an	edge	document.	Edge	documents	are	stored	in	edge	collections	and	have	two	additional	attributes:		_from	
and		_to	.	They	reference	any	two	documents	by	their	document	IDs	(_id).

ChildOf	relations

Our	characters	have	the	following	relations	between	parents	and	children	(first	names	only	for	a	better	overview):

				Robb	->	Ned

			Sansa	->	Ned

				Arya	->	Ned

				Bran	->	Ned

					Jon	->	Ned

				Robb	->	Catelyn

			Sansa	->	Catelyn

				Arya	->	Catelyn

				Bran	->	Catelyn

			Jaime	->	Tywin

		Cersei	->	Tywin

		Tyrion	->	Tywin

	Joffrey	->	Jaime

	Joffrey	->	Cersei

Visualized	as	graph:

Creating	the	edges

To	create	the	required	edge	documents	to	store	these	relations	in	the	database,	we	can	run	a	query	that	combines	joining	and	filtering	to
match	up	the	right	character	documents,	then	use	their		_id		attribute	to	insert	an	edge	into	an	edge	collection	ChildOf.

First	off,	create	a	new	collection	with	the	name	ChildOf	and	make	sure	you	change	the	collection	type	to	Edge.

Graph	traversal

23

Then	run	the	following	query:

LET	data	=	[

				{

								"parent":	{	"name":	"Ned",	"surname":	"Stark"	},

								"child":	{	"name":	"Robb",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Ned",	"surname":	"Stark"	},

								"child":	{	"name":	"Sansa",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Ned",	"surname":	"Stark"	},

								"child":	{	"name":	"Arya",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Ned",	"surname":	"Stark"	},

								"child":	{	"name":	"Bran",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Catelyn",	"surname":	"Stark"	},

								"child":	{	"name":	"Robb",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Catelyn",	"surname":	"Stark"	},

								"child":	{	"name":	"Sansa",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Catelyn",	"surname":	"Stark"	},

								"child":	{	"name":	"Arya",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Catelyn",	"surname":	"Stark"	},

								"child":	{	"name":	"Bran",	"surname":	"Stark"	}

				},	{

								"parent":	{	"name":	"Ned",	"surname":	"Stark"	},

								"child":	{	"name":	"Jon",	"surname":	"Snow"	}

				},	{

								"parent":	{	"name":	"Tywin",	"surname":	"Lannister"	},

								"child":	{	"name":	"Jaime",	"surname":	"Lannister"	}

				},	{

								"parent":	{	"name":	"Tywin",	"surname":	"Lannister"	},

								"child":	{	"name":	"Cersei",	"surname":	"Lannister"	}

				},	{

								"parent":	{	"name":	"Tywin",	"surname":	"Lannister"	},

								"child":	{	"name":	"Tyrion",	"surname":	"Lannister"	}

				},	{

								"parent":	{	"name":	"Cersei",	"surname":	"Lannister"	},

								"child":	{	"name":	"Joffrey",	"surname":	"Baratheon"	}

				},	{

								"parent":	{	"name":	"Jaime",	"surname":	"Lannister"	},

								"child":	{	"name":	"Joffrey",	"surname":	"Baratheon"	}

				}

]

FOR	rel	in	data

				LET	parentId	=	FIRST(

Graph	traversal

24

								FOR	c	IN	Characters

												FILTER	c.name	==	rel.parent.name

												FILTER	c.surname	==	rel.parent.surname

												LIMIT	1

												RETURN	c._id

)

				LET	childId	=	FIRST(

								FOR	c	IN	Characters

												FILTER	c.name	==	rel.child.name

												FILTER	c.surname	==	rel.child.surname

												LIMIT	1

												RETURN	c._id

)

				FILTER	parentId	!=	null	AND	childId	!=	null

				INSERT	{	_from:	childId,	_to:	parentId	}	INTO	ChildOf

				RETURN	NEW

The	character	documents	don't	have	user-defined	keys.	If	they	had,	it	would	allow	us	to	create	the	edges	more	easily	like:

INSERT	{	_from:	"Characters/robb",	_to:	"Characters/ned"	}	INTO	ChildOf

However,	creating	the	edges	programmatically	based	on	character	names	is	a	good	excercise.	Breakdown	of	the	query:

Assign	the	relations	in	form	of	an	array	of	objects	with	a	parent	and	a	child	attribute	each,	both	with	sub-attributes	name	and
surname,	to	a	variable		data	
For	each	element	in	this	array,	assign	a	relation	to	a	variable		rel		and	execute	the	subsequent	instructions
Assign	the	result	of	an	expression	to	a	variable		parentId	

Take	the	first	element	of	a	sub-query	result	(sub-queries	are	enclosed	by	parentheses,	but	here	they	are	also	a	function	call)
For	each	document	in	the	Characters	collection,	assign	the	document	to	a	variable		c	
Apply	two	filter	conditions:	the	name	in	the	character	document	must	equal	the	parent	name	in		rel	,	and	the	surname
must	also	equal	the	surname	give	in	the	relations	data
Stop	after	the	first	match	for	efficiency
Return	the	ID	of	the	character	document	(the	result	of	the	sub-query	is	an	array	with	one	element,		FIRST()		takes	this
element	and	assigns	it	to	the		parentId		variable)

Assign	the	result	of	an	expression	to	a	variable		childId	
A	sub-query	is	used	to	find	the	child	character	document	and	the	ID	is	returned,	in	the	same	way	as	the	parent	document	ID
(see	above)

If	either	or	both	of	the	sub-queries	were	unable	to	find	a	match,	skip	the	current	relation,	because	two	IDs	for	both	ends	of	an	edge
are	required	to	create	one	(this	is	only	a	precaution)
Insert	a	new	edge	document	into	the	ChildOf	collection,	with	the	edge	going	from		childId		to		parentId		and	no	other	attributes
Return	the	new	edge	document	(optional)

Traverse	to	the	parents

Now	that	edges	link	character	documents	(vertices),	we	have	a	graph	we	can	query	to	find	out	who	the	parents	are	of	another	character	–
or	in	graph	terms,	we	want	to	start	at	a	vertex	and	follow	the	edges	to	other	vertices	in	an	AQL	graph	traversal:

FOR	v	IN	1..1	OUTBOUND	"Characters/2901776"	ChildOf

				RETURN	v.name

This		FOR		loop	doesn't	iterate	over	a	collection	or	an	array,	it	walks	the	graph	and	iterates	over	the	connected	vertices	it	finds,	with	the
vertex	document	assigned	to	a	variable	(here:		v).	It	can	also	emit	the	edges	it	walked	as	well	as	the	full	path	from	start	to	end	to	another
two	variables.

In	above	query,	the	traversal	is	restricted	to	a	minimum	and	maximum	traversal	depth	of	1	(how	many	steps	to	take	from	the	start
vertex),	and	to	only	follow	edges	in		OUTBOUND		direction.	Our	edges	point	from	child	to	parent,	and	the	parent	is	one	step	away	from	the
child,	thus	it	gives	us	the	parents	of	the	child	we	start	at.		"Characters/2901776"		is	that	start	vertex.	Note	that	the	document	ID	will	be
different	for	you,	so	please	adjust	it	to	your	document	ID	of	e.g.	the	Bran	Stark	document:

FOR	c	IN	Characters

				FILTER	c.name	==	"Bran"

Graph	traversal

25

				RETURN	c._id

["Characters/<YourDocumentkey>"]

You	may	also	combine	this	query	with	the	traversal	directly,	to	easily	change	the	start	vertex	by	adjusting	the	filter	condition(s):

FOR	c	IN	Characters

				FILTER	c.name	==	"Bran"

				FOR	v	IN	1..1	OUTBOUND	c	ChildOf

								RETURN	v.name

The	start	vertex	is	followed	by		ChildOf	,	which	is	our	edge	collection.	The	example	query	returns	only	the	name	of	each	parent	to	keep
the	result	short:

[

		"Ned",

		"Catelyn"

]

The	same	result	will	be	returned	for	Robb,	Arya	and	Sansa	as	starting	point.	For	Jon	Snow,	it	will	only	be	Ned.

Traverse	to	the	children

We	can	also	walk	from	a	parent	in	reverse	edge	direction	(INBOUND		that	is)	to	the	children:

FOR	c	IN	Characters

				FILTER	c.name	==	"Ned"

				FOR	v	IN	1..1	INBOUND	c	ChildOf

								RETURN	v.name

[

		"Robb",

		"Sansa",

		"Jon",

		"Arya",

		"Bran"

]

Traverse	to	the	grandchildren

For	the	Lannister	family,	we	have	relations	that	span	from	parent	to	grandchild.	Let's	change	the	traversal	depth	to	return	grandchildren,
which	means	to	go	exactly	two	steps:

FOR	c	IN	Characters

				FILTER	c.name	==	"Tywin"

				FOR	v	IN	2..2	INBOUND	c	ChildOf

								RETURN	v.name

[

		"Joffrey",

		"Joffrey"

]

It	might	be	a	bit	unexpected,	that	Joffrey	is	returned	twice.	However,	if	you	look	at	the	graph	visualization,	you	can	see	that	multiple
paths	lead	from	Joffrey	(bottom	right)	to	Tywin:

Graph	traversal

26

Tywin	<-	Jaime	<-	Joffrey

Tywin	<-	Cersei	<-	Joffrey

As	a	quick	fix,	change	the	last	line	of	the	query	to		RETURN	DISTINCT	v.name		to	return	each	value	only	once.	Keep	in	mind	though,	that
there	are	traversal	options	to	suppress	duplicate	vertices	early	on.

Traverse	with	variable	depth
To	return	the	parents	and	grandparents	of	Joffrey,	we	can	walk	edges	in		OUTBOUND		direction	and	adjust	the	traversal	depth	to	go	at	least
1	step,	and	2	at	most:

FOR	c	IN	Characters

				FILTER	c.name	==	"Joffrey"

				FOR	v	IN	1..2	OUTBOUND	c	ChildOf

								RETURN	DISTINCT	v.name

[

		"Cersei",

		"Tywin",

		"Jaime"

]

If	we	had	deeper	family	trees,	it	would	only	be	a	matter	of	changing	the	depth	values	to	query	for	great-grandchildren	and	similar
relations.

Graph	traversal

27

Geospatial	queries
Geospatial	coordinates	consisting	of	a	latitude	and	longitude	value	can	be	stored	either	as	two	separate	attributes,	or	as	a	single	attribute
in	the	form	of	an	array	with	both	numeric	values.	ArangoDB	can	index	such	coordinates	for	fast	geospatial	queries.

Locations	data

Let	us	insert	some	filming	locations	into	a	new	collection	Locations,	which	you	need	to	create	first,	then	run	below	AQL	query:

LET	places	=	[

				{	"name":	"Dragonstone",	"coordinate":	[55.167801,	-6.815096]	},

				{	"name":	"King's	Landing",	"coordinate":	[42.639752,	18.110189]	},

				{	"name":	"The	Red	Keep",	"coordinate":	[35.896447,	14.446442]	},

				{	"name":	"Yunkai",	"coordinate":	[31.046642,	-7.129532]	},

				{	"name":	"Astapor",	"coordinate":	[31.50974,	-9.774249]	},

				{	"name":	"Winterfell",	"coordinate":	[54.368321,	-5.581312]	},

				{	"name":	"Vaes	Dothrak",	"coordinate":	[54.16776,	-6.096125]	},

				{	"name":	"Beyond	the	wall",	"coordinate":	[64.265473,	-21.094093]	}

]

FOR	place	IN	places

				INSERT	place	INTO	Locations

Visualization	of	the	coordinates	on	a	map	with	their	labels:

Geospatial	queries

28

Geospatial	index

To	query	based	on	coordinates,	a	geo	index	is	required.	It	determines	which	fields	contain	the	latitude	and	longitude	values.

Go	to	COLLECTIONS
Click	on	the	Locations	collection
Switch	to	the	Indexes	tab	at	top
Click	the	green	button	with	a	plus	on	the	right-hand	side
Change	the	type	to	Geo	Index
Enter		coordinate		into	the	Fields	field
Click	Create	to	confirm

Geospatial	queries

29

Find	nearby	locations

A		FOR		loop	is	used	again,	but	this	time	to	iterate	over	the	results	of	a	function	call	to		NEAR()		to	find	the	n	closest	coordinates	to	a
reference	point,	and	return	the	documents	with	the	nearby	locations.	The	default	for	n	is	100,	which	means	100	documents	are	returned	at
most,	the	closest	matches	first.

In	below	example,	the	limit	is	set	to	3.	The	origin	(the	reference	point)	is	a	coordinate	somewhere	downtown	in	Dublin,	Ireland:

FOR	loc	IN	NEAR(Locations,	53.35,	-6.26,	3)

				RETURN	{

								name:	loc.name,

								latitude:	loc.coordinate[0],

								longitude:	loc.coordinate[1]

				}

[

		{

				"name":	"Vaes	Dothrak",

				"latitude":	54.16776,

				"longitude":	-6.096125

		},

		{

				"name":	"Winterfell",

				"latitude":	54.368321,

				"longitude":	-5.581312

		},

Geospatial	queries

30

		{

				"name":	"Dragonstone",

				"latitude":	55.167801,

				"longitude":	-6.815096

		}

]

The	query	returns	the	location	name,	as	well	as	the	coordinate.	The	coordinate	is	returned	as	two	separate	attributes.	You	may	use	a
simpler		RETURN	loc		instead	if	you	want.

Find	locations	within	radius

	NEAR()		can	be	swapped	out	with		WITHIN()	,	to	search	for	locations	within	a	given	radius	from	a	reference	point.	The	syntax	is	the	same
as	for		NEAR()	,	except	for	the	fourth	parameter,	which	specifies	the	radius	instead	of	a	limit.	The	unit	for	the	radius	is	meters.	The
example	uses	a	radius	of	200,000	meters	(200	kilometers):

FOR	loc	IN	WITHIN(Locations,	53.35,	-6.26,	200	*	1000)

				RETURN	{

								name:	loc.name,

								latitude:	loc.coordinate[0],

								longitude:	loc.coordinate[1]

				}

[

		{

				"name":	"Vaes	Dothrak",

				"latitude":	54.16776,

				"longitude":	-6.096125

		},

		{

				"name":	"Winterfell",

				"latitude":	54.368321,

				"longitude":	-5.581312

		}

]

Return	the	distance
Both		NEAR()		and		WITHIN()		can	return	the	distance	to	the	reference	point	by	adding	an	optional	fifth	parameter.	It	has	to	be	a	string,
which	will	be	used	as	attribute	name	for	an	additional	attribute	with	the	distance	in	meters:

FOR	loc	IN	NEAR(Locations,	53.35,	-6.26,	3,	"distance")

				RETURN	{

								name:	loc.name,

								latitude:	loc.coordinate[0],

								longitude:	loc.coordinate[1],

								distance:	loc.distance	/	1000

				}

[

		{

				"name":	"Vaes	Dothrak",

				"latitude":	54.16776,

				"longitude":	-6.096125,

				"distance":	91.56658640314431

		},

		{

				"name":	"Winterfell",

				"latitude":	54.368321,

				"longitude":	-5.581312,

				"distance":	121.66399816395028

		},

		{

				"name":	"Dragonstone",

Geospatial	queries

31

				"latitude":	55.167801,

				"longitude":	-6.815096,

				"distance":	205.31879386198324

		}

]

The	extra	attribute,	here	called	distance,	is	returned	as	part	of	the	loc	variable,	as	if	it	was	part	of	the	location	document.	The	value	is
divided	by	1000	in	the	example	query,	to	convert	the	unit	to	kilometers,	simply	to	make	it	better	readable.

Geospatial	queries

32

How	to	invoke	AQL
AQL	queries	can	be	executed	using:

the	web	interface,
the		db		object	(either	in	arangosh	or	in	a	Foxx	service)
or	the	raw	HTTP	API.

There	are	always	calls	to	the	server's	API	under	the	hood,	but	the	web	interface	and	the		db		object	abstract	away	the	low-level
communication	details	and	are	thus	easier	to	use.

The	ArangoDB	Web	Interface	has	a	specific	tab	for	AQL	queries	execution.

You	can	run	AQL	queries	from	the	ArangoDB	Shell	with	the	_query	and	_createStatement	methods	of	the		db		object.	This	chapter	also
describes	how	to	use	bind	parameters,	statistics,	counting	and	cursors	with	arangosh.

If	you	are	using	Foxx,	see	how	to	write	database	queries	for	examples	including	tagged	template	strings.

If	you	want	to	run	AQL	queries	from	your	application	via	the	HTTP	REST	API,	see	the	full	API	description	at	HTTP	Interface	for
AQL	Query	Cursors.

How	to	invoke	AQL

33

Executing	queries	from	Arangosh
Within	the	ArangoDB	shell,	the	_query	and	_createStatement	methods	of	the	db	object	can	be	used	to	execute	AQL	queries.	This	chapter
also	describes	how	to	use	bind	parameters,	counting,	statistics	and	cursors.

with	db._query

One	can	execute	queries	with	the	_query	method	of	the	db	object.	This	will	run	the	specified	query	in	the	context	of	the	currently	selected
database	and	return	the	query	results	in	a	cursor.	The	results	of	the	cursor	can	be	printed	using	its	toArray	method:

arangosh>	db._create("mycollection")

arangosh>	db.mycollection.save({	_key:	"testKey",	Hello	:	"World"	})

arangosh>	db._query('FOR	my	IN	mycollection	RETURN	my._key').toArray()

show	execution	results

db._query	Bind	parameters

To	pass	bind	parameters	into	a	query,	they	can	be	specified	as	second	argument	to	the	_query	method:

arangosh>	db._query(

........>	'FOR	c	IN	@@collection	FILTER	c._key	==	@key	RETURN	c._key',	{

........>			'@collection':	'mycollection',	

........>			'key':	'testKey'

........>	}).toArray();

[

		"testKey"	

]

ES6	template	strings

It	is	also	possible	to	use	ES6	template	strings	for	generating	AQL	queries.	There	is	a	template	string	generator	function	named	aql;	we	call
it	once	to	demonstrate	its	result,	and	once	putting	it	directly	into	the	query:

var	key	=	'testKey';

aql`FOR	c	IN	mycollection	FILTER	c._key	==	${key}	RETURN	c._key`;

{	

		"query"	:	"FOR	c	IN	mycollection	FILTER	c._key	==	@value0	RETURN	c._key",	

		"bindVars"	:	{	

				"value0"	:	"testKey"	

		}	

}

arangosh>	var	key	=	'testKey';

arangosh>	db._query(

........>	aql`FOR	c	IN	mycollection	FILTER	c._key	==	${key}	RETURN	c._key`

........>).toArray();

[

		"testKey"	

]

Arbitrary	JavaScript	expressions	can	be	used	in	queries	that	are	generated	with	the	aql	template	string	generator.	Collection	objects	are
handled	automatically:

with	Arangosh

34

arangosh>	var	key	=	'testKey';

arangosh>	db._query(aql`FOR	doc	IN	${	db.mycollection	}	RETURN	doc`

........>).toArray();

show	execution	results
Note:	data-modification	AQL	queries	normally	do	not	return	a	result	(unless	the	AQL	query	contains	an	extra	RETURN	statement).
When	not	using	a	RETURN	statement	in	the	query,	the	toArray	method	will	return	an	empty	array.

Statistics	and	extra	Information

It	is	always	possible	to	retrieve	statistics	for	a	query	with	the	getExtra	method:

arangosh>	db._query(`FOR	i	IN	1..100

........>													INSERT	{	_key:	CONCAT('test',	TO_STRING(i))	}

........>																INTO	mycollection`

........>).getExtra();

show	execution	results
The	meaning	of	the	statistics	values	is	described	in	Execution	statistics.	You	also	will	find	warnings	in	here;	If	you're	designing	queries	on
the	shell	be	sure	to	also	look	at	it.

Setting	a	memory	limit

To	set	a	memory	limit	for	the	query,	pass	options	to	the	_query	method.	The	memory	limit	specifies	the	maximum	number	of	bytes	that
the	query	is	allowed	to	use.	When	a	single	AQL	query	reaches	the	specified	limit	value,	the	query	will	be	aborted	with	a	resource	limit
exceeded	exception.	In	a	cluster,	the	memory	accounting	is	done	per	shard,	so	the	limit	value	is	effectively	a	memory	limit	per	query	per
shard.

arangosh>	db._query(

........>	'FOR	i	IN	1..100000	SORT	i	RETURN	i',	{},	{

........>			memoryLimit:	100000

........>	}).toArray();

[ArangoError	32:	AQL:	query	would	use	more	memory	than	allowed	(while	executing)]

If	no	memory	limit	is	specified,	then	the	server	default	value	(controlled	by	startup	option	--query.memory-limit	will	be	used	for
restricting	the	maximum	amount	of	memory	the	query	can	use.	A	memory	limit	value	of	0	means	that	the	maximum	amount	of	memory
for	the	query	is	not	restricted.

Setting	options

There	are	further	options	that	can	be	passed	in	the	options	attribute	of	the	_query	method:

failOnWarning:	when	set	to	true,	this	will	make	the	query	throw	an	exception	and	abort	in	case	a	warning	occurs.	This	option	should
be	used	in	development	to	catch	errors	early.	If	set	to	false,	warnings	will	not	be	propagated	to	exceptions	and	will	be	returned	with
the	query	results.	There	is	also	a	server	configuration	option		--query.fail-on-warning		for	setting	the	default	value	for
failOnWarning	so	it	does	not	need	to	be	set	on	a	per-query	level.

cache:	if	set	to	true,	this	will	put	the	query	result	into	the	query	result	cache	if	the	query	result	is	eligible	for	caching	and	the	query
cache	is	running	in	demand	mode.	If	set	to	false,	the	query	result	will	not	be	inserted	into	the	query	result	cache.	Note	that	query
results	will	never	be	inserted	into	the	query	result	cache	if	the	query	result	cache	is	disabled,	and	that	they	will	be	automatically
inserted	into	the	query	result	cache	when	it	is	active	in	non-demand	mode.

profile:	if	set	to	true,	returns	extra	timing	information	for	the	query.	The	timing	information	is	accessible	via	the	getExtra	method	of
the	query	result.

maxWarningCount:	limits	the	number	of	warnings	that	are	returned	by	the	query	if	failOnWarning	is	not	set	to	true.	The	default
value	is	10.

with	Arangosh

35

maxNumberOfPlans:	limits	the	number	of	query	execution	plans	the	optimizer	will	create	at	most.	Reducing	the	number	of	query
execution	plans	may	speed	up	query	plan	creation	and	optimization	for	complex	queries,	but	normally	there	is	no	need	to	adjust	this
value.

The	following	additional	attributes	can	be	passed	to	queries	in	the	RocksDB	storage	engine:

maxTransactionSize:	transaction	size	limit	in	bytes

intermediateCommitSize:	maximum	total	size	of	operations	after	which	an	intermediate	commit	is	performed	automatically

intermediateCommitCount:	maximum	number	of	operations	after	which	an	intermediate	commit	is	performed	automatically

In	the	ArangoDB	Enterprise	Edition	there	is	an	additional	parameter:

skipInaccessibleCollections	AQL	queries	(especially	graph	traversals)	will	treat	collection	to	which	a	user	has	no	access	rights	as	if
these	collections	were	empty.	Instead	of	returning	a	forbidden	access	error,	your	queries	will	execute	normally.	This	is	intended	to
help	with	certain	use-cases:	A	graph	contains	several	collections	and	different	users	execute	AQL	queries	on	that	graph.	You	can	now
naturally	limit	the	accessible	results	by	changing	the	access	rights	of	users	on	collections.

with	_createStatement	(ArangoStatement)

The	_query	method	is	a	shorthand	for	creating	an	ArangoStatement	object,	executing	it	and	iterating	over	the	resulting	cursor.	If	more
control	over	the	result	set	iteration	is	needed,	it	is	recommended	to	first	create	an	ArangoStatement	object	as	follows:

arangosh>	stmt	=	db._createStatement({

........>	"query":	"FOR	i	IN	[1,	2]	RETURN	i	*	2"	});

[object	ArangoStatement]

To	execute	the	query,	use	the	execute	method	of	the	statement:

arangosh>	c	=	stmt.execute();

show	execution	results

Cursors

Once	the	query	executed	the	query	results	are	available	in	a	cursor.	The	cursor	can	return	all	its	results	at	once	using	the	toArray	method.
This	is	a	short-cut	that	you	can	use	if	you	want	to	access	the	full	result	set	without	iterating	over	it	yourself.

arangosh>	c.toArray();

[

		2,	

		4	

]

Cursors	can	also	be	used	to	iterate	over	the	result	set	document-by-document.	To	do	so,	use	the	hasNext	and	next	methods	of	the	cursor:

arangosh>	while	(c.hasNext())	{	require("@arangodb").print(c.next());	}

2

4

Please	note	that	you	can	iterate	over	the	results	of	a	cursor	only	once,	and	that	the	cursor	will	be	empty	when	you	have	fully	iterated
over	it.	To	iterate	over	the	results	again,	the	query	needs	to	be	re-executed.

Additionally,	the	iteration	can	be	done	in	a	forward-only	fashion.	There	is	no	backwards	iteration	or	random	access	to	elements	in	a
cursor.

ArangoStatement	parameters	binding

with	Arangosh

36

To	execute	an	AQL	query	using	bind	parameters,	you	need	to	create	a	statement	first	and	then	bind	the	parameters	to	it	before	execution:

arangosh>	var	stmt	=	db._createStatement({

........>	"query":	"FOR	i	IN	[@one,	@two]	RETURN	i	*	2"	});

arangosh>	stmt.bind("one",	1);

arangosh>	stmt.bind("two",	2);

arangosh>	c	=	stmt.execute();

show	execution	results
The	cursor	results	can	then	be	dumped	or	iterated	over	as	usual,	e.g.:

arangosh>	c.toArray();

[

		2,	

		4	

]

or

arangosh>	while	(c.hasNext())	{	require("@arangodb").print(c.next());	}

2

4

Please	note	that	bind	parameters	can	also	be	passed	into	the	_createStatement	method	directly,	making	it	a	bit	more	convenient:

arangosh>	stmt	=	db._createStatement({	

........>		"query":	"FOR	i	IN	[@one,	@two]	RETURN	i	*	2",	

........>		"bindVars":	{	

........>				"one":	1,	

........>				"two":	2	

........>		}	

........>	});

[object	ArangoStatement]

Counting	with	a	cursor

Cursors	also	optionally	provide	the	total	number	of	results.	By	default,	they	do	not.	To	make	the	server	return	the	total	number	of
results,	you	may	set	the	count	attribute	to	true	when	creating	a	statement:

arangosh>	stmt	=	db._createStatement({

........>	"query":	"FOR	i	IN	[1,	2,	3,	4]	RETURN	i",

........>	"count":	true	});

[object	ArangoStatement]

After	executing	this	query,	you	can	use	the	count	method	of	the	cursor	to	get	the	number	of	total	results	from	the	result	set:

arangosh>	var	c	=	stmt.execute();

arangosh>	c.count();

4

Please	note	that	the	count	method	returns	nothing	if	you	did	not	specify	the	count	attribute	when	creating	the	query.

with	Arangosh

37

This	is	intentional	so	that	the	server	may	apply	optimizations	when	executing	the	query	and	construct	the	result	set	incrementally.
Incremental	creation	of	the	result	sets	is	no	possible	if	all	of	the	results	need	to	be	shipped	to	the	client	anyway.	Therefore,	the	client	has
the	choice	to	specify	count	and	retrieve	the	total	number	of	results	for	a	query	(and	disable	potential	incremental	result	set	creation	on	the
server),	or	to	not	retrieve	the	total	number	of	results	and	allow	the	server	to	apply	optimizations.

Please	note	that	at	the	moment	the	server	will	always	create	the	full	result	set	for	each	query	so	specifying	or	omitting	the	count	attribute
currently	does	not	have	any	impact	on	query	execution.	This	may	change	in	the	future.	Future	versions	of	ArangoDB	may	create	result
sets	incrementally	on	the	server-side	and	may	be	able	to	apply	optimizations	if	a	result	set	is	not	fully	fetched	by	a	client.

Using	cursors	to	obtain	additional	information	on	internal	timings

Cursors	can	also	optionally	provide	statistics	of	the	internal	execution	phases.	By	default,	they	do	not.	To	get	to	know	how	long	parsing,
otpimisation,	instanciation	and	execution	took,	make	the	server	return	that	by	setting	the	profile	attribute	to	true	when	creating	a
statement:

arangosh>	stmt	=	db._createStatement({

........>	"query":	"FOR	i	IN	[1,	2,	3,	4]	RETURN	i",

........>	options:	{"profile":	true}});

[object	ArangoStatement]

After	executing	this	query,	you	can	use	the	getExtra()	method	of	the	cursor	to	get	the	produced	statistics:

arangosh>	var	c	=	stmt.execute();

arangosh>	c.getExtra();

show	execution	results

with	Arangosh

38

AQL	with	ArangoDB	Web	Interface
In	the	ArangoDB	Web	Interface	the	AQL	Editor	tab	allows	to	execute	ad-hoc	AQL	queries.

Type	in	a	query	in	the	main	box	and	execute	it	by	pressing	the	Execute	button.	The	query	result	will	be	shown	in	another	tab.	The	editor
provides	a	few	example	queries	that	can	be	used	as	templates.

It	also	provides	a	feature	to	explain	a	query	and	inspect	its	execution	plan	(with	the	Explain	button).

Bind	parameters	can	be	defined	in	the	right-hand	side	pane.	The	format	is	the	same	as	used	for	bind	parameters	in	the	HTTP	REST	API
and	in	(JavaScript)	application	code.

Here	is	an	example:

FOR	doc	IN	@@collection

		FILTER	CONTAINS(LOWER(doc.author),	@search,	false)

		RETURN	{	"name":	doc.name,	"descr":	doc.description,	"author":	doc.author	}

Bind	parameters	(table	view	mode):

Key Value

@collection _apps

search arango

Bind	parameters	(JSON	view	mode):

{

				"@collection":	"_apps",

				"search":	"arango"

}

How	bind	parameters	work	can	be	found	in	AQL	Fundamentals.

Queries	can	also	be	saved	in	the	AQL	editor	along	with	their	bind	parameter	values	for	later	reuse.	This	data	is	stored	in	the	user	profile
in	the	current	database	(in	the	_users	system	table).

Also	see	the	detailed	description	of	the	Web	Interface.

with	the	Web	Interface

39

AQL	Fundamentals
AQL	Syntax	explains	the	structure	of	the	AQL	language.
Data	Types	describes	the	primitive	and	compound	data	types	supported	by	AQL.
Bind	Parameters:	AQL	supports	the	usage	of	bind	parameters.	This	allows	to	separate	the	query	text	from	literal	values	used	in	the
query.
Type	and	value	order:	AQL	uses	a	set	of	rules	(using	values	and	types)	for	equality	checks	and	comparisons.
Accessing	Data	from	Collections:	describes	the	impact	of	non-existent	or	null	attributes	for	selection	queries.
Query	Results:	the	result	of	an	AQL	query	is	an	array	of	values.
Query	Errors:	errors	may	arise	from	the	AQL	parsing	or	execution.

AQL	Fundamentals

40

AQL	Syntax

Query	types

An	AQL	query	must	either	return	a	result	(indicated	by	usage	of	the	RETURN	keyword)	or	execute	a	data-modification	operation
(indicated	by	usage	of	one	of	the	keywords	INSERT,	UPDATE,	REPLACE,	REMOVE	or	UPSERT).	The	AQL	parser	will	return	an	error
if	it	detects	more	than	one	data-modification	operation	in	the	same	query	or	if	it	cannot	figure	out	if	the	query	is	meant	to	be	a	data
retrieval	or	a	modification	operation.

AQL	only	allows	one	query	in	a	single	query	string;	thus	semicolons	to	indicate	the	end	of	one	query	and	separate	multiple	queries	(as
seen	in	SQL)	are	not	allowed.

Whitespace

Whitespaces	(blanks,	carriage	returns,	line	feeds,	and	tab	stops)	can	be	used	in	the	query	text	to	increase	its	readability.	Tokens	have	to	be
separated	by	any	number	of	whitespaces.	Whitespace	within	strings	or	names	must	be	enclosed	in	quotes	in	order	to	be	preserved.

Comments

Comments	can	be	embedded	at	any	position	in	a	query.	The	text	contained	in	the	comment	is	ignored	by	the	AQL	parser.

Multi-line	comments	cannot	be	nested,	which	means	subsequent	comment	starts	within	comments	are	ignored,	comment	ends	will	end
the	comment.

AQL	supports	two	types	of	comments:

Single	line	comments:	These	start	with	a	double	forward	slash	and	end	at	the	end	of	the	line,	or	the	end	of	the	query	string
(whichever	is	first).
Multi	line	comments:	These	start	with	a	forward	slash	and	asterisk,	and	end	with	an	asterisk	and	a	following	forward	slash.	They
can	span	as	many	lines	as	necessary.

/*	this	is	a	comment	*/	RETURN	1

/*	these	*/	RETURN	/*	are	*/	1	/*	multiple	*/	+	/*	comments	*/	1

/*	this	is

			a	multi	line

			comment	*/

//	a	single	line	comment

Keywords

On	the	top	level,	AQL	offers	the	following	operations:

	FOR	:	array	iteration
	RETURN	:	results	projection
	FILTER	:	results	filtering
	SORT	:	result	sorting
	LIMIT	:	result	slicing
	LET	:	variable	assignment
	COLLECT	:	result	grouping
	INSERT	:	insertion	of	new	documents
	UPDATE	:	(partial)	update	of	existing	documents
	REPLACE	:	replacement	of	existing	documents
	REMOVE	:	removal	of	existing	documents
	UPSERT	:	insertion	or	update	of	existing	documents

Each	of	the	above	operations	can	be	initiated	in	a	query	by	using	a	keyword	of	the	same	name.	An	AQL	query	can	(and	typically	does)
consist	of	multiple	of	the	above	operations.

An	example	AQL	query	may	look	like	this:

AQL	Syntax

41

FOR	u	IN	users

		FILTER	u.type	==	"newbie"	&&	u.active	==	true

		RETURN	u.name

In	this	example	query,	the	terms	FOR,	FILTER,	and	RETURN	initiate	the	higher-level	operation	according	to	their	name.	These	terms	are
also	keywords,	meaning	that	they	have	a	special	meaning	in	the	language.

For	example,	the	query	parser	will	use	the	keywords	to	find	out	which	high-level	operations	to	execute.	That	also	means	keywords	can
only	be	used	at	certain	locations	in	a	query.	This	also	makes	all	keywords	reserved	words	that	must	not	be	used	for	other	purposes	than
they	are	intended	for.

For	example,	it	is	not	possible	to	use	a	keyword	as	a	collection	or	attribute	name.	If	a	collection	or	attribute	need	to	have	the	same	name
as	a	keyword,	the	collection	or	attribute	name	needs	to	be	quoted.

Keywords	are	case-insensitive,	meaning	they	can	be	specified	in	lower,	upper,	or	mixed	case	in	queries.	In	this	documentation,	all
keywords	are	written	in	upper	case	to	make	them	distinguishable	from	other	query	parts.

There	are	a	few	more	keywords	in	addition	to	the	higher-level	operation	keywords.	Additional	keywords	may	be	added	in	future	versions
of	ArangoDB.	The	complete	list	of	keywords	is	currently:

AGGREGATE
ALL
AND
ANY
ASC
COLLECT
DESC
DISTINCT
FALSE
FILTER
FOR
GRAPH
IN
INBOUND
INSERT
INTO
LET
LIMIT
NONE
NOT
NULL
OR
OUTBOUND
REMOVE
REPLACE
RETURN
SHORTEST_PATH
SORT
TRUE
UPDATE
UPSERT
WITH

Names

In	general,	names	are	used	to	identify	objects	(collections,	attributes,	variables,	and	functions)	in	AQL	queries.

The	maximum	supported	length	of	any	name	is	64	bytes.	Names	in	AQL	are	always	case-sensitive.

AQL	Syntax

42

Keywords	must	not	be	used	as	names.	If	a	reserved	keyword	should	be	used	as	a	name,	the	name	must	be	enclosed	in	backticks	or
forward	ticks.	Enclosing	a	name	in	backticks	or	forward	ticks	makes	it	possible	to	use	otherwise	reserved	keywords	as	names.	An
example	for	this	is:

FOR	f	IN	`filter`

		RETURN	f.`sort`

Due	to	the	backticks,	filter	and	sort	are	interpreted	as	names	and	not	as	keywords	here.

The	example	can	alternatively	written	as:

FOR	f	IN	´filter´

		RETURN	f.´sort´

Collection	names

Collection	names	can	be	used	in	queries	as	they	are.	If	a	collection	happens	to	have	the	same	name	as	a	keyword,	the	name	must	be
enclosed	in	backticks.

Please	refer	to	the	Naming	Conventions	in	ArangoDB	about	collection	naming	conventions.

AQL	currently	has	a	limit	of	up	to	256	collections	used	in	one	AQL	query.	This	limit	applies	to	the	sum	of	all	involved	document	and
edge	collections.

Attribute	names

When	referring	to	attributes	of	documents	from	a	collection,	the	fully	qualified	attribute	name	must	be	used.	This	is	because	multiple
collections	with	ambiguous	attribute	names	may	be	used	in	a	query.	To	avoid	any	ambiguity,	it	is	not	allowed	to	refer	to	an	unqualified
attribute	name.

Please	refer	to	the	Naming	Conventions	in	ArangoDB	for	more	information	about	the	attribute	naming	conventions.

FOR	u	IN	users

		FOR	f	IN	friends

				FILTER	u.active	==	true	&&	f.active	==	true	&&	u.id	==	f.userId

				RETURN	u.name

In	the	above	example,	the	attribute	names	active,	name,	id,	and	userId	are	qualified	using	the	collection	names	they	belong	to	(u	and	f
respectively).

Variable	names

AQL	allows	the	user	to	assign	values	to	additional	variables	in	a	query.	All	variables	that	are	assigned	a	value	must	have	a	name	that	is
unique	within	the	context	of	the	query.	Variable	names	must	be	different	from	the	names	of	any	collection	name	used	in	the	same	query.

FOR	u	IN	users

		LET	friends	=	u.friends

		RETURN	{	"name"	:	u.name,	"friends"	:	friends	}

In	the	above	query,	users	is	a	collection	name,	and	both	u	and	friends	are	variable	names.	This	is	because	the	FOR	and	LET	operations
need	target	variables	to	store	their	intermediate	results.

Allowed	characters	in	variable	names	are	the	letters	a	to	z	(both	in	lower	and	upper	case),	the	numbers	0	to	9,	the	underscore	(_)	symbol
and	the	dollar	($)	sign.	A	variable	name	must	not	start	with	a	number.	If	a	variable	name	starts	with	the	underscore	character,	the
underscore	must	be	followed	by	least	one	letter	(a-z	or	A-Z)	or	digit	(0-9).

The	dollar	sign	can	be	used	only	as	the	very	first	character	in	a	variable	name.

AQL	Syntax

43

Data	types
AQL	supports	both	primitive	and	compound	data	types.	The	following	types	are	available:

Primitive	types:	Consisting	of	exactly	one	value
null:	An	empty	value,	also:	The	absence	of	a	value
bool:	Boolean	truth	value	with	possible	values	false	and	true
number:	Signed	(real)	number
string:	UTF-8	encoded	text	value

Compound	types:	Consisting	of	multiple	values
array:	Sequence	of	values,	referred	to	by	their	positions
object	/	document:	Sequence	of	values,	referred	to	by	their	names

Primitive	types

Numeric	literals

Numeric	literals	can	be	integers	or	real	values.	They	can	optionally	be	signed	using	the	+	or	-	symbols.	The	scientific	notation	is	also
supported.

1

42

-1

-42

1.23

-99.99

0.1

-4.87e103

All	numeric	values	are	treated	as	64-bit	double-precision	values	internally.	The	internal	format	used	is	IEEE	754.

String	literals

String	literals	must	be	enclosed	in	single	or	double	quotes.	If	the	used	quote	character	is	to	be	used	itself	within	the	string	literal,	it	must
be	escaped	using	the	backslash	symbol.	Backslash	literals	themselves	also	be	escaped	using	a	backslash.

"yikes!"

"don't	know"

"this	is	a	\"quoted\"	word"

"this	is	a	longer	string."

"the	path	separator	on	Windows	is	\\"

'yikes!'

'don\'t	know'

'this	is	a	longer	string.'

'the	path	separator	on	Windows	is	\\'

All	string	literals	must	be	UTF-8	encoded.	It	is	currently	not	possible	to	use	arbitrary	binary	data	if	it	is	not	UTF-8	encoded.	A
workaround	to	use	binary	data	is	to	encode	the	data	using	base64	or	other	algorithms	on	the	application	side	before	storing,	and	decoding
it	on	application	side	after	retrieval.

Compound	types

AQL	supports	two	compound	types:

arrays:	A	composition	of	unnamed	values,	each	accessible	by	their	positions
objects	/	documents:	A	composition	of	named	values,	each	accessible	by	their	names

Data	types

44

Arrays	/	Lists

The	first	supported	compound	type	is	the	array	type.	Arrays	are	effectively	sequences	of	(unnamed	/	anonymous)	values.	Individual
array	elements	can	be	accessed	by	their	positions.	The	order	of	elements	in	an	array	is	important.

An	array-declaration	starts	with	the	[symbol	and	ends	with	the]	symbol.	An	array-declaration	contains	zero	or	many	expressions,
separated	from	each	other	with	the	,	symbol.

In	the	easiest	case,	an	array	is	empty	and	thus	looks	like:

[]

Array	elements	can	be	any	legal	expression	values.	Nesting	of	arrays	is	supported.

[1,	2,	3]

[-99,	"yikes!",	[true,	["no"],	[]],	1]

[["fox",	"marshal"]]

Individual	array	values	can	later	be	accessed	by	their	positions	using	the	[]	accessor.	The	position	of	the	accessed	element	must	be	a
numeric	value.	Positions	start	at	0.	It	is	also	possible	to	use	negative	index	values	to	access	array	values	starting	from	the	end	of	the	array.
This	is	convenient	if	the	length	of	the	array	is	unknown	and	access	to	elements	at	the	end	of	the	array	is	required.

//	access	1st	array	element	(elements	start	at	index	0)

u.friends[0]

//	access	3rd	array	element

u.friends[2]

//	access	last	array	element

u.friends[-1]

//	access	second	to	last	array	element

u.friends[-2]

Objects	/	Documents

The	other	supported	compound	type	is	the	object	(or	document)	type.	Objects	are	a	composition	of	zero	to	many	attributes.	Each
attribute	is	a	name/value	pair.	Object	attributes	can	be	accessed	individually	by	their	names.

Object	declarations	start	with	the	{	symbol	and	end	with	the	}	symbol.	An	object	contains	zero	to	many	attribute	declarations,	separated
from	each	other	with	the	,	symbol.	In	the	simplest	case,	an	object	is	empty.	Its	declaration	would	then	be:

{	}

Each	attribute	in	an	object	is	a	name	/	value	pair.	Name	and	value	of	an	attribute	are	separated	using	the	:	symbol.

The	attribute	name	is	mandatory	and	must	be	specified	as	a	quoted	or	unquoted	string.	If	a	keyword	is	used	as	an	attribute	name,	the
attribute	name	must	be	quoted:

{	return	:	1	}					/*	won't	work	*/

{	"return"	:	1	}			/*	works	!	*/

{	`return`	:	1	}			/*	works,	too!	*/

Since	ArangoDB	2.6,	object	attribute	names	can	be	computed	using	dynamic	expressions,	too.	To	disambiguate	regular	attribute	names
from	attribute	name	expressions,	computed	attribute	names	must	be	enclosed	in	[and]:

{	[CONCAT("test/",	"bar")]	:	"someValue"	}

Since	ArangoDB	2.7,	there	is	also	shorthand	notation	for	attributes	which	is	handy	for	returning	existing	variables	easily:

LET	name	=	"Peter"

LET	age	=	42

Data	types

45

RETURN	{	name,	age	}

The	above	is	the	shorthand	equivalent	for	the	generic	form:

LET	name	=	"Peter"

LET	age	=	42

RETURN	{	name	:	name,	age	:	age	}

Any	valid	expression	can	be	used	as	an	attribute	value.	That	also	means	nested	objects	can	be	used	as	attribute	values:

{	name	:	"Peter"	}

{	"name"	:	"Vanessa",	"age"	:	15	}

{	"name"	:	"John",	likes	:	["Swimming",	"Skiing"],	"address"	:	{	"street"	:	"Cucumber	lane",	"zip"	:	"94242"	}	}

Individual	object	attributes	can	later	be	accessed	by	their	names	using	the	.	accessor:

u.address.city.name

u.friends[0].name.first

Attributes	can	also	be	accessed	using	the	[]	accessor:

u["address"]["city"]["name"]

u["friends"][0]["name"]["first"]

In	contrast	to	the	dot	accessor,	the	square	brackets	allow	for	expressions:

LET	attr1	=	"friends"

LET	attr2	=	"name"

u[attr1][0][attr2][CONCAT("fir",	"st")]

Note	that	if	a	non-existing	attribute	is	accessed	in	one	or	the	other	way,	the	result	will	be	null,	without	error	or	warning.

Data	types

46

Bind	parameters
AQL	supports	the	usage	of	bind	parameters,	thus	allowing	to	separate	the	query	text	from	literal	values	used	in	the	query.	It	is	good
practice	to	separate	the	query	text	from	the	literal	values	because	this	will	prevent	(malicious)	injection	of	keywords	and	other	collection
names	into	an	existing	query.	This	injection	would	be	dangerous	because	it	may	change	the	meaning	of	an	existing	query.

Using	bind	parameters,	the	meaning	of	an	existing	query	cannot	be	changed.	Bind	parameters	can	be	used	everywhere	in	a	query	where
literals	can	be	used.

The	syntax	for	bind	parameters	is	@name	where	@	signifies	that	this	is	a	bind	parameter	and	name	is	the	actual	parameter	name.
Parameter	names	must	start	with	any	of	the	letters	a	to	z	(upper	or	lower	case)	or	a	digit	(0	to	9),	and	can	be	followed	by	any	letter,	digit
or	the	underscore	symbol.

FOR	u	IN	users

		FILTER	u.id	==	@id	&&	u.name	==	@name

		RETURN	u

The	bind	parameter	values	need	to	be	passed	along	with	the	query	when	it	is	executed,	but	not	as	part	of	the	query	text	itself.	In	the	web
interface,	there	is	a	pane	next	to	the	query	editor	where	the	bind	parameters	can	be	entered.	When	using		db._query()		(in	arangosh	for
instance),	then	an	object	of	key-value	pairs	can	be	passed	for	the	parameters.	Such	an	object	can	also	be	passed	to	the	HTTP	API
endpoint		_api/cursor	,	as	attribute	value	for	the	key	bindVars:

{

		"query":	"FOR	u	IN	users	FILTER	u.id	==	@id	&&	u.name	==	@name	RETURN	u",

		"bindVars":	{

				"id":	123,

				"name":	"John	Smith"

		}

}

Bind	parameters	that	are	declared	in	the	query	must	also	be	passed	a	parameter	value,	or	the	query	will	fail.	Specifying	parameters	that
are	not	declared	in	the	query	will	result	in	an	error	too.

Bind	variables	represent	a	value	like	a	string,	and	must	not	be	put	in	quotes	in	the	AQL	code:

FILTER	u.name	==	"@name"	//	wrong

FILTER	u.name	==	@name			//	correct

If	you	need	to	do	string	processing	(concatenation,	etc.)	in	the	query,	you	need	to	use	string	functions	to	do	so:

FOR	u	IN	users

		FILTER	u.id	==	CONCAT('prefix',	@id,	'suffix')	&&	u.name	==	@name

		RETURN	u

Bind	paramers	can	be	used	for	both,	the	dot	notation	as	well	as	the	square	bracket	notation	for	sub-attribute	access.	They	can	also	be
chained:

LET	doc	=	{	foo:	{	bar:	"baz"	}	}

RETURN	doc.@attr.@subattr

//	or

RETURN	doc[@attr][@subattr]

{

		"attr":	"foo",

		"subattr":	"bar"

}

Both	variants	in	above	example	return		["baz"]		as	query	result.

Bind	Parameters

47

The	whole	attribute	path,	for	highly	nested	data	in	particular,	can	also	be	specified	using	the	dot	notation	and	a	single	bind	parameter,	by
passing	an	array	of	strings	as	parameter	value.	The	elements	of	the	array	represent	the	attribute	keys	of	the	path:

LET	doc	=	{	a:	{	b:	{	c:	1	}	}	}

RETURN	doc.@attr

{	"attr":	["a",	"b",	"c"]	}

The	example	query	returns		[1]		as	result.	Note	that		{	"attr":	"a.b.c"	}		would	return	the	value	of	an	attribute	called	a.b.c,	not	the
value	of	attribute	c	with	the	parents	a	and	b	as		["a",	"b",	"c"]		would.

A	special	type	of	bind	parameter	exists	for	injecting	collection	names.	This	type	of	bind	parameter	has	a	name	prefixed	with	an	additional
@	symbol	(thus	when	using	the	bind	parameter	in	a	query,	two	@	symbols	must	be	used).

FOR	u	IN	@@collection

		FILTER	u.active	==	true

		RETURN	u

{	"@collection":	"myCollection"	}

Keywords	can't	be	replaced	by	bind-values;	i.e.		FOR	,		FILTER	,		IN	,		INBOUND		or	function	calls.

Specific	information	about	parameters	binding	can	also	be	found	in:

AQL	with	Web	Interface
AQL	with	Arangosh
HTTP	Interface	for	AQL	Queries

Bind	Parameters

48

Type	and	value	order
When	checking	for	equality	or	inequality	or	when	determining	the	sort	order	of	values,	AQL	uses	a	deterministic	algorithm	that	takes
both	the	data	types	and	the	actual	values	into	account.

The	compared	operands	are	first	compared	by	their	data	types,	and	only	by	their	data	values	if	the	operands	have	the	same	data	types.

The	following	type	order	is	used	when	comparing	data	types:

null	<	bool	<	number	<	string	<	array/list	<	object/document

This	means	null	is	the	smallest	type	in	AQL	and	document	is	the	type	with	the	highest	order.	If	the	compared	operands	have	a	different
type,	then	the	comparison	result	is	determined	and	the	comparison	is	finished.

For	example,	the	boolean	true	value	will	always	be	less	than	any	numeric	or	string	value,	any	array	(even	an	empty	array)	or	any	object	/
document.	Additionally,	any	string	value	(even	an	empty	string)	will	always	be	greater	than	any	numeric	value,	a	boolean	value,	true	or
false.

null	<	false

null	<	true

null	<	0

null	<	''

null	<	'	'

null	<	'0'

null	<	'abc'

null	<	[]

null	<	{	}

false	<	true

false	<	0

false	<	''

false	<	'	'

false	<	'0'

false	<	'abc'

false	<	[]

false	<	{	}

true	<	0

true	<	''

true	<	'	'

true	<	'0'

true	<	'abc'

true	<	[]

true	<	{	}

0	<	''

0	<	'	'

0	<	'0'

0	<	'abc'

0	<	[]

0	<	{	}

''	<	'	'

''	<	'0'

''	<	'abc'

''	<	[]

''	<	{	}

[]	<	{	}

If	the	two	compared	operands	have	the	same	data	types,	then	the	operands	values	are	compared.	For	the	primitive	types	(null,	boolean,
number,	and	string),	the	result	is	defined	as	follows:

null:	null	is	equal	to	null
boolean:	false	is	less	than	true
number:	numeric	values	are	ordered	by	their	cardinal	value

Type	and	value	order

49

string:	string	values	are	ordered	using	a	localized	comparison,	using	the	configured	server	language	for	sorting	according	to	the
alphabetical	order	rules	of	that	language

Note:	unlike	in	SQL,	null	can	be	compared	to	any	value,	including	null	itself,	without	the	result	being	converted	into	null	automatically.

For	compound,	types	the	following	special	rules	are	applied:

Two	array	values	are	compared	by	comparing	their	individual	elements	position	by	position,	starting	at	the	first	element.	For	each
position,	the	element	types	are	compared	first.	If	the	types	are	not	equal,	the	comparison	result	is	determined,	and	the	comparison	is
finished.	If	the	types	are	equal,	then	the	values	of	the	two	elements	are	compared.	If	one	of	the	arrays	is	finished	and	the	other	array	still
has	an	element	at	a	compared	position,	then	null	will	be	used	as	the	element	value	of	the	fully	traversed	array.

If	an	array	element	is	itself	a	compound	value	(an	array	or	an	object	/	document),	then	the	comparison	algorithm	will	check	the	element's
sub	values	recursively.	The	element's	sub-elements	are	compared	recursively.

[]	<	[0]

[1]	<	[2]

[1,	2]	<	[2]

[99,	99]	<	[100]

[false]	<	[true]

[false,	1]	<	[false,	'']

Two	object	/	documents	operands	are	compared	by	checking	attribute	names	and	value.	The	attribute	names	are	compared	first.	Before
attribute	names	are	compared,	a	combined	array	of	all	attribute	names	from	both	operands	is	created	and	sorted	lexicographically.	This
means	that	the	order	in	which	attributes	are	declared	in	an	object	/	document	is	not	relevant	when	comparing	two	objects	/	documents.

The	combined	and	sorted	array	of	attribute	names	is	then	traversed,	and	the	respective	attributes	from	the	two	compared	operands	are
then	looked	up.	If	one	of	the	objects	/	documents	does	not	have	an	attribute	with	the	sought	name,	its	attribute	value	is	considered	to	be
null.	Finally,	the	attribute	value	of	both	objects	/	documents	is	compared	using	the	before	mentioned	data	type	and	value	comparison.	The
comparisons	are	performed	for	all	object	/	document	attributes	until	there	is	an	unambiguous	comparison	result.	If	an	unambiguous
comparison	result	is	found,	the	comparison	is	finished.	If	there	is	no	unambiguous	comparison	result,	the	two	compared	objects	/
documents	are	considered	equal.

{	}	<	{	"a"	:	1	}

{	}	<	{	"a"	:	null	}

{	"a"	:	1	}	<	{	"a"	:	2	}

{	"b"	:	1	}	<	{	"a"	:	0	}

{	"a"	:	{	"c"	:	true	}	}	<	{	"a"	:	{	"c"	:	0	}	}

{	"a"	:	{	"c"	:	true,	"a"	:	0	}	}	<	{	"a"	:	{	"c"	:	false,	"a"	:	1	}	}

{	"a"	:	1,	"b"	:	2	}	==	{	"b"	:	2,	"a"	:	1	}

Type	and	value	order

50

Accessing	data	from	collections
Collection	data	can	be	accessed	by	specifying	a	collection	name	in	a	query.	A	collection	can	be	understood	as	an	array	of	documents,	and
that	is	how	they	are	treated	in	AQL.	Documents	from	collections	are	normally	accessed	using	the	FOR	keyword.	Note	that	when
iterating	over	documents	from	a	collection,	the	order	of	documents	is	undefined.	To	traverse	documents	in	an	explicit	and	deterministic
order,	the	SORT	keyword	should	be	used	in	addition.

Data	in	collections	is	stored	in	documents,	with	each	document	potentially	having	different	attributes	than	other	documents.	This	is	true
even	for	documents	of	the	same	collection.

It	is	therefore	quite	normal	to	encounter	documents	that	do	not	have	some	or	all	of	the	attributes	that	are	queried	in	an	AQL	query.	In	this
case,	the	non-existing	attributes	in	the	document	will	be	treated	as	if	they	would	exist	with	a	value	of	null.	That	means	that	comparing	a
document	attribute	to	null	will	return	true	if	the	document	has	the	particular	attribute	and	the	attribute	has	a	value	of	null,	or	that	the
document	does	not	have	the	particular	attribute	at	all.

For	example,	the	following	query	will	return	all	documents	from	the	collection	users	that	have	a	value	of	null	in	the	attribute	name,	plus
all	documents	from	users	that	do	not	have	the	name	attribute	at	all:

FOR	u	IN	users

		FILTER	u.name	==	null

		RETURN	u

Furthermore,	null	is	less	than	any	other	value	(excluding	null	itself).	That	means	documents	with	non-existing	attributes	may	be	included
in	the	result	when	comparing	attribute	values	with	the	less	than	or	less	equal	operators.

For	example,	the	following	query	will	return	all	documents	from	the	collection	users	that	have	an	attribute	age	with	a	value	less	than	39,
but	also	all	documents	from	the	collection	that	do	not	have	the	attribute	age	at	all.

FOR	u	IN	users

		FILTER	u.age	<	39

		RETURN	u

This	behavior	should	always	be	taken	into	account	when	writing	queries.

Accessing	data	from	collections

51

Query	results

Result	sets

The	result	of	an	AQL	query	is	an	array	of	values.	The	individual	values	in	the	result	array	may	or	may	not	have	a	homogeneous	structure,
depending	on	what	is	actually	queried.

For	example,	when	returning	data	from	a	collection	with	inhomogeneous	documents	(the	individual	documents	in	the	collection	have
different	attribute	names)	without	modification,	the	result	values	will	as	well	have	an	inhomogeneous	structure.	Each	result	value	itself	is
a	document:

FOR	u	IN	users

				RETURN	u

[{	"id":	1,	"name":	"John",	"active":	false	},	

		{	"age":	32,	"id":	2,	"name":	"Vanessa"	},	

		{	"friends":	["John",	"Vanessa"],	"id":	3,	"name":	"Amy"	}]

However,	if	a	fixed	set	of	attributes	from	the	collection	is	queried,	then	the	query	result	values	will	have	a	homogeneous	structure.	Each
result	value	is	still	a	document:

FOR	u	IN	users

				RETURN	{	"id":	u.id,	"name":	u.name	}

[{	"id":	1,	"name":	"John"	},	

		{	"id":	2,	"name":	"Vanessa"	},	

		{	"id":	3,	"name":	"Amy"	}]

It	is	also	possible	to	query	just	scalar	values.	In	this	case,	the	result	set	is	an	array	of	scalars,	and	each	result	value	is	a	scalar	value:

FOR	u	IN	users

				RETURN	u.id

[1,	2,	3]

If	a	query	does	not	produce	any	results	because	no	matching	data	can	be	found,	it	will	produce	an	empty	result	array:

[]

Query	Results

52

Errors
Issuing	an	invalid	query	to	the	server	will	result	in	a	parse	error	if	the	query	is	syntactically	invalid.	ArangoDB	will	detect	such	errors
during	query	inspection	and	abort	further	processing.	Instead,	the	error	number	and	an	error	message	are	returned	so	that	the	errors	can	be
fixed.

If	a	query	passes	the	parsing	stage,	all	collections	referenced	in	the	query	will	be	opened.	If	any	of	the	referenced	collections	is	not
present,	query	execution	will	again	be	aborted	and	an	appropriate	error	message	will	be	returned.

Under	some	circumstances,	executing	a	query	may	also	produce	run-time	errors	that	cannot	be	predicted	from	inspecting	the	query	text
alone.	This	is	because	queries	may	use	data	from	collections	that	may	also	be	inhomogeneous.	Some	examples	that	will	cause	run-time
errors	are:

Division	by	zero:	Will	be	triggered	when	an	attempt	is	made	to	use	the	value	0	as	the	divisor	in	an	arithmetic	division	or	modulus
operation
Invalid	operands	for	arithmetic	operations:	Will	be	triggered	when	an	attempt	is	made	to	use	any	non-numeric	values	as	operands	in
arithmetic	operations.	This	includes	unary	(unary	minus,	unary	plus)	and	binary	operations	(plus,	minus,	multiplication,	division,
and	modulus)
Invalid	operands	for	logical	operations:	Will	be	triggered	when	an	attempt	is	made	to	use	any	non-boolean	values	as	operand(s)	in
logical	operations.	This	includes	unary	(logical	not/negation),	binary	(logical	and,	logical	or),	and	the	ternary	operators

Please	refer	to	the	Arango	Errors	page	for	a	list	of	error	codes	and	meanings.

Query	Errors

53

Operators
AQL	supports	a	number	of	operators	that	can	be	used	in	expressions.	There	are	comparison,	logical,	arithmetic,	and	the	ternary	operator.

Comparison	operators

Comparison	(or	relational)	operators	compare	two	operands.	They	can	be	used	with	any	input	data	types,	and	will	return	a	boolean
result	value.

The	following	comparison	operators	are	supported:

==	equality
!=	inequality
<	less	than
<=	less	or	equal
>	greater	than
>=	greater	or	equal
IN	test	if	a	value	is	contained	in	an	array
NOT	IN	test	if	a	value	is	not	contained	in	an	array
LIKE	tests	if	a	string	value	matches	a	pattern
=~	tests	if	a	string	value	matches	a	regular	expression
!~	tests	if	a	string	value	does	not	match	a	regular	expression

Each	of	the	comparison	operators	returns	a	boolean	value	if	the	comparison	can	be	evaluated	and	returns	true	if	the	comparison	evaluates
to	true,	and	false	otherwise.

The	comparison	operators	accept	any	data	types	for	the	first	and	second	operands.	However,	IN	and	NOT	IN	will	only	return	a
meaningful	result	if	their	right-hand	operand	is	a	string,	and	LIKE	will	only	execute	if	both	operands	are	string	values.	The	comparison
operators	will	not	perform	any	implicit	type	casts	if	the	compared	operands	have	different	or	non-sensible	types.

Some	examples	for	comparison	operations	in	AQL:

0	==	null																	//	false

1	>	0																					//	true

true	!=	null														//	true

45	<=	"yikes!"												//	true

65	!=	"65"																//	true

65	==	65																		//	true

1.23	>	1.32															//	false

1.5	IN	[2,	3,	1.5]						//	true

"foo"	IN	null													//	false

42	NOT	IN	[17,	40,	50]		//	true

"abc"	==	"abc"												//	true

"abc"	==	"ABC"												//	false

"foo"	LIKE	"f%"											//	true

"foo"	=~	"^f[o].$"								//	true

"foo"	!~	"[a-z]+bar$"					//	true

The	LIKE	operator	checks	whether	its	left	operand	matches	the	pattern	specified	in	its	right	operand.	The	pattern	can	consist	of	regular
characters	and	wildcards.	The	supported	wildcards	are	_	to	match	a	single	arbitrary	character,	and	% 	to	match	any	number	of	arbitrary
characters.	Literal	% 	and	_	need	to	be	escaped	with	a	backslash.	Backslashes	need	to	be	escaped	themselves,	which	effectively	means	that
two	reverse	solidus	characters	need	to	preceed	a	literal	percent	sign	or	underscore.	In	arangosh,	additional	escaping	is	required,	making	it
four	backslashes	in	total	preceeding	the	to-be-escaped	character.

"abc"	LIKE	"a%"														//	true

"abc"	LIKE	"_bc"													//	true

"a_b_foo"	LIKE	"a_b_foo"	//	true

The	pattern	matching	performed	by	the	LIKE	operator	is	case-sensitive.

Operators

54

The	regular	expression	operators	=~	and	!~	expect	their	left-hand	operands	to	be	strings,	and	their	right-hand	operands	to	be	strings
containing	valid	regular	expressions	as	specified	in	the	documentation	for	the	AQL	function	REGEX_TEST().

Array	comparison	operators

The	comparison	operators	also	exist	as	array	variant.	In	the	array	variant,	the	operator	is	prefixed	with	one	of	the	keywords	ALL,	ANY
or	NONE.	Using	one	of	these	keywords	changes	the	operator	behavior	to	execute	the	comparison	operation	for	all,	any,	or	none	of	its	left
hand	argument	values.	It	is	therefore	expected	that	the	left	hand	argument	of	an	array	operator	is	an	array.

Examples:

[1,	2,	3]	ALL	IN	[2,	3,	4]			//	false

[1,	2,	3]	ALL	IN	[1,	2,	3]			//	true

[1,	2,	3]	NONE	IN	[3]								//	false

[1,	2,	3]	NONE	IN	[23,	42]			//	true

[1,	2,	3]	ANY	IN	[4,	5,	6]			//	false

[1,	2,	3]	ANY	IN	[1,	42]					//	true

[1,	2,	3]	ANY	==	2													//	true

[1,	2,	3]	ANY	==	4													//	false

[1,	2,	3]	ANY	>	0														//	true

[1,	2,	3]	ANY	<=	1													//	true

[1,	2,	3]	NONE	<	99												//	false

[1,	2,	3]	NONE	>	10												//	true

[1,	2,	3]	ALL	>	2														//	false

[1,	2,	3]	ALL	>	0														//	true

[1,	2,	3]	ALL	>=	3													//	false

["foo",	"bar"]	ALL	!=	"moo"						//	true

["foo",	"bar"]	NONE	==	"bar"					//	false

["foo",	"bar"]	ANY	==	"foo"						//	true

Note	that	these	operators	are	not	optimized	yet.	Indexes	will	not	be	utilized.

Logical	operators

The	following	logical	operators	are	supported	in	AQL:

&&	logical	and	operator
||	logical	or	operator
!	logical	not/negation	operator

AQL	also	supports	the	following	alternative	forms	for	the	logical	operators:

AND	logical	and	operator
OR	logical	or	operator
NOT	logical	not/negation	operator

The	alternative	forms	are	aliases	and	functionally	equivalent	to	the	regular	operators.

The	two-operand	logical	operators	in	AQL	will	be	executed	with	short-circuit	evaluation	(except	if	one	of	the	operands	is	or	includes	a
subquery.	In	this	case	the	subquery	will	be	pulled	out	an	evaluated	before	the	logical	operator).

The	result	of	the	logical	operators	in	AQL	is	defined	as	follows:

	lhs	&&	rhs		will	return		lhs		if	it	is		false		or	would	be		false		when	converted	into	a	boolean.	If		lhs		is		true		or	would	be
	true		when	converted	to	a	boolean,		rhs		will	be	returned.
	lhs	||	rhs		will	return		lhs		if	it	is		true		or	would	be		true		when	converted	into	a	boolean.	If		lhs		is		false		or	would	be
	false		when	converted	to	a	boolean,		rhs		will	be	returned.
	!	value		will	return	the	negated	value	of		value		converted	into	a	boolean

Some	examples	for	logical	operations	in	AQL:

u.age	>	15	&&	u.address.city	!=	""

true	||	false

NOT	u.isInvalid

1	||	!	0

Operators

55

Passing	non-boolean	values	to	a	logical	operator	is	allowed.	Any	non-boolean	operands	will	be	casted	to	boolean	implicitly	by	the
operator,	without	making	the	query	abort.

The	conversion	to	a	boolean	value	works	as	follows:

	null		will	be	converted	to		false	
boolean	values	remain	unchanged
all	numbers	unequal	to	zero	are		true	,	zero	is		false	
an	empty	string	is		false	,	all	other	strings	are		true	
arrays	([])	and	objects	/	documents	({	})	are		true	,	regardless	of	their	contents

The	result	of	logical	and	and	logical	or	operations	can	now	have	any	data	type	and	is	not	necessarily	a	boolean	value.

For	example,	the	following	logical	operations	will	return	boolean	values:

25	>	1	&&	42	!=	7																										//	true

22	IN	[23,	42]	||	23	NOT	IN	[22,	7]				//	true

25	!=	25																																			//	false

whereas	the	following	logical	operations	will	not	return	boolean	values:

1	||	7																																					//	1

null	||	"foo"																														//	"foo"

null	&&	true																															//	null

true	&&	23																																	//	23

Arithmetic	operators

Arithmetic	operators	perform	an	arithmetic	operation	on	two	numeric	operands.	The	result	of	an	arithmetic	operation	is	again	a	numeric
value.

AQL	supports	the	following	arithmetic	operators:

+	addition
-	subtraction
*	multiplication
/	division
% 	modulus

Unary	plus	and	unary	minus	are	supported	as	well:

LET	x	=	-5

LET	y	=	1

RETURN	[-x,	+y]

//	[5,	1]

For	exponentiation,	there	is	a	numeric	function	POW().	The	syntax		base	**	exp		is	not	supported.

For	string	concatenation,	you	must	use	the	string	function	CONCAT().	Combining	two	strings	with	a	plus	operator	("foo"	+	"bar")
will	not	work!	Also	see	Common	Errors.

Some	example	arithmetic	operations:

1	+	1

33	-	99

12.4	*	4.5

13.0	/	0.1

23	%	7

-15

+9.99

The	arithmetic	operators	accept	operands	of	any	type.	Passing	non-numeric	values	to	an	arithmetic	operator	will	cast	the	operands	to
numbers	using	the	type	casting	rules	applied	by	the	TO_NUMBER()	function:

Operators

56

	null		will	be	converted	to		0	
	false		will	be	converted	to		0	,	true	will	be	converted	to		1	
a	valid	numeric	value	remains	unchanged,	but	NaN	and	Infinity	will	be	converted	to		0	
string	values	are	converted	to	a	number	if	they	contain	a	valid	string	representation	of	a	number.	Any	whitespace	at	the	start	or	the
end	of	the	string	is	ignored.	Strings	with	any	other	contents	are	converted	to	the	number		0	
an	empty	array	is	converted	to		0	,	an	array	with	one	member	is	converted	to	the	numeric	representation	of	its	sole	member.	Arrays
with	more	members	are	converted	to	the	number		0	.
objects	/	documents	are	converted	to	the	number		0	.

An	arithmetic	operation	that	produces	an	invalid	value,	such	as		1	/	0		(division	by	zero)	will	also	produce	a	result	value	of		null	.	The
query	is	not	aborted,	but	you	may	see	a	warning.

Here	are	a	few	examples:

1	+	"a"																	//	1

1	+	"99"																//	100

1	+	null																//	1

null	+	1																//	1

3	+	[]																	//	3

24	+	[2]														//	26

24	+	[2,	4]											//	0

25	-	null															//	25

17	-	true															//	16

23	*	{	}																//	0

5	*	[7]															//	35

24	/	"12"															//	2

1	/	0																			//	0

Ternary	operator

AQL	also	supports	a	ternary	operator	that	can	be	used	for	conditional	evaluation.	The	ternary	operator	expects	a	boolean	condition	as	its
first	operand,	and	it	returns	the	result	of	the	second	operand	if	the	condition	evaluates	to	true,	and	the	third	operand	otherwise.

Examples

u.age	>	15	||	u.active	==	true	?	u.userId	:	null

There	is	also	a	shortcut	variant	of	the	ternary	operator	with	just	two	operands.	This	variant	can	be	used	when	the	expression	for	the
boolean	condition	and	the	return	value	should	be	the	same:

Examples

u.value	?	:	'value	is	null,	0	or	not	present'

Range	operator

AQL	supports	expressing	simple	numeric	ranges	with	the	..	operator.	This	operator	can	be	used	to	easily	iterate	over	a	sequence	of
numeric	values.

The	..	operator	will	produce	an	array	of	the	integer	values	in	the	defined	range,	with	both	bounding	values	included.

Examples

2010..2013

will	produce	the	following	result:

[2010,	2011,	2012,	2013]

Using	the	range	operator	is	equivalent	to	writing	an	array	with	the	integer	values	in	the	range	specified	by	the	bounds	of	the	range.	If	the
bounds	of	the	range	operator	are	non-integers,	they	will	be	converted	to	integer	values	first.

Operators

57

There	is	also	a	RANGE()	function.

Array	operators

AQL	provides	array	operators	[*]	for	array	variable	expansion	and	[**]	for	array	contraction.

Operator	precedence

The	operator	precedence	in	AQL	is	similar	as	in	other	familiar	languages	(lowest	precedence	first):

?	:	ternary	operator
||	logical	or
&&	logical	and
==,	!=	equality	and	inequality
IN	in	operator
<,	<=,	>=,	>	less	than,	less	equal,	greater	equal,	greater	than
+,	-	addition,	subtraction
*,	/,	% 	multiplication,	division,	modulus
!,	+,	-	logical	negation,	unary	plus,	unary	minus
[*]	expansion
()	function	call
.	member	access
[]	indexed	value	access

The	parentheses	(and)	can	be	used	to	enforce	a	different	operator	evaluation	order.

Operators

58

Data	Queries

Data	Access	Queries

Retrieving	data	from	the	database	with	AQL	does	always	include	a	RETURN	operation.	It	can	be	used	to	return	a	static	value,	such	as	a
string:

RETURN	"Hello	ArangoDB!"

The	query	result	is	always	an	array	of	elements,	even	if	a	single	element	was	returned	and	contains	a	single	element	in	that	case:		["Hello
ArangoDB!"]	

The	function		DOCUMENT()		can	be	called	to	retrieve	a	single	document	via	its	document	handle,	for	instance:

RETURN	DOCUMENT("users/phil")

RETURN	is	usually	accompanied	by	a	FOR	loop	to	iterate	over	the	documents	of	a	collection.	The	following	query	executes	the	loop
body	for	all	documents	of	a	collection	called	users.	Each	document	is	returned	unchanged	in	this	example:

FOR	doc	IN	users

				RETURN	doc

Instead	of	returning	the	raw		doc	,	one	can	easily	create	a	projection:

FOR	doc	IN	users

				RETURN	{	user:	doc,	newAttribute:	true	}

For	every	user	document,	an	object	with	two	attributes	is	returned.	The	value	of	the	attribute	user	is	set	to	the	content	of	the	user
document,	and	newAttribute	is	a	static	attribute	with	the	boolean	value	true.

Operations	like	FILTER,	SORT	and	LIMIT	can	be	added	to	the	loop	body	to	narrow	and	order	the	result.	Instead	of	above	shown	call	to
	DOCUMENT()	,	one	can	also	retrieve	the	document	that	describes	user	phil	like	so:

FOR	doc	IN	users

				FILTER	doc._key	==	"phil"

				RETURN	doc

The	document	key	is	used	in	this	example,	but	any	other	attribute	could	equally	be	used	for	filtering.	Since	the	document	key	is
guaranteed	to	be	unique,	no	more	than	a	single	document	will	match	this	filter.	For	other	attributes	this	may	not	be	the	case.	To	return	a
subset	of	active	users	(determined	by	an	attribute	called	status),	sorted	by	name	in	ascending	order,	you	can	do:

FOR	doc	IN	users

				FILTER	doc.status	==	"active"

				SORT	doc.name

				LIMIT	10

Note	that	operations	do	not	have	to	occur	in	a	fixed	order	and	that	their	order	can	influence	the	result	significantly.	Limiting	the	number	of
documents	before	a	filter	is	usually	not	what	you	want,	because	it	easily	misses	a	lot	of	documents	that	would	fulfill	the	filter	criterion,
but	are	ignored	because	of	a	premature	LIMIT	clause.	Because	of	the	aforementioned	reasons,	LIMIT	is	usually	put	at	the	very	end,	after
FILTER,	SORT	and	other	operations.

See	the	High	Level	Operations	chapter	for	more	details.

Data	Modification	Queries

AQL	supports	the	following	data-modification	operations:

Data	Queries

59

INSERT:	insert	new	documents	into	a	collection
UPDATE:	partially	update	existing	documents	in	a	collection
REPLACE:	completely	replace	existing	documents	in	a	collection
REMOVE:	remove	existing	documents	from	a	collection
UPSERT:	conditionally	insert	or	update	documents	in	a	collection

Below	you	find	some	simple	example	queries	that	use	these	operations.	The	operations	are	detailed	in	the	chapter	High	Level	Operations.

Modifying	a	single	document

Let's	start	with	the	basics:		INSERT	,		UPDATE		and		REMOVE		operations	on	single	documents.	Here	is	an	example	that	insert	a	document	in
an	existing	collection	users:

INSERT	{

				firstName:	"Anna",

				name:	"Pavlova",

				profession:	"artist"

}	IN	users

You	may	provide	a	key	for	the	new	document;	if	not	provided,	ArangoDB	will	create	one	for	you.

INSERT	{

				_key:	"GilbertoGil",

				firstName:	"Gilberto",

				name:	"Gil",

				city:	"Fortalezza"

}	IN	users

As	ArangoDB	is	schema-free,	attributes	of	the	documents	may	vary:

INSERT	{

				_key:	"PhilCarpenter",

				firstName:	"Phil",

				name:	"Carpenter",

				middleName:	"G.",

				status:	"inactive"

}	IN	users

INSERT	{

				_key:	"NatachaDeclerck",

				firstName:	"Natacha",

				name:	"Declerck",

				location:	"Antwerp"

}	IN	users

Update	is	quite	simple.	The	following	AQL	statement	will	add	or	change	the	attributes	status	and	location

UPDATE	"PhilCarpenter"	WITH	{

				status:	"active",

				location:	"Beijing"

}	IN	users

Replace	is	an	alternative	to	update	where	all	attributes	of	the	document	are	replaced.

REPLACE	{

				_key:	"NatachaDeclerck",

				firstName:	"Natacha",

				name:	"Leclerc",

				status:	"active",

				level:	"premium"

}	IN	users

Removing	a	document	if	you	know	its	key	is	simple	as	well	:

Data	Queries

60

REMOVE	"GilbertoGil"	IN	users

or

REMOVE	{	_key:	"GilbertoGil"	}	IN	users

Modifying	multiple	documents

Data-modification	operations	are	normally	combined	with	FOR	loops	to	iterate	over	a	given	list	of	documents.	They	can	optionally	be
combined	with	FILTER	statements	and	the	like.

Let's	start	with	an	example	that	modifies	existing	documents	in	a	collection	users	that	match	some	condition:

FOR	u	IN	users

				FILTER	u.status	==	"not	active"

				UPDATE	u	WITH	{	status:	"inactive"	}	IN	users

Now,	let's	copy	the	contents	of	the	collection	users	into	the	collection	backup:

FOR	u	IN	users

				INSERT	u	IN	backup

As	a	final	example,	let's	find	some	documents	in	collection	users	and	remove	them	from	collection	backup.	The	link	between	the
documents	in	both	collections	is	established	via	the	documents'	keys:

FOR	u	IN	users

				FILTER	u.status	==	"deleted"

				REMOVE	u	IN	backup

Returning	documents

Data-modification	queries	can	optionally	return	documents.	In	order	to	reference	the	inserted,	removed	or	modified	documents	in	a
	RETURN		statement,	data-modification	statements	introduce	the		OLD		and/or		NEW		pseudo-values:

FOR	i	IN	1..100

				INSERT	{	value:	i	}	IN	test	

				RETURN	NEW

FOR	u	IN	users

				FILTER	u.status	==	"deleted"

				REMOVE	u	IN	users	

				RETURN	OLD

FOR	u	IN	users

				FILTER	u.status	==	"not	active"

				UPDATE	u	WITH	{	status:	"inactive"	}	IN	users	

				RETURN	NEW

	NEW		refers	to	the	inserted	or	modified	document	revision,	and		OLD		refers	to	the	document	revision	before	update	or	removal.		INSERT	
statements	can	only	refer	to	the		NEW		pseudo-value,	and		REMOVE		operations	only	to		OLD	.		UPDATE	,		REPLACE		and		UPSERT		can	refer	to
either.

In	all	cases	the	full	documents	will	be	returned	with	all	their	attributes,	including	the	potentially	auto-generated	attributes	such	as		_id	,
	_key	,	or		_rev		and	the	attributes	not	specified	in	the	update	expression	of	a	partial	update.

Projections

It	is	possible	to	return	a	projection	of	the	documents	in		OLD		or		NEW		instead	of	returning	the	entire	documents.	This	can	be	used	to
reduce	the	amount	of	data	returned	by	queries.

Data	Queries

61

For	example,	the	following	query	will	return	only	the	keys	of	the	inserted	documents:

FOR	i	IN	1..100

				INSERT	{	value:	i	}	IN	test	

				RETURN	NEW._key

Using	OLD	and	NEW	in	the	same	query

For		UPDATE	,		REPLACE		and		UPSERT		statements,	both		OLD		and		NEW		can	be	used	to	return	the	previous	revision	of	a	document
together	with	the	updated	revision:

FOR	u	IN	users

				FILTER	u.status	==	"not	active"

				UPDATE	u	WITH	{	status:	"inactive"	}	IN	users	

				RETURN	{	old:	OLD,	new:	NEW	}

Calculations	with	OLD	or	NEW

It	is	also	possible	to	run	additional	calculations	with		LET		statements	between	the	data-modification	part	and	the	final		RETURN		of	an
AQL	query.	For	example,	the	following	query	performs	an	upsert	operation	and	returns	whether	an	existing	document	was	updated,	or	a
new	document	was	inserted.	It	does	so	by	checking	the		OLD		variable	after	the		UPSERT		and	using	a		LET		statement	to	store	a	temporary
string	for	the	operation	type:

UPSERT	{	name:	"test"	}

				INSERT	{	name:	"test"	}

				UPDATE	{	}	IN	users

LET	opType	=	IS_NULL(OLD)	?	"insert"	:	"update"

RETURN	{	_key:	NEW._key,	type:	opType	}

Restrictions

The	name	of	the	modified	collection	(users	and	backup	in	the	above	cases)	must	be	known	to	the	AQL	executor	at	query-compile	time
and	cannot	change	at	runtime.	Using	a	bind	parameter	to	specify	the	collection	name	is	allowed.

Data-modification	operations	are	restricted	to	one	collection	at	a	time.	It	is	not	possible	to	use	multiple	data-modification	operations	for
the	same	collection	in	the	same	query,	or	follow	up	a	data-modification	operation	for	a	specific	collection	with	a	read	operation	for	the
same	collection.	Neither	is	it	possible	to	follow	up	any	data-modification	operation	with	a	traversal	query	(which	may	read	from
arbitrary	collections	not	necessarily	known	at	the	start	of	the	traversal).

That	means	you	may	not	place	several		REMOVE		or		UPDATE		statements	for	the	same	collection	into	the	same	query.	It	is	however
possible	to	modify	different	collections	by	using	multiple	data-modification	operations	for	different	collections	in	the	same	query.	In	case
you	have	a	query	with	several	places	that	need	to	remove	documents	from	the	same	collection,	it	is	recommended	to	collect	these
documents	or	their	keys	in	an	array	and	have	the	documents	from	that	array	removed	using	a	single		REMOVE		operation.

Data-modification	operations	can	optionally	be	followed	by		LET		operations	to	perform	further	calculations	and	a		RETURN		operation	to
return	data.

Transactional	Execution

On	a	single	server,	data-modification	operations	are	executed	transactionally.	If	a	data-modification	operation	fails,	any	changes	made	by
it	will	be	rolled	back	automatically	as	if	they	never	happened.

If	the	RocksDB	engine	is	used	and	intermediate	commits	are	enabled,	a	query	may	execute	intermediate	transaction	commits	in	case	the
running	transaction	(AQL	query)	hits	the	specified	size	thresholds.	In	this	case,	the	query's	operations	carried	out	so	far	will	be
committed	and	not	rolled	back	in	case	of	a	later	abort/rollback.	That	behavior	can	be	controlled	by	adjusting	the	intermediate	commit
settings	for	the	RocksDB	engine.

In	a	cluster,	AQL	data-modification	queries	are	currently	not	executed	transactionally.	Additionally,	update,	replace,	upsert	and	remove
AQL	queries	currently	require	the	_key	attribute	to	be	specified	for	all	documents	that	should	be	modified	or	removed,	even	if	a	shared
key	attribute	other	than	_key	was	chosen	for	the	collection.	This	restriction	may	be	overcome	in	a	future	release	of	ArangoDB.

Data	Queries

62

Data	Queries

63

High-level	operations
The	following	high-level	operations	are	described	here	after:

FOR:	Iterate	over	all	elements	of	an	array.
RETURN:	Produce	the	result	of	a	query.
FILTER:	Restrict	the	results	to	elements	that	match	arbitrary	logical	conditions.
SORT:	Force	a	sort	of	the	array	of	already	produced	intermediate	results.
LIMIT:	Reduce	the	number	of	elements	in	the	result	to	at	most	the	specified	number,	optionally	skip	elements	(pagination).
LET:	Assign	an	arbitrary	value	to	a	variable.
COLLECT:	Group	an	array	by	one	or	multiple	group	criteria.	Can	also	count	and	aggregate.
REMOVE:	Remove	documents	from	a	collection.
UPDATE:	Partially	update	documents	in	a	collection.
REPLACE:	Completely	replace	documents	in	a	collection.
INSERT:	Insert	new	documents	into	a	collection.
UPSERT:	Update/replace	an	existing	document,	or	create	it	in	the	case	it	does	not	exist.
WITH:	Specify	collections	used	in	a	query	(at	query	begin	only).

High	level	Operations

64

FOR
The	FOR	keyword	can	be	to	iterate	over	all	elements	of	an	array.	The	general	syntax	is:

FOR	variableName	IN	expression

There	is	also	a	special	variant	for	graph	traversals:

FOR	vertexVariableName,	edgeVariableName,	pathVariableName	IN	traversalExpression

For	this	special	case	see	the	graph	traversals	chapter.	For	all	other	cases	read	on:

Each	array	element	returned	by	expression	is	visited	exactly	once.	It	is	required	that	expression	returns	an	array	in	all	cases.	The	empty
array	is	allowed,	too.	The	current	array	element	is	made	available	for	further	processing	in	the	variable	specified	by	variableName.

FOR	u	IN	users

		RETURN	u

This	will	iterate	over	all	elements	from	the	array	users	(note:	this	array	consists	of	all	documents	from	the	collection	named	"users"	in
this	case)	and	make	the	current	array	element	available	in	variable	u.	u	is	not	modified	in	this	example	but	simply	pushed	into	the	result
using	the	RETURN	keyword.

Note:	When	iterating	over	collection-based	arrays	as	shown	here,	the	order	of	documents	is	undefined	unless	an	explicit	sort	order	is
defined	using	a	SORT	statement.

The	variable	introduced	by	FOR	is	available	until	the	scope	the	FOR	is	placed	in	is	closed.

Another	example	that	uses	a	statically	declared	array	of	values	to	iterate	over:

FOR	year	IN	[2011,	2012,	2013]

		RETURN	{	"year"	:	year,	"isLeapYear"	:	year	%	4	==	0	&&	(year	%	100	!=	0	||	year	%	400	==	0)	}

Nesting	of	multiple	FOR	statements	is	allowed,	too.	When	FOR	statements	are	nested,	a	cross	product	of	the	array	elements	returned	by
the	individual	FOR	statements	will	be	created.

FOR	u	IN	users

		FOR	l	IN	locations

				RETURN	{	"user"	:	u,	"location"	:	l	}

In	this	example,	there	are	two	array	iterations:	an	outer	iteration	over	the	array	users	plus	an	inner	iteration	over	the	array	locations.	The
inner	array	is	traversed	as	many	times	as	there	are	elements	in	the	outer	array.	For	each	iteration,	the	current	values	of	users	and	locations
are	made	available	for	further	processing	in	the	variable	u	and	l.

FOR

65

RETURN
The	RETURN	statement	can	be	used	to	produce	the	result	of	a	query.	It	is	mandatory	to	specify	a	RETURN	statement	at	the	end	of	each
block	in	a	data-selection	query,	otherwise	the	query	result	would	be	undefined.	Using	RETURN	on	the	main	level	in	data-modification
queries	is	optional.

The	general	syntax	for	RETURN	is:

RETURN	expression

The	expression	returned	by	RETURN	is	produced	for	each	iteration	in	the	block	the	RETURN	statement	is	placed	in.	That	means	the
result	of	a	RETURN	statement	is	always	an	array.	This	includes	an	empty	array	if	no	documents	matched	the	query	and	a	single	return
value	returned	as	array	with	one	element.

To	return	all	elements	from	the	currently	iterated	array	without	modification,	the	following	simple	form	can	be	used:

FOR	variableName	IN	expression

		RETURN	variableName

As	RETURN	allows	specifying	an	expression,	arbitrary	computations	can	be	performed	to	calculate	the	result	elements.	Any	of	the
variables	valid	in	the	scope	the	RETURN	is	placed	in	can	be	used	for	the	computations.

To	iterate	over	all	documents	of	a	collection	called	users	and	return	the	full	documents,	you	can	write:

FOR	u	IN	users

		RETURN	u

In	each	iteration	of	the	for-loop,	a	document	of	the	users	collection	is	assigned	to	a	variable	u	and	returned	unmodified	in	this	example.	To
return	only	one	attribute	of	each	document,	you	could	use	a	different	return	expression:

FOR	u	IN	users

		RETURN	u.name

Or	to	return	multiple	attributes,	an	object	can	be	constructed	like	this:

FOR	u	IN	users

		RETURN	{	name:	u.name,	age:	u.age	}

Note:	RETURN	will	close	the	current	scope	and	eliminate	all	local	variables	in	it.	This	is	important	to	remember	when	working	with
subqueries.

Dynamic	attribute	names	are	supported	as	well:

FOR	u	IN	users

		RETURN	{	[u._id]:	u.age	}

The	document	_id	of	every	user	is	used	as	expression	to	compute	the	attribute	key	in	this	example:

[

		{

				"users/9883":	32

		},

		{

				"users/9915":	27

		},

		{

				"users/10074":	69

		}

]

RETURN

66

The	result	contains	one	object	per	user	with	a	single	key/value	pair	each.	This	is	usually	not	desired.	For	a	single	object,	that	maps	user
IDs	to	ages,	the	individual	results	need	to	be	merged	and	returned	with	another		RETURN	:

RETURN	MERGE(

		FOR	u	IN	users

				RETURN	{	[u._id]:	u.age	}

)

[

		{

				"users/10074":	69,

				"users/9883":	32,

				"users/9915":	27

		}

]

Keep	in	mind	that	if	the	key	expression	evaluates	to	the	same	value	multiple	times,	only	one	of	the	key/value	pairs	with	the	duplicate
name	will	survive	MERGE().	To	avoid	this,	you	can	go	without	dynamic	attribute	names,	use	static	names	instead	and	return	all
document	properties	as	attribute	values:

FOR	u	IN	users

		RETURN	{	name:	u.name,	age:	u.age	}

[

		{

				"name":	"John	Smith",

				"age":	32

		},

		{

				"name":	"James	Hendrix",

				"age":	69

		},

		{

				"name":	"Katie	Foster",

				"age":	27

		}

]

RETURN	DISTINCT

Since	ArangoDB	2.7,	RETURN	can	optionally	be	followed	by	the	DISTINCT	keyword.	The	DISTINCT	keyword	will	ensure	uniqueness
of	the	values	returned	by	the	RETURN	statement:

FOR	variableName	IN	expression

		RETURN	DISTINCT	expression

If	the	DISTINCT	is	applied	on	an	expression	that	itself	is	an	array	or	a	subquery,	the	DISTINCT	will	not	make	the	values	in	each	array	or
subquery	result	unique,	but	instead	ensure	that	the	result	contains	only	distinct	arrays	or	subquery	results.	To	make	the	result	of	an	array
or	a	subquery	unique,	simply	apply	the	DISTINCT	for	the	array	or	the	subquery.

For	example,	the	following	query	will	apply	DISTINCT	on	its	subquery	results,	but	not	inside	the	subquery:

FOR	what	IN	1..2

		RETURN	DISTINCT	(

				FOR	i	IN	[1,	2,	3,	4,	1,	3]	

						RETURN	i

)

Here	we'll	have	a	FOR	loop	with	two	iterations	that	each	execute	a	subquery.	The	DISTINCT	here	is	applied	on	the	two	subquery
results.	Both	subqueries	return	the	same	result	value	(that	is	[1,	2,	3,	4,	1,	3]),	so	after	DISTINCT	there	will	only	be	one	occurrence	of
the	value	[1,	2,	3,	4,	1,	3]	left:

[

RETURN

67

		[1,	2,	3,	4,	1,	3]

]

If	the	goal	is	to	apply	the	DISTINCT	inside	the	subquery,	it	needs	to	be	moved	there:

FOR	what	IN	1..2

		LET	sub	=	(

				FOR	i	IN	[1,	2,	3,	4,	1,	3]	

						RETURN	DISTINCT	i

)	

		RETURN	sub

In	the	above	case,	the	DISTINCT	will	make	the	subquery	results	unique,	so	that	each	subquery	will	return	a	unique	array	of	values	([1,	2,
3,	4]).	As	the	subquery	is	executed	twice	and	there	is	no	DISTINCT	on	the	top-level,	that	array	will	be	returned	twice:

[

		[1,	2,	3,	4],

		[1,	2,	3,	4]

]

Note:	the	order	of	results	was	undefined	for	RETURN	DISTINCT	until	before	ArangoDB	3.3.	Starting	with	ArangoDB	3.3,	RETURN
DISTINCT	will	not	change	the	order	of	the	results	it	is	applied	on.

Note:	RETURN	DISTINCT	is	not	allowed	on	the	top-level	of	a	query	if	there	is	no	FOR	loop	preceding	it.

RETURN

68

FILTER
The	FILTER	statement	can	be	used	to	restrict	the	results	to	elements	that	match	an	arbitrary	logical	condition.

General	syntax

FILTER	condition

condition	must	be	a	condition	that	evaluates	to	either	false	or	true.	If	the	condition	result	is	false,	the	current	element	is	skipped,	so	it	will
not	be	processed	further	and	not	be	part	of	the	result.	If	the	condition	is	true,	the	current	element	is	not	skipped	and	can	be	further
processed.	See	Operators	for	a	list	of	comparison	operators,	logical	operators	etc.	that	you	can	use	in	conditions.

FOR	u	IN	users

		FILTER	u.active	==	true	&&	u.age	<	39

		RETURN	u

It	is	allowed	to	specify	multiple	FILTER	statements	in	a	query,	even	in	the	same	block.	If	multiple	FILTER	statements	are	used,	their
results	will	be	combined	with	a	logical	AND,	meaning	all	filter	conditions	must	be	true	to	include	an	element.

FOR	u	IN	users

		FILTER	u.active	==	true

		FILTER	u.age	<	39

		RETURN	u

In	the	above	example,	all	array	elements	of	users	that	have	an	attribute	active	with	value	true	and	that	have	an	attribute	age	with	a	value
less	than	39	(including	null	ones)	will	be	included	in	the	result.	All	other	elements	of	users	will	be	skipped	and	not	be	included	in	the
result	produced	by	RETURN.	You	may	refer	to	the	chapter	Accessing	Data	from	Collections	for	a	description	of	the	impact	of	non-
existent	or	null	attributes.

Order	of	operations
Note	that	the	positions	of	FILTER	statements	can	influence	the	result	of	a	query.	There	are	16	active	users	in	the	test	data	for	instance:

FOR	u	IN	users

		FILTER	u.active	==	true

		RETURN	u

We	can	limit	the	result	set	to	5	users	at	most:

FOR	u	IN	users

		FILTER	u.active	==	true

		LIMIT	5

		RETURN	u

This	may	return	the	user	documents	of	Jim,	Diego,	Anthony,	Michael	and	Chloe	for	instance.	Which	ones	are	returned	is	undefined,	since
there	is	no	SORT	statement	to	ensure	a	particular	order.	If	we	add	a	second	FILTER	statement	to	only	return	women...

FOR	u	IN	users

		FILTER	u.active	==	true

		LIMIT	5

		FILTER	u.gender	==	"f"

		RETURN	u

FILTER

69

...	it	might	just	return	the	Chloe	document,	because	the	LIMIT	is	applied	before	the	second	FILTER.	No	more	than	5	documents	arrive	at
the	second	FILTER	block,	and	not	all	of	them	fulfill	the	gender	criterion,	eventhough	there	are	more	than	5	active	female	users	in	the
collection.	A	more	deterministic	result	can	be	achieved	by	adding	a	SORT	block:

FOR	u	IN	users

		FILTER	u.active	==	true

		SORT	u.age	ASC

		LIMIT	5

		FILTER	u.gender	==	"f"

		RETURN	u

This	will	return	the	users	Mariah	and	Mary.	If	sorted	by	age	in	DESC	order,	then	the	Sophia,	Emma	and	Madison	documents	are
returned.	A	FILTER	after	a	LIMIT	is	not	very	common	however,	and	you	probably	want	such	a	query	instead:

FOR	u	IN	users

		FILTER	u.active	==	true	AND	u.gender	==	"f"

		SORT	u.age	ASC

		LIMIT	5

		RETURN	u

The	significance	of	where	FILTER	blocks	are	placed	allows	that	this	single	keyword	can	assume	the	roles	of	two	SQL	keywords,	WHERE
as	well	as	HAVING.	AQL's	FILTER	thus	works	with	COLLECT	aggregates	the	same	as	with	any	other	intermediate	result,	document
attribute	etc.

FILTER

70

SORT
The	SORT	statement	will	force	a	sort	of	the	array	of	already	produced	intermediate	results	in	the	current	block.	SORT	allows	specifying
one	or	multiple	sort	criteria	and	directions.	The	general	syntax	is:

SORT	expression	direction

Example	query	that	is	sorting	by	lastName	(in	ascending	order),	then	firstName	(in	ascending	order),	then	by	id	(in	descending	order):

FOR	u	IN	users

		SORT	u.lastName,	u.firstName,	u.id	DESC

		RETURN	u

Specifying	the	direction	is	optional.	The	default	(implicit)	direction	for	a	sort	expression	is	the	ascending	order.	To	explicitly	specify	the
sort	direction,	the	keywords	ASC	(ascending)	and	DESC	can	be	used.	Multiple	sort	criteria	can	be	separated	using	commas.	In	this	case
the	direction	is	specified	for	each	expression	sperately.	For	example

SORT	doc.lastName,	doc.firstName

will	first	sort	documents	by	lastName	in	ascending	order	and	then	by	firstName	in	ascending	order.

SORT	doc.lastName	DESC,	doc.firstName

will	first	sort	documents	by	lastName	in	descending	order	and	then	by	firstName	in	ascending	order.

SORT	doc.lastName,	doc.firstName	DESC

will	first	sort	documents	by	lastName	in	ascending	order	and	then	by	firstName	in	descending	order.

Note:	when	iterating	over	collection-based	arrays,	the	order	of	documents	is	always	undefined	unless	an	explicit	sort	order	is	defined
using	SORT.

Note	that	constant	SORT	expressions	can	be	used	to	indicate	that	no	particular	sort	order	is	desired.	Constant	SORT	expressions	will	be
optimized	away	by	the	AQL	optimizer	during	optimization,	but	specifying	them	explicitly	may	enable	further	optimizations	if	the
optimizer	does	not	need	to	take	into	account	any	particular	sort	order.	This	is	especially	the	case	after	a	COLLECT	statement,	which	is
supposed	to	produce	a	sorted	result.	Specifying	an	extra	SORT	null	after	the	COLLECT	statement	allows	to	AQL	optimizer	to	remove
the	post-sorting	of	the	collect	results	altogether.

SORT

71

LIMIT
The	LIMIT	statement	allows	slicing	the	result	array	using	an	offset	and	a	count.	It	reduces	the	number	of	elements	in	the	result	to	at	most
the	specified	number.	Two	general	forms	of	LIMIT	are	followed:

LIMIT	count

LIMIT	offset,	count

The	first	form	allows	specifying	only	the	count	value	whereas	the	second	form	allows	specifying	both	offset	and	count.	The	first	form	is
identical	using	the	second	form	with	an	offset	value	of	0.

FOR	u	IN	users

		LIMIT	5

		RETURN	u

Above	query	returns	the	first	five	documents	of	the	users	collection.	It	could	also	be	written	as		LIMIT	0,	5		for	the	same	result.	Which
documents	it	actually	returns	is	rather	arbitrary,	because	no	explicit	sorting	order	is	specified	however.	Therefore,	a	limit	should	be
usually	accompanied	by	a		SORT		operation.

The	offset	value	specifies	how	many	elements	from	the	result	shall	be	skipped.	It	must	be	0	or	greater.	The	count	value	specifies	how
many	elements	should	be	at	most	included	in	the	result.

FOR	u	IN	users

		SORT	u.firstName,	u.lastName,	u.id	DESC

		LIMIT	2,	5

		RETURN	u

In	above	example,	the	documents	of	users	are	sorted,	the	first	two	results	get	skipped	and	it	returns	the	next	five	user	documents.

Note	that	variables	and	expressions	can	not	be	used	for	offset	and	count.	Their	values	must	be	known	at	query	compile	time,	which	means
that	you	can	use	number	literals	and	bind	parameters	only.

Where	a	LIMIT	is	used	in	relation	to	other	operations	in	a	query	has	meaning.	LIMIT	operations	before	FILTERs	in	particular	can	change
the	result	significantly,	because	the	operations	are	executed	in	the	order	in	which	they	are	written	in	the	query.	See	FILTER	for	a	detailed
example.

LIMIT

72

LET
The	LET	statement	can	be	used	to	assign	an	arbitrary	value	to	a	variable.	The	variable	is	then	introduced	in	the	scope	the	LET	statement
is	placed	in.

The	general	syntax	is:

LET	variableName	=	expression

Variables	are	immutable	in	AQL,	which	means	they	can	not	be	re-assigned:

LET	a	=	[1,	2,	3]		//	initial	assignment

a	=	PUSH(a,	4)					//	syntax	error,	unexpected	identifier

LET	a	=	PUSH(a,	4)	//	parsing	error,	variable	'a'	is	assigned	multiple	times

LET	b	=	PUSH(a,	4)	//	allowed,	result:	[1,	2,	3,	4]

LET	statements	are	mostly	used	to	declare	complex	computations	and	to	avoid	repeated	computations	of	the	same	value	at	multiple	parts
of	a	query.

FOR	u	IN	users

		LET	numRecommendations	=	LENGTH(u.recommendations)

		RETURN	{	

				"user"	:	u,	

				"numRecommendations"	:	numRecommendations,	

				"isPowerUser"	:	numRecommendations	>=	10	

		}

In	the	above	example,	the	computation	of	the	number	of	recommendations	is	factored	out	using	a	LET	statement,	thus	avoiding
computing	the	value	twice	in	the	RETURN	statement.

Another	use	case	for	LET	is	to	declare	a	complex	computation	in	a	subquery,	making	the	whole	query	more	readable.

FOR	u	IN	users

		LET	friends	=	(

		FOR	f	IN	friends	

				FILTER	u.id	==	f.userId

				RETURN	f

)

		LET	memberships	=	(

		FOR	m	IN	memberships

				FILTER	u.id	==	m.userId

						RETURN	m

)

		RETURN	{	

				"user"	:	u,	

				"friends"	:	friends,	

				"numFriends"	:	LENGTH(friends),	

				"memberShips"	:	memberships	

		}

LET

73

COLLECT
The	COLLECT	keyword	can	be	used	to	group	an	array	by	one	or	multiple	group	criteria.

The	COLLECT	statement	will	eliminate	all	local	variables	in	the	current	scope.	After	COLLECT	only	the	variables	introduced	by
COLLECT	itself	are	available.

The	general	syntaxes	for	COLLECT	are:

COLLECT	variableName	=	expression	options

COLLECT	variableName	=	expression	INTO	groupsVariable	options

COLLECT	variableName	=	expression	INTO	groupsVariable	=	projectionExpression	options

COLLECT	variableName	=	expression	INTO	groupsVariable	KEEP	keepVariable	options

COLLECT	variableName	=	expression	WITH	COUNT	INTO	countVariable	options

COLLECT	variableName	=	expression	AGGREGATE	variableName	=	aggregateExpression	options

COLLECT	AGGREGATE	variableName	=	aggregateExpression	options

COLLECT	WITH	COUNT	INTO	countVariable	options

	options		is	optional	in	all	variants.

Grouping	syntaxes

The	first	syntax	form	of	COLLECT	only	groups	the	result	by	the	defined	group	criteria	specified	in	expression.	In	order	to	further
process	the	results	produced	by	COLLECT,	a	new	variable	(specified	by	variableName)	is	introduced.	This	variable	contains	the	group
value.

Here's	an	example	query	that	find	the	distinct	values	in	u.city	and	makes	them	available	in	variable	city:

FOR	u	IN	users

		COLLECT	city	=	u.city

		RETURN	{	

				"city"	:	city	

		}

The	second	form	does	the	same	as	the	first	form,	but	additionally	introduces	a	variable	(specified	by	groupsVariable)	that	contains	all
elements	that	fell	into	the	group.	This	works	as	follows:	The	groupsVariable	variable	is	an	array	containing	as	many	elements	as	there	are
in	the	group.	Each	member	of	that	array	is	a	JSON	object	in	which	the	value	of	every	variable	that	is	defined	in	the	AQL	query	is	bound
to	the	corresponding	attribute.	Note	that	this	considers	all	variables	that	are	defined	before	the	COLLECT	statement,	but	not	those	on	the
top	level	(outside	of	any	FOR),	unless	the	COLLECT	statement	is	itself	on	the	top	level,	in	which	case	all	variables	are	taken.
Furthermore	note	that	it	is	possible	that	the	optimizer	moves	LET	statements	out	of	FOR	statements	to	improve	performance.

FOR	u	IN	users

		COLLECT	city	=	u.city	INTO	groups

		RETURN	{	

				"city"	:	city,	

				"usersInCity"	:	groups	

		}

In	the	above	example,	the	array	users	will	be	grouped	by	the	attribute	city.	The	result	is	a	new	array	of	documents,	with	one	element	per
distinct	u.city	value.	The	elements	from	the	original	array	(here:	users)	per	city	are	made	available	in	the	variable	groups.	This	is	due	to
the	INTO	clause.

COLLECT	also	allows	specifying	multiple	group	criteria.	Individual	group	criteria	can	be	separated	by	commas:

FOR	u	IN	users

		COLLECT	country	=	u.country,	city	=	u.city	INTO	groups

		RETURN	{	

				"country"	:	country,	

				"city"	:	city,	

				"usersInCity"	:	groups	

		}

COLLECT

74

In	the	above	example,	the	array	users	is	grouped	by	country	first	and	then	by	city,	and	for	each	distinct	combination	of	country	and	city,
the	users	will	be	returned.

Discarding	obsolete	variables

The	third	form	of	COLLECT	allows	rewriting	the	contents	of	the	groupsVariable	using	an	arbitrary	projectionExpression:

FOR	u	IN	users

		COLLECT	country	=	u.country,	city	=	u.city	INTO	groups	=	u.name

		RETURN	{	

				"country"	:	country,	

				"city"	:	city,	

				"userNames"	:	groups	

		}

In	the	above	example,	only	the	projectionExpression	is	u.name.	Therefore,	only	this	attribute	is	copied	into	the	groupsVariable	for	each
document.	This	is	probably	much	more	efficient	than	copying	all	variables	from	the	scope	into	the	groupsVariable	as	it	would	happen
without	a	projectionExpression.

The	expression	following	INTO	can	also	be	used	for	arbitrary	computations:

FOR	u	IN	users

		COLLECT	country	=	u.country,	city	=	u.city	INTO	groups	=	{	

				"name"	:	u.name,	

				"isActive"	:	u.status	==	"active"

		}

		RETURN	{	

				"country"	:	country,	

				"city"	:	city,	

				"usersInCity"	:	groups	

		}

COLLECT	also	provides	an	optional	KEEP	clause	that	can	be	used	to	control	which	variables	will	be	copied	into	the	variable	created	by
	INTO	.	If	no	KEEP	clause	is	specified,	all	variables	from	the	scope	will	be	copied	as	sub-attributes	into	the	groupsVariable.	This	is	safe
but	can	have	a	negative	impact	on	performance	if	there	are	many	variables	in	scope	or	the	variables	contain	massive	amounts	of	data.

The	following	example	limits	the	variables	that	are	copied	into	the	groupsVariable	to	just	name.	The	variables	u	and	someCalculation	also
present	in	the	scope	will	not	be	copied	into	groupsVariable	because	they	are	not	listed	in	the	KEEP	clause:

FOR	u	IN	users

		LET	name	=	u.name

		LET	someCalculation	=	u.value1	+	u.value2

		COLLECT	city	=	u.city	INTO	groups	KEEP	name	

		RETURN	{	

				"city"	:	city,	

				"userNames"	:	groups[*].name	

		}

KEEP	is	only	valid	in	combination	with	INTO.	Only	valid	variable	names	can	be	used	in	the	KEEP	clause.	KEEP	supports	the
specification	of	multiple	variable	names.

Group	length	calculation

COLLECT	also	provides	a	special	WITH	COUNT	clause	that	can	be	used	to	determine	the	number	of	group	members	efficiently.

The	simplest	form	just	returns	the	number	of	items	that	made	it	into	the	COLLECT:

FOR	u	IN	users

		COLLECT	WITH	COUNT	INTO	length

		RETURN	length

The	above	is	equivalent	to,	but	more	efficient	than:

RETURN	LENGTH(

COLLECT

75

		FOR	u	IN	users

				RETURN	length

)

The	WITH	COUNT	clause	can	also	be	used	to	efficiently	count	the	number	of	items	in	each	group:

FOR	u	IN	users

		COLLECT	age	=	u.age	WITH	COUNT	INTO	length

		RETURN	{	

				"age"	:	age,	

				"count"	:	length	

		}

Note:	the	WITH	COUNT	clause	can	only	be	used	together	with	an	INTO	clause.

Aggregation

A		COLLECT		statement	can	be	used	to	perform	aggregation	of	data	per	group.	To	only	determine	group	lengths,	the		WITH	COUNT	INTO	
variant	of		COLLECT		can	be	used	as	described	before.

For	other	aggregations,	it	is	possible	to	run	aggregate	functions	on	the		COLLECT		results:

FOR	u	IN	users

		COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5	INTO	g

		RETURN	{	

				"ageGroup"	:	ageGroup,

				"minAge"	:	MIN(g[*].u.age),

				"maxAge"	:	MAX(g[*].u.age)

		}

The	above	however	requires	storing	all	group	values	during	the	collect	operation	for	all	groups,	which	can	be	inefficient.

The	special		AGGREGATE		variant	of		COLLECT		allows	building	the	aggregate	values	incrementally	during	the	collect	operation,	and	is
therefore	often	more	efficient.

With	the		AGGREGATE		variant	the	above	query	becomes:

FOR	u	IN	users

		COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5	

		AGGREGATE	minAge	=	MIN(u.age),	maxAge	=	MAX(u.age)

		RETURN	{

				ageGroup,	

				minAge,	

				maxAge	

		}

The		AGGREGATE		keyword	can	only	be	used	after	the		COLLECT		keyword.	If	used,	it	must	directly	follow	the	declaration	of	the	grouping
keys.	If	no	grouping	keys	are	used,	it	must	follow	the		COLLECT		keyword	directly:

FOR	u	IN	users

		COLLECT	AGGREGATE	minAge	=	MIN(u.age),	maxAge	=	MAX(u.age)

		RETURN	{

				minAge,	

				maxAge	

		}

Only	specific	expressions	are	allowed	on	the	right-hand	side	of	each		AGGREGATE		assignment:

on	the	top	level,	an	aggregate	expression	must	be	a	call	to	one	of	the	supported	aggregation	functions		LENGTH	,		MIN	,		MAX	,		SUM	,
	AVERAGE	,		STDDEV_POPULATION	,		STDDEV_SAMPLE	,		VARIANCE_POPULATION	,	or		VARIANCE_SAMPLE	

an	aggregate	expression	must	not	refer	to	variables	introduced	by	the		COLLECT		itself

COLLECT	variants

COLLECT

76

Since	ArangoDB	2.6,	there	are	two	variants	of	COLLECT	that	the	optimizer	can	choose	from:	the	sorted	variant	and	the	hash	variant.
The	hash	variant	only	becomes	a	candidate	for	COLLECT	statements	that	do	not	use	an	INTO	clause.

The	optimizer	will	always	generate	a	plan	that	employs	the	sorted	method.	The	sorted	method	requires	its	input	to	be	sorted	by	the
group	criteria	specified	in	the	COLLECT	clause.	To	ensure	correctness	of	the	result,	the	AQL	optimizer	will	automatically	insert	a	SORT
statement	into	the	query	in	front	of	the	COLLECT	statement.	The	optimizer	may	be	able	to	optimize	away	that	SORT	statement	later	if
a	sorted	index	is	present	on	the	group	criteria.

In	case	a	COLLECT	qualifies	for	using	the	hash	variant,	the	optimizer	will	create	an	extra	plan	for	it	at	the	beginning	of	the	planning
phase.	In	this	plan,	no	extra	SORT	statement	will	be	added	in	front	of	the	COLLECT.	This	is	because	the	hash	variant	of	COLLECT	does
not	require	sorted	input.	Instead,	a	SORT	statement	will	be	added	after	the	COLLECT	to	sort	its	output.	This	SORT	statement	may	be
optimized	away	again	in	later	stages.	If	the	sort	order	of	the	COLLECT	is	irrelevant	to	the	user,	adding	the	extra	instruction	SORT	null
after	the	COLLECT	will	allow	the	optimizer	to	remove	the	sorts	altogether:

FOR	u	IN	users

		COLLECT	age	=	u.age

		SORT	null		/*	note:	will	be	optimized	away	*/

		RETURN	age

Which	COLLECT	variant	is	used	by	the	optimizer	depends	on	the	optimizer's	cost	estimations.	The	created	plans	with	the	different
COLLECT	variants	will	be	shipped	through	the	regular	optimization	pipeline.	In	the	end,	the	optimizer	will	pick	the	plan	with	the
lowest	estimated	total	cost	as	usual.

In	general,	the	sorted	variant	of	COLLECT	should	be	preferred	in	cases	when	there	is	a	sorted	index	present	on	the	group	criteria.	In	this
case	the	optimizer	can	eliminate	the	SORT	statement	in	front	of	the	COLLECT,	so	that	no	SORT	will	be	left.

If	there	is	no	sorted	index	available	on	the	group	criteria,	the	up-front	sort	required	by	the	sorted	variant	can	be	expensive.	In	this	case	it
is	likely	that	the	optimizer	will	prefer	the	hash	variant	of	COLLECT,	which	does	not	require	its	input	to	be	sorted.

Which	variant	of	COLLECT	was	actually	used	can	be	figured	out	by	looking	into	the	execution	plan	of	a	query,	specifically	the
AggregateNode	and	its	aggregationOptions	attribute.

Setting	COLLECT	options

options	can	be	used	in	a	COLLECT	statement	to	inform	the	optimizer	about	the	preferred	COLLECT	method.	When	specifying	the
following	appendix	to	a	COLLECT	statement,	the	optimizer	will	always	use	the	sorted	variant	of	COLLECT	and	not	even	create	a	plan
using	the	hash	variant:

OPTIONS	{	method:	"sorted"	}

Note	that	specifying	hash	as	method	will	not	make	the	optimizer	use	the	hash	variant.	This	is	because	the	hash	variant	is	not	eligible	for
all	queries.	Instead,	if	no	options	or	any	other	method	than	sorted	are	specified	in	OPTIONS,	the	optimizer	will	use	its	regular	cost
estimations.

COLLECT	vs.	RETURN	DISTINCT

In	order	to	make	a	result	set	unique,	one	can	either	use	COLLECT	or	RETURN	DISTINCT.	Behind	the	scenes,	both	variants	will	work	by
creating	an	AggregateNode.	For	both	variants,	the	optimizer	may	try	the	sorted	and	the	hashed	variant	of	COLLECT.	The	difference	is
therefore	mainly	syntactical,	with	RETURN	DISTINCT	saving	a	bit	of	typing	when	compared	to	an	equivalent	COLLECT:

FOR	u	IN	users

		RETURN	DISTINCT	u.age

FOR	u	IN	users

		COLLECT	age	=	u.age

		RETURN	age

However,	COLLECT	is	vastly	more	flexible	than	RETURN	DISTINCT.	Additionally,	the	order	of	results	is	undefined	for	a	RETURN
DISTINCT,	whereas	for	a	COLLECT	the	results	will	be	sorted.

COLLECT

77

COLLECT

78

REMOVE
The	REMOVE	keyword	can	be	used	to	remove	documents	from	a	collection.	On	a	single	server,	the	document	removal	is	executed
transactionally	in	an	all-or-nothing	fashion.

If	the	RocksDB	engine	is	used	and	intermediate	commits	are	enabled,	a	query	may	execute	intermediate	transaction	commits	in	case	the
running	transaction	(AQL	query)	hits	the	specified	size	thresholds.	In	this	case,	the	query's	operations	carried	out	so	far	will	be
committed	and	not	rolled	back	in	case	of	a	later	abort/rollback.	That	behavior	can	be	controlled	by	adjusting	the	intermediate	commit
settings	for	the	RocksDB	engine.

For	sharded	collections,	the	entire	query	and/or	remove	operation	may	not	be	transactional,	especially	if	it	involves	different	shards
and/or	database	servers.

Each	REMOVE	operation	is	restricted	to	a	single	collection,	and	the	collection	name	must	not	be	dynamic.	Only	a	single	REMOVE
statement	per	collection	is	allowed	per	AQL	query,	and	it	cannot	be	followed	by	read	or	write	operations	that	access	the	same	collection,
by	traversal	operations,	or	AQL	functions	that	can	read	documents.

The	syntax	for	a	remove	operation	is:

REMOVE	keyExpression	IN	collection	options

collection	must	contain	the	name	of	the	collection	to	remove	the	documents	from.	keyExpression	must	be	an	expression	that	contains	the
document	identification.	This	can	either	be	a	string	(which	must	then	contain	the	document	key)	or	a	document,	which	must	contain	a
_key	attribute.

The	following	queries	are	thus	equivalent:

FOR	u	IN	users

		REMOVE	{	_key:	u._key	}	IN	users

FOR	u	IN	users

		REMOVE	u._key	IN	users

FOR	u	IN	users

		REMOVE	u	IN	users

Note:	A	remove	operation	can	remove	arbitrary	documents,	and	the	documents	do	not	need	to	be	identical	to	the	ones	produced	by	a
preceding	FOR	statement:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	i)	}	IN	users

FOR	u	IN	users

		FILTER	u.active	==	false

		REMOVE	{	_key:	u._key	}	IN	backup

Setting	query	options

options	can	be	used	to	suppress	query	errors	that	may	occur	when	trying	to	remove	non-existing	documents.	For	example,	the	following
query	will	fail	if	one	of	the	to-be-deleted	documents	does	not	exist:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	i)	}	IN	users

By	specifying	the	ignoreErrors	query	option,	these	errors	can	be	suppressed	so	the	query	completes:

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	i)	}	IN	users	OPTIONS	{	ignoreErrors:	true	}

To	make	sure	data	has	been	written	to	disk	when	a	query	returns,	there	is	the	waitForSync	query	option:

REMOVE

79

FOR	i	IN	1..1000

		REMOVE	{	_key:	CONCAT('test',	i)	}	IN	users	OPTIONS	{	waitForSync:	true	}

Returning	the	removed	documents

The	removed	documents	can	also	be	returned	by	the	query.	In	this	case,	the		REMOVE		statement	must	be	followed	by	a		RETURN	
statement	(intermediate		LET		statements	are	allowed,	too).	REMOVE		introduces	the	pseudo-value		OLD		to	refer	to	the	removed
documents:

REMOVE	keyExpression	IN	collection	options	RETURN	OLD

Following	is	an	example	using	a	variable	named		removed		for	capturing	the	removed	documents.	For	each	removed	document,	the
document	key	will	be	returned.

FOR	u	IN	users

		REMOVE	u	IN	users	

		LET	removed	=	OLD	

		RETURN	removed._key

REMOVE

80

UPDATE
The	UPDATE	keyword	can	be	used	to	partially	update	documents	in	a	collection.	On	a	single	server,	updates	are	executed	transactionally
in	an	all-or-nothing	fashion.

If	the	RocksDB	engine	is	used	and	intermediate	commits	are	enabled,	a	query	may	execute	intermediate	transaction	commits	in	case	the
running	transaction	(AQL	query)	hits	the	specified	size	thresholds.	In	this	case,	the	query's	operations	carried	out	so	far	will	be
committed	and	not	rolled	back	in	case	of	a	later	abort/rollback.	That	behavior	can	be	controlled	by	adjusting	the	intermediate	commit
settings	for	the	RocksDB	engine.

For	sharded	collections,	the	entire	query	and/or	update	operation	may	not	be	transactional,	especially	if	it	involves	different	shards	and/or
database	servers.

Each	UPDATE	operation	is	restricted	to	a	single	collection,	and	the	collection	name	must	not	be	dynamic.	Only	a	single	UPDATE
statement	per	collection	is	allowed	per	AQL	query,	and	it	cannot	be	followed	by	read	or	write	operations	that	access	the	same	collection,
by	traversal	operations,	or	AQL	functions	that	can	read	documents.	The	system	attributes	_id,	_key	and	_rev	cannot	be	updated,	_from
and	_to	can.

The	two	syntaxes	for	an	update	operation	are:

UPDATE	document	IN	collection	options

UPDATE	keyExpression	WITH	document	IN	collection	options

collection	must	contain	the	name	of	the	collection	in	which	the	documents	should	be	updated.	document	must	be	a	document	that	contains
the	attributes	and	values	to	be	updated.	When	using	the	first	syntax,	document	must	also	contain	the	_key	attribute	to	identify	the
document	to	be	updated.

FOR	u	IN	users

		UPDATE	{	_key:	u._key,	name:	CONCAT(u.firstName,	"	",	u.lastName)	}	IN	users

The	following	query	is	invalid	because	it	does	not	contain	a	_key	attribute	and	thus	it	is	not	possible	to	determine	the	documents	to	be
updated:

FOR	u	IN	users

		UPDATE	{	name:	CONCAT(u.firstName,	"	",	u.lastName)	}	IN	users

When	using	the	second	syntax,	keyExpression	provides	the	document	identification.	This	can	either	be	a	string	(which	must	then	contain
the	document	key)	or	a	document,	which	must	contain	a	_key	attribute.

The	following	queries	are	equivalent:

FOR	u	IN	users

		UPDATE	u._key	WITH	{	name:	CONCAT(u.firstName,	"	",	u.lastName)	}	IN	users

FOR	u	IN	users

		UPDATE	{	_key:	u._key	}	WITH	{	name:	CONCAT(u.firstName,	"	",	u.lastName)	}	IN	users

FOR	u	IN	users

		UPDATE	u	WITH	{	name:	CONCAT(u.firstName,	"	",	u.lastName)	}	IN	users

An	update	operation	may	update	arbitrary	documents	which	do	not	need	to	be	identical	to	the	ones	produced	by	a	preceding	FOR
statement:

FOR	i	IN	1..1000

		UPDATE	CONCAT('test',	i)	WITH	{	foobar:	true	}	IN	users

FOR	u	IN	users

		FILTER	u.active	==	false

		UPDATE	u	WITH	{	status:	'inactive'	}	IN	backup

UPDATE

81

Using	the	current	value	of	a	document	attribute

The	pseudo-variable		OLD		is	not	supported	inside	of		WITH		clauses	(it	is	available	after		UPDATE).	To	access	the	current	attribute	value,
you	can	usually	refer	to	a	document	via	the	variable	of	the		FOR		loop,	which	is	used	to	iterate	over	a	collection:

FOR	doc	IN	users

		UPDATE	doc	WITH	{

				fullName:	CONCAT(doc.firstName,	"	",	doc.lastName)

		}	IN	users

If	there	is	no	loop,	because	a	single	document	is	updated	only,	then	there	might	not	be	a	variable	like	above	(doc),	which	would	let	you
refer	to	the	document	which	is	being	updated:

UPDATE	"users/john"	WITH	{	...	}	IN	users

To	access	the	current	value	in	this	situation,	the	document	has	to	be	retrieved	and	stored	in	a	variable	first:

LET	doc	=	DOCUMENT("users/john")

UPDATE	doc	WITH	{

		fullName:	CONCAT(doc.firstName,	"	",	doc.lastName)

}	IN	users

An	existing	attribute	can	be	modified	based	on	its	current	value	this	way,	to	increment	a	counter	for	instance:

UPDATE	doc	WITH	{

		karma:	doc.karma	+	1

}	IN	users

If	the	attribute		karma		doesn't	exist	yet,		doc.karma		is	evaluated	to	null.	The	expression		null	+	1		results	in	the	new	attribute		karma	
being	set	to	1.	If	the	attribute	does	exist,	then	it	is	increased	by	1.

Arrays	can	be	mutated	too	of	course:

UPDATE	doc	WITH	{

		hobbies:	PUSH(doc.hobbies,	"swimming")

}	IN	users

If	the	attribute		hobbies		doesn't	exist	yet,	it	is	conveniently	initialized	as		["swimming"]		and	otherwise	extended.

Setting	query	options

options	can	be	used	to	suppress	query	errors	that	may	occur	when	trying	to	update	non-existing	documents	or	violating	unique	key
constraints:

FOR	i	IN	1..1000

		UPDATE	{

				_key:	CONCAT('test',	i)

		}	WITH	{

				foobar:	true

		}	IN	users	OPTIONS	{	ignoreErrors:	true	}

An	update	operation	will	only	update	the	attributes	specified	in	document	and	leave	other	attributes	untouched.	Internal	attributes	(such
as	_id,	_key,	_rev,	_from	and	_to)	cannot	be	updated	and	are	ignored	when	specified	in	document.	Updating	a	document	will	modify	the
document's	revision	number	with	a	server-generated	value.

When	updating	an	attribute	with	a	null	value,	ArangoDB	will	not	remove	the	attribute	from	the	document	but	store	a	null	value	for	it.	To
get	rid	of	attributes	in	an	update	operation,	set	them	to	null	and	provide	the	keepNull	option:

FOR	u	IN	users

		UPDATE	u	WITH	{

				foobar:	true,

				notNeeded:	null

UPDATE

82

		}	IN	users	OPTIONS	{	keepNull:	false	}

The	above	query	will	remove	the	notNeeded	attribute	from	the	documents	and	update	the	foobar	attribute	normally.

There	is	also	the	option	mergeObjects	that	controls	whether	object	contents	will	be	merged	if	an	object	attribute	is	present	in	both	the
UPDATE	query	and	in	the	to-be-updated	document.

The	following	query	will	set	the	updated	document's	name	attribute	to	the	exact	same	value	that	is	specified	in	the	query.	This	is	due	to
the	mergeObjects	option	being	set	to	false:

FOR	u	IN	users

		UPDATE	u	WITH	{

				name:	{	first:	"foo",	middle:	"b.",	last:	"baz"	}

		}	IN	users	OPTIONS	{	mergeObjects:	false	}

Contrary,	the	following	query	will	merge	the	contents	of	the	name	attribute	in	the	original	document	with	the	value	specified	in	the	query:

FOR	u	IN	users

		UPDATE	u	WITH	{

				name:	{	first:	"foo",	middle:	"b.",	last:	"baz"	}

		}	IN	users	OPTIONS	{	mergeObjects:	true	}

Attributes	in	name	that	are	present	in	the	to-be-updated	document	but	not	in	the	query	will	now	be	preserved.	Attributes	that	are
present	in	both	will	be	overwritten	with	the	values	specified	in	the	query.

Note:	the	default	value	for	mergeObjects	is	true,	so	there	is	no	need	to	specify	it	explicitly.

To	make	sure	data	are	durable	when	an	update	query	returns,	there	is	the	waitForSync	query	option:

FOR	u	IN	users

		UPDATE	u	WITH	{

				foobar:	true

		}	IN	users	OPTIONS	{	waitForSync:	true	}

Returning	the	modified	documents

The	modified	documents	can	also	be	returned	by	the	query.	In	this	case,	the		UPDATE		statement	needs	to	be	followed	a		RETURN	
statement	(intermediate		LET		statements	are	allowed,	too).	These	statements	can	refer	to	the	pseudo-values		OLD		and		NEW	.	The		OLD	
pseudo-value	refers	to	the	document	revisions	before	the	update,	and		NEW		refers	to	document	revisions	after	the	update.

Both		OLD		and		NEW		will	contain	all	document	attributes,	even	those	not	specified	in	the	update	expression.

UPDATE	document	IN	collection	options	RETURN	OLD

UPDATE	document	IN	collection	options	RETURN	NEW

UPDATE	keyExpression	WITH	document	IN	collection	options	RETURN	OLD

UPDATE	keyExpression	WITH	document	IN	collection	options	RETURN	NEW

Following	is	an	example	using	a	variable	named		previous		to	capture	the	original	documents	before	modification.	For	each	modified
document,	the	document	key	is	returned.

FOR	u	IN	users

		UPDATE	u	WITH	{	value:	"test"	}	

		LET	previous	=	OLD	

		RETURN	previous._key

The	following	query	uses	the		NEW		pseudo-value	to	return	the	updated	documents,	without	some	of	the	system	attributes:

FOR	u	IN	users

		UPDATE	u	WITH	{	value:	"test"	}	

		LET	updated	=	NEW	

		RETURN	UNSET(updated,	"_key",	"_id",	"_rev")

It	is	also	possible	to	return	both		OLD		and		NEW	:

UPDATE

83

FOR	u	IN	users

		UPDATE	u	WITH	{	value:	"test"	}	

		RETURN	{	before:	OLD,	after:	NEW	}

UPDATE

84

REPLACE
The	REPLACE	keyword	can	be	used	to	completely	replace	documents	in	a	collection.	On	a	single	server,	the	replace	operation	is	executed
transactionally	in	an	all-or-nothing	fashion.

If	the	RocksDB	engine	is	used	and	intermediate	commits	are	enabled,	a	query	may	execute	intermediate	transaction	commits	in	case	the
running	transaction	(AQL	query)	hits	the	specified	size	thresholds.	In	this	case,	the	query's	operations	carried	out	so	far	will	be
committed	and	not	rolled	back	in	case	of	a	later	abort/rollback.	That	behavior	can	be	controlled	by	adjusting	the	intermediate	commit
settings	for	the	RocksDB	engine.

For	sharded	collections,	the	entire	query	and/or	replace	operation	may	not	be	transactional,	especially	if	it	involves	different	shards
and/or	database	servers.

Each	REPLACE	operation	is	restricted	to	a	single	collection,	and	the	collection	name	must	not	be	dynamic.	Only	a	single	REPLACE
statement	per	collection	is	allowed	per	AQL	query,	and	it	cannot	be	followed	by	read	or	write	operations	that	access	the	same	collection,
by	traversal	operations,	or	AQL	functions	that	can	read	documents.	The	system	attributes	_id,	_key	and	_rev	cannot	be	replaced,	_from
and	_to	can.

The	two	syntaxes	for	a	replace	operation	are:

REPLACE	document	IN	collection	options

REPLACE	keyExpression	WITH	document	IN	collection	options

collection	must	contain	the	name	of	the	collection	in	which	the	documents	should	be	replaced.	document	is	the	replacement	document.
When	using	the	first	syntax,	document	must	also	contain	the	_key	attribute	to	identify	the	document	to	be	replaced.

FOR	u	IN	users

		REPLACE	{	_key:	u._key,	name:	CONCAT(u.firstName,	u.lastName),	status:	u.status	}	IN	users

The	following	query	is	invalid	because	it	does	not	contain	a	_key	attribute	and	thus	it	is	not	possible	to	determine	the	documents	to	be
replaced:

FOR	u	IN	users

		REPLACE	{	name:	CONCAT(u.firstName,	u.lastName,	status:	u.status)	}	IN	users

When	using	the	second	syntax,	keyExpression	provides	the	document	identification.	This	can	either	be	a	string	(which	must	then	contain
the	document	key)	or	a	document,	which	must	contain	a	_key	attribute.

The	following	queries	are	equivalent:

FOR	u	IN	users

		REPLACE	{	_key:	u._key,	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		REPLACE	u._key	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		REPLACE	{	_key:	u._key	}	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

FOR	u	IN	users

		REPLACE	u	WITH	{	name:	CONCAT(u.firstName,	u.lastName)	}	IN	users

A	replace	will	fully	replace	an	existing	document,	but	it	will	not	modify	the	values	of	internal	attributes	(such	as	_id,	_key,	_from	and
_to).	Replacing	a	document	will	modify	a	document's	revision	number	with	a	server-generated	value.

A	replace	operation	may	update	arbitrary	documents	which	do	not	need	to	be	identical	to	the	ones	produced	by	a	preceding	FOR
statement:

FOR	i	IN	1..1000

		REPLACE	CONCAT('test',	i)	WITH	{	foobar:	true	}	IN	users

REPLACE

85

FOR	u	IN	users

		FILTER	u.active	==	false

		REPLACE	u	WITH	{	status:	'inactive',	name:	u.name	}	IN	backup

Setting	query	options

options	can	be	used	to	suppress	query	errors	that	may	occur	when	trying	to	replace	non-existing	documents	or	when	violating	unique	key
constraints:

FOR	i	IN	1..1000

		REPLACE	{	_key:	CONCAT('test',	i)	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	ignoreErrors:	true	}

To	make	sure	data	are	durable	when	a	replace	query	returns,	there	is	the	waitForSync	query	option:

FOR	i	IN	1..1000

		REPLACE	{	_key:	CONCAT('test',	i)	}	WITH	{	foobar:	true	}	IN	users	OPTIONS	{	waitForSync:	true	}

Returning	the	modified	documents

The	modified	documents	can	also	be	returned	by	the	query.	In	this	case,	the		REPLACE		statement	must	be	followed	by	a		RETURN	
statement	(intermediate		LET		statements	are	allowed,	too).	The		OLD		pseudo-value	can	be	used	to	refer	to	document	revisions	before	the
replace,	and		NEW		refers	to	document	revisions	after	the	replace.

Both		OLD		and		NEW		will	contain	all	document	attributes,	even	those	not	specified	in	the	replace	expression.

REPLACE	document	IN	collection	options	RETURN	OLD

REPLACE	document	IN	collection	options	RETURN	NEW

REPLACE	keyExpression	WITH	document	IN	collection	options	RETURN	OLD

REPLACE	keyExpression	WITH	document	IN	collection	options	RETURN	NEW

Following	is	an	example	using	a	variable	named		previous		to	return	the	original	documents	before	modification.	For	each	replaced
document,	the	document	key	will	be	returned:

FOR	u	IN	users

		REPLACE	u	WITH	{	value:	"test"	}	

		LET	previous	=	OLD	

		RETURN	previous._key

The	following	query	uses	the		NEW		pseudo-value	to	return	the	replaced	documents	(without	some	of	their	system	attributes):

FOR	u	IN	users

		REPLACE	u	WITH	{	value:	"test"	}	

		LET	replaced	=	NEW	

		RETURN	UNSET(replaced,	'_key',	'_id',	'_rev')

REPLACE

86

INSERT
The	INSERT	keyword	can	be	used	to	insert	new	documents	into	a	collection.	On	a	single	server,	an	insert	operation	is	executed
transactionally	in	an	all-or-nothing	fashion.

If	the	RocksDB	engine	is	used	and	intermediate	commits	are	enabled,	a	query	may	execute	intermediate	transaction	commits	in	case	the
running	transaction	(AQL	query)	hits	the	specified	size	thresholds.	In	this	case,	the	query's	operations	carried	out	so	far	will	be
committed	and	not	rolled	back	in	case	of	a	later	abort/rollback.	That	behavior	can	be	controlled	by	adjusting	the	intermediate	commit
settings	for	the	RocksDB	engine.

For	sharded	collections,	the	entire	query	and/or	insert	operation	may	not	be	transactional,	especially	if	it	involves	different	shards	and/or
database	servers.

Each	INSERT	operation	is	restricted	to	a	single	collection,	and	the	collection	name	must	not	be	dynamic.	Only	a	single	INSERT	statement
per	collection	is	allowed	per	AQL	query,	and	it	cannot	be	followed	by	read	or	write	operations	that	access	the	same	collection,	by
traversal	operations,	or	AQL	functions	that	can	read	documents.

The	syntax	for	an	insert	operation	is:

INSERT	document	IN	collection	options

Note:	The	INTO	keyword	is	also	allowed	in	the	place	of	IN.

collection	must	contain	the	name	of	the	collection	into	which	the	documents	should	be	inserted.	document	is	the	document	to	be	inserted,
and	it	may	or	may	not	contain	a	_key	attribute.	If	no	_key	attribute	is	provided,	ArangoDB	will	auto-generate	a	value	for	_key	value.
Inserting	a	document	will	also	auto-generate	a	document	revision	number	for	the	document.

FOR	i	IN	1..100

		INSERT	{	value:	i	}	IN	numbers

When	inserting	into	an	edge	collection,	it	is	mandatory	to	specify	the	attributes	_from	and	_to	in	document:

FOR	u	IN	users

		FOR	p	IN	products

				FILTER	u._key	==	p.recommendedBy

				INSERT	{	_from:	u._id,	_to:	p._id	}	IN	recommendations

Setting	query	options

options	can	be	used	to	suppress	query	errors	that	may	occur	when	violating	unique	key	constraints:

FOR	i	IN	1..1000

		INSERT	{

				_key:	CONCAT('test',	i),

				name:	"test",

				foobar:	true

		}	INTO	users	OPTIONS	{	ignoreErrors:	true	}

To	make	sure	data	are	durable	when	an	insert	query	returns,	there	is	the	waitForSync	query	option:

FOR	i	IN	1..1000

		INSERT	{

				_key:	CONCAT('test',	i),

				name:	"test",

				foobar:	true

		}	INTO	users	OPTIONS	{	waitForSync:	true	}

Returning	the	inserted	documents

INSERT

87

The	inserted	documents	can	also	be	returned	by	the	query.	In	this	case,	the		INSERT		statement	can	be	a		RETURN		statement	(intermediate
	LET		statements	are	allowed,	too).	To	refer	to	the	inserted	documents,	the		INSERT		statement	introduces	a	pseudo-value	named		NEW	.

The	documents	contained	in		NEW		will	contain	all	attributes,	even	those	auto-generated	by	the	database	(e.g.		_id	,		_key	,		_rev).

INSERT	document	IN	collection	options	RETURN	NEW

Following	is	an	example	using	a	variable	named		inserted		to	return	the	inserted	documents.	For	each	inserted	document,	the	document
key	is	returned:

FOR	i	IN	1..100

		INSERT	{	value:	i	}	

		LET	inserted	=	NEW	

		RETURN	inserted._key

INSERT

88

UPSERT
The	UPSERT	keyword	can	be	used	for	checking	whether	certain	documents	exist,	and	to	update/replace	them	in	case	they	exist,	or	create
them	in	case	they	do	not	exist.	On	a	single	server,	upserts	are	executed	transactionally	in	an	all-or-nothing	fashion.

If	the	RocksDB	engine	is	used	and	intermediate	commits	are	enabled,	a	query	may	execute	intermediate	transaction	commits	in	case	the
running	transaction	(AQL	query)	hits	the	specified	size	thresholds.	In	this	case,	the	query's	operations	carried	out	so	far	will	be
committed	and	not	rolled	back	in	case	of	a	later	abort/rollback.	That	behavior	can	be	controlled	by	adjusting	the	intermediate	commit
settings	for	the	RocksDB	engine.

For	sharded	collections,	the	entire	query	and/or	upsert	operation	may	not	be	transactional,	especially	if	it	involves	different	shards	and/or
database	servers.

Each	UPSERT	operation	is	restricted	to	a	single	collection,	and	the	collection	name	must	not	be	dynamic.	Only	a	single	UPSERT
statement	per	collection	is	allowed	per	AQL	query,	and	it	cannot	be	followed	by	read	or	write	operations	that	access	the	same	collection,
by	traversal	operations,	or	AQL	functions	that	can	read	documents.

The	syntax	for	an	upsert	operation	is:

UPSERT	searchExpression	INSERT	insertExpression	UPDATE	updateExpression	IN	collection	options

UPSERT	searchExpression	INSERT	insertExpression	REPLACE	updateExpression	IN	collection	options

When	using	the	UPDATE	variant	of	the	upsert	operation,	the	found	document	will	be	partially	updated,	meaning	only	the	attributes
specified	in	updateExpression	will	be	updated	or	added.	When	using	the	REPLACE	variant	of	upsert,	existing	documents	will	be	replaced
with	the	contexts	of	updateExpression.

Updating	a	document	will	modify	the	document's	revision	number	with	a	server-generated	value.	The	system	attributes	_id,	_key	and
_rev	cannot	be	updated,	_from	and	_to	can.

The	searchExpression	contains	the	document	to	be	looked	for.	It	must	be	an	object	literal	without	dynamic	attribute	names.	In	case	no
such	document	can	be	found	in	collection,	a	new	document	will	be	inserted	into	the	collection	as	specified	in	the	insertExpression.

In	case	at	least	one	document	in	collection	matches	the	searchExpression,	it	will	be	updated	using	the	updateExpression.	When	more	than
one	document	in	the	collection	matches	the	searchExpression,	it	is	undefined	which	of	the	matching	documents	will	be	updated.	It	is
therefore	often	sensible	to	make	sure	by	other	means	(such	as	unique	indexes,	application	logic	etc.)	that	at	most	one	document	matches
searchExpression.

The	following	query	will	look	in	the	users	collection	for	a	document	with	a	specific	name	attribute	value.	If	the	document	exists,	its
logins	attribute	will	be	increased	by	one.	If	it	does	not	exist,	a	new	document	will	be	inserted,	consisting	of	the	attributes	name,	logins,
and	dateCreated:

UPSERT	{	name:	'superuser'	}	

INSERT	{	name:	'superuser',	logins:	1,	dateCreated:	DATE_NOW()	}	

UPDATE	{	logins:	OLD.logins	+	1	}	IN	users

Note	that	in	the	UPDATE	case	it	is	possible	to	refer	to	the	previous	version	of	the	document	using	the	OLD	pseudo-value.

Setting	query	options

As	in	several	above	examples,	the	ignoreErrors	option	can	be	used	to	suppress	query	errors	that	may	occur	when	trying	to	violate
unique	key	constraints.

When	updating	or	replacing	an	attribute	with	a	null	value,	ArangoDB	will	not	remove	the	attribute	from	the	document	but	store	a	null
value	for	it.	To	get	rid	of	attributes	in	an	upsert	operation,	set	them	to	null	and	provide	the	keepNull	option.

There	is	also	the	option	mergeObjects	that	controls	whether	object	contents	will	be	merged	if	an	object	attribute	is	present	in	both	the
UPDATE	query	and	in	the	to-be-updated	document.

Note:	the	default	value	for	mergeObjects	is	true,	so	there	is	no	need	to	specify	it	explicitly.

To	make	sure	data	are	durable	when	an	update	query	returns,	there	is	the	waitForSync	query	option.

UPSERT

89

Returning	documents

	UPSERT		statements	can	optionally	return	data.	To	do	so,	they	need	to	be	followed	by	a		RETURN		statement	(intermediate		LET	
statements	are	allowed,	too).	These	statements	can	optionally	perform	calculations	and	refer	to	the	pseudo-values		OLD		and		NEW	.	In
case	the	upsert	performed	an	insert	operation,		OLD		will	have	a	value	of	null.	In	case	the	upsert	performed	an	update	or	replace
operation,		OLD		will	contain	the	previous	version	of	the	document,	before	update/replace.

	NEW		will	always	be	populated.	It	will	contain	the	inserted	document	in	case	the	upsert	performed	an	insert,	or	the	updated/replaced
document	in	case	it	performed	an	update/replace.

This	can	also	be	used	to	check	whether	the	upsert	has	performed	an	insert	or	an	update	internally:

UPSERT	{	name:	'superuser'	}	

INSERT	{	name:	'superuser',	logins:	1,	dateCreated:	DATE_NOW()	}	

UPDATE	{	logins:	OLD.logins	+	1	}	IN	users

RETURN	{	doc:	NEW,	type:	OLD	?	'update'	:	'insert'	}

UPSERT

90

WITH
An	AQL	query	can	optionally	start	with	a	WITH	statement	and	the	list	of	collections	used	by	the	query.	All	collections	specified	in
WITH	will	be	read-locked	at	query	start,	in	addition	to	the	other	collections	the	query	uses	and	that	are	detected	by	the	AQL	query
parser.

Specifying	further	collections	in	WITH	can	be	useful	for	queries	that	dynamically	access	collections	(e.g.	via	traversals	or	via	dynamic
document	access	functions	such	as		DOCUMENT()).	Such	collections	may	be	invisible	to	the	AQL	query	parser	at	query	compile	time,	and
thus	will	not	be	read-locked	automatically	at	query	start.	In	this	case,	the	AQL	execution	engine	will	lazily	lock	these	collections
whenever	they	are	used,	which	can	lead	to	deadlock	with	other	queries.	In	case	such	deadlock	is	detected,	the	query	will	automatically	be
aborted	and	changes	will	be	rolled	back.	In	this	case	the	client	application	can	try	sending	the	query	again.	However,	if	client	applications
specify	the	list	of	used	collections	for	all	their	queries	using	WITH,	then	no	deadlocks	will	happen	and	no	queries	will	be	aborted	due	to
deadlock	situations.

From	ArangoDB	3.1	onwards		WITH		is	required	for	traversals	in	a	clustered	environment	in	order	to	avoid	deadlocks.

Note	that	for	queries	that	access	only	a	single	collection	or	that	have	all	collection	names	specified	somewhere	else	in	the	query	string,
there	is	no	need	to	use	WITH.	WITH	is	only	useful	when	the	AQL	query	parser	cannot	automatically	figure	out	which	collections	are
going	to	be	used	by	the	query.	WITH	is	only	useful	for	queries	that	dynamically	access	collections,	e.g.	via	traversals,	shortest	path
operations	or	the	DOCUMENT()	function.

WITH	managers,	usersHaveManagers

FOR	v,	e,	p	IN	OUTBOUND	'users/1'	GRAPH	'userGraph'

		RETURN	{	v,	e,	p	}

Note	that	constant	WITH	is	also	a	keyword	that	is	used	in	other	contexts,	for	example	in	UPDATE	statements.	If	WITH	is	used	to
specify	the	extra	list	of	collections,	then	it	must	be	placed	at	the	very	start	of	the	query	string.

WITH

91

Functions
AQL	supports	functions	to	allow	more	complex	computations.	Functions	can	be	called	at	any	query	position	where	an	expression	is
allowed.	The	general	function	call	syntax	is:

FUNCTIONNAME(arguments)

where	FUNCTIONNAME	is	the	name	of	the	function	to	be	called,	and	arguments	is	a	comma-separated	list	of	function	arguments.	If	a
function	does	not	need	any	arguments,	the	argument	list	can	be	left	empty.	However,	even	if	the	argument	list	is	empty	the	parentheses
around	it	are	still	mandatory	to	make	function	calls	distinguishable	from	variable	names.

Some	example	function	calls:

HAS(user,	"name")

LENGTH(friends)

COLLECTIONS()

In	contrast	to	collection	and	variable	names,	function	names	are	case-insensitive,	i.e.	LENGTH(foo)	and	length(foo)	are	equivalent.

Extending	AQL

It	is	possible	to	extend	AQL	with	user-defined	functions.	These	functions	need	to	be	written	in	JavaScript,	and	have	to	be	registered
before	they	can	be	used	in	a	query.	Please	refer	to	Extending	AQL	for	more	details.

Functions

92

Type	cast	functions
Some	operators	expect	their	operands	to	have	a	certain	data	type.	For	example,	logical	operators	expect	their	operands	to	be	boolean
values,	and	the	arithmetic	operators	expect	their	operands	to	be	numeric	values.	If	an	operation	is	performed	with	operands	of	other
types,	an	automatic	conversion	to	the	expected	types	is	tried.	This	is	called	implicit	type	casting.	It	helps	to	avoid	query	aborts.

Type	casts	can	also	be	performed	upon	request	by	invoking	a	type	cast	function.	This	is	called	explicit	type	casting.	AQL	offers	several
functions	for	this.	Each	of	the	these	functions	takes	an	operand	of	any	data	type	and	returns	a	result	value	with	the	type	corresponding
to	the	function	name.	For	example,	TO_NUMBER()	will	return	a	numeric	value.

TO_BOOL()

	TO_BOOL(value)	→	bool	

Take	an	input	value	of	any	type	and	convert	it	into	the	appropriate	boolean	value.

value	(any):	input	of	arbitrary	type
returns	bool	(boolean):

null	is	converted	to	false
Numbers	are	converted	to	true,	except	for	0,	which	is	converted	to	false
Strings	are	converted	to	true	if	they	are	non-empty,	and	to	false	otherwise
Arrays	are	always	converted	to	true	(even	if	empty)
Objects	/	documents	are	always	converted	to	true

It's	also	possible	to	use	double	negation	to	cast	to	boolean:

!!1	//	true

!!0	//	false

!!-0.0	//	false

not	not	1	//	true

!!"non-empty	string"	//	true

!!""	//	false

	TO_BOOL()		is	preferred	however,	because	it	states	the	intention	clearer.

TO_NUMBER()

	TO_NUMBER(value)	→	number	

Take	an	input	value	of	any	type	and	convert	it	into	a	numeric	value.

value	(any):	input	of	arbitrary	type
returns	number	(number):

null	and	false	are	converted	to	the	value	0
true	is	converted	to	1
Numbers	keep	their	original	value
Strings	are	converted	to	their	numeric	equivalent	if	the	string	contains	a	valid	representation	of	a	number.	Whitespace	at	the
start	and	end	of	the	string	is	allowed.	String	values	that	do	not	contain	any	valid	representation	of	a	number	will	be	converted	to
the	number	0.
An	empty	array	is	converted	to	0,	an	array	with	one	member	is	converted	into	the	result	of		TO_NUMBER()		for	its	sole	member.
An	array	with	two	or	more	members	is	converted	to	the	number	0.
An	object	/	document	is	converted	to	the	number	0.

A	unary	plus	will	also	cast	to	a	number,	but		TO_NUMBER()		is	the	preferred	way:

+'5'	//	5

+[8]	//	8

+[8,9]	//	0

+{}	//	0

Type	cast

93

A	unary	minus	works	likewise,	except	that	a	numeric	value	is	also	negated:

-'5'	//	-5

-[8]	//	-8

-[8,9]	//	0

-{}	//	0

TO_STRING()

	TO_STRING(value)	→	str	

Take	an	input	value	of	any	type	and	convert	it	into	a	string	value.

value	(any):	input	of	arbitrary	type
returns	str	(string):

null	is	converted	to	an	empty	string	""
false	is	converted	to	the	string	"false" ,	true	to	the	string	"true"
Numbers	are	converted	to	their	string	representations.	This	can	also	be	a	scientific	notation	(e.g.	"2e-7")
Arrays	and	objects	/	documents	are	converted	to	string	representations,	which	means	JSON-encoded	strings	with	no	additional
whitespace

TO_STRING(null)	//	""

TO_STRING(true)	//	"true"

TO_STRING(false)	//	"false"

TO_STRING(123)	//	"123"

TO_STRING(+1.23)	//	"1.23"

TO_STRING(-1.23)	//	"-1.23"

TO_STRING(0.0000002)	//	"2e-7"

TO_STRING([1,	2,	3])	//	"[1,2,3]"

TO_STRING({	foo:	"bar",	baz:	null	})	//	"{\"foo\":\"bar\",\"baz\":null}"

TO_ARRAY()
	TO_ARRAY(value)	→	array	

Take	an	input	value	of	any	type	and	convert	it	into	an	array	value.

value	(any):	input	of	arbitrary	type
returns	array	(array):

null	is	converted	to	an	empty	array
Boolean	values,	numbers	and	strings	are	converted	to	an	array	containing	the	original	value	as	its	single	element
Arrays	keep	their	original	value
Objects	/	documents	are	converted	to	an	array	containing	their	attribute	values	as	array	elements,	just	like	VALUES()

TO_ARRAY(null)	//	[]

TO_ARRAY(false)	//	[false]

TO_ARRAY(true)	//	[true]

TO_ARRAY(5)	//	[5]

TO_ARRAY("foo")	//	["foo"]

TO_ARRAY([1,	2,	"foo"])	//	[1,	2,	"foo"]

TO_ARRAY({foo:	1,	bar:	2,	baz:	[3,	4,	5]})	//	[1,	2,	[3,	4,	5]]

TO_LIST()
	TO_LIST(value)	→	array	

This	is	an	alias	for	TO_ARRAY().

Type	check	functions
AQL	also	offers	functions	to	check	the	data	type	of	a	value	at	runtime.	The	following	type	check	functions	are	available.	Each	of	these
functions	takes	an	argument	of	any	data	type	and	returns	true	if	the	value	has	the	type	that	is	checked	for,	and	false	otherwise.

Type	cast

94

The	following	type	check	functions	are	available:

	IS_NULL(value)	→	bool	:	Check	whether	value	is	a	null	value,	also	see	HAS()

	IS_BOOL(value)	→	bool	:	Check	whether	value	is	a	boolean	value

	IS_NUMBER(value)	→	bool	:	Check	whether	value	is	a	numeric	value

	IS_STRING(value)	→	bool	:	Check	whether	value	is	a	string	value

	IS_ARRAY(value)	→	bool	:	Check	whether	value	is	an	array	value

	IS_LIST(value)	→	bool	:	This	is	an	alias	for	IS_ARRAY()

	IS_OBJECT(value)	→	bool	:	Check	whether	value	is	an	object	/	document	value

	IS_DOCUMENT(value)	→	bool	:	This	is	an	alias	for	IS_OBJECT()

	IS_DATESTRING(value)	→	bool	:	Check	whether	value	is	a	string	that	can	be	used	in	a	date	function.	This	includes	partial	dates	such
as	"2015" 	or	"2015-10" 	and	strings	containing	invalid	dates	such	as	"2015-02-31" .	The	function	will	return	false	for	all	non-string
values,	even	if	some	of	them	may	be	usable	in	date	functions.

	TYPENAME(value)	→	typeName	:	Return	the	data	type	name	of	value.	The	data	type	name	can	be	either	"null" ,	"bool" ,	"number" ,
"string" ,	"array" 	or	"object" .

Type	cast

95

String	functions
For	string	processing,	AQL	offers	the	following	functions:

CHAR_LENGTH()

	CHAR_LENGTH(value)	→	length	

Return	the	number	of	characters	in	value	(not	byte	length).

input length

String number	of	unicode	characters

Number number	of	unicode	characters	that	represent	the	number

Array	/	Object number	of	unicode	characters	from	the	resulting	stringification

true 4

false 5

null 0

CONCAT()
	CONCAT(value1,	value2,	...	valueN)	→	str	

Concatenate	the	values	passed	as	value1	to	valueN.

values	(any,	repeatable):	elements	of	arbitrary	type	(at	least	1)
returns	str	(string):	a	concatenation	of	the	elements.	null	values	are	ignored.

CONCAT("foo",	"bar",	"baz")	//	"foobarbaz"

CONCAT(1,	2,	3)	//	"123"

CONCAT("foo",	[5,	6],	{bar:	"baz"})	//	"foo[5,6]{\"bar\":\"baz\"}"

	CONCAT(anyArray)	→	str	

If	a	single	array	is	passed	to	CONCAT(),	its	members	are	concatenated.

anyArray	(array):	array	with	elements	of	arbitrary	type
returns	str	(string):	a	concatenation	of	the	array	elements.	null	values	are	ignored.

CONCAT(["foo",	"bar",	"baz"])	//	"foobarbaz"

CONCAT([1,	2,	3])	//	"123"

CONCAT_SEPARATOR()

	CONCAT_SEPARATOR(separator,	value1,	value2,	...	valueN)	→	joinedString	

Concatenate	the	strings	passed	as	arguments	value1	to	valueN	using	the	separator	string.

separator	(string):	an	arbitrary	separator	string
values	(string|array,	repeatable):	strings	or	arrays	of	strings	as	multiple	arguments	(at	least	1)
returns	joinedString	(string):	a	concatenated	string	of	the	elements,	using	separator	as	separator	string.	null	values	are	ignored.
Array	value	arguments	are	expanded	automatically,	and	their	individual	members	will	be	concatenated.	Nested	arrays	will	be
expanded	too,	but	with	their	elements	separated	by	commas	if	they	have	more	than	a	single	element.

CONCAT_SEPARATOR(",	",	"foo",	"bar",	"baz")

//	"foo,	bar,	baz"

CONCAT_SEPARATOR(",	",	["foo",	"bar",	"baz"])

//	"foo,	bar,	baz"

String

96

CONCAT_SEPARATOR(",	",	["foo",	["b",	"a",	"r"],	"baz"])

//	["foo,	b,a,r,	baz"]

CONCAT_SEPARATOR("-",	[1,	2,	3,	null],	[4,	null,	5])

//	"1-2-3-4-5"

CONTAINS()
	CONTAINS(text,	search,	returnIndex)	→	match	

Check	whether	the	string	search	is	contained	in	the	string	text.	The	string	matching	performed	by	CONTAINS	is	case-sensitive.

text	(string):	the	haystack
search	(string):	the	needle
returnIndex	(bool,	optional):	if	set	to	true,	the	character	position	of	the	match	is	returned	instead	of	a	boolean.	The	default	is	false.
The	default	is	false.
returns	match	(bool|number):	by	default,	true	is	returned	if	search	is	contained	in	text,	and	false	otherwise.	With	returnIndex	set	to
true,	the	position	of	the	first	occurrence	of	search	within	text	is	returned	(starting	at	offset	0),	or	-1	if	search	is	not	contained	in	text.

CONTAINS("foobarbaz",	"bar")	//	true

CONTAINS("foobarbaz",	"horse")	//	false

CONTAINS("foobarbaz",	"ba",	true)	//	3

CONTAINS("foobarbaz",	"horse",	true)	//	-1

To	determine	if	or	at	which	position	a	value	is	included	in	an	array,	see	the	POSITION()	array	function.

COUNT()

This	is	an	alias	for	LENGTH().

FIND_FIRST()

	FIND_FIRST(text,	search,	start,	end)	→	position	

Return	the	position	of	the	first	occurrence	of	the	string	search	inside	the	string	text.	Positions	start	at	0.

text	(string):	the	haystack
search	(string):	the	needle
start	(number,	optional):	limit	the	search	to	a	subset	of	the	text,	beginning	at	start
end	(number,	optional):	limit	the	search	to	a	subset	of	the	text,	ending	at	end
returns	position	(number):	the	character	position	of	the	match.	If	search	is	not	contained	in	text,	-1	is	returned.

FIND_FIRST("foobarbaz",	"ba")	//	3

FIND_FIRST("foobarbaz",	"ba",	4)	//	6

FIND_FIRST("foobarbaz",	"ba",	0,	3)	//	-1

FIND_LAST()

	FIND_LAST(text,	search,	start,	end)	→	position	

Return	the	position	of	the	last	occurrence	of	the	string	search	inside	the	string	text.	Positions	start	at	0.

text	(string):	the	haystack
search	(string):	the	needle
start	(number,	optional):	limit	the	search	to	a	subset	of	the	text,	beginning	at	start
end	(number,	optional):	limit	the	search	to	a	subset	of	the	text,	ending	at	end
returns	position	(number):	the	character	position	of	the	match.	If	search	is	not	contained	in	text,	-1	is	returned.

FIND_LAST("foobarbaz",	"ba")	//	6

FIND_LAST("foobarbaz",	"ba",	7)	//	-1

FIND_LAST("foobarbaz",	"ba",	0,	4)	//	3

String

97

JSON_PARSE()

	JSON_PARSE(text)	→	value	

Return	an	AQL	value	described	by	the	JSON-encoded	input	string.

text	(string):	the	string	to	parse	as	JSON
returns	value	(mixed):	the	value	corresponding	to	the	given	JSON	text.	For	input	values	that	are	no	valid	JSON	strings,	the	function
will	return	null.

JSON_PARSE("123")	//	123

JSON_PARSE("[true,	false,	2]")	//	[true,	false,	2]

JSON_PARSE("\\\"abc\\\"")	//	"abc"

JSON_PARSE("{\\\"a\\\":	1}")	//	{	a	:	1	}

JSON_PARSE("abc")	//	null

JSON_STRINGIFY()

	JSON_STRINGIFY(value)	→	text	

Return	a	JSON	string	representation	of	the	input	value.

value	(mixed):	the	value	to	convert	to	a	JSON	string
returns	text	(string):	the	JSON	string	representing	value.	For	input	values	that	cannot	be	converted	to	JSON,	the	function	will
return	null.

JSON_STRINGIFY("1")	//	"1"

JSON_STRINGIFY("abc")	//	"\"abc\""

JSON_STRINGIFY("[1,	2,	3]")	//	"[1,2,3]"

LEFT()

	LEFT(value,	length)	→	substring	

Return	the	length	leftmost	characters	of	the	string	value.

value	(string):	a	string
length	(number):	how	many	characters	to	return
returns	substring	(string):	at	most	length	characters	of	value,	starting	on	the	left-hand	side	of	the	string

LEFT("foobar",	3)	//	"foo"

LEFT("foobar",	10)	//	"foobar"

LENGTH()

	LENGTH(str)	→	length	

Determine	the	character	length	of	a	string.

str	(string):	a	string.	If	a	number	is	passed,	it	will	be	casted	to	string	first.
returns	length	(number):	the	character	length	of	str	(not	byte	length)

LENGTH("foobar")	//	6

LENGTH("")	//	4

LENGTH()	can	also	determine	the	number	of	elements	in	an	array,	the	number	of	attribute	keys	of	an	object	/	document	and	the	amount
of	documents	in	a	collection.

LIKE()

	LIKE(text,	search,	caseInsensitive)	→	bool	

Check	whether	the	pattern	search	is	contained	in	the	string	text,	using	wildcard	matching.

String

98

text	(string):	the	string	to	search	in
search	(string):	a	search	pattern	that	can	contain	the	wildcard	characters		%		(meaning	any	sequence	of	characters,	including	none)
and		_		(any	single	character).	Literal	% 	and	:	must	be	escaped	with	two	backslashes	(four	in	arangosh).	search	cannot	be	a	variable
or	a	document	attribute.	The	actual	value	must	be	present	at	query	parse	time	already.
caseInsensitive	(bool,	optional):	if	set	to	true,	the	matching	will	be	case-insensitive.	The	default	is	false.
returns	bool	(bool):	true	if	the	pattern	is	contained	in	text,	and	false	otherwise

LIKE("cart",	"ca_t")			//	true

LIKE("carrot",	"ca_t")	//	false

LIKE("carrot",	"ca%t")	//	true

LIKE("foo	bar	baz",	"bar")			//	false

LIKE("foo	bar	baz",	"%bar%")	//	true

LIKE("bar",	"%bar%")									//	true

LIKE("FoO	bAr	BaZ",	"fOo%bAz")							//	false

LIKE("FoO	bAr	BaZ",	"fOo%bAz",	true)	//	true

LOWER()

	LOWER(value)	→	lowerCaseString	

Convert	upper-case	letters	in	value	to	their	lower-case	counterparts.	All	other	characters	are	returned	unchanged.

value	(string):	a	string
returns	lowerCaseString	(string):	value	with	upper-case	characters	converted	to	lower-case	characters

LTRIM()
	LTRIM(value,	chars)	→	strippedString	

Return	the	string	value	with	whitespace	stripped	from	the	start	only.

value	(string):	a	string
chars	(string,	optional):	override	the	characters	that	should	be	removed	from	the	string.	It	defaults	to		\r\n	\t		(i.e.		0x0d	,		0x0a	,
	0x20		and		0x09).
returns	strippedString	(string):	value	without	chars	at	the	left-hand	side

LTRIM("foo	bar")	//	"foo	bar"

LTRIM("		foo	bar		")	//	"foo	bar		"

LTRIM("--==[foo-bar]==--",	"-=[]")	//	"foo-bar]==--"

MD5()
	MD5(text)	→	hash	

Calculate	the	MD5	checksum	for	text	and	return	it	in	a	hexadecimal	string	representation.

text	(string):	a	string
returns	hash	(string):	MD5	checksum	as	hex	string

MD5("foobar")	//	"3858f62230ac3c915f300c664312c63f"

RANDOM_TOKEN()
	RANDOM_TOKEN(length)	→	randomString	

Generate	a	pseudo-random	token	string	with	the	specified	length.	The	algorithm	for	token	generation	should	be	treated	as	opaque.

length	(number):	desired	string	length	for	the	token.	It	must	be	greater	than	0	and	at	most	65536.
returns	randomString	(string):	a	generated	token	consisting	of	lowercase	letters,	uppercase	letters	and	numbers

RANDOM_TOKEN(8)	//	"zGl09z42"

RANDOM_TOKEN(8)	//	"m9w50Ft9"

String

99

REGEX_TEST()

	REGEX_TEST(text,	search,	caseInsensitive)	→	bool	

Check	whether	the	pattern	search	is	contained	in	the	string	text,	using	regular	expression	matching.

text	(string):	the	string	to	search	in
search	(string):	a	regular	expression	search	pattern
returns	bool	(bool):	true	if	the	pattern	is	contained	in	text,	and	false	otherwise

The	regular	expression	may	consist	of	literal	characters	and	the	following	characters	and	sequences:

	.		–	the	dot	matches	any	single	character	except	line	terminators.	To	include	line	terminators,	use		[\s\S]		instead	to	simulate		.	
with	DOTALL	flag.
	\d		–	matches	a	single	digit,	equivalent	to		[0-9]	
	\s		–	matches	a	single	whitespace	character
	\S		–	matches	a	single	non-whitespace	character
	\t		–	matches	a	tab	character
	\r		–	matches	a	carriage	return
	\n		–	matches	a	line-feed	character
	[xyz]		–	set	of	characters.	matches	any	of	the	enclosed	characters	(i.e.	x,	y	or	z	in	this	case
	[^xyz]		–	negated	set	of	characters.	matches	any	other	character	than	the	enclosed	ones	(i.e.	anything	but	x,	y	or	z	in	this	case)
	[x-z]		–	range	of	characters.	Matches	any	of	the	characters	in	the	specified	range,	e.g.		[0-9A-F]		to	match	any	character	in
0123456789ABCDEF
	[^x-z]		–	negated	range	of	characters.	Matches	any	other	character	than	the	ones	specified	in	the	range
	(xyz)		–	defines	and	matches	a	pattern	group
	(x|y)		–	matches	either	x	or	y
	̂ 		–	matches	the	beginning	of	the	string	(e.g.	 	̂ xyz)
	$		–	matches	the	end	of	the	string	(e.g.		xyz$)

Note	that	the	characters		.	,		*	,		?	,		[,]	,		(,)	,		{	,		}	,	 	̂ 	,	and		$		have	a	special	meaning	in	regular	expressions	and	may
need	to	be	escaped	using	a	backslash,	which	requires	escaping	itself	(\\).	A	literal	backslash	needs	to	be	escaped	using	another	escaped
backslash,	i.e.		\\\\	.	In	arangosh,	the	amount	of	backslashes	needs	to	be	doubled.

Characters	and	sequences	may	optionally	be	repeated	using	the	following	quantifiers:

	x*		–	matches	zero	or	more	occurrences	of	x
	x+		–	matches	one	or	more	occurrences	of	x
	x?		–	matches	one	or	zero	occurrences	of	x
	x{y}		–	matches	exactly	y	occurrences	of	x
	x{y,z}		–	matches	between	y	and	z	occurrences	of	x
	x{y,}		–	matches	at	least	y	occurences	of	x

Note	that		xyz+		matches	xyzzz,	but	if	you	want	to	match	xyzxyz	instead,	you	need	to	define	a	pattern	group	by	wrapping	the
subexpression	in	parentheses	and	place	the	quantifier	right	behind	it:		(xyz)+	.

If	the	regular	expression	in	search	is	invalid,	a	warning	will	be	raised	and	the	function	will	return	null.

REGEX_TEST("the	quick	brown	fox",	"the.*fox")	//	true

REGEX_TEST("the	quick	brown	fox",	"^(a|the)\s+(quick|slow).*f.x$")	//	true

REGEX_TEST("the\nquick\nbrown\nfox",	"^the(\n[a-w]+)+\nfox$")	//	true

REGEX_REPLACE()

	REGEX_REPLACE(text,	search,	replacement,	caseInsensitive)	→	string	

Replace	the	pattern	search	with	the	string	replacement	in	the	string	text,	using	regular	expression	matching.

text	(string):	the	string	to	search	in
search	(string):	a	regular	expression	search	pattern
replacement	(string):	the	string	to	replace	the	search	pattern	with
returns	string	(string):	the	string	text	with	the	search	regex	pattern	replaced	with	the	replacement	string	wherever	the	pattern	exists
in	text

String

100

For	more	details	about	the	rules	for	characters	and	sequences	refer	REGEX_TEST().

If	the	regular	expression	in	search	is	invalid,	a	warning	will	be	raised	and	the	function	will	return	null.

REGEX_REPLACE("the	quick	brown	fox",	"the.*fox",	"jumped	over")	//	jumped	over

REGEX_REPLACE("the	quick	brown	fox",	"o",	"i")	//	the	quick	briwn	fix

REVERSE()

	REVERSE(value)	→	reversedString	

Return	the	reverse	of	the	string	str.

value	(string):	a	string
returns	reversedString	(string):	a	new	string	with	the	characters	in	reverse	order

REVERSE("foobar")	//	"raboof"

REVERSE("")	//	""

RIGHT()

	RIGHT(value,	length)	→	substring	

Return	the	length	rightmost	characters	of	the	string	value.

value	(string):	a	string
length	(number):	how	many	characters	to	return
returns	substring	(string):	at	most	length	characters	of	value,	starting	on	the	right-hand	side	of	the	string

RIGHT("foobar",	3)	//	"bar"

RIGHT("foobar",	10)	//	"foobar"

RTRIM()

	RTRIM(value,	chars)	→	strippedString	

Return	the	string	value	with	whitespace	stripped	from	the	end	only.

value	(string):	a	string
chars	(string,	optional):	override	the	characters	that	should	be	removed	from	the	string.	It	defaults	to		\r\n	\t		(i.e.		0x0d	,		0x0a	,
	0x20		and		0x09).
returns	strippedString	(string):	value	without	chars	at	the	right-hand	side

RTRIM("foo	bar")	//	"foo	bar"

RTRIM("		foo	bar		")	//	"		foo	bar"

RTRIM("--==[foo-bar]==--",	"-=[]")	//	"--==[foo-bar"

SHA1()

	SHA1(text)	→	hash	

Calculate	the	SHA1	checksum	for	text	and	returns	it	in	a	hexadecimal	string	representation.

text	(string):	a	string
returns	hash	(string):	SHA1	checksum	as	hex	string

SHA1("foobar")	//	"8843d7f92416211de9ebb963ff4ce28125932878"

SPLIT()
	SPLIT(value,	separator,	limit)	→	strArray	

Split	the	given	string	value	into	a	list	of	strings,	using	the	separator.

String

101

value	(string):	a	string
separator	(string):	either	a	string	or	a	list	of	strings.	If	separator	is	an	empty	string,	value	will	be	split	into	a	list	of	characters.	If	no
separator	is	specified,	value	will	be	returned	as	array.
limit	(number,	optional):	limit	the	number	of	split	values	in	the	result.	If	no	limit	is	given,	the	number	of	splits	returned	is	not
bounded.
returns	strArray	(array):	an	array	of	strings

SPLIT("foo-bar-baz",	"-")	//	["foo",	"bar",	"baz"]

SPLIT("foo-bar-baz",	"-",	1)	//	["foo",	"bar-baz"]

SPLIT("foo,	bar	&	baz",	[",	",	"	&	"])	//	["foo",	"bar",	"baz"]

SUBSTITUTE()

	SUBSTITUTE(value,	search,	replace,	limit)	→	substitutedString	

Replace	search	values	in	the	string	value.

value	(string):	a	string
search	(string|array):	if	search	is	a	string,	all	occurrences	of	search	will	be	replaced	in	value.	If	search	is	an	array	of	strings,	each
occurrence	of	a	value	contained	in	search	will	be	replaced	by	the	corresponding	array	element	in	replace.	If	replace	has	less	list	items
than	search,	occurrences	of	unmapped	search	items	will	be	replaced	by	an	empty	string.
replace	(string|array,	optional):	a	replacement	string,	or	an	array	of	strings	to	replace	the	corresponding	elements	of	search	with.
Can	have	less	elements	than	search	or	be	left	out	to	remove	matches.	If	search	is	an	array	but	replace	is	a	string,	then	all	matches
will	be	replaced	with	replace.
limit	(number,	optional):	cap	the	number	of	replacements	to	this	value
returns	substitutedString	(string):	a	new	string	with	matches	replaced	(or	removed)

SUBSTITUTE("the	quick	brown	foxx",	"quick",	"lazy")

//	"the	lazy	brown	foxx"

SUBSTITUTE("the	quick	brown	foxx",	["quick",	"foxx"],	["slow",	"dog"])

//	"the	slow	brown	dog"

SUBSTITUTE("the	quick	brown	foxx",	["the",	"foxx"],	["that",	"dog"],	1)

//		"that	quick	brown	foxx"

SUBSTITUTE("the	quick	brown	foxx",	["the",	"quick",	"foxx"],	["A",	"VOID!"])

//	"A	VOID!	brown	"

SUBSTITUTE("the	quick	brown	foxx",	["quick",	"foxx"],	"xx")

//	"the	xx	brown	xx"

	SUBSTITUTE(value,	mapping,	limit)	→	substitutedString	

Alternatively,	search	and	replace	can	be	specified	in	a	combined	value.

value	(string):	a	string
mapping	(object):	a	lookup	map	with	search	strings	as	keys	and	replacement	strings	as	values.	Empty	strings	and	null	as	values
remove	matches.
limit	(number,	optional):	cap	the	number	of	replacements	to	this	value
returns	substitutedString	(string):	a	new	string	with	matches	replaced	(or	removed)

SUBSTITUTE("the	quick	brown	foxx",	{

		"quick":	"small",

		"brown":	"slow",

		"foxx":	"ant"

})

//	"the	small	slow	ant"

SUBSTITUTE("the	quick	brown	foxx",	{	

		"quick":	"",

		"brown":	null,

		"foxx":	"ant"

})

//	"the			ant"

String

102

SUBSTITUTE("the	quick	brown	foxx",	{

		"quick":	"small",

		"brown":	"slow",

		"foxx":	"ant"

},	2)

//	"the	small	slow	foxx"

SUBSTRING()
	SUBSTRING(value,	offset,	length)	→	substring	

Return	a	substring	of	value.

value	(string):	a	string
offset	(number):	start	at	offset,	offsets	start	at	position	0
length	(number,	optional):	at	most	length	characters,	omit	to	get	the	substring	from	offset	to	the	end	of	the	string
returns	substring	(string):	a	substring	of	value

TRIM()
	TRIM(value,	type)	→	strippedString	

Return	the	string	value	with	whitespace	stripped	from	the	start	and/or	end.

The	optional	type	parameter	specifies	from	which	parts	of	the	string	the	whitespace	is	stripped.	LTRIM()	and	RTRIM()	are	preferred
however.

value	(string):	a	string
type	(number,	optional):	strip	whitespace	from	the

0	–	start	and	end	of	the	string
1	–	start	of	the	string	only
2	–	end	of	the	string	only	The	default	is	0.

	TRIM(value,	chars)	→	strippedString	

Return	the	string	value	with	whitespace	stripped	from	the	start	and	end.

value	(string):	a	string
chars	(string,	optional):	override	the	characters	that	should	be	removed	from	the	string.	It	defaults	to		\r\n	\t		(i.e.		0x0d	,		0x0a	,
	0x20		and		0x09).
returns	strippedString	(string):	value	without	chars	on	both	sides

TRIM("foo	bar")	//	"foo	bar"

TRIM("		foo	bar		")	//	"foo	bar"

TRIM("--==[foo-bar]==--",	"-=[]")	//	"foo-bar"		

TRIM("		foobar\t	\r\n	")	//	"foobar"

TRIM(";foo;bar;baz,	",	",;	")	//	"foo;bar;baz"

UPPER()

	UPPER(value)	→	upperCaseString	

Convert	lower-case	letters	in	value	to	their	upper-case	counterparts.	All	other	characters	are	returned	unchanged.

value	(string):	a	string
returns	upperCaseString	(string):	value	with	lower-case	characters	converted	to	upper-case	characters

String

103

Numeric	functions
AQL	offers	some	numeric	functions	for	calculations.	The	following	functions	are	supported:

ABS()

	ABS(value)	→	unsignedValue	

Return	the	absolute	part	of	value.

value	(number):	any	number,	positive	or	negative
returns	unsignedValue	(number):	the	number	without	+	or	-	sign

ABS(-5)	//	5

ABS(+5)	//	5

ABS(3.5)	//	3.5

ACOS()
	ACOS(value)	→	num	

Return	the	arccosine	of	value.

value	(number):	the	input	value
returns	num	(number|null):	the	arccosine	of	value,	or	null	if	value	is	outside	the	valid	range	-1	and	1	(inclusive)

ACOS(-1)	//	3.141592653589793

ACOS(0)	//	1.5707963267948966

ACOS(1)	//	0

ACOS(2)	//	null

ASIN()
	ASIN(value)	→	num	

Return	the	arcsine	of	value.

value	(number):	the	input	value
returns	num	(number|null):	the	arcsine	of	value,	or	null	if	value	is	outside	the	valid	range	-1	and	1	(inclusive)

ASIN(1)	//	1.5707963267948966

ASIN(0)	//	0

ASIN(-1)	//	-1.5707963267948966

ASIN(2)	//	null

ATAN()
	ATAN(value)	→	num	

Return	the	arctangent	of	value.

value	(number):	the	input	value
returns	num	(number):	the	arctangent	of	value

ATAN(-1)	//	-0.7853981633974483

ATAN(0)	//	0

ATAN(10)	//	1.4711276743037347

ATAN2()

	ATAN2(y,	x)	→	num	

Numeric

104

Return	the	arctangent	of	the	quotient	of	y	and	x.

ATAN2(0,	0)	//	0

ATAN2(1,	0)	//	1.5707963267948966

ATAN2(1,	1)	//	0.7853981633974483

ATAN2(-10,	20)	//	-0.4636476090008061

AVERAGE()

	AVERAGE(numArray)	→	mean	

Return	the	average	(arithmetic	mean)	of	the	values	in	array.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	mean	(number|null):	the	average	value	of	numArray.	If	the	array	is	empty	or	contains	null	values	only,	null	will	be	returned.

AVERAGE([5,	2,	9,	2])	//	4.5

AVERAGE([-3,	-5,	2])	//	-2

AVERAGE([999,	80,	4,	4,	4,	3,	3,	3])	//	137.5

CEIL()
	CEIL(value)	→	roundedValue	

Return	the	integer	closest	but	not	less	than	value.

value	(number):	any	number
returns	roundedValue	(number):	the	value	rounded	to	the	ceiling

CEIL(2.49)	//	3

CEIL(2.50)	//	3

CEIL(-2.50)	//	-2

CEIL(-2.51)	//	-2

COS()
	COS(value)	→	num	

Return	the	cosine	of	value.

value	(number):	the	input	value
returns	num	(number):	the	cosine	of	value

COS(1)	//	0.5403023058681398	

COS(0)	//	1

COS(-3.141592653589783)	//	-1

COS(RADIANS(45))	//	0.7071067811865476

DEGREES()
	DEGREES(rad)	→	num	

Return	the	angle	converted	from	radians	to	degrees.

rad	(number):	the	input	value
returns	num	(number):	the	angle	in	degrees

DEGREES(0.7853981633974483)	//	45

DEGREES(0)	//	0

DEGREES(3.141592653589793)	//	180

EXP()

	EXP(value)	→	num	

Numeric

105

Return	Euler's	constant	(2.71828...)	raised	to	the	power	of	value.

value	(number):	the	input	value
returns	num	(number):	Euler's	constant	raised	to	the	power	of	value

EXP(1)	//	2.718281828459045

EXP(10)	//	22026.46579480671

EXP(0)	//	1

EXP2()

	EXP2(value)	→	num	

Return	2	raised	to	the	power	of	value.

value	(number):	the	input	value
returns	num	(number):	2	raised	to	the	power	of	value

EXP2(16)	//	65536

EXP2(1)	//	2

EXP2(0)	//	1

FLOOR()

	FLOOR(value)	→	roundedValue	

Return	the	integer	closest	but	not	greater	than	value.

value	(number):	any	number
returns	roundedValue	(number):	the	value	rounded	to	the	floor

FLOOR(2.49)	//	2

FLOOR(2.50)	//	2

FLOOR(-2.50)	//	-3

FLOOR(-2.51)	//	-3

LOG()

	LOG(value)	→	num	

Return	the	natural	logarithm	of	value.	The	base	is	Euler's	constant	(2.71828...).

value	(number):	the	input	value
returns	num	(number|null):	the	natural	logarithm	of	value,	or	null	if	value	is	equal	or	less	than	0

LOG(2.718281828459045)	//	1

LOG(10)	//	2.302585092994046

LOG(0)	//	null

LOG2()

	LOG2(value)	→	num	

Return	the	base	2	logarithm	of	value.

value	(number):	the	input	value
returns	num	(number|null):	the	base	2	logarithm	of	value,	or	null	if	value	is	equal	or	less	than	0

LOG2(1024)	//	10

LOG2(8)	//	3

LOG2(0)	//	null

LOG10()

Numeric

106

	LOG10(value)	→	num	

Return	the	base	10	logarithm	of	value.

value	(number):	the	input	value
returns	num	(number):	the	base	10	logarithm	of	value,	or	null	if	value	is	equal	or	less	than	0

LOG10(10000)	//	10

LOG10(10)	//	1

LOG10(0)	//	null

MAX()

	MAX(anyArray)	→	max	

Return	the	greatest	element	of	anyArray.	The	array	is	not	limited	to	numbers.	Also	see	type	and	value	order.

anyArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	max	(any|null):	the	element	with	the	greatest	value.	If	the	array	is	empty	or	contains	null	values	only,	the	function	will
return	null.

MAX([5,	9,	-2,	null,	1])	//	9

MAX([null,	null])	//	null

MEDIAN()

	MEDIAN(numArray)	→	median	

Return	the	median	value	of	the	values	in	array.

The	array	is	sorted	and	the	element	in	the	middle	is	returned.	If	the	array	has	an	even	length	of	elements,	the	two	center-most	elements
are	interpolated	by	calculating	the	average	value	(arithmetic	mean).

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	median	(number|null):	the	median	of	numArray.	If	the	array	is	empty	or	contains	null	values	only,	the	function	will	return
null.

MEDIAN([1,	2,	3])	//	2

MEDIAN([1,	2,	3,	4])	//	2.5

MEDIAN([4,	2,	3,	1])	//	2.5

MEDIAN([999,	80,	4,	4,	4,	3,	3,	3])	//	4

MIN()

	MIN(anyArray)	→	min	

Return	the	smallest	element	of	anyArray.	The	array	is	not	limited	to	numbers.	Also	see	type	and	value	order.

anyArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	min	(any|null):	the	element	with	the	smallest	value.	If	the	array	is	empty	or	contains	null	values	only,	the	function	will
return	null.

MIN([5,	9,	-2,	null,	1])	//	-2

MIN([null,	null])	//	null

PERCENTILE()

	PERCENTILE(numArray,	n,	method)	→	percentile	

Return	the	nth	percentile	of	the	values	in	numArray.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
n	(number):	must	be	between	0	(excluded)	and	100	(included)
method	(string,	optional):	"rank"	(default)	or	"interpolation"

Numeric

107

returns	percentile	(number|null):	the	nth	percentile,	or	null	if	the	array	is	empty	or	only	null	values	are	contained	in	it	or	the
percentile	cannot	be	calculated

PERCENTILE([1,	2,	3,	4],	50)	//	2

PERCENTILE([1,	2,	3,	4],	50,	"rank")	//	2

PERCENTILE([1,	2,	3,	4],	50,	"interpolation")	//	2.5

PI()

	PI()	→	pi	

Return	pi.

returns	pi	(number):	the	first	few	significant	digits	of	pi	(3.141592653589793)

PI()	//	3.141592653589793

POW()
	POW(base,	exp)	→	num	

Return	the	base	to	the	exponent	exp.

base	(number):	the	base	value
exp	(number):	the	exponent	value
returns	num	(number):	the	exponentiated	value

POW(2,	4)	//	16

POW(5,	-1)	//	0.2

POW(5,	0)	//	1

RADIANS()
	RADIANS(deg)	→	num	

Return	the	angle	converted	from	degrees	to	radians.

deg	(number):	the	input	value
returns	num	(number):	the	angle	in	radians

RADIANS(180)	//	3.141592653589793

RADIANS(90)	//	1.5707963267948966

RADIANS(0)	//	0

RAND()
	RAND()	→	randomNumber	

Return	a	pseudo-random	number	between	0	and	1.

returns	randomNumber	(number):	a	number	greater	than	0	and	less	than	1

RAND()	//	0.3503170117504508

RAND()	//	0.6138226173882478

Complex	example:

LET	coinFlips	=	(

				FOR	i	IN	1..100000

				RETURN	RAND()	>	0.5	?	"heads"	:	"tails"

)

RETURN	MERGE(

				FOR	flip	IN	coinFlips

								COLLECT	f	=	flip	WITH	COUNT	INTO	count

Numeric

108

								RETURN	{	[f]:	count	}

)

Result:

[

		{

				"heads":	49902,

				"tails":	50098

		}

]

RANGE()

	RANGE(start,	stop,	step)	→	numArray	

Return	an	array	of	numbers	in	the	specified	range,	optionally	with	increments	other	than	1.

For	integer	ranges,	use	the	range	operator	instead	for	better	performance.

start	(number):	the	value	to	start	the	range	at	(inclusive)
stop	(number):	the	value	to	end	the	range	with	(inclusive)
step	(number,	optional):	how	much	to	increment	in	every	step,	the	default	is	1.0
returns	numArray	(array):	all	numbers	in	the	range	as	array

RANGE(1,	4)	//	[1,	2,	3,	4]

RANGE(1,	4,	2)	//	[1,	3]

RANGE(1,	4,	3)	//	[1,	4]

RANGE(1.5,	2.5)	//	[1.5,	2.5]

RANGE(1.5,	2.5,	0.5)	//	[1.5,	2,	2.5]

RANGE(-0.75,	1.1,	0.5)	//	[-0.75,	-0.25,	0.25,	0.75]

ROUND()
	ROUND(value)	→	roundedValue	

Return	the	integer	closest	to	value.

value	(number):	any	number
returns	roundedValue	(number):	the	value	rounded	to	the	closest	integer

ROUND(2.49)	//	2

ROUND(2.50)	//	3

ROUND(-2.50)	//	-2

ROUND(-2.51)	//	-3

Rounding	towards	zero,	also	known	as	trunc()	in	C/C++,	can	be	achieved	with	a	combination	of	the	ternary	operator,	CEIL()	and
FLOOR():

LET	rounded	=	value	>=	0	?	FLOOR(value)	:	CEIL(value)

SIN()

	SIN(value)	→	num	

Return	the	sine	of	value.

value	(number):	the	input	value
returns	num	(number):	the	sine	of	value

SIN(3.141592653589783	/	2)	//	1

SIN(0)	//	0

SIN(-3.141592653589783	/	2)	//	-1

SIN(RADIANS(270))	//	-1

Numeric

109

SQRT()

	SQRT(value)	→	squareRoot	

Return	the	square	root	of	value.

value	(number):	a	number
returns	squareRoot	(number):	the	square	root	of	value

SQRT(9)	//	3

SQRT(2)	//	1.4142135623730951

Other	roots	can	be	calculated	with	POW()	like		POW(value,	1/n)	:

//	4th	root	of	8*8*8*8	=	4096

POW(4096,	1/4)	//	8

//	cube	root	of	3*3*3	=	27

POW(27,	1/3)	//	3

//	square	root	of	3*3	=	9

POW(9,	1/2)	//	3

STDDEV_POPULATION()
	STDDEV_POPULATION(numArray)	→	num	

Return	the	population	standard	deviation	of	the	values	in	array.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	num	(number|null):	the	population	standard	deviation	of	numArray.	If	the	array	is	empty	or	only	null	values	are	contained
in	the	array,	null	will	be	returned.

STDDEV_POPULATION([1,	3,	6,	5,	2])	//	1.854723699099141

STDDEV_SAMPLE()
	STDDEV_SAMPLE(numArray)	→	num	

Return	the	sample	standard	deviation	of	the	values	in	array.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	num	(number|null):	the	sample	standard	deviation	of	numArray.	If	the	array	is	empty	or	only	null	values	are	contained	in	the
array,	null	will	be	returned.

STDDEV_SAMPLE([1,	3,	6,	5,	2])	//	2.0736441353327724

SUM()
	SUM(numArray)	→	sum	

Return	the	sum	of	the	values	in	array.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	sum	(number):	the	total	of	all	values	in	numArray.	If	the	array	is	empty	or	only	null	values	are	contained	in	the	array,	0	will
be	returned.

SUM([1,	2,	3,	4])	//	10

SUM([null,	-5,	6])	//	1

SUM([])	//	0

TAN()

Numeric

110

	TAN(value)	→	num	

Return	the	tangent	of	value.

value	(number):	the	input	value
returns	num	(number):	the	tangent	of	value

TAN(10)	//	0.6483608274590866

TAN(5)	//	-3.380515006246586

TAN(0)	//	0

VARIANCE_POPULATION()

	VARIANCE_POPULATION(numArray)	→	num	

Return	the	population	variance	of	the	values	in	array.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	num	(number|null):	the	population	variance	of	numArray.	If	the	array	is	empty	or	only	null	values	are	contained	in	the	array,
null	will	be	returned.

VARIANCE_POPULATION([1,	3,	6,	5,	2])	//	3.4400000000000004

VARIANCE_SAMPLE()

	VARIANCE_SAMPLE(array)	→	num	

Return	the	sample	variance	of	the	values	in	array.

numArray	(array):	an	array	of	numbers,	null	values	are	ignored
returns	num	(number|null):	the	sample	variance	of	numArray.	If	the	array	is	empty	or	only	null	values	are	contained	in	the	array,
null	will	be	returned.

VARIANCE_SAMPLE([1,	3,	6,	5,	2])	//	4.300000000000001

Numeric

111

Date	functions
AQL	offers	functionality	to	work	with	dates.	Dates	are	no	data	types	of	their	own	in	AQL	(neither	are	they	in	JSON,	which	is	usually
used	as	format	to	ship	data	into	and	out	of	ArangoDB).	Instead,	dates	in	AQL	are	typically	represented	by	either	numbers	(timestamps)
or	strings.

All	functions	that	require	dates	as	arguments	accept	the	following	input	values:

numeric	timestamps,	indicating	the	number	of	milliseconds	elapsed	since	the	UNIX	epoch	(i.e.	January	1st	1970	00:00:00.000
UTC).	An	example	timestamp	value	is	1399472349522,	which	translates	to	2014-05-07T14:19:09.522Z.

date	time	strings	in	formats	YYYY-MM-DDTHH:MM:SS.MMM,	YYYY-MM-DD	HH:MM:SS.MMM,	or	YYYY-MM-DD	Milliseconds
are	always	optional.	A	timezone	difference	may	optionally	be	added	at	the	end	of	the	string,	with	the	hours	and	minutes	that	need	to
be	added	or	subtracted	to	the	date	time	value.	For	example,	2014-05-07T14:19:09+01:00	can	be	used	to	specify	a	one	hour	offset,
and	2014-05-07T14:19:09+07:30	can	be	specified	for	seven	and	half	hours	offset.	Negative	offsets	are	also	possible.	Alternatively
to	an	offset,	a	Z	can	be	used	to	indicate	UTC	/	Zulu	time.

An	example	value	is	2014-05-07T14:19:09.522Z	meaning	May	7th	2014,	14:19:09	and	522	milliseconds,	UTC	/	Zulu	time.	Another
example	value	without	time	component	is	2014-05-07Z.

Please	note	that	if	no	timezone	offset	is	specified	in	a	date	string,	ArangoDB	will	assume	UTC	time	automatically.	This	is	done	to
ensure	portability	of	queries	across	servers	with	different	timezone	settings,	and	because	timestamps	will	always	be	UTC-based.

DATE_HOUR(2	*	60	*	60	*	1000)	//	2

DATE_HOUR("1970-01-01T02:00:00")	//	2

You	are	free	to	store	age	determinations	of	specimens,	incomplete	or	fuzzy	dates	and	the	like	in	different,	more	appropriate	ways	of
course.	AQL's	date	functions	will	most	certainly	not	be	of	any	help	for	such	dates,	but	you	can	still	use	language	constructs	like	SORT
(which	also	supports	sorting	of	arrays)	and	indexes	like	skiplists.

Current	date	and	time

DATE_NOW()

	DATE_NOW()	→	timestamp	

Get	the	current	date	time	as	numeric	timestamp.

returns	timestamp	(number):	the	current	time	as	a	timestamp.	The	return	value	has	millisecond	precision.	To	convert	the	return
value	to	seconds,	divide	it	by	1000.

Note	that	this	function	is	evaluated	on	every	invocation	and	may	return	different	values	when	invoked	multiple	times	in	the	same	query.
Assign	it	to	a	variable	to	use	the	exact	same	timestamp	multiple	times.

Conversion
DATE_TIMESTAMP()	and	DATE_ISO8601()	can	be	used	to	convert	ISO	8601	date	time	strings	to	numeric	timestamps	and	numeric
timestamps	to	ISO	8601	date	time	strings.

Both	also	support	individual	date	components	as	separate	function	arguments,	in	the	following	order:

year
month
day
hour
minute
second
millisecond

Date

112

All	components	following	day	are	optional	and	can	be	omitted.	Note	that	no	timezone	offsets	can	be	specified	when	using	separate	date
components,	and	UTC	/	Zulu	time	will	be	used.

The	following	calls	to	DATE_TIMESTAMP()	are	equivalent	and	will	all	return	1399472349522:

DATE_TIMESTAMP("2014-05-07T14:19:09.522")

DATE_TIMESTAMP("2014-05-07T14:19:09.522Z")

DATE_TIMESTAMP("2014-05-07	14:19:09.522")

DATE_TIMESTAMP("2014-05-07	14:19:09.522Z")

DATE_TIMESTAMP(2014,	5,	7,	14,	19,	9,	522)

DATE_TIMESTAMP(1399472349522)

The	same	is	true	for	calls	to	DATE_ISO8601()	that	also	accepts	variable	input	formats:

DATE_ISO8601("2014-05-07T14:19:09.522Z")

DATE_ISO8601("2014-05-07	14:19:09.522Z")

DATE_ISO8601(2014,	5,	7,	14,	19,	9,	522)

DATE_ISO8601(1399472349522)

The	above	functions	are	all	equivalent	and	will	return	"2014-05-07T14:19:09.522Z" .

DATE_ISO8601()
	DATE_ISO8601(date)	→	dateString	

Return	an	ISO	8601	date	time	string	from	date.	The	date	time	string	will	always	use	UTC	/	Zulu	time,	indicated	by	the	Z	at	its	end.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	dateString:	date	and	time	expressed	according	to	ISO	8601,	in	Zulu	time

	DATE_ISO8601(year,	month,	day,	hour,	minute,	second,	millisecond)	→	dateString	

Return	a	ISO	8601	date	time	string	from	date,	but	allows	to	specify	the	individual	date	components	separately.	All	parameters	after	day
are	optional.

year	(number):	typically	in	the	range	0..9999,	e.g.	2017
month	(number):	1..12	for	January	through	December	(unlike	JavaScript,	which	uses	the	slightly	confusing	range	0..11)
day	(number):	1..31	(upper	bound	depends	on	number	of	days	in	month)
hour	(number,	optional):	0..23
minute	(number,	optional):	0..59
second	(number,	optional):	0..59
milliseconds	(number,	optional):	0..999
returns	dateString:	date	and	time	expressed	according	to	ISO	8601,	in	Zulu	time

DATE_TIMESTAMP()
	DATE_TIMESTAMP(date)	→	timestamp	

Create	a	UTC	timestamp	value	from	date.	The	return	value	has	millisecond	precision.	To	convert	the	return	value	to	seconds,	divide	it	by
1000.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	timestamp	(number):	numeric	timestamp

	DATE_TIMESTAMP(year,	month,	day,	hour,	minute,	second,	millisecond)	→	timestamp	

Create	a	UTC	timestamp	value,	but	allows	to	specify	the	individual	date	components	separately.	All	parameters	after	day	are	optional.

year	(number):	typically	in	the	range	0..9999,	e.g.	2017
month	(number):	1..12	for	January	through	December	(unlike	JavaScript,	which	uses	the	slightly	confusing	range	0..11)
day	(number):	1..31	(upper	bound	depends	on	number	of	days	in	month)
hour	(number,	optional):	0..23
minute	(number,	optional):	0..59
second	(number,	optional):	0..59
milliseconds	(number,	optional):	0..999

Date

113

returns	timestamp	(number):	numeric	timestamp

Negative	values	are	not	allowed,	result	in	null	and	cause	a	warning.	Values	greater	than	the	upper	range	bound	overflow	to	the	larger
components	(e.g.	an	hour	of	26	is	automatically	turned	into	an	additional	day	and	two	hours):

DATE_TIMESTAMP(2016,	12,	-1)	//	returns	null	and	issues	a	warning

DATE_TIMESTAMP(2016,	2,	32)	//	returns	1456963200000,	which	is	March	3rd,	2016

DATE_TIMESTAMP(1970,	1,	1,	26)	//	returns	93600000,	which	is	January	2nd,	1970,	at	2	a.m.

IS_DATESTRING()

	IS_DATESTRING(value)	→	bool	

Check	if	an	arbitrary	string	is	suitable	for	interpretation	as	date	time	string.

value	(string):	an	arbitrary	string
returns	bool	(bool):	true	if	value	is	a	string	that	can	be	used	in	a	date	function.	This	includes	partial	dates	such	as	2015	or	2015-10
and	strings	containing	invalid	dates	such	as	2015-02-31.	The	function	will	return	false	for	all	non-string	values,	even	if	some	of	them
may	be	usable	in	date	functions.

Processing

DATE_DAYOFWEEK()
	DATE_DAYOFWEEK(date)	→	weekdayNumber	

Return	the	weekday	number	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	weekdayNumber	(number):	0..6	as	follows:

0	–	Sunday
1	–	Monday
2	–	Tuesday
3	–	Wednesday
4	–	Thursday
5	–	Friday
6	–	Saturday

DATE_YEAR()
	DATE_YEAR(date)	→	year	

Return	the	year	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	year	(number):	the	year	part	of	date	as	a	number

DATE_MONTH()
	DATE_MONTH(date)	→	month	

Return	the	month	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	month	(number):	the	month	part	of	date	as	a	number

DATE_DAY()

	DATE_DAY(date)	→	day	

Return	the	day	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string

Date

114

returns	day	(number):	the	day	part	of	date	as	a	number

DATE_HOUR()

Return	the	hour	of	date.

	DATE_HOUR(date)	→	hour	

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	hour	(number):	the	hour	part	of	date	as	a	number

DATE_MINUTE()
	DATE_MINUTE(date)	→	minute	

Return	the	minute	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	minute	(number):	the	minute	part	of	date	as	a	number

DATE_SECOND()
	DATE_SECOND(date)	→	second	

Return	the	second	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	second	(number):	the	seconds	part	of	date	as	a	number

DATE_MILLISECOND()

	DATE_MILLISECOND(date)	→	millisecond	

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	millisecond	(number):	the	milliseconds	part	of	date	as	a	number

DATE_DAYOFYEAR()

	DATE_DAYOFYEAR(date)	→	dayOfYear	

Return	the	day	of	year	of	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	dayOfYear	(number):	the	day	of	year	number	of	date.	The	return	values	range	from	1	to	365,	or	366	in	a	leap	year
respectively.

DATE_ISOWEEK()
	DATE_ISOWEEK(date)	→	weekDate	

Return	the	week	date	of	date	according	to	ISO	8601.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	weekDate	(number):	the	ISO	week	date	of	date.	The	return	values	range	from	1	to	53.	Monday	is	considered	the	first	day	of
the	week.	There	are	no	fractional	weeks,	thus	the	last	days	in	December	may	belong	to	the	first	week	of	the	next	year,	and	the	first
days	in	January	may	be	part	of	the	previous	year's	last	week.

DATE_LEAPYEAR()
	DATE_LEAPYEAR(date)	→	leapYear	

Return	whether	date	is	in	a	leap	year.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	leapYear	(bool):	true	if	date	is	in	a	leap	year,	false	otherwise

Date

115

DATE_QUARTER()

	DATE_QUARTER(date)	→	quarter	

Return	which	quarter	date	belongs	to.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	quarter	(number):	the	quarter	of	the	given	date	(1-based):

1	–	January,	February,	March
2	–	April,	May,	June
3	–	July,	August,	September
4	–	October,	November,	December

DATE_DAYS_IN_MONTH()

Return	the	number	of	days	in	the	month	of	date.

	DATE_DAYS_IN_MONTH(date)	→	daysInMonth	

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
returns	daysInMonth	(number):	the	number	of	days	in	date's	month	(28..31)

DATE_FORMAT()

	DATE_FORMAT(date,	format)	→	str	

Format	a	date	according	to	the	given	format	string.

date	(string|number):	a	date	string	or	timestamp
format	(string):	a	format	string,	see	below
returns	str	(string):	a	formatted	date	string

format	supports	the	following	placeholders	(case-insensitive):

%t	–	timestamp,	in	milliseconds	since	midnight	1970-01-01
%z	–	ISO	date	(0000-00-00T00:00:00.000Z)
%w	–	day	of	week	(0..6)
%y	–	year	(0..9999)
%yy	–	year	(00..99),	abbreviated	(last	two	digits)
%yyyy	–	year	(0000..9999),	padded	to	length	of	4
%yyyyyy	–	year	(-009999	..	+009999),	with	sign	prefix	and	padded	to	length	of	6
%m	–	month	(1..12)
%mm	–	month	(01..12),	padded	to	length	of	2
%d	–	day	(1..31)
%dd	–	day	(01..31),	padded	to	length	of	2
%h	–	hour	(0..23)
%hh	–	hour	(00..23),	padded	to	length	of	2
%i	–	minute	(0..59)
%ii	–	minute	(00..59),	padded	to	length	of	2
%s	–	second	(0..59)
%ss	–	second	(00..59),	padded	to	length	of	2
%f	–	millisecond	(0..999)
%fff	–	millisecond	(000..999),	padded	to	length	of	3
%x	–	day	of	year	(1..366)
%xxx	–	day	of	year	(001..366),	padded	to	length	of	3
%k	–	ISO	week	date	(1..53)
%kk	–	ISO	week	date	(01..53),	padded	to	length	of	2
%l	–	leap	year	(0	or	1)
%q	–	quarter	(1..4)
%a	–	days	in	month	(28..31)
%mmm	–	abbreviated	English	name	of	month	(Jan..Dec)

Date

116

%mmmm	–	English	name	of	month	(January..December)
%www	–	abbreviated	English	name	of	weekday	(Sun..Sat)
%wwww	–	English	name	of	weekday	(Sunday..Saturday)
%&	–	special	escape	sequence	for	rare	occasions
%%	–	literal	%
%	–	ignored

	%yyyy		does	not	enforce	a	length	of	4	for	years	before	0	and	past	9999.	The	same	format	as	for		%yyyyyy		will	be	used	instead.		%yy	
preserves	the	sign	for	negative	years	and	may	thus	return	3	characters	in	total.

Single		%		characters	will	be	ignored.	Use		%%		for	a	literal		%	.	To	resolve	ambiguities	like	in		%mmonth		(unpadded	month	number	+	the
string	"month")	between		%mm		+	"onth"	and		%m		+	"month",	use	the	escape	sequence		%&	:		%m%&month	.

Note	that	DATE_FORMAT()	is	a	rather	costly	operation	and	may	not	be	suitable	for	large	datasets	(like	over	1	million	dates).	If	possible,
avoid	formatting	dates	on	server-side	and	leave	it	up	to	the	client	to	do	so.	This	function	should	only	be	used	for	special	date
comparisons	or	to	store	the	formatted	dates	in	the	database.	For	better	performance,	use	the	primitive		DATE_*()		functions	together	with
	CONCAT()		if	possible.

Examples:

DATE_FORMAT(DATE_NOW(),	"%q/%yyyy")	//	quarter	and	year	(e.g.	"3/2015")

DATE_FORMAT(DATE_NOW(),	"%dd.%mm.%yyyy	%hh:%ii:%ss,%fff")	//	e.g.	"18.09.2015	15:30:49,374"

DATE_FORMAT("1969",	"Summer	of	'%yy")	//	"Summer	of	'69"

DATE_FORMAT("2016",	"%%l	=	%l")	//	"%l	=	1"	(2016	is	a	leap	year)

DATE_FORMAT("2016-03-01",	"%xxx%")	//	"063",	trailing	%	ignored

Comparison	and	calculation

DATE_ADD()

	DATE_ADD(date,	amount,	unit)	→	isoDate	

Add	amount	given	in	unit	to	date	and	return	the	calculated	date.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
amount	(number|string):	number	of	units	to	add	(positive	value)	or	subtract	(negative	value).	It	is	recommended	to	use	positive
values	only,	and	use	DATE_SUBTRACT()	for	subtractions	instead.
unit	(string):	either	of	the	following	to	specify	the	time	unit	to	add	or	subtract	(case-insensitive):

y,	year,	years
m,	month,	months
w,	week,	weeks
d,	day,	days
h,	hour,	hours
i,	minute,	minutes
s,	second,	seconds
f,	millisecond,	milliseconds

returns	isoDate	(string):	the	calculated	ISO	8601	date	time	string

DATE_ADD(DATE_NOW(),	-1,	"day")	//	yesterday;	also	see	DATE_SUBTRACT()

DATE_ADD(DATE_NOW(),	3,	"months")	//	in	three	months

DATE_ADD(DATE_ADD("2015-04-01",	5,	"years"),	1,	"month")	//	May	1st	2020

DATE_ADD("2015-04-01",	12*5	+	1,	"months")	//	also	May	1st	2020

DATE_ADD(DATE_TIMESTAMP(DATE_YEAR(DATE_NOW()),	12,	24),	-4,	"years")	//	Christmas	four	years	ago

DATE_ADD(DATE_ADD("2016-02",	"month",	1),	-1,	"day")	//	last	day	of	February	(29th,	because	2016	is	a	leap	year!)

	DATE_ADD(date,	isoDuration)	→	isoDate	

You	may	also	pass	an	ISO	duration	string	as	amount	and	leave	out	unit.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
isoDuration	(string):	an	ISO	8601	duration	string	to	add	to	date,	see	below
returns	isoDate	(string):	the	calculated	ISO	8601	date	time	string

Date

117

The	format	is		P_Y_M_W_DT_H_M_._S	,	where	underscores	stand	for	digits	and	letters	for	time	intervals	-	except	for	the	separators		P	
(period)	and		T		(time).	The	meaning	of	the	other	letters	are:

Y	–	years
M	–	months	(if	before	T)
W	–	weeks
D	–	days
H	–	hours
M	–	minutes	(if	after	T)
S	–	seconds	(optionally	with	3	decimal	places	for	milliseconds)

The	string	must	be	prefixed	by	a		P	.	A	separating		T		is	only	required	if		H	,		M		and/or		S		are	specified.	You	only	need	to	specify	the
needed	pairs	of	letters	and	numbers.

DATE_ADD(DATE_NOW(),	"P1Y")	//	add	1	year

DATE_ADD(DATE_NOW(),	"P3M2W")	//	add	3	months	and	2	weeks

DATE_ADD(DATE_NOW(),	"P5DT26H")	//	add	5	days	and	26	hours	(=6	days	and	2	hours)

DATE_ADD("2000-01-01",	"PT4H")	//	add	4	hours

DATE_ADD("2000-01-01",	"PT30M44.4S"	//	add	30	minutes,	44	seconds	and	400	ms

DATE_ADD("2000-01-01",	"P1Y2M3W4DT5H6M7.89S"	//	add	a	bit	of	everything

DATE_SUBTRACT()
	DATE_SUBTRACT(date,	amount,	unit)	→	isoDate	

Subtract	amount	given	in	unit	from	date	and	return	the	calculated	date.

It	works	the	same	as	DATE_ADD(),	except	that	it	subtracts.	It	is	equivalent	to	calling	DATE_ADD()	with	a	negative	amount,	except	that
DATE_SUBTRACT()	can	also	subtract	ISO	durations.	Note	that	negative	ISO	durations	are	not	supported	(i.e.	starting	with		-P	,	like		-
P1Y).

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
amount	(number|string):	number	of	units	to	subtract	(positive	value)	or	add	(negative	value).	It	is	recommended	to	use	positive
values	only,	and	use	DATE_ADD()	for	additions	instead.
unit	(string):	either	of	the	following	to	specify	the	time	unit	to	add	or	subtract	(case-insensitive):

y,	year,	years
m,	month,	months
w,	week,	weeks
d,	day,	days
h,	hour,	hours
i,	minute,	minutes
s,	second,	seconds
f,	millisecond,	milliseconds

returns	isoDate	(string):	the	calculated	ISO	8601	date	time	string

	DATE_SUBTRACT(date,	isoDuration)	→	isoDate	

You	may	also	pass	an	ISO	duration	string	as	amount	and	leave	out	unit.

date	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
isoDuration	(string):	an	ISO	8601	duration	string	to	subtract	from	date,	see	below
returns	isoDate	(string):	the	calculated	ISO	8601	date	time	string

The	format	is		P_Y_M_W_DT_H_M_._S	,	where	underscores	stand	for	digits	and	letters	for	time	intervals	-	except	for	the	separators		P	
(period)	and		T		(time).	The	meaning	of	the	other	letters	are:

Y	–	years
M	–	months	(if	before	T)
W	–	weeks
D	–	days
H	–	hours
M	–	minutes	(if	after	T)
S	–	seconds	(optionally	with	3	decimal	places	for	milliseconds)

Date

118

The	string	must	be	prefixed	by	a		P	.	A	separating		T		is	only	required	if		H	,		M		and/or		S		are	specified.	You	only	need	to	specify	the
needed	pairs	of	letters	and	numbers.

DATE_SUBTRACT(DATE_NOW(),	1,	"day")	//	yesterday

DATE_SUBTRACT(DATE_TIMESTAMP(DATE_YEAR(DATE_NOW()),	12,	24),	4,	"years")	//	Christmas	four	years	ago

DATE_SUBTRACT(DATE_ADD("2016-02",	"month",	1),	1,	"day")	//	last	day	of	February	(29th,	because	2016	is	a	leap	year!)

DATE_SUBTRACT(DATE_NOW(),	"P4D")	//	four	days	ago

DATE_SUBTRACT(DATE_NOW(),	"PT1H3M")	//	1	hour	and	30	minutes	ago

DATE_DIFF()

	DATE_DIFF(date1,	date2,	unit,	asFloat)	→	diff	

Calculate	the	difference	between	two	dates	in	given	time	unit,	optionally	with	decimal	places.

date1	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
date2	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
unit	(string):	either	of	the	following	to	specify	the	time	unit	to	return	the	difference	in	(case-insensitive):

y,	year,	years
m,	month,	months
w,	week,	weeks
d,	day,	days
h,	hour,	hours
i,	minute,	minutes
s,	second,	seconds
f,	millisecond,	milliseconds

asFloat	(boolean,	optional):	if	set	to	true,	decimal	places	will	be	preserved	in	the	result.	The	default	is	false	and	an	integer	is
returned.
returns	diff	(number):	the	calculated	difference	as	number	in	unit.	The	value	will	be	negative	if	date2	is	before	date1.

DATE_COMPARE()
	DATE_COMPARE(date1,	date2,	unitRangeStart,	unitRangeEnd)	→	bool	

Check	if	two	partial	dates	match.

date1	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
date2	(number|string):	numeric	timestamp	or	ISO	8601	date	time	string
unitRangeStart	(string):	unit	to	start	from,	see	below
unitRangeEnd	(string,	optional):	unit	to	end	with,	leave	out	to	only	compare	the	component	as	specified	by	unitRangeStart.	An
error	is	raised	if	unitRangeEnd	is	a	unit	before	unitRangeStart.
returns	bool	(bool):	true	if	the	dates	match,	false	otherwise

The	parts	to	compare	are	defined	by	a	range	of	time	units.	The	full	range	is:	years,	months,	days,	hours,	minutes,	seconds,	milliseconds
(in	this	order).

All	components	of	date1	and	date2	as	specified	by	the	range	will	be	compared.	You	can	refer	to	the	units	as:

y,	year,	years
m,	month,	months
d,	day,	days
h,	hour,	hours
i,	minute,	minutes
s,	second,	seconds
f,	millisecond,	milliseconds

//	Compare	months	and	days,	true	on	birthdays	if	you're	born	on	4th	of	April

DATE_COMPARE("1985-04-04",	DATE_NOW(),	"months",	"days")

//	Will	only	match	on	one	day	if	the	current	year	is	a	leap	year!

//	You	may	want	to	add	or	subtract	one	day	from	date1	to	match	every	year.

DATE_COMPARE("1984-02-29",	DATE_NOW(),	"months",	days")

Date

119

//	compare	years,	months	and	days	(true,	because	it's	the	same	day)

DATE_COMPARE("2001-01-01T15:30:45.678Z",	"2001-01-01T08:08:08.008Z",	"years",	"days")

You	can	directly	compare	ISO	date	strings	if	you	want	to	find	dates	before	or	after	a	certain	date,	or	in	between	two	dates	(>=	,		>	,
	<	,		<=).	No	special	date	function	is	required.	Equality	tests	(==		and		!=)	will	only	match	the	exact	same	date	and	time	however.	You
may	use		SUBSTRING()		to	compare	partial	date	strings,		DATE_COMPARE()		is	basically	a	convenience	function	for	that.	However,	neither	is
really	required	to	limit	a	search	to	a	certain	day	as	demonstrated	here:

FOR	doc	IN	coll

				FILTER	doc.date	>=	"2015-05-15"	AND	doc.date	<	"2015-05-16"

				RETURN	doc

Every	ISO	date	on	that	day	is	greater	than	or	equal	to		2015-05-15		in	a	string	comparison	(e.g.		2015-05-15T11:30:00.000Z).	Dates	before
	2015-05-15		are	smaller	and	therefore	filtered	out	by	the	first	condition.	Every	date	past		2015-05-15		is	greater	than	this	date	in	a	string
comparison,	and	therefore	filtered	out	by	the	second	condition.	The	result	is	that	the	time	components	in	the	dates	you	compare	with	are
"ignored".	The	query	will	return	every	document	with	date	ranging	from		2015-05-15T00:00:00.000Z		to		2015-05-15T23:99:99.999Z	.	It
would	also	include		2015-05-15T24:00:00.000Z	,	but	that	date	is	actually		2015-05-16T00:00:00.000Z		and	can	only	occur	if	inserted
manually	(you	may	want	to	pass	dates	through	DATE_ISO8601()	to	ensure	a	correct	date	representation).

Leap	days	in	leap	years	(29th	of	February)	must	be	always	handled	manually,	if	you	require	so	(e.g.	birthday	checks):

LET	today	=	DATE_NOW()

LET	noLeapYear	=	NOT	DATE_LEAPYEAR(today)

FOR	user	IN	users

				LET	birthday	=	noLeapYear	AND

																			DATE_MONTH(user.birthday)	==	2	AND

																			DATE_DAY(user.birthday)	==	29

																			?	DATE_SUBTRACT(user.birthday,	1,	"day")	/*	treat	like	28th	in	non-leap	years	*/

																			:	user.birthday

				FILTER	DATE_COMPARE(today,	birthday,	"month",	"day")

				/*	includes	leaplings	on	the	28th	of	February	in	non-leap	years,

					*	but	excludes	them	in	leap	years	which	do	have	a	29th	February.

					*	Replace	DATE_SUBTRACT()	by	DATE_ADD()	to	include	them	on	the	1st	of	March

					*	in	non-leap	years	instead	(depends	on	local	jurisdiction).

					*/

				RETURN	user

Working	with	dates	and	indices
There	are	two	recommended	ways	to	store	timestamps	in	ArangoDB:

as	string	with	ISO	8601	UTC	timestamp
as	Epoch	number

The	sort	order	of	both	is	identical	due	to	the	sort	properties	of	ISO	date	strings.	You	can't	mix	both	types,	numbers	and	strings,	in	a
single	attribute	however.

You	can	use	skiplist	indices	with	both	date	types.	When	chosing	string	representations,	you	can	work	with	string	comparisons	(less	than,
greater	than	etc.)	to	express	time	ranges	in	your	queries	while	still	utilizing	skiplist	indices:

arangosh>	db._create("exampleTime");

arangosh>	var	timestamps	=	["2014-05-07T14:19:09.522","2014-05-07T21:19:09.522","2014-05-

08T04:19:09.522","2014-05-08T11:19:09.522","2014-05-08T18:19:09.522"];

arangosh>	for	(i	=	0;	i	<	5;	i++)	db.exampleTime.save({value:i,	ts:	timestamps[i]})

arangosh>	db._query("FOR	d	IN	exampleTime	FILTER	d.ts	>	'2014-05-07T14:19:09.522'	and	d.ts	

<	'2014-05-08T18:19:09.522'	RETURN	d").toArray()

show	execution	results
The	first	and	the	last	timestamp	in	the	array	are	excluded	from	the	result	by	the		FILTER	.

Date

120

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/Epoch_%28reference_date%29

Limitations

Note	that	dates	before	the	year	1583	aren't	allowed	by	the	ISO	8601	standard	by	default,	because	they	lie	before	the	official	introduction
of	the	Gregorian	calendar	and	may	thus	be	incorrect	or	invalid.	All	AQL	date	functions	apply	the	same	rules	to	every	date	according	to
the	Gregorian	calendar	system,	even	if	inappropriate.	That	does	not	constitute	a	problem,	unless	you	deal	with	dates	prior	to	1583	and
especially	years	before	Christ.	The	standard	allows	negative	years,	but	requires	special	treatment	of	positive	years	too,	if	negative	years
are	used	(e.g.		+002015-05-15		and		-000753-01-01).	This	is	rarely	used	however,	and	AQL	does	not	use	the	7-character	version	for	years
between	0	and	9999	in	ISO	strings.	Keep	in	mind	that	they	can't	be	properly	compared	to	dates	outside	that	range.	Sorting	of	negative
dates	does	not	result	in	a	meaningful	order,	with	years	longer	ago	last,	but	months,	days	and	the	time	components	in	otherwise	correct
order.

Leap	seconds	are	ignored,	just	as	they	are	in	JavaScript	as	per	ECMAScript	Language	Specifications.

Date

121

https://en.wikipedia.org/wiki/ISO_8601
http://www.ecma-international.org/ecma-262/5.1/#sec-15.9.1.1

Array	functions
AQL	provides	functions	for	higher-level	array	manipulation.	Also	see	the	numeric	functions	for	functions	that	work	on	number	arrays.	If
you	want	to	concatenate	the	elements	of	an	array	equivalent	to		join()		in	JavaScript,	see	CONCAT()	and	CONCAT_SEPARATOR()
in	the	string	functions	chapter.

Apart	from	that,	AQL	also	offers	several	language	constructs:

simple	array	access	of	individual	elements,
array	operators	for	array	expansion	and	contraction,	optionally	with	inline	filter,	limit	and	projection,
array	comparison	operators	to	compare	each	element	in	an	array	to	a	value	or	the	elements	of	another	array,
loop-based	operations	using	FOR,	SORT,	LIMIT,	as	well	as	COLLECT	for	grouping,	which	also	offers	efficient	aggregation.

APPEND()
	APPEND(anyArray,	values,	unique)	→	newArray	

Add	all	elements	of	an	array	to	another	array.	All	values	are	added	at	the	end	of	the	array	(right	side).

anyArray	(array):	array	with	elements	of	arbitrary	type
values	(array):	array,	whose	elements	shall	be	added	to	anyArray
unique	(bool,	optional):	if	set	to	true,	only	those	values	will	be	added	that	are	not	already	contained	in	anyArray.	The	default	is
false.
returns	newArray	(array):	the	modified	array

APPEND([1,	2,	3],	[5,	6,	9])

//	[1,	2,	3,	5,	6,	9]

APPEND([1,	2,	3],	[3,	4,	5,	2,	9],	true)

//	[1,	2,	3,	4,	5,	9]

COUNT()

This	is	an	alias	for	LENGTH().

FIRST()
	FIRST(anyArray)	→	firstElement	

Get	the	first	element	of	an	array.	It	is	the	same	as		anyArray[0]	.

anyArray	(array):	array	with	elements	of	arbitrary	type
returns	firstElement	(any|null):	the	first	element	of	anyArray,	or	null	if	the	array	is	empty.

FLATTEN()
	FLATTEN(anyArray,	depth)	→	flatArray	

Turn	an	array	of	arrays	into	a	flat	array.	All	array	elements	in	array	will	be	expanded	in	the	result	array.	Non-array	elements	are	added	as
they	are.	The	function	will	recurse	into	sub-arrays	up	to	the	specified	depth.	Duplicates	will	not	be	removed.

array	(array):	array	with	elements	of	arbitrary	type,	including	nested	arrays
depth	(number,	optional):	flatten	up	to	this	many	levels,	the	default	is	1
returns	flatArray	(array):	a	flattened	array

FLATTEN([1,	2,	[3,	4],	5,	[6,	7],	[8,	[9,	10]]])

//	[1,	2,	3,	4,	5,	6,	7,	8,	[9,	10]]

To	fully	flatten	the	example	array,	use	a	depth	of	2:

FLATTEN([1,	2,	[3,	4],	5,	[6,	7],	[8,	[9,	10]]],	2)

Array

122

//	[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

INTERSECTION()
	INTERSECTION(array1,	array2,	...	arrayN)	→	newArray	

Return	the	intersection	of	all	arrays	specified.	The	result	is	an	array	of	values	that	occur	in	all	arguments.

arrays	(array,	repeatable):	an	arbitrary	number	of	arrays	as	multiple	arguments	(at	least	2)
returns	newArray	(array):	a	single	array	with	only	the	elements,	which	exist	in	all	provided	arrays.	The	element	order	is	random.
Duplicates	are	removed.

LAST()
	LAST(anyArray)	→	lastElement	

Get	the	last	element	of	an	array.	It	is	the	same	as		anyArray[-1]	.

anyArray	(array):	array	with	elements	of	arbitrary	type
returns	lastElement	(any|null):	the	last	element	of	anyArray	or	null	if	the	array	is	empty.

LENGTH()

	LENGTH(anyArray)	→	length	

Determine	the	number	of	elements	in	an	array.

anyArray	(array):	array	with	elements	of	arbitrary	type
returns	length	(number):	the	number	of	array	elements	in	anyArray.

LENGTH()	can	also	determine	the	number	of	attribute	keys	of	an	object	/	document,	the	amount	of	documents	in	a	collection	and	the
character	length	of	a	string.

input length

String number	of	unicode	characters

Number number	of	unicode	characters	that	represent	the	number

Array number	of	elements

Object number	of	first	level	elements

true 1

false 0

null 0

MINUS()

	MINUS(array1,	array2,	...	arrayN)	→	newArray	

Return	the	difference	of	all	arrays	specified.

arrays	(array,	repeatable):	an	arbitrary	number	of	arrays	as	multiple	arguments	(at	least	2)
returns	newArray	(array):	an	array	of	values	that	occur	in	the	first	array,	but	not	in	any	of	the	subsequent	arrays.	The	order	of	the
result	array	is	undefined	and	should	not	be	relied	on.	Duplicates	will	be	removed.

NTH()

	NTH(anyArray,	position)	→	nthElement	

Get	the	element	of	an	array	at	a	given	position.	It	is	the	same	as		anyArray[position]		for	positive	positions,	but	does	not	support
negative	positions.

anyArray	(array):	array	with	elements	of	arbitrary	type

Array

123

position	(number):	position	of	desired	element	in	array,	positions	start	at	0
returns	nthElement	(any|null):	the	array	element	at	the	given	position.	If	position	is	negative	or	beyond	the	upper	bound	of	the
array,	then	null	will	be	returned.

NTH(["foo",	"bar",	"baz"],	2)		//	"baz"

NTH(["foo",	"bar",	"baz"],	3)		//	null

NTH(["foo",	"bar",	"baz"],	-1)	//	null

OUTERSECTION()

	OUTERSECTION(array1,	array2,	...	arrayN)	→	newArray	

Return	the	values	that	occur	only	once	across	all	arrays	specified.

arrays	(array,	repeatable):	an	arbitrary	number	of	arrays	as	multiple	arguments	(at	least	2)
returns	newArray	(array):	a	single	array	with	only	the	elements	that	exist	only	once	across	all	provided	arrays.	The	element	order	is
random.

OUTERSECTION([1,	2,	3],	[2,	3,	4],	[3,	4,	5])

//	[1,	5]

POP()
	POP(anyArray)	→	newArray	

Remove	the	element	at	the	end	(right	side)	of	array.

anyArray	(array):	an	array	with	elements	of	arbitrary	type
returns	newArray	(array):	anyArray	without	the	last	element.	If	it's	already	empty	or	has	only	a	single	element	left,	an	empty	array
is	returned.

POP([1,	2,	3,	4])	//	[1,	2,	3]

POP([1])	//	[]

POSITION()
	POSITION(anyArray,	search,	returnIndex)	→	position	

Return	whether	search	is	contained	in	array.	Optionally	return	the	position.

anyArray	(array):	the	haystack,	an	array	with	elements	of	arbitrary	type
search	(any):	the	needle,	an	element	of	arbitrary	type
returnIndex	(bool,	optional):	if	set	to	true,	the	position	of	the	match	is	returned	instead	of	a	boolean.	The	default	is	false.
returns	position	(bool|number):	true	if	search	is	contained	in	anyArray,	false	otherwise.	If	returnIndex	is	enabled,	the	position	of	the
match	is	returned	(positions	start	at	0),	or	-1	if	it's	not	found.

To	determine	if	or	at	which	position	a	string	occurs	in	another	string,	see	the	CONTAINS()	string	function.

PUSH()

	PUSH(anyArray,	value,	unique)	→	newArray	

Append	value	to	the	array	specified	by	anyArray.

anyArray	(array):	array	with	elements	of	arbitrary	type
value	(any):	an	element	of	arbitrary	type
unique	(bool):	if	set	to	true,	then	value	is	not	added	if	already	present	in	the	array.	The	default	is	false.
returns	newArray	(array):	anyArray	with	value	added	at	the	end	(right	side)

Note:	The	unique	flag	only	controls	if	value	is	added	if	it's	already	present	in	anyArray.	Duplicate	elements	that	already	exist	in	anyArray
will	not	be	removed.	To	make	an	array	unique,	use	the	UNIQUE()	function.

PUSH([1,	2,	3],	4)

Array

124

//	[1,	2,	3,	4]

PUSH([1,	2,	2,	3],	2,	true)

//	[1,	2,	2,	3]

REMOVE_NTH()
	REMOVE_NTH(anyArray,	position)	→	newArray	

Remove	the	element	at	position	from	the	anyArray.

anyArray	(array):	array	with	elements	of	arbitrary	type
position	(number):	the	position	of	the	element	to	remove.	Positions	start	at	0.	Negative	positions	are	supported,	with	-1	being	the
last	array	element.	If	position	is	out	of	bounds,	the	array	is	returned	unmodified.
returns	newArray	(array):	anyArray	without	the	element	at	position

REMOVE_NTH(["a",	"b",	"c",	"d",	"e"],	1)

//	["a",	"c",	"d",	"e"]

REMOVE_NTH(["a",	"b",	"c",	"d",	"e"],	-2)

//	["a",	"b",	"c",	"e"]

REMOVE_VALUE()
	REMOVE_VALUE(anyArray,	value,	limit)	→	newArray	

Remove	all	occurrences	of	value	in	anyArray.	Optionally	with	a	limit	to	the	number	of	removals.

anyArray	(array):	array	with	elements	of	arbitrary	type
value	(any):	an	element	of	arbitrary	type
limit	(number,	optional):	cap	the	number	of	removals	to	this	value
returns	newArray	(array):	anyArray	with	value	removed

REMOVE_VALUE(["a",	"b",	"b",	"a",	"c"],	"a")

//	["b",	"b",	"c"]

REMOVE_VALUE(["a",	"b",	"b",	"a",	"c"],	"a",	1)

//	["b",	"b",	"a",	"c"]

REMOVE_VALUES()
	REMOVE_VALUES(anyArray,	values)	→	newArray	

Remove	all	occurrences	of	any	of	the	values	from	anyArray.

anyArray	(array):	array	with	elements	of	arbitrary	type
values	(array):	an	array	with	elements	of	arbitrary	type,	that	shall	be	removed	from	anyArray
returns	newArray	(array):	anyArray	with	all	individual	values	removed

REMOVE_VALUES(["a",	"a",	"b",	"c",	"d",	"e",	"f"],	["a",	"f",	"d"])

//	["b",	"c",	"e"]

REVERSE()

	REVERSE(anyArray)	→	reversedArray	

Return	an	array	with	its	elements	reversed.

anyArray	(array):	array	with	elements	of	arbitrary	type
returns	reversedArray	(array):	a	new	array	with	all	elements	of	anyArray	in	reversed	order

SHIFT()

	SHIFT(anyArray)	→	newArray	

Array

125

Remove	the	element	at	the	start	(left	side)	of	anyArray.

anyArray	(array):	array	with	elements	with	arbitrary	type
returns	newArray	(array):	anyArray	without	the	left-most	element.	If	anyArray	is	already	empty	or	has	only	one	element	left,	an
empty	array	is	returned.

SHIFT([1,	2,	3,	4])	//	[2,	3,	4]

SHIFT([1])	//	[]

SLICE()

	SLICE(anyArray,	start,	length)	→	newArray	

Extract	a	slice	of	anyArray.

anyArray	(array):	array	with	elements	of	arbitrary	type
start	(number):	start	extraction	at	this	element.	Positions	start	at	0.	Negative	values	indicate	positions	from	the	end	of	the	array.
length	(number,	optional):	extract	up	to	length	elements,	or	all	elements	from	start	up	to	length	if	negative	(exclusive)
returns	newArray	(array):	the	specified	slice	of	anyArray.	If	length	is	not	specified,	all	array	elements	starting	at	start	will	be
returned.

SLICE([1,	2,	3,	4,	5],	0,	1)	//	[1]

SLICE([1,	2,	3,	4,	5],	1,	2)	//	[2,	3]

SLICE([1,	2,	3,	4,	5],	3)	//	[4,	5]

SLICE([1,	2,	3,	4,	5],	1,	-1)	//	[2,	3,	4]

SLICE([1,	2,	3,	4,	5],	0,	-2)	//	[1,	2,	3]

SLICE([1,	2,	3,	4,	5],	-3,	2)	//	[3,	4]

UNION()

	UNION(array1,	array2,	...	arrayN)	→	newArray	

Return	the	union	of	all	arrays	specified.

arrays	(array,	repeatable):	an	arbitrary	number	of	arrays	as	multiple	arguments	(at	least	2)
returns	newArray	(array):	all	array	elements	combined	in	a	single	array,	in	any	order

UNION(

				[1,	2,	3],

				[1,	2]

)

//	[1,	2,	3,	1,	2]

Note:	No	duplicates	will	be	removed.	In	order	to	remove	duplicates,	please	use	either	UNION_DISTINCT()	or	apply	UNIQUE()	on	the
result	of	UNION():

UNIQUE(

				UNION(

								[1,	2,	3],

								[1,	2]

)

)

//	[1,	2,	3]

UNION_DISTINCT()
	UNION_DISTINCT(array1,	array2,	...	arrayN)	→	newArray	

Return	the	union	of	distinct	values	of	all	arrays	specified.

arrays	(array,	repeatable):	an	arbitrary	number	of	arrays	as	multiple	arguments	(at	least	2)
returns	newArray	(array):	the	elements	of	all	given	arrays	in	a	single	array,	without	duplicates,	in	any	order

UNION_DISTINCT(

Array

126

				[1,	2,	3],

				[1,	2]

)

//	[1,	2,	3]

UNIQUE()
	UNIQUE(anyArray)	→	newArray	

Return	all	unique	elements	in	anyArray.	To	determine	uniqueness,	the	function	will	use	the	comparison	order.

anyArray	(array):	array	with	elements	of	arbitrary	type
returns	newArray	(array):	anyArray	without	duplicates,	in	any	order

UNSHIFT()
	UNSHIFT(anyArray,	value,	unique)	→	newArray	

Prepend	value	to	anyArray.

anyArray	(array):	array	with	elements	of	arbitrary	type
value	(any):	an	element	of	arbitrary	type
unique	(bool):	if	set	to	true,	then	value	is	not	added	if	already	present	in	the	array.	The	default	is	false.
returns	newArray	(array):	anyArray	with	value	added	at	the	start	(left	side)

Note:	The	unique	flag	only	controls	if	value	is	added	if	it's	already	present	in	anyArray.	Duplicate	elements	that	already	exist	in	anyArray
will	not	be	removed.	To	make	an	array	unique,	use	the	UNIQUE()	function.

UNSHIFT([1,	2,	3],	4)	//	[4,	1,	2,	3]

UNSHIFT([1,	2,	3],	2,	true)	//	[1,	2,	3]

Array

127

Document	functions
AQL	provides	below	listed	functions	to	operate	on	objects	/	document	values.	Also	see	object	access	for	additional	language	constructs.

ATTRIBUTES()

	ATTRIBUTES(document,	removeInternal,	sort)	→	strArray	

Return	the	attribute	keys	of	the	document	as	an	array.	Optionally	omit	system	attributes.

document	(object):	an	arbitrary	document	/	object
removeInternal	(bool,	optional):	whether	all	system	attributes	(_key,	_id	etc.,	every	attribute	key	that	starts	with	an	underscore)
shall	be	omitted	in	the	result.	The	default	is	false.
sort	(bool,	optional):	optionally	sort	the	resulting	array	alphabetically.	The	default	is	false	and	will	return	the	attribute	names	in	any
order.
returns	strArray	(array):	the	attribute	keys	of	the	input	document	as	an	array	of	strings

ATTRIBUTES({	"foo":	"bar",	"_key":	"123",	"_custom":	"yes"	})

//	["foo",	"_key",	"_custom"]

ATTRIBUTES({	"foo":	"bar",	"_key":	"123",	"_custom":	"yes"	},	true)

//	["foo"]

ATTRIBUTES({	"foo":	"bar",	"_key":	"123",	"_custom":	"yes"	},	false,	true)

//	["_custom",	"_key",	"foo"]

Complex	example	to	count	how	often	every	attribute	key	occurs	in	the	documents	of	collection	(expensive	on	large	collections):

LET	attributesPerDocument	=	(

				FOR	doc	IN	collection	RETURN	ATTRIBUTES(doc,	true)

)

FOR	attributeArray	IN	attributesPerDocument

				FOR	attribute	IN	attributeArray

								COLLECT	attr	=	attribute	WITH	COUNT	INTO	count

								SORT	count	DESC

								RETURN	{attr,	count}

COUNT()

This	is	an	alias	for	LENGTH().

HAS()
	HAS(document,	attributeName)	→	isPresent	

Test	whether	an	attribute	is	present	in	the	provided	document.

document	(object):	an	arbitrary	document	/	object
attributeName	(string):	the	attribute	key	to	test	for
returns	isPresent	(bool):	true	if	document	has	an	attribute	named	attributeName,	and	false	otherwise.	An	attribute	with	a	falsy	value
(0,	false,	empty	string	"")	or	null	is	also	considered	as	present	and	returns	true.

HAS({	name:	"Jane"	},	"name")	//	true

HAS({	name:	"Jane"	},	"age")	//	false

HAS({	name:	null	},	"name")	//	true

Note	that	the	function	checks	if	the	specified	attribute	exists.	This	is	different	from	similar	ways	to	test	for	the	existance	of	an	attribute,
in	case	the	attribute	has	a	falsy	value	or	is	not	present	(implicitly	null	on	object	access):

!!{	name:	""	}.name								//	false

HAS({	name:	""	},	"name")	//	true

Object	/	Document

128

{	name:	null	}.name	==	null			//	true

{	}.name	==	null														//	true

HAS({	name:	null	},	"name")	//	true

HAS({	},	"name")												//	false

Note	that		HAS()		can	not	utilize	indexes.	If	it's	not	necessary	to	distinguish	between	explicit	and	implicit	null	values	in	your	query,	you
may	use	an	equality	comparison	to	test	for	null	and	create	a	non-sparse	index	on	the	attribute	you	want	to	test	against:

FILTER	!HAS(doc,	"name")				//	can	not	use	indexes

FILTER	IS_NULL(doc,	"name")	//	can	not	use	indexes

FILTER	doc.name	==	null					//	can	utilize	non-sparse	indexes

IS_SAME_COLLECTION()

	IS_SAME_COLLECTION(collectionName,	documentHandle)	→	bool	

collection	id	as	the	collection	specified	in	collection.	document	can	either	be	a	document	handle	string,	or	a	document	with	an	_id	attribute.
The	function	does	not	validate	whether	the	collection	actually	contains	the	specified	document,	but	only	compares	the	name	of	the
specified	collection	with	the	collection	name	part	of	the	specified	document.	If	document	is	neither	an	object	with	an	id	attribute	nor	a
string	value,	the	function	will	return	null	and	raise	a	warning.

collectionName	(string):	the	name	of	a	collection	as	string
documentHandle	(string|object):	a	document	identifier	string	(e.g.	_users/1234)	or	a	regular	document	from	a	collection.	Passing
either	a	non-string	or	a	non-document	or	a	document	without	an	_id	attribute	will	result	in	an	error.
returns	bool	(bool):	return	true	if	the	collection	of	documentHandle	is	the	same	as	collectionName,	otherwise	false

//	true

IS_SAME_COLLECTION("_users",	"_users/my-user")

IS_SAME_COLLECTION("_users",	{	_id:	"_users/my-user"	})

//	false

IS_SAME_COLLECTION("_users",	"foobar/baz")

IS_SAME_COLLECTION("_users",	{	_id:	"something/else"	})

KEEP()

	KEEP(document,	attributeName1,	attributeName2,	...	attributeNameN)	→	doc	

Keep	only	the	attributes	attributeName	to	attributeNameN	of	document.	All	other	attributes	will	be	removed	from	the	result.

document	(object):	a	document	/	object
attributeNames	(string,	repeatable):	an	arbitrary	number	of	attribute	names	as	multiple	arguments
returns	doc	(object):	a	document	with	only	the	specified	attributes	on	the	top-level

KEEP(doc,	"firstname",	"name",	"likes")

	KEEP(document,	attributeNameArray)	→	doc	

document	(object):	a	document	/	object
attributeNameArray	(array):	an	array	of	attribute	names	as	strings
returns	doc	(object):	a	document	with	only	the	specified	attributes	on	the	top-level

KEEP(doc,	["firstname",	"name",	"likes"])

LENGTH()

	LENGTH(doc)	→	attrCount	

Determine	the	number	of	attribute	keys	of	an	object	/	document.

doc	(object):	a	document	/	object
returns	attrCount	(number):	the	number	of	attribute	keys	in	doc,	regardless	of	their	values

Object	/	Document

129

LENGTH()	can	also	determine	the	number	of	elements	in	an	array,	the	amount	of	documents	in	a	collection	and	the	character	length	of	a
string.

MATCHES()

	MATCHES(document,	examples,	returnIndex)	→	match	

Compare	the	given	document	against	each	example	document	provided.	The	comparisons	will	be	started	with	the	first	example.	All
attributes	of	the	example	will	be	compared	against	the	attributes	of	document.	If	all	attributes	match,	the	comparison	stops	and	the	result
is	returned.	If	there	is	a	mismatch,	the	function	will	continue	the	comparison	with	the	next	example	until	there	are	no	more	examples	left.

The	examples	can	be	an	array	of	1..n	example	documents	or	a	single	document,	with	any	number	of	attributes	each.

Note	that	MATCHES()	can	not	utilize	indexes.

document	(object):	document	to	determine	whether	it	matches	any	example
examples	(object|array):	a	single	document,	or	an	array	of	documents	to	compare	against.	Specifying	an	empty	array	is	not	allowed.
returnIndex	(bool):	by	setting	this	flag	to	true,	the	index	of	the	example	that	matched	will	be	returned	(starting	at	offset	0),	or	-1	if
there	was	no	match.	The	default	is	false	and	makes	the	function	return	a	boolean.
returns	match	(bool|number):	if	document	matches	one	of	the	examples,	true	is	returned,	otherwise	false.	A	number	is	returned
instead	if	returnIndex	is	used.

LET	doc	=	{

				name:	"jane",

				age:	27,

				active:	true

}

RETURN	MATCHES(doc,	{	age:	27,	active:	true	})

This	will	return	true,	because	all	attributes	of	the	example	are	present	in	the	document.

RETURN	MATCHES(

				{	"test":	1	},

				[

								{	"test":	1,	"foo":	"bar"	},

								{	"foo":	1	},

								{	"test":	1	}

],	true)

This	will	return	2,	because	the	third	example	matches,	and	because	the	returnIndex	flag	is	set	to	true.

MERGE()

	MERGE(document1,	document2,	...	documentN)	→	mergedDocument	

Merge	the	documents	document1	to	documentN	into	a	single	document.	If	document	attribute	keys	are	ambiguous,	the	merged	result	will
contain	the	values	of	the	documents	contained	later	in	the	argument	list.

documents	(object,	repeatable):	an	arbitrary	number	of	documents	as	multiple	arguments	(at	least	2)
returns	mergedDocument	(object):	a	combined	document

Note	that	merging	will	only	be	done	for	top-level	attributes.	If	you	wish	to	merge	sub-attributes,	use	MERGE_RECURSIVE()	instead.

Two	documents	with	distinct	attribute	names	can	easily	be	merged	into	one:

MERGE(

				{	"user1":	{	"name":	"Jane"	}	},

				{	"user2":	{	"name":	"Tom"	}	}

)

//	{	"user1":	{	"name":	"Jane"	},	"user2":	{	"name":	"Tom"	}	}

When	merging	documents	with	identical	attribute	names,	the	attribute	values	of	the	latter	documents	will	be	used	in	the	end	result:

MERGE(

				{	"users":	{	"name":	"Jane"	}	},

Object	/	Document

130

				{	"users":	{	"name":	"Tom"	}	}

)

//	{	"users":	{	"name":	"Tom"	}	}

	MERGE(docArray)	→	mergedDocument	

MERGE	works	with	a	single	array	parameter,	too.	This	variant	allows	combining	the	attributes	of	multiple	objects	in	an	array	into	a
single	object.

docArray	(array):	an	array	of	documents,	as	sole	argument
returns	mergedDocument	(object):	a	combined	document

MERGE(

				[

								{	foo:	"bar"	},

								{	quux:	"quetzalcoatl",	ruled:	true	},

								{	bar:	"baz",	foo:	"done"	}

]

)

This	will	now	return:

{

				"foo":	"done",

				"quux":	"quetzalcoatl",

				"ruled":	true,

				"bar":	"baz"

}

MERGE_RECURSIVE()

	MERGE_RECURSIVE(document1,	document2,	...	documentN)	→	mergedDocument	

Recursively	merge	the	documents	document1	to	documentN	into	a	single	document.	If	document	attribute	keys	are	ambiguous,	the	merged
result	will	contain	the	values	of	the	documents	contained	later	in	the	argument	list.

documents	(object,	repeatable):	an	arbitrary	number	of	documents	as	multiple	arguments	(at	least	2)
returns	mergedDocument	(object):	a	combined	document

For	example,	two	documents	with	distinct	attribute	names	can	easily	be	merged	into	one:

MERGE_RECURSIVE(

				{	"user-1":	{	"name":	"Jane",	"livesIn":	{	"city":	"LA"	}	}	},

				{	"user-1":	{	"age":	42,	"livesIn":	{	"state":	"CA"	}	}	}

)

//	{	"user-1":	{	"name":	"Jane",	"livesIn":	{	"city":	"LA",	"state":	"CA"	},	"age":	42	}	}

MERGE_RECURSIVE()	does	not	support	the	single	array	parameter	variant	that	MERGE	offers.

PARSE_IDENTIFIER()
	PARSE_IDENTIFIER(documentHandle)	→	parts	

Parse	a	document	handle	and	return	its	individual	parts	a	separate	attributes.

This	function	can	be	used	to	easily	determine	the	collection	name	and	key	of	a	given	document.

documentHandle	(string|object):	a	document	identifier	string	(e.g.	_users/1234)	or	a	regular	document	from	a	collection.	Passing
either	a	non-string	or	a	non-document	or	a	document	without	an	_id	attribute	will	result	in	an	error.
returns	parts	(object):	an	object	with	the	attributes	collection	and	key

PARSE_IDENTIFIER("_users/my-user")

//	{	"collection":	"_users",	"key":	"my-user"	}

PARSE_IDENTIFIER({	"_id":	"mycollection/mykey",	"value":	"some	value"	})

//	{	"collection":	"mycollection",	"key":	"mykey"	}

Object	/	Document

131

TRANSLATE()

	TRANSLATE(value,	lookupDocument,	defaultValue)	→	mappedValue	

Look	up	the	specified	value	in	the	lookupDocument.	If	value	is	a	key	in	lookupDocument,	then	value	will	be	replaced	with	the	lookup
value	found.	If	value	is	not	present	in	lookupDocument,	then	defaultValue	will	be	returned	if	specified.	If	no	defaultValue	is	specified,
value	will	be	returned	unchanged.

value	(string):	the	value	to	encode	according	to	the	mapping
lookupDocument	(object):	a	key/value	mapping	as	document
defaultValue	(any,	optional):	a	fallback	value	in	case	value	is	not	found
returns	mappedValue	(any):	the	encoded	value,	or	the	unaltered	value	or	defaultValue	(if	supplied)	in	case	it	couldn't	be	mapped

TRANSLATE("FR",	{	US:	"United	States",	UK:	"United	Kingdom",	FR:	"France"	})

//	"France"

TRANSLATE(42,	{	foo:	"bar",	bar:	"baz"	})

//	42

TRANSLATE(42,	{	foo:	"bar",	bar:	"baz"	},	"not	found!")

//	"not	found!"

UNSET()

	UNSET(document,	attributeName1,	attributeName2,	...	attributeNameN)	→	doc	

Remove	the	attributes	attributeName1	to	attributeNameN	from	document.	All	other	attributes	will	be	preserved.

document	(object):	a	document	/	object
attributeNames	(string,	repeatable):	an	arbitrary	number	of	attribute	names	as	multiple	arguments	(at	least	1)
returns	doc	(object):	document	without	the	specified	attributes	on	the	top-level

UNSET(doc,	"_id",	"_key",	"foo",	"bar")

	UNSET(document,	attributeNameArray)	→	doc	

document	(object):	a	document	/	object
attributeNameArray	(array):	an	array	of	attribute	names	as	strings
returns	doc	(object):	document	without	the	specified	attributes	on	the	top-level

UNSET(doc,	["_id",	"_key",	"foo",	"bar"])

UNSET_RECURSIVE()

	UNSET_RECURSIVE(document,	attributeName1,	attributeName2,	...	attributeNameN)	→	doc	

Recursively	remove	the	attributes	attributeName1	to	attributeNameN	from	document	and	its	sub-documents.	All	other	attributes	will	be
preserved.

document	(object):	a	document	/	object
attributeNames	(string,	repeatable):	an	arbitrary	number	of	attribute	names	as	multiple	arguments	(at	least	1)
returns	doc	(object):	document	without	the	specified	attributes	on	all	levels	(top-level	as	well	as	nested	objects)

UNSET_RECURSIVE(doc,	"_id",	"_key",	"foo",	"bar")

	UNSET_RECURSIVE(document,	attributeNameArray)	→	doc	

document	(object):	a	document	/	object
attributeNameArray	(array):	an	array	of	attribute	names	as	strings
returns	doc	(object):	document	without	the	specified	attributes	on	all	levels	(top-level	as	well	as	nested	objects)

UNSET_RECURSIVE(doc,	["_id",	"_key",	"foo",	"bar"])

Object	/	Document

132

VALUES()

	VALUES(document,	removeInternal)	→	anyArray	

Return	the	attribute	values	of	the	document	as	an	array.	Optionally	omit	system	attributes.

document	(object):	a	document	/	object
removeInternal	(bool,	optional):	if	set	to	true,	then	all	internal	attributes	(such	as	_id,	_key	etc.)	are	removed	from	the	result
returns	anyArray	(array):	the	values	of	document	returned	in	any	order

VALUES({	"_key":	"users/jane",	"name":	"Jane",	"age":	35	})

//	["Jane",	35,	"users/jane"]

VALUES({	"_key":	"users/jane",	"name":	"Jane",	"age":	35	},	true)

//	["Jane",	35]

ZIP()

	ZIP(keys,	values)	→	doc	

Return	a	document	object	assembled	from	the	separate	parameters	keys	and	values.

keys	and	values	must	be	arrays	and	have	the	same	length.

keys	(array):	an	array	of	strings,	to	be	used	as	attribute	names	in	the	result
values	(array):	an	array	with	elements	of	arbitrary	types,	to	be	used	as	attribute	values
returns	doc	(object):	a	document	with	the	keys	and	values	assembled

ZIP(["name",	"active",	"hobbies"],	["some	user",	true,	["swimming",	"riding"]])

//	{	"name":	"some	user",	"active":	true,	"hobbies":	["swimming",	"riding"]	}

Object	/	Document

133

Geo	functions

Geo	index	functions

AQL	offers	the	following	functions	to	filter	data	based	on	geo	indexes.	These	functions	require	the	collection	to	have	at	least	one	geo
index.	If	no	geo	index	can	be	found,	calling	this	function	will	fail	with	an	error	at	runtime.	There	is	no	error	when	explaining	the	query
however.

NEAR()

	NEAR(coll,	latitude,	longitude,	limit,	distanceName)	→	docArray	

Return	at	most	limit	documents	from	collection	coll	that	are	near	latitude	and	longitude.	The	result	contains	at	most	limit	documents,
returned	sorted	by	distance,	with	closest	distances	being	returned	first.	If	more	than	limit	documents	qualify,	with	the	distance	being
exactly	the	same	among	multiple	documents	around	the	limit,	it	is	undefined	which	of	the	qualifying	documents	are	returned.	Optionally,
the	distances	in	meters	between	the	specified	coordinate	(latitude	and	longitude)	and	the	document	coordinates	can	be	returned	as	well.	To
make	use	of	that,	the	desired	attribute	name	for	the	distance	result	has	to	be	specified	in	the	distanceName	argument.	The	result
documents	will	contain	the	distance	value	in	an	attribute	of	that	name.

coll	(collection):	a	collection
latitude	(number):	the	latitude	portion	of	the	search	coordinate
longitude	(number):	the	longitude	portion	of	the	search	coordinate
limit	(number,	optional):	cap	the	result	to	at	most	this	number	of	documents.	The	default	is	100.	If	more	documents	than	limit	are
found,	it	is	undefined	which	ones	will	be	returned.
distanceName	(string,	optional):	include	the	distance	to	the	search	coordinate	in	each	document	in	the	result	(in	meters),	using	the
attribute	name	distanceName
returns	docArray	(array):	an	array	of	documents,	sorted	by	distance	(shortest	distance	first)

WITHIN()

	WITHIN(coll,	latitude,	longitude,	radius,	distanceName)	→	docArray	

Return	all	documents	from	collection	coll	that	are	within	a	radius	of	radius	around	the	specified	coordinate	(latitude	and	longitude).	The
documents	returned	are	sorted	by	distance	to	the	search	coordinate,	with	the	closest	distances	being	returned	first.	Optionally,	the
distance	in	meters	between	the	search	coordinate	and	the	document	coordinates	can	be	returned	as	well.	To	make	use	of	that,	an	attribute
name	for	the	distance	result	has	to	be	specified	in	the	distanceName	argument.	The	result	documents	will	contain	the	distance	value	in	an
attribute	of	that	name.

coll	(collection):	a	collection
latitude	(number):	the	latitude	portion	of	the	search	coordinate
longitude	(number):	the	longitude	portion	of	the	search	coordinate
radius	(number):	radius	in	meters
distanceName	(string,	optional):	include	the	distance	to	the	search	coordinate	in	each	document	in	the	result	(in	meters),	using	the
attribute	name	distanceName
returns	docArray	(array):	an	array	of	documents,	sorted	by	distance	(shortest	distance	first)

WITHIN_RECTANGLE()
	WITHIN_RECTANGLE(coll,	latitude1,	longitude1,	latitude2,	longitude2)	→	docArray	

Return	all	documents	from	collection	coll	that	are	positioned	inside	the	bounding	rectangle	with	the	points	(latitude1,	longitude1)	and
(latitude2,	longitude2).	There	is	no	guaranteed	order	in	which	the	documents	are	returned.

coll	(collection):	a	collection
latitude1	(number):	the	bottom-left	latitude	portion	of	the	search	coordinate
longitude1	(number):	the	bottom-left	longitude	portion	of	the	search	coordinate
latitude2	(number):	the	top-right	latitude	portion	of	the	search	coordinate
longitude2	(number):	the	top-right	longitude	portion	of	the	search	coordinate

Geo

134

returns	docArray	(array):	an	array	of	documents,	in	random	order

Geo	utility	functions

The	following	helper	functions	do	not	use	any	geo	index.	On	large	datasets,	it	is	advisable	to	use	them	in	combination	with	index-
accelerated	geo	functions	to	limit	the	number	of	calls	to	these	non-accelerated	functions	because	of	their	computational	costs.

DISTANCE()

	DISTANCE(latitude1,	longitude1,	latitude2,	longitude2)	→	distance	

Calculate	the	distance	between	two	arbitrary	coordinates	in	meters	(as	birds	would	fly).	The	value	is	computed	using	the	haversine
formula,	which	is	based	on	a	spherical	Earth	model.	It's	fast	to	compute	and	is	accurate	to	around	0.3%,	which	is	sufficient	for	most	use
cases	such	as	location-aware	services.

latitude1	(number):	the	latitude	portion	of	the	first	coordinate
longitude1	(number):	the	longitude	portion	of	the	first	coordinate
latitude2	(number):	the	latitude	portion	of	the	second	coordinate
longitude2	(number):	the	longitude	portion	of	the	second	coordinate
returns	distance	(number):	the	distance	between	both	coordinates	in	meters

//	Distance	between	Brandenburg	Gate	(Berlin)	and	ArangoDB	headquarters	(Cologne)

DISTANCE(52.5163,	13.3777,	50.9322,	6.94)	//	476918.89688380965	(~477km)

//	Sort	a	small	number	of	documents	based	on	distance	to	Central	Park	(New	York)

FOR	doc	IN	documentSubset	//	e.g.	documents	returned	by	a	traversal

		SORT	DISTANCE(doc.latitude,	doc.longitude,	40.78,	-73.97)

		RETURN	doc

IS_IN_POLYGON()

Determine	whether	a	coordinate	is	inside	a	polygon.

	IS_IN_POLYGON(polygon,	latitude,	longitude)	→	bool	

polygon	(array):	an	array	of	arrays	with	2	elements	each,	representing	the	points	of	the	polygon	in	the	format	[lat,	lon]
latitude	(number):	the	latitude	portion	of	the	search	coordinate
longitude	(number):	the	longitude	portion	of	the	search	coordinate
returns	bool	(bool):	true	if	the	point	(latitude,	longitude)	is	inside	the	polygon	or	false	if	it's	not.	The	result	is	undefined	(can	be	true
or	false)	if	the	specified	point	is	exactly	on	a	boundary	of	the	polygon.

//	will	check	if	the	point	(lat	4,	lon	7)	is	contained	inside	the	polygon

IS_IN_POLYGON([[0,	0],	[0,	10],	[10,	10],	[10,	0]],	4,	7)

	IS_IN_POLYGON(polygon,	coord,	useLonLat)	→	bool	

The	2nd	parameter	can	alternatively	be	specified	as	an	array	with	two	values.

By	default,	each	array	element	in	polygon	is	expected	to	be	in	the	format	[lat,	lon].	This	can	be	changed	by	setting	the	3rd	parameter	to
true	to	interpret	the	points	as	[lon,	lat].	coord	will	then	also	be	interpreted	in	the	same	way.

polygon	(array):	an	array	of	arrays	with	2	elements	each,	representing	the	points	of	the	polygon
coord	(array):	the	search	coordinate	as	a	number	array	with	two	elements
useLonLat	(bool,	optional):	if	set	to	true,	the	coordinates	in	polygon	and	the	search	coordinate	coord	will	be	interpreted	as	[lon,	lat]
(GeoJSON).	The	default	is	false	and	the	format	[lat,	lon]	is	expected.
returns	bool	(bool):	true	if	the	point	coord	is	inside	the	polygon	or	false	if	it's	not.	The	result	is	undefined	(can	be	true	or	false)	if	the
specified	point	is	exactly	on	a	boundary	of	the	polygon.

//	will	check	if	the	point	(lat	4,	lon	7)	is	contained	inside	the	polygon

IS_IN_POLYGON([[0,	0],	[0,	10],	[10,	10],	[10,	0]],	[4,	7])

//	will	check	if	the	point	(lat	4,	lon	7)	is	contained	inside	the	polygon

IS_IN_POLYGON([[0,	0],	[10,	0],	[10,	10],	[0,	10]],	[7,	4],	true)

Geo

135

Geo

136

Fulltext	functions
AQL	offers	the	following	functions	to	filter	data	based	on	fulltext	indexes.

Currently,	fulltext	indexes	are	not	yet	supported	with	the	RocksDB	storage	engine.	Thus	the	function		FULLTEXT()		will	be	unavailable
when	using	this	storage	engine.	To	use	fulltext	indexes,	please	use	the	MMFiles	storage	engine	for	the	time	being.

FULLTEXT()

	FULLTEXT(coll,	attribute,	query,	limit)	→	docArray	

Return	all	documents	from	collection	coll,	for	which	the	attribute	attribute	matches	the	fulltext	search	phrase	query,	optionally	capped	to
limit	results.

Note:	the	FULLTEXT()	function	requires	the	collection	coll	to	have	a	fulltext	index	on	attribute.	If	no	fulltext	index	is	available,	this
function	will	fail	with	an	error	at	runtime.	It	doesn't	fail	when	explaining	the	query	however.

coll	(collection):	a	collection
attribute	(string):	the	attribute	name	of	the	attribute	to	search	in
query	(string):	a	fulltext	search	expression	as	described	below
limit	(number,	optional):	if	set	to	a	non-zero	value,	it	will	cap	the	result	to	at	most	this	number	of	documents
returns	docArray	(array):	an	array	of	documents

FULLTEXT()	is	not	meant	to	be	used	as	an	argument	to	FILTER,	but	rather	to	be	used	as	the	expression	of	a	FOR	statement:

FOR	oneMail	IN	FULLTEXT(emails,	"body",	"banana,-apple")

				RETURN	oneMail._id

query	is	a	comma-separated	list	of	sought	words	(or	prefixes	of	sought	words).	To	distinguish	between	prefix	searches	and	complete-
match	searches,	each	word	can	optionally	be	prefixed	with	either	the	prefix:	or	complete:	qualifier.	Different	qualifiers	can	be	mixed	in	the
same	query.	Not	specifying	a	qualifier	for	a	search	word	will	implicitly	execute	a	complete-match	search	for	the	given	word:

FULLTEXT(emails,	"body",	"banana")	Will	look	for	the	word	banana	in	the	attribute	body	of	the	collection	collection.

FULLTEXT(emails,	"body",	"banana,orange")	Will	look	for	both	words	banana	and	orange	in	the	mentioned	attribute.	Only	those
documents	will	be	returned	that	contain	both	words.

FULLTEXT(emails,	"body",	"prefix:head")	Will	look	for	documents	that	contain	any	words	starting	with	the	prefix	head.

FULLTEXT(emails,	"body",	"prefix:head,complete:aspirin")	Will	look	for	all	documents	that	contain	a	word	starting	with	the	prefix
head	and	that	also	contain	the	(complete)	word	aspirin.	Note:	specifying	complete	is	optional	here.

FULLTEXT(emails,	"body",	"prefix:cent,prefix:subst")	Will	look	for	all	documents	that	contain	a	word	starting	with	the	prefix	cent
and	that	also	contain	a	word	starting	with	the	prefix	subst.

If	multiple	search	words	(or	prefixes)	are	given,	then	by	default	the	results	will	be	AND-combined,	meaning	only	the	logical	intersection
of	all	searches	will	be	returned.	It	is	also	possible	to	combine	partial	results	with	a	logical	OR,	and	with	a	logical	NOT:

FULLTEXT(emails,	"body",	"+this,+text,+document")	Will	return	all	documents	that	contain	all	the	mentioned	words.	Note:
specifying	the	+	symbols	is	optional	here.

FULLTEXT(emails,	"body",	"banana,|apple")	Will	return	all	documents	that	contain	either	(or	both)	words	banana	or	apple.

FULLTEXT(emails,	"body",	"banana,-apple")	Will	return	all	documents	that	contain	the	word	banana,	but	do	not	contain	the	word
apple.

FULLTEXT(emails,	"body",	"banana,pear,-cranberry")	Will	return	all	documents	that	contain	both	the	words	banana	and	pear,
but	do	not	contain	the	word	cranberry.

No	precedence	of	logical	operators	will	be	honored	in	a	fulltext	query.	The	query	will	simply	be	evaluated	from	left	to	right.

Fulltext

137

Fulltext

138

Miscellaneous	functions

Control	flow	functions

NOT_NULL()
	NOT_NULL(alternative,	...)	→	value	

Return	the	first	element	that	is	not	null,	and	null	if	all	alternatives	are	null	themselves.	It	is	also	known	as		COALESCE()		in	SQL.

alternative	(any,	repeatable):	input	of	arbitrary	type
returns	value	(any):	first	non-null	parameter,	or	null	if	all	arguments	are	null

FIRST_LIST()

Return	the	first	alternative	that	is	an	array,	and	null	if	none	of	the	alternatives	is	an	array.

alternative	(any,	repeatable):	input	of	arbitrary	type
returns	list	(list|null):	array	/	list	or	null

FIRST_DOCUMENT()

	FIRST_DOCUMENT(value)	→	doc	

Return	the	first	alternative	that	is	a	document,	and	null	if	none	of	the	alternatives	is	a	document.

alternative	(any,	repeatable):	input	of	arbitrary	type
returns	doc	(object|null):	document	/	object	or	null

Ternary	operator

For	conditional	evaluation,	check	out	the	ternary	operator.

Database	functions

COLLECTION_COUNT()
	COLLECTION_COUNT(coll)	→	count	

Determine	the	amount	of	documents	in	a	collection.	LENGTH()	is	preferred.

COLLECTIONS()

	COLLECTIONS()	→	docArray	

Return	an	array	of	collections.

returns	docArray	(array):	each	collection	as	a	document	with	attributes	name	and	_id	in	an	array

COUNT()

This	is	an	alias	for	LENGTH().

CURRENT_USER()
	CURRENT_USER()	→	userName	

Return	the	name	of	the	current	user.

Miscellaneous

139

The	current	user	is	the	user	account	name	that	was	specified	in	the	Authorization	HTTP	header	of	the	request.	It	will	only	be	populated
if	authentication	on	the	server	is	turned	on,	and	if	the	query	was	executed	inside	a	request	context.	Otherwise,	the	return	value	of	this
function	will	be	null.

returns	userName	(string|null):	the	current	user	name,	or	null	if	authentication	is	disabled

DOCUMENT()

	DOCUMENT(collection,	id)	→	doc	

Return	the	document	which	is	uniquely	identified	by	its	id.	ArangoDB	will	try	to	find	the	document	using	the	_id	value	of	the	document
in	the	specified	collection.

If	there	is	a	mismatch	between	the	collection	passed	and	the	collection	specified	in	id,	then	null	will	be	returned.	Additionally,	if	the
collection	matches	the	collection	value	specified	in	id	but	the	document	cannot	be	found,	null	will	be	returned.

This	function	also	allows	id	to	be	an	array	of	ids.	In	this	case,	the	function	will	return	an	array	of	all	documents	that	could	be	found.

It	is	also	possible	to	specify	a	document	key	instead	of	an	id,	or	an	array	of	keys	to	return	all	documents	that	can	be	found.

collection	(string):	name	of	a	collection
id	(string|array):	a	document	handle	string	(consisting	of	collection	name	and	document	key),	a	document	key,	or	an	array	of	both
document	handle	strings	and	document	keys
returns	doc	(document|array|null):	the	content	of	the	found	document,	an	array	of	all	found	documents	or	null	if	nothing	was	found

DOCUMENT(users,	"users/john")

DOCUMENT(users,	"john")

DOCUMENT(users,	["users/john",	"users/amy"])

DOCUMENT(users,	["john",	"amy"])

	DOCUMENT(id)	→	doc	

The	function	can	also	be	used	with	a	single	parameter	id	as	follows:

id	(string|array):	either	a	document	handle	string	(consisting	of	collection	name	and	document	key)	or	an	array	of	document	handle
strings
returns	doc	(document|null):	the	content	of	the	found	document	or	null	if	nothing	was	found

DOCUMENT("users/john")

DOCUMENT(["users/john",	"users/amy"])

Please	also	consider	to	use		DOCUMENT		in	conjunction	with		WITH	

LENGTH()
	LENGTH(coll)	→	documentCount	

Determine	the	amount	of	documents	in	a	collection.

It	calls	COLLECTION_COUNT()	internally.

coll	(collection):	a	collection	(not	string)
returns	documentCount	(number):	the	total	amount	of	documents	in	coll

LENGTH()	can	also	determine	the	number	of	elements	in	an	array,	the	number	of	attribute	keys	of	an	object	/	document	and	the	character
length	of	a	string.

Hash	functions
	HASH(value)	→	hashNumber	

Calculate	a	hash	value	for	value.

value	(any):	an	element	of	arbitrary	type

Miscellaneous

140

returns	hashNumber	(number):	a	hash	value	of	value

value	is	not	required	to	be	a	string,	but	can	have	any	data	type.	The	calculated	hash	value	will	take	the	data	type	of	value	into	account,	so
for	example	the	number	1	and	the	string	"1" 	will	have	different	hash	values.	For	arrays	the	hash	values	will	be	creared	if	the	arrays
contain	exactly	the	same	values	(including	value	types)	in	the	same	order.	For	objects	the	same	hash	values	will	be	created	if	the	objects
have	exactly	the	same	attribute	names	and	values	(including	value	types).	The	order	in	which	attributes	appear	inside	objects	is	not
important	for	hashing.

The	hash	value	returned	by	this	function	is	a	number.	The	hash	algorithm	is	not	guaranteed	to	remain	the	same	in	future	versions	of
ArangoDB.	The	hash	values	should	therefore	be	used	only	for	temporary	calculations,	e.g.	to	compare	if	two	documents	are	the	same,	or
for	grouping	values	in	queries.

Function	calling

APPLY()

	APPLY(functionName,	arguments)	→	retVal	

Dynamically	call	the	function	funcName	with	the	arguments	specified.	Arguments	are	given	as	array	and	are	passed	as	separate
parameters	to	the	called	function.

Both	built-in	and	user-defined	functions	can	be	called.

funcName	(string):	a	function	name
arguments	(array,	optional):	an	array	with	elements	of	arbitrary	type
returns	retVal	(any):	the	return	value	of	the	called	function

APPLY("SUBSTRING",	["this	is	a	test",	0,	7])

//	"this	is"

CALL()
	CALL(funcName,	arg1,	arg2,	...	argN)	→	retVal	

Dynamically	call	the	function	funcName	with	the	arguments	specified.	Arguments	are	given	as	multiple	parameters	and	passed	as
separate	parameters	to	the	called	function.

Both	built-in	and	user-defined	functions	can	be	called.

funcName	(string):	a	function	name
args	(any,	repeatable):	an	arbitrary	number	of	elements	as	multiple	arguments,	can	be	omitted
returns	retVal	(any):	the	return	value	of	the	called	function

CALL("SUBSTRING",	"this	is	a	test",	0,	4)

//	"this"

Internal	functions

The	following	functions	are	used	during	development	of	ArangoDB	as	a	database	system,	primarily	for	unit	testing.	They	are	not
intended	to	be	used	by	end	users,	especially	not	in	production	environments.

FAIL()

	FAIL(reason)	

Let	a	query	fail	on	purpose.	Can	be	used	in	a	conditional	branch,	or	to	verify	if	lazy	evaluation	/	short	circuiting	is	used	for	instance.

reason	(string):	an	error	message
returns	nothing,	because	the	query	is	aborted

RETURN	1	==	1	?	"okay"	:	FAIL("error")	//	"okay"

Miscellaneous

141

RETURN	1	==	1	||	FAIL("error")	?	true	:	false	//	true

RETURN	1	==	2	&&	FAIL("error")	?	true	:	false	//	false

RETURN	1	==	1	&&	FAIL("error")	?	true	:	false	//	aborted	with	error

NOOPT()
	NOOPT(expression)	→	retVal	

No-operation	that	prevents	query	compile-time	optimizations.	Constant	expressions	can	be	forced	to	be	evaluated	at	runtime	with	this.

If	there	is	a	C++	implementation	as	well	as	a	JavaScript	implementation	of	an	AQL	function,	then	it	will	enforce	the	use	of	the	C++
version.

expression	(any):	arbitray	expression
returns	retVal	(any):	the	return	value	of	the	expression

//	differences	in	execution	plan	(explain)

FOR	i	IN	1..3	RETURN	(1	+	1)						//	const	assignment

FOR	i	IN	1..3	RETURN	NOOPT(1	+	1)	//	simple	expression

NOOPT(RAND())	//	C++	implementation

V8(RAND())				//	JavaScript	implementation

PASSTHRU()

	PASSTHRU(value)	→	retVal	

This	function	is	marked	as	non-deterministic	so	its	argument	withstands	query	optimization.

value	(any):	a	value	of	arbitrary	type
returns	retVal	(any):	value,	without	optimizations

SLEEP()

	SLEEP(seconds)	→	null	

Wait	for	a	certain	amount	of	time	before	continuing	the	query.

seconds	(number):	amount	of	time	to	wait
returns	a	null	value

SLEEP(1)				//	wait	1	second

SLEEP(0.02)	//	wait	20	milliseconds

V8()
	V8(expression)	→	retVal	

No-operation	that	enforces	the	usage	of	the	V8	JavaScript	engine.	If	there	is	a	JavaScript	implementation	of	an	AQL	function,	for	which
there	is	also	a	C++	implementation,	the	JavaScript	version	will	be	used.

expression	(any):	arbitray	expression
returns	retVal	(any):	the	return	value	of	the	expression

//	differences	in	execution	plan	(explain)

FOR	i	IN	1..3	RETURN	(1	+	1)										//	const	assignment

FOR	i	IN	1..3	RETURN	V8(1	+	1)								//	const	assignment

FOR	i	IN	1..3	RETURN	NOOPT(V8(1	+	1))	//	v8	expression

Miscellaneous

142

Graphs	in	AQL
There	are	multiple	ways	to	work	with	graphs	in	ArangoDB,	as	well	as	different	ways	to	query	your	graphs	using	AQL.

The	two	options	in	managing	graphs	are	to	either	use

named	graphs	where	ArangoDB	manages	the	collections	involved	in	one	graph,	or
graph	functions	on	a	combination	of	document	and	edge	collections.

Named	graphs	can	be	defined	through	the	graph-module	or	via	the	web	interface.	The	definition	contains	the	name	of	the	graph,	and	the
vertex	and	edge	collections	involved.	Since	the	management	functions	are	layered	on	top	of	simple	sets	of	document	and	edge	collections,
you	can	also	use	regular	AQL	functions	to	work	with	them.

Both	variants	(named	graphs	and	loosely	coupled	collection	sets	a.k.a.	anonymous	graphs)	are	supported	by	the	AQL	language
constructs	for	graph	querying.	These	constructs	make	full	use	of	optimizations	and	therefore	best	performance	is	to	be	expected:

AQL	Traversals	to	follow	edges	connected	to	a	start	vertex,	up	to	a	variable	depth.	It	can	be	combined	with	AQL	filter	conditions.

AQL	Shortest	Path	to	find	the	vertices	and	edges	between	two	given	vertices,	with	as	few	hops	as	possible.

These	types	of	queries	are	only	useful	if	you	use	edge	collections	and/or	graphs	in	your	data	model.

New	to	graphs?	Take	our	free	graph	course	for	freshers	and	get	from	zero	knowledge	to	advanced	query	techniques.

Graphs

143

https://www.arangodb.com/arangodb-graph-course/

Traversals	explained

General	query	idea

A	traversal	starts	at	one	specific	document	(startVertex)	and	follows	all	edges	connected	to	this	document.	For	all	documents	(vertices)
that	are	targeted	by	these	edges	it	will	again	follow	all	edges	connected	to	them	and	so	on.	It	is	possible	to	define	how	many	of	these
follow	iterations	should	be	executed	at	least	(min	depth)	and	at	most	(max	depth).

For	all	vertices	that	were	visited	during	this	process	in	the	range	between	min	depth	and	max	depth	iterations	you	will	get	a	result	in	form
of	a	set	with	three	items:

1.	 The	visited	vertex.
2.	 The	edge	pointing	to	it.
3.	 The	complete	path	from	startVertex	to	the	visited	vertex	as	object	with	an	attribute	edges	and	an	attribute	vertices,	each	a	list	of	the

coresponding	elements.	These	lists	are	sorted,	which	means	the	first	element	in	vertices	is	the	startVertex	and	the	last	is	the	visited
vertex,	and	the	n-th	element	in	edges	connects	the	n-th	element	with	the	(n+1)-th	element	in	vertices.

Example	execution

Let's	take	a	look	at	a	simple	example	to	explain	how	it	works.	This	is	the	graph	that	we	are	going	to	traverse:

We	use	the	following	parameters	for	our	query:

1.	 We	start	at	the	vertex	A.
2.	 We	use	a	min	depth	of	1.
3.	 We	use	a	max	depth	of	2.
4.	 We	follow	only	in	OUTBOUND	direction	of	edges

Traversals	explained

144

Now	it	walks	to	one	of	the	direct	neighbors	of	A,	say	B	(note:	ordering	is	not	guaranteed!):

Traversals	explained

145

The	query	will	remember	the	state	(red	circle)	and	will	emit	the	first	result	A	→	B	(black	box).	This	will	also	prevent	the	traverser	to	be
trapped	in	cycles.	Now	again	it	will	visit	one	of	the	direct	neighbors	of	B,	say	E:

We	have	limited	the	query	with	a	max	depth	of	2,	so	it	will	not	pick	any	neighbor	of	E,	as	the	path	from	A	to	E	already	requires	2	steps.
Instead,	we	will	go	back	one	level	to	B	and	continue	with	any	other	direct	neighbor	there:

Traversals	explained

146

Again	after	we	produced	this	result	we	will	step	back	to	B.	But	there	is	no	neighbor	of	B	left	that	we	have	not	yet	visited.	Hence	we	go
another	step	back	to	A	and	continue	with	any	other	neighbor	there.

Traversals	explained

147

And	identical	to	the	iterations	before	we	will	visit	H:

And	J:

Traversals	explained

148

After	these	steps	there	is	no	further	result	left.	So	all	together	this	query	has	returned	the	following	paths:

1.	 A	→	B
2.	 A	→	B	→	E
3.	 A	→	B	→	C
4.	 A	→	G
5.	 A	→	G	→	H
6.	 A	→	G	→	J

Traversals	explained

149

Graph	traversals	in	AQL

Syntax

There	are	two	slightly	different	syntaxes	for	traversals	in	AQL,	one	for

named	graphs	and	another	to
specify	a	set	of	edge	collections	(anonymous	graph).

Working	with	named	graphs

[WITH	collection1[,	collection2[,	...collectionN]]]

FOR	vertex[,	edge[,	path]]

		IN	[min[..max]]

		OUTBOUND|INBOUND|ANY	startVertex

		GRAPH	graphName

		[OPTIONS	options]

	WITH	:	optional	for	single	server	instances,	but	required	for	graph	traversals	in	a	cluster.
collections	(collection,	repeatable):	list	of	collections	that	will	be	involved	in	the	traversal

	FOR	:	emits	up	to	three	variables:
vertex	(object):	the	current	vertex	in	a	traversal
edge	(object,	optional):	the	current	edge	in	a	traversal
path	(object,	optional):	representation	of	the	current	path	with	two	members:

	vertices	:	an	array	of	all	vertices	on	this	path
	edges	:	an	array	of	all	edges	on	this	path

	IN			min..max	:	the	minimal	and	maximal	depth	for	the	traversal:
min	(number,	optional):	edges	and	vertices	returned	by	this	query	will	start	at	the	traversal	depth	of	min	(thus	edges	and
vertices	below	will	not	be	returned).	If	not	specified,	it	defaults	to	1.	The	minimal	possible	value	is	0.
max	(number,	optional):	up	to	max	length	paths	are	traversed.	If	omitted,	max	defaults	to	min.	Thus	only	the	vertices	and
edges	in	the	range	of	min	are	returned.	max	can	not	be	specified	without	min.

	OUTBOUND|INBOUND|ANY	:	follow	outgoing,	incoming,	or	edges	pointing	in	either	direction	in	the	traversal;	Please	note	that	this	can't	be
replaced	by	a	bind	parameter.
startVertex	(string|object):	a	vertex	where	the	traversal	will	originate	from.	This	can	be	specified	in	the	form	of	an	ID	string	or	in	the
form	of	a	document	with	the	attribute		_id	.	All	other	values	will	lead	to	a	warning	and	an	empty	result.	If	the	specified	document
does	not	exist,	the	result	is	empty	as	well	and	there	is	no	warning.
	GRAPH		graphName	(string):	the	name	identifying	the	named	graph.	Its	vertex	and	edge	collections	will	be	looked	up.	Note	that	the
graph	name	is	like	a	regular	string,	hence	it	must	be	enclosed	by	quote	marks.
	OPTIONS		options	(object,	optional):	used	to	modify	the	execution	of	the	traversal.	Only	the	following	attributes	have	an	effect,	all
others	are	ignored:

uniqueVertices	(string):	optionally	ensure	vertex	uniqueness
"path"	–	it	is	guaranteed	that	there	is	no	path	returned	with	a	duplicate	vertex
"global"	–	it	is	guaranteed	that	each	vertex	is	visited	at	most	once	during	the	traversal,	no	matter	how	many	paths	lead
from	the	start	vertex	to	this	one.	If	you	start	with	a		min	depth	>	1		a	vertex	that	was	found	before	min	depth	might	not
be	returned	at	all	(it	still	might	be	part	of	a	path).	Note:	Using	this	configuration	the	result	is	not	deterministic	any	more.
If	there	are	multiple	paths	from	startVertex	to	vertex,	one	of	those	is	picked.
"none"	(default)	–	no	uniqueness	check	is	applied	on	vertices

uniqueEdges	(string):	optionally	ensure	edge	uniqueness
"path"	(default)	–	it	is	guaranteed	that	there	is	no	path	returned	with	a	duplicate	edge
"global"	–	it	is	guaranteed	that	each	edge	is	visited	at	most	once	during	the	traversal,	no	matter	how	many	paths	lead	from
the	start	vertex	to	this	edge.	If	you	start	with	a		min	depth	>	1	,	an	edge	that	was	found	before	min	depth	might	not	be
returned	at	all	(it	still	might	be	part	of	a	path).	Note:	Using	this	configuration	the	result	is	not	deterministic	any	more.	If
there	are	multiple	paths	from	startVertex	over	edge	one	of	those	is	picked.
"none"	–	no	uniqueness	check	is	applied	on	edges.	Note:	Using	this	configuration	the	traversal	will	follow	cycles	in	edges.

bfs	(bool):	optionally	use	the	alternative	breadth-first	traversal	algorithm

Traversals

150

true	–	the	traversal	will	be	executed	breadth-first.	The	results	will	first	contain	all	vertices	at	depth	1.	Than	all	vertices	at
depth	2	and	so	on.
false	(default)	–	the	traversal	will	be	executed	depth-first.	It	will	first	return	all	paths	from	min	depth	to	max	depth	for	one
vertex	at	depth	1.	Than	for	the	next	vertex	at	depth	1	and	so	on.

Working	with	collection	sets

[WITH	collection1[,	collection2[,	...collectionN]]]

FOR	vertex[,	edge[,	path]]

		IN	[min[..max]]

		OUTBOUND|INBOUND|ANY	startVertex

		edgeCollection1,	...,	edgeCollectionN

		[OPTIONS	options]

Instead	of		GRAPH	graphName		you	may	specify	a	list	of	edge	collections.	Vertex	collections	are	determined	by	the	edges	in	the	edge
collections.	The	traversal	options	are	the	same	as	with	the	named	graph	variant.

If	the	same	edge	collection	is	specified	multiple	times,	it	will	behave	as	if	it	were	specified	only	once.	Specifying	the	same	edge	collection
is	only	allowed	when	the	collections	do	not	have	conflicting	traversal	directions.

Traversing	in	mixed	directions

For	traversals	with	a	list	of	edge	collections	you	can	optionally	specify	the	direction	for	some	of	the	edge	collections.	Say	for	example
you	have	three	edge	collections	edges1,	edges2	and	edges3,	where	in	edges2	the	direction	has	no	relevance	but	in	edges1	and	edges3	the
direction	should	be	taken	into	account.	In	this	case	you	can	use	OUTBOUND	as	general	traversal	direction	and	ANY	specifically	for
edges2	as	follows:

FOR	vertex	IN	OUTBOUND

		startVertex

		edges1,	ANY	edges2,	edges3

All	collections	in	the	list	that	do	not	specify	their	own	direction	will	use	the	direction	defined	after		IN	.	This	allows	to	use	a	different
direction	for	each	collection	in	your	traversal.

Graph	traversals	in	a	cluster

Due	to	the	nature	of	graphs,	edges	may	reference	vertices	from	arbitrary	collections.	Following	the	paths	can	thus	involve	documents
from	various	collections	and	it's	not	possible	to	predict	which	will	be	visited	in	a	traversal.	Hence,	which	collections	need	to	be	locked	can
only	be	determined	at	run	time.	Deadlocks	may	occur	under	certain	circumstances.

Please	consider	to	use	the		WITH		statement	to	specify	the	collections	you	expect	to	be	involved.

Using	filters	and	the	explainer	to	extrapolate	the	costs
All	three	variables	emitted	by	the	traversals	might	as	well	be	used	in	filter	statements.	For	some	of	these	filter	statements	the	optimizer
can	detect	that	it	is	possible	to	prune	paths	of	traversals	earlier,	hence	filtered	results	will	not	be	emitted	to	the	variables	in	the	first	place.
This	may	significantly	improve	the	performance	of	your	query.	Whenever	a	filter	is	not	fulfilled,	the	complete	set	of	vertex,	edge	and
path	will	be	skipped.	All	paths	with	a	length	greater	than	max	will	never	be	computed.

In	the	current	state,		AND		combined	filters	can	be	optimized,	but		OR		combined	filters	cannot.

Filtering	on	paths

Filtering	on	paths	allows	for	the	most	powerful	filtering	and	may	have	the	highest	impact	on	performance.	Using	the	path	variable	you
can	filter	on	specific	iteration	depths.	You	can	filter	for	absolute	positions	in	the	path	by	specifying	a	positive	number	(which	then
qualifies	for	the	optimizations),	or	relative	positions	to	the	end	of	the	path	by	specifying	a	negative	number.

Filtering	edges	on	the	path

Traversals

151

FOR	v,	e,	p	IN	1..5	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'

		FILTER	p.edges[0].theTruth	==	true

		RETURN	p

will	filter	all	paths	where	the	start	edge	(index	0)	has	the	attribute	theTruth	equal	to	true.	The	resulting	paths	will	be	up	to	5	items	long.

Filtering	vertices	on	the	path

Similar	to	filtering	the	edges	on	the	path	you	can	also	filter	the	vertices:

FOR	v,	e,	p	IN	1..5	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'

		FILTER	p.vertices[1]._key	==	"G"

		RETURN	p

Combining	several	filters

And	of	course	you	can	combine	these	filters	in	any	way	you	like:

FOR	v,	e,	p	IN	1..5	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'

		FILTER	p.edges[0].theTruth	==	true

					AND	p.edges[1].theFalse	==	false

		FILTER	p.vertices[1]._key	==	"G"

		RETURN	p

The	query	will	filter	all	paths	where	the	first	edge	has	the	attribute	theTruth	equal	to	true,	the	first	vertex	is	"G"	and	the	second	edge	has
the	attribute	theFalse	equal	to	false.	The	resulting	paths	will	be	up	to	5	items	long.

Note:	Although	we	have	defined	a	min	of	1,	we	will	only	get	results	of	depth	2.	This	is	because	for	all	results	in	depth	1	the	second	edge
does	not	exist	and	hence	cannot	fulfill	the	condition	here.

Filter	on	the	entire	path

With	the	help	of	array	comparison	operators	filters	can	also	be	defined	on	the	entire	path,	like	ALL	edges	should	have	theTruth	==	true:

FOR	v,	e,	p	IN	1..5	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'

		FILTER	p.edges[*].theTruth	ALL	==	true

		RETURN	p

Or	NONE	of	the	edges	should	have	theTruth	==	true:

FOR	v,	e,	p	IN	1..5	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'

		FILTER	p.edges[*].theTruth	NONE	==	true

		RETURN	p

Both	examples	above	are	recognized	by	the	optimizer	and	can	potentially	use	other	indexes	than	the	edge	index.

It	is	also	possible	to	define	that	at	least	one	edge	on	the	path	has	to	fulfill	the	condition:

FOR	v,	e,	p	IN	1..5	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'

		FILTER	p.edges[*].theTruth	ANY	==	true

		RETURN	p

It	is	guaranteed	that	at	least	one,	but	potentially	more	edges	fulfill	the	condition.	All	of	the	above	filters	can	be	defined	on	vertices	in	the
exact	same	way.

Filtering	on	the	path	vs.	filtering	on	vertices	or	edges

Filtering	on	the	path	influences	the	Iteration	on	your	graph.	If	certain	conditions	aren't	met,	the	traversal	may	stop	continuing	along	this
path.

Traversals

152

In	contrast	filters	on	vertex	or	edge	only	express	whether	you're	interestet	in	the	actual	value	of	these	documents.	Thus,	it	influences	the
list	of	returned	documents	(if	you	return	v	or	e)	similar	as	specifying	a	non-null		min		value.	If	you	specify	a	min	value	of	2,	the	traversal
over	the	first	two	nodes	of	these	paths	has	to	be	executed	-	you	just	won't	see	them	in	your	result	array.

Similar	are	filters	on	vertices	or	edges	-	the	traverser	has	to	walk	along	these	nodes,	since	you	may	be	interested	in	documents	further
down	the	path.

Examples

We	will	create	a	simple	symmetric	traversal	demonstration	graph:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("traversalGraph");

arangosh>	db.circles.toArray();

arangosh>	db.edges.toArray();

show	execution	results
To	get	started	we	select	the	full	graph.	For	better	overview	we	only	return	the	vertex	IDs:

arangosh>	db._query("FOR	v	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	RETURN	

v._key");

arangosh>	db._query("FOR	v	IN	1..3	OUTBOUND	'circles/A'	edges	RETURN	v._key");

show	execution	results
We	can	nicely	see	that	it	is	heading	for	the	first	outer	vertex,	then	goes	back	to	the	branch	to	descend	into	the	next	tree.	After	that	it
returns	to	our	start	node,	to	descend	again.	As	we	can	see	both	queries	return	the	same	result,	the	first	one	uses	the	named	graph,	the
second	uses	the	edge	collections	directly.

Now	we	only	want	the	elements	of	a	specific	depth	(min	=	max	=	2),	the	ones	that	are	right	behind	the	fork:

Traversals

153

arangosh>	db._query("FOR	v	IN	2..2	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	return	

v._key");

arangosh>	db._query("FOR	v	IN	2	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	return	

v._key");

show	execution	results
As	you	can	see,	we	can	express	this	in	two	ways:	with	or	without	max	parameter	in	the	expression.

Filter	examples

Now	let's	start	to	add	some	filters.	We	want	to	cut	of	the	branch	on	the	right	side	of	the	graph,	we	may	filter	in	two	ways:

we	know	the	vertex	at	depth	1	has		_key		==		G	
we	know	the		label		attribute	of	the	edge	connecting	A	to	G	is		right_foo	

arangosh>	db._query("FOR	v,	e,	p	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	

FILTER	p.vertices[1]._key	!=	'G'	RETURN	v._key");

arangosh>	db._query("FOR	v,	e,	p	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	

FILTER	p.edges[0].label	!=	'right_foo'	RETURN	v._key");

show	execution	results
As	we	can	see	all	vertices	behind	G	are	skipped	in	both	queries.	The	first	filters	on	the	vertex		_key	,	the	second	on	an	edge	label.	Note
again,	as	soon	as	a	filter	is	not	fulfilled	for	any	of	the	three	elements		v	,		e		or		p	,	the	complete	set	of	these	will	be	excluded	from	the
result.

We	also	may	combine	several	filters,	for	instance	to	filter	out	the	right	branch	(G),	and	the	E	branch:

arangosh>	db._query("FOR	v,e,p	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	FILTER	

p.vertices[1]._key	!=	'G'	FILTER	p.edges[1].label	!=	'left_blub'	return	v._key");

arangosh>	db._query("FOR	v,e,p	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	FILTER	

p.vertices[1]._key	!=	'G'	AND				p.edges[1].label	!=	'left_blub'	return	v._key");

show	execution	results
As	you	can	see,	combining	two		FILTER		statements	with	an		AND		has	the	same	result.

Comparing	OUTBOUND	/	INBOUND	/	ANY

All	our	previous	examples	traversed	the	graph	in	OUTBOUND	edge	direction.	You	may	however	want	to	also	traverse	in	reverse
direction	(INBOUND)	or	both	(ANY).	Since		circles/A		only	has	outbound	edges,	we	start	our	queries	from		circles/E	:

arangosh>	db._query("FOR	v	IN	1..3	OUTBOUND	'circles/E'	GRAPH	'traversalGraph'	return	

v._key");

arangosh>	db._query("FOR	v	IN	1..3	INBOUND	'circles/E'	GRAPH	'traversalGraph'	return	

v._key");

arangosh>	db._query("FOR	v	IN	1..3	ANY	'circles/E'	GRAPH	'traversalGraph'	return	v._key");

show	execution	results
The	first	traversal	will	only	walk	in	the	forward	(OUTBOUND)	direction.	Therefore	from	E	we	only	can	see	F.	Walking	in	reverse
direction	(INBOUND),	we	see	the	path	to	A:	B	→	A.

Walking	in	forward	and	reverse	direction	(ANY)	we	can	see	a	more	diverse	result.	First	of	all,	we	see	the	simple	paths	to	F	and	A.
However,	these	vertices	have	edges	in	other	directions	and	they	will	be	traversed.

Note:	The	traverser	may	use	identical	edges	multiple	times.	For	instance,	if	it	walks	from	E	to	F,	it	will	continue	to	walk	from	F	to	E
using	the	same	edge	once	again.	Due	to	this	we	will	see	duplicate	nodes	in	the	result.

Traversals

154

Please	note	that	the	direction	can't	be	passed	in	by	a	bind	parameter.

Use	the	AQL	explainer	for	optimizations

Now	let's	have	a	look	what	the	optimizer	does	behind	the	curtain	and	inspect	traversal	queries	using	the	explainer:

arangosh>	db._explain("FOR	v,e,p	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	LET	

localScopeVar	=	RAND()	>	0.5	FILTER	p.edges[0].theTruth	!=	localScopeVar	RETURN	v._key",	

{},	{colors:	false});

arangosh>	db._explain("FOR	v,e,p	IN	1..3	OUTBOUND	'circles/A'	GRAPH	'traversalGraph'	

FILTER	p.edges[0].label	==	'right_foo'	RETURN	v._key",	{},	{colors:	false});

show	execution	results
We	now	see	two	queries:	In	one	we	add	a	variable	localScopeVar,	which	is	outside	the	scope	of	the	traversal	itself	-	it	is	not	known	inside
of	the	traverser.	Therefore,	this	filter	can	only	be	executed	after	the	traversal,	which	may	be	undesired	in	large	graphs.	The	second	query
on	the	other	hand	only	operates	on	the	path,	and	therefore	this	condition	can	be	used	during	the	execution	of	the	traversal.	Paths	that	are
filtered	out	by	this	condition	won't	be	processed	at	all.

And	finally	clean	it	up	again:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	examples.dropGraph("traversalGraph");

true

If	this	traversal	is	not	powerful	enough	for	your	needs,	like	you	cannot	describe	your	conditions	as	AQL	filter	statements,	then	you
might	want	to	have	a	look	at	manually	crafted	traversers.

Also	see	how	to	combine	graph	traversals.

Traversals

155

Shortest	Path	in	AQL

General	query	idea

This	type	of	query	is	supposed	to	find	the	shortest	path	between	two	given	documents	(startVertex	and	targetVertex)	in	your	graph.	For
all	vertices	on	this	shortest	path	you	will	get	a	result	in	form	of	a	set	with	two	items:

1.	 The	vertex	on	this	path.
2.	 The	edge	pointing	to	it.

Example	execution

Let's	take	a	look	at	a	simple	example	to	explain	how	it	works.	This	is	the	graph	that	we	are	going	to	find	a	shortest	path	on:

Now	we	use	the	following	parameters	for	our	query:

1.	 We	start	at	the	vertex	A.
2.	 We	finish	with	the	vertex	D.

So	obviously	we	will	have	the	vertices	A,	B,	C	and	D	on	the	shortest	path	in	exactly	this	order.	Than	the	shortest	path	statement	will
return	the	following	pairs:

Vertex Edge

A null

B A	→	B

C B	→	C

D C	→	D

Shortest	Path

156

Note:	The	first	edge	will	always	be		null		because	there	is	no	edge	pointing	to	the	startVertex.

Syntax

Now	let's	see	how	we	can	write	a	shortest	path	query.	You	have	two	options	here,	you	can	either	use	a	named	graph	or	a	set	of	edge
collections	(anonymous	graph).

Working	with	named	graphs

FOR	vertex[,	edge]

		IN	OUTBOUND|INBOUND|ANY	SHORTEST_PATH

		startVertex	TO	targetVertex

		GRAPH	graphName

		[OPTIONS	options]

	FOR	:	emits	up	to	two	variables:
vertex	(object):	the	current	vertex	on	the	shortest	path
edge	(object,	optional):	the	edge	pointing	to	the	vertex

	IN			OUTBOUND|INBOUND|ANY	:	defines	in	which	direction	edges	are	followed	(outgoing,	incoming,	or	both)
startVertex		TO		targetVertex	(both	string|object):	the	two	vertices	between	which	the	shortest	path	will	be	computed.	This	can	be
specified	in	the	form	of	an	ID	string	or	in	the	form	of	a	document	with	the	attribute		_id	.	All	other	values	will	lead	to	a	warning	and
an	empty	result.	If	one	of	the	specified	documents	does	not	exist,	the	result	is	empty	as	well	and	there	is	no	warning.
	GRAPH		graphName	(string):	the	name	identifying	the	named	graph.	Its	vertex	and	edge	collections	will	be	looked	up.
	OPTIONS		options	(object,	optional):	used	to	modify	the	execution	of	the	traversal.	Only	the	following	attributes	have	an	effect,	all
others	are	ignored:

weightAttribute	(string):	a	top-level	edge	attribute	that	should	be	used	to	read	the	edge	weight.	If	the	attribute	is	not	existent
or	not	numeric,	the	defaultWeight	will	be	used	instead.
defaultWeight	(number):	this	value	will	be	used	as	fallback	if	there	is	no	weightAttribute	in	the	edge	document,	or	if	it's	not	a
number.	The	default	is	1.

Working	with	collection	sets

FOR	vertex[,	edge]

		IN	OUTBOUND|INBOUND|ANY	SHORTEST_PATH

		startVertex	TO	targetVertex

		edgeCollection1,	...,	edgeCollectionN

		[OPTIONS	options]

Instead	of		GRAPH	graphName		you	may	specify	a	list	of	edge	collections	(anonymous	graph).	The	involved	vertex	collections	are
determined	by	the	edges	of	the	given	edge	collections.	The	rest	of	the	behavior	is	similar	to	the	named	version.

Traversing	in	mixed	directions

For	shortest	path	with	a	list	of	edge	collections	you	can	optionally	specify	the	direction	for	some	of	the	edge	collections.	Say	for	example
you	have	three	edge	collections	edges1,	edges2	and	edges3,	where	in	edges2	the	direction	has	no	relevance,	but	in	edges1	and	edges3	the
direction	should	be	taken	into	account.	In	this	case	you	can	use	OUTBOUND	as	general	search	direction	and	ANY	specifically	for	edges2
as	follows:

FOR	vertex	IN	OUTBOUND	SHORTEST_PATH

		startVertex	TO	targetVertex

		edges1,	ANY	edges2,	edges3

All	collections	in	the	list	that	do	not	specify	their	own	direction	will	use	the	direction	defined	after	IN	(here:	OUTBOUND).	This	allows
to	use	a	different	direction	for	each	collection	in	your	path	search.

Conditional	shortest	path

Shortest	Path

157

The	SHORTEST_PATH	computation	will	only	find	an	unconditioned	shortest	path.	With	this	construct	it	is	not	possible	to	define	a
condition	like:	"Find	the	shortest	path	where	all	edges	are	of	type	X".	If	you	want	to	do	this,	use	a	normal	Traversal	instead	with	the
option		{bfs:	true}		in	combination	with		LIMIT	1	.

Please	also	consider	to	use		WITH		to	specify	the	collections	you	expect	to	be	involved.

Examples

We	will	create	a	simple	symmetric	traversal	demonstration	graph:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	graph	=	examples.loadGraph("traversalGraph");

arangosh>	db.circles.toArray();

arangosh>	db.edges.toArray();

show	execution	results
We	start	with	the	shortest	path	from	A	to	D	as	above:

arangosh>	db._query("FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	'circles/A'	TO	'circles/D'	GRAPH	

'traversalGraph'	RETURN	[v._key,	e._key]");

arangosh>	db._query("FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	'circles/A'	TO	'circles/D'	edges	

RETURN	[v._key,	e._key]");

show	execution	results
We	can	see	our	expectations	are	fulfilled.	We	find	the	vertices	in	the	correct	ordering	and	the	first	edge	is	null,	because	no	edge	is	pointing
to	the	start	vertex	on	t	his	path.

We	can	also	compute	shortest	paths	based	on	documents	found	in	collections:

Shortest	Path

158

arangosh>	db._query("FOR	a	IN	circles	FILTER	a._key	==	'A'	FOR	d	IN	circles	FILTER	d._key	

==	'D'	FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	a	TO	d	GRAPH	'traversalGraph'	RETURN	[v._key,	

e._key]");

arangosh>	db._query("FOR	a	IN	circles	FILTER	a._key	==	'A'	FOR	d	IN	circles	FILTER	d._key	

==	'D'	FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	a	TO	d	edges	RETURN	[v._key,	e._key]");

show	execution	results
And	finally	clean	it	up	again:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	examples.dropGraph("traversalGraph");

true

Shortest	Path

159

Advanced	features
This	section	covers	additional,	powerful	AQL	features,	which	you	may	wanna	look	into	once	you	made	yourself	familiar	with	the	basics
of	the	query	language.

Array	operators:	Shorthands	for	array	manipulation

Advanced	Features

160

Array	Operators

Array	expansion

In	order	to	access	a	named	attribute	from	all	elements	in	an	array	easily,	AQL	offers	the	shortcut	operator	[*]	for	array	variable
expansion.

Using	the	[*]	operator	with	an	array	variable	will	iterate	over	all	elements	in	the	array,	thus	allowing	to	access	a	particular	attribute	of
each	element.	It	is	required	that	the	expanded	variable	is	an	array.	The	result	of	the	[*]	operator	is	again	an	array.

To	demonstrate	the	array	expansion	operator,	let's	go	on	with	the	following	three	example	users	documents:

[

		{

				name:	"john",

				age:	35,

				friends:	[

						{	name:	"tina",	age:	43	},

						{	name:	"helga",	age:	52	},

						{	name:	"alfred",	age:	34	}

]

		},

		{

				name:	"yves",

				age:	24,

				friends:	[

						{	name:	"sergei",	age:	27	},

						{	name:	"tiffany",	age:	25	}

]

		},

		{

				name:	"sandra",

				age:	40,

				friends:	[

						{	name:	"bob",	age:	32	},

						{	name:	"elena",	age:	48	}

]

		}

]

With	the	[*]	operator	it	becomes	easy	to	query	just	the	names	of	the	friends	for	each	user:

FOR	u	IN	users

		RETURN	{	name:	u.name,	friends:	u.friends[*].name	}

This	will	produce:

[

		{	"name"	:	"john",	"friends"	:	["tina",	"helga",	"alfred"]	},

		{	"name"	:	"yves",	"friends"	:	["sergei",	"tiffany"]	},

		{	"name"	:	"sandra",	"friends"	:	["bob",	"elena"]	}

]

This	is	a	shortcut	for	the	longer,	semantically	equivalent	query:

FOR	u	IN	users

		RETURN	{	name:	u.name,	friends:	(FOR	f	IN	u.friends	RETURN	f.name)	}

Array	contraction

In	order	to	collapse	(or	flatten)	results	in	nested	arrays,	AQL	provides	the	[**]	operator.	It	works	similar	to	the	[*]	operator,	but
additionally	collapses	nested	arrays.

Array	Operators

161

How	many	levels	are	collapsed	is	determined	by	the	amount	of	asterisk	characters	used.	[**]	collapses	one	level	of	nesting	-	just	like
	FLATTEN(array)		or		FLATTEN(array,	1)		would	do	-,	[***]	collapses	two	levels	-	the	equivalent	to		FLATTEN(array,	2)		-	and	so	on.

Let's	compare	the	array	expansion	operator	with	an	array	contraction	operator.	For	example,	the	following	query	produces	an	array	of
friend	names	per	user:

FOR	u	IN	users

		RETURN	u.friends[*].name

As	we	have	multiple	users,	the	overall	result	is	a	nested	array:

[

		[

				"tina",

				"helga",

				"alfred"

],

		[

				"sergei",

				"tiffany"

],

		[

				"bob",

				"elena"

]

]

If	the	goal	is	to	get	rid	of	the	nested	array,	we	can	apply	the	[**]	operator	on	the	result.	But	simply	appending	[**]	to	the	query	won't
help,	because	u.friends	is	not	a	nested	(multi-dimensional)	array,	but	a	simple	(one-dimensional)	array.	Still,	the	[**]	can	be	used	if	it	has
access	to	a	multi-dimensional	nested	result.

We	can	extend	above	query	as	follows	and	still	create	the	same	nested	result:

RETURN	(

		FOR	u	IN	users	RETURN	u.friends[*].name

)

By	now	appending	the	[**]	operator	at	the	end	of	the	query...

RETURN	(

		FOR	u	IN	users	RETURN	u.friends[*].name

)[**]

...	the	query	result	becomes:

[

		[

				"tina",

				"helga",

				"alfred",

				"sergei",

				"tiffany",

				"bob",

				"elena"

]

]

Note	that	the	elements	are	not	de-duplicated.	For	a	flat	array	with	only	unique	elements,	a	combination	of	UNIQUE()	and	FLATTEN()
is	advisable.

Inline	expressions

Array	Operators

162

It	is	possible	to	filter	elements	while	iterating	over	an	array,	to	limit	the	amount	of	returned	elements	and	to	create	a	projection	using	the
current	array	element.	Sorting	is	not	supported	by	this	shorthand	form.

These	inline	expressions	can	follow	array	expansion	and	contraction	operators	[*	...],	[**	...]	etc.	The	keywords	FILTER,	LIMIT	and
RETURN	must	occur	in	this	order	if	they	are	used	in	combination,	and	can	only	occur	once:

	anyArray[*	FILTER	conditions	LIMIT	skip,limit	RETURN	projection]	

Example	with	nested	numbers	and	array	contraction:

LET	arr	=	[[1,	2],	3,	[4,	5],	6]

RETURN	arr[**	FILTER	CURRENT	%	2	==	0]

All	even	numbers	are	returned	in	a	flat	array:

[

		[2,	4,	6]

]

Complex	example	with	multiple	conditions,	limit	and	projection:

FOR	u	IN	users

				RETURN	{

								name:	u.name,

								friends:	u.friends[*	FILTER	CONTAINS(CURRENT.name,	"a")	AND	CURRENT.age	>	40

												LIMIT	2

												RETURN	CONCAT(CURRENT.name,	"	is	",	CURRENT.age)

]

				}

No	more	than	two	computed	strings	based	on	friends	with	an		a		in	their	name	and	older	than	40	years	are	returned	per	user:

[

		{

				"name":	"john",

				"friends":	[

						"tina	is	43",

						"helga	is	52"

]

		},

		{

				"name":	"sandra",

				"friends":	[

						"elena	is	48"

]

		},

		{

				"name":	"yves",

				"friends":	[]

		}

]

Inline	filter

To	return	only	the	names	of	friends	that	have	an	age	value	higher	than	the	user	herself,	an	inline	FILTER	can	be	used:

FOR	u	IN	users

		RETURN	{	name:	u.name,	friends:	u.friends[*	FILTER	CURRENT.age	>	u.age].name	}

The	pseudo-variable	CURRENT	can	be	used	to	access	the	current	array	element.	The	FILTER	condition	can	refer	to	CURRENT	or	any
variables	valid	in	the	outer	scope.

Inline	limit

Array	Operators

163

The	number	of	elements	returned	can	be	restricted	with	LIMIT.	It	works	the	same	as	the	limit	operation.	LIMIT	must	come	after	FILTER
and	before	RETURN,	if	they	are	present.

FOR	u	IN	users

		RETURN	{	name:	u.name,	friends:	u.friends[*	LIMIT	1].name	}

Above	example	returns	one	friend	each:

[

		{	"name":	"john",	"friends":	["tina"]	},

		{	"name":	"sandra",	"friends":	["bob"]	},

		{	"name":	"yves",	"friends":	["sergei"]	}

]

A	number	of	elements	can	also	be	skipped	and	up	to	n	returned:

FOR	u	IN	users

		RETURN	{	name:	u.name,	friends:	u.friends[*	LIMIT	1,2].name	}

The	example	query	skips	the	first	friend	and	returns	two	friends	at	most	per	user:

[

		{	"name":	"john",	"friends":	["helga",	"alfred"]	},

		{	"name":	"sandra",	"friends":	["elena"]	},

		{	"name":	"yves",	"friends":	["tiffany"]	}

]

Inline	projection

To	return	a	projection	of	the	current	element,	use	RETURN.	If	a	FILTER	is	also	present,	RETURN	must	come	later.

FOR	u	IN	users

		RETURN	u.friends[*	RETURN	CONCAT(CURRENT.name,	"	is	a	friend	of	",	u.name)]

The	above	will	return:

[

		[

				"tina	is	a	friend	of	john",

				"helga	is	a	friend	of	john",

				"alfred	is	a	friend	of	john"

],

		[

				"sergei	is	a	friend	of	yves",

				"tiffany	is	a	friend	of	yves"

],

		[

				"bob	is	a	friend	of	sandra",

				"elena	is	a	friend	of	sandra"

]

]

Array	Operators

164

Usual	Query	Patterns	Examples
Those	pages	contain	some	common	query	patterns	with	examples.	For	better	understandability	the	query	results	are	also	included
directly	below	each	query.

Normally	you	would	want	to	run	queries	on	data	stored	in	collections.	This	section	will	provide	several	examples	for	that.

Some	of	the	following	example	queries	are	executed	on	a	collection	'users'	with	the	data	provided	here	below.

Things	to	consider	when	running	queries	on	collections

Note	that	all	documents	created	in	any	collections	will	automatically	get	the	following	server-generated	attributes:

_id:	A	unique	id,	consisting	of	collection	name	and	a	server-side	sequence	value
_key:	The	server	sequence	value
_rev:	The	document's	revision	id

Whenever	you	run	queries	on	the	documents	in	collections,	don't	be	surprised	if	these	additional	attributes	are	returned	as	well.

Please	also	note	that	with	real-world	data,	you	might	want	to	create	additional	indexes	on	the	data	(left	out	here	for	brevity).	Adding
indexes	on	attributes	that	are	used	in	FILTER	statements	may	considerably	speed	up	queries.	Furthermore,	instead	of	using	attributes
such	as	id,	from	and	to,	you	might	want	to	use	the	built-in	_id,	_from	and	_to	attributes.	Finally,	edge	collections	provide	a	nice	way	of
establishing	references	/	links	between	documents.	These	features	have	been	left	out	here	for	brevity	as	well.

Example	data

Some	of	the	following	example	queries	are	executed	on	a	collection	users	with	the	following	initial	data:

[

		{	"id":	100,	"name":	"John",	"age":	37,	"active":	true,	"gender":	"m"	},

		{	"id":	101,	"name":	"Fred",	"age":	36,	"active":	true,	"gender":	"m"	},

		{	"id":	102,	"name":	"Jacob",	"age":	35,	"active":	false,	"gender":	"m"	},

		{	"id":	103,	"name":	"Ethan",	"age":	34,	"active":	false,	"gender":	"m"	},

		{	"id":	104,	"name":	"Michael",	"age":	33,	"active":	true,	"gender":	"m"	},

		{	"id":	105,	"name":	"Alexander",	"age":	32,	"active":	true,	"gender":	"m"	},

		{	"id":	106,	"name":	"Daniel",	"age":	31,	"active":	true,	"gender":	"m"	},

		{	"id":	107,	"name":	"Anthony",	"age":	30,	"active":	true,	"gender":	"m"	},

		{	"id":	108,	"name":	"Jim",	"age":	29,	"active":	true,	"gender":	"m"	},

		{	"id":	109,	"name":	"Diego",	"age":	28,	"active":	true,	"gender":	"m"	},

		{	"id":	200,	"name":	"Sophia",	"age":	37,	"active":	true,	"gender":	"f"	},

		{	"id":	201,	"name":	"Emma",	"age":	36,		"active":	true,	"gender":	"f"	},

		{	"id":	202,	"name":	"Olivia",	"age":	35,	"active":	false,	"gender":	"f"	},

		{	"id":	203,	"name":	"Madison",	"age":	34,	"active":	true,	"gender":	"f"	},

		{	"id":	204,	"name":	"Chloe",	"age":	33,	"active":	true,	"gender":	"f"	},

		{	"id":	205,	"name":	"Eva",	"age":	32,	"active":	false,	"gender":	"f"	},

		{	"id":	206,	"name":	"Abigail",	"age":	31,	"active":	true,	"gender":	"f"	},

		{	"id":	207,	"name":	"Isabella",	"age":	30,	"active":	true,	"gender":	"f"	},

		{	"id":	208,	"name":	"Mary",	"age":	29,	"active":	true,	"gender":	"f"	},

		{	"id":	209,	"name":	"Mariah",	"age":	28,	"active":	true,	"gender":	"f"	}

]

For	some	of	the	examples,	we'll	also	use	a	collection	relations	to	store	relationships	between	users.	The	example	data	for	relations	are	as
follows:

[

		{	"from":	209,	"to":	205,	"type":	"friend"	},

		{	"from":	206,	"to":	108,	"type":	"friend"	},

		{	"from":	202,	"to":	204,	"type":	"friend"	},

		{	"from":	200,	"to":	100,	"type":	"friend"	},

		{	"from":	205,	"to":	101,	"type":	"friend"	},

		{	"from":	209,	"to":	203,	"type":	"friend"	},

		{	"from":	200,	"to":	203,	"type":	"friend"	},

		{	"from":	100,	"to":	208,	"type":	"friend"	},

		{	"from":	101,	"to":	209,	"type":	"friend"	},

		{	"from":	206,	"to":	102,	"type":	"friend"	},

Usual	Query	Patterns

165

		{	"from":	104,	"to":	100,	"type":	"friend"	},

		{	"from":	104,	"to":	108,	"type":	"friend"	},

		{	"from":	108,	"to":	209,	"type":	"friend"	},

		{	"from":	206,	"to":	106,	"type":	"friend"	},

		{	"from":	204,	"to":	105,	"type":	"friend"	},

		{	"from":	208,	"to":	207,	"type":	"friend"	},

		{	"from":	102,	"to":	108,	"type":	"friend"	},

		{	"from":	207,	"to":	203,	"type":	"friend"	},

		{	"from":	203,	"to":	106,	"type":	"friend"	},

		{	"from":	202,	"to":	108,	"type":	"friend"	},

		{	"from":	201,	"to":	203,	"type":	"friend"	},

		{	"from":	105,	"to":	100,	"type":	"friend"	},

		{	"from":	100,	"to":	109,	"type":	"friend"	},

		{	"from":	207,	"to":	109,	"type":	"friend"	},

		{	"from":	103,	"to":	203,	"type":	"friend"	},

		{	"from":	208,	"to":	104,	"type":	"friend"	},

		{	"from":	105,	"to":	104,	"type":	"friend"	},

		{	"from":	103,	"to":	208,	"type":	"friend"	},

		{	"from":	203,	"to":	107,	"type":	"boyfriend"	},

		{	"from":	107,	"to":	203,	"type":	"girlfriend"	},

		{	"from":	208,	"to":	109,	"type":	"boyfriend"	},

		{	"from":	109,	"to":	208,	"type":	"girlfriend"	},

		{	"from":	106,	"to":	205,	"type":	"girlfriend"	},

		{	"from":	205,	"to":	106,	"type":	"boyfriend"	},

		{	"from":	103,	"to":	209,	"type":	"girlfriend"	},

		{	"from":	209,	"to":	103,	"type":	"boyfriend"	},

		{	"from":	201,	"to":	102,	"type":	"boyfriend"	},

		{	"from":	102,	"to":	201,	"type":	"girlfriend"	},

		{	"from":	206,	"to":	100,	"type":	"boyfriend"	},

		{	"from":	100,	"to":	206,	"type":	"girlfriend"	}

]

Usual	Query	Patterns

166

Counting

Amount	of	documents	in	a	collection

To	return	the	count	of	documents	that	currently	exist	in	a	collection,	you	can	call	the	LENGTH()	function:

RETURN	LENGTH(collection)

This	type	of	call	is	optimized	since	2.8	(no	unnecessary	intermediate	result	is	built	up	in	memory)	and	it	is	therefore	the	prefered	way	to
determine	the	count.	Internally,	COLLECTION_COUNT()	is	called.

In	earlier	versions	with		COLLECT	...	WITH	COUNT	INTO		available	(since	2.4),	you	may	use	the	following	code	instead	of	LENGTH()	for
better	performance:

FOR	doc	IN	collection

				COLLECT	WITH	COUNT	INTO	length

				RETURN	length

Counting

167

Data-modification	queries
The	following	operations	can	be	used	to	modify	data	of	multiple	documents	with	one	query.	This	is	superior	to	fetching	and	updating	the
documents	individually	with	multiple	queries.	However,	if	only	a	single	document	needs	to	be	modified,	ArangoDB's	specialized	data-
modification	operations	for	single	documents	might	execute	faster.

Updating	documents

To	update	existing	documents,	we	can	either	use	the	UPDATE	or	the	REPLACE	operation.	UPDATE	updates	only	the	specified
attributes	in	the	found	documents,	and	REPLACE	completely	replaces	the	found	documents	with	the	specified	values.

We'll	start	with	an	UPDATE	query	that	rewrites	the	gender	attribute	in	all	documents:

FOR	u	IN	users

		UPDATE	u	WITH	{	gender:	TRANSLATE(u.gender,	{	m:	'male',	f:	'female'	})	}	IN	users

To	add	new	attributes	to	existing	documents,	we	can	also	use	an	UPDATE	query.	The	following	query	adds	an	attribute	numberOfLogins
for	all	users	with	status	active:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{	numberOfLogins:	0	}	IN	users

Existing	attributes	can	also	be	updated	based	on	their	previous	value:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{	numberOfLogins:	u.numberOfLogins	+	1	}	IN	users

The	above	query	will	only	work	if	there	was	already	a	numberOfLogins	attribute	present	in	the	document.	If	it	is	unsure	whether	there	is
a	numberOfLogins	attribute	in	the	document,	the	increase	must	be	made	conditional:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{

				numberOfLogins:	HAS(u,	'numberOfLogins')	?	u.numberOfLogins	+	1	:	1

		}	IN	users

Updates	of	multiple	attributes	can	be	combined	in	a	single	query:

FOR	u	IN	users

		FILTER	u.active	==	true

		UPDATE	u	WITH	{

				lastLogin:	DATE_NOW(),

				numberOfLogins:	HAS(u,	'numberOfLogins')	?	u.numberOfLogins	+	1	:	1

		}	IN	users

Note	than	an	update	query	might	fail	during	execution,	for	example	because	a	document	to	be	updated	does	not	exist.	In	this	case,	the
query	will	abort	at	the	first	error.	In	single-server	mode,	all	modifications	done	by	the	query	will	be	rolled	back	as	if	they	never	happened.

Replacing	documents
To	not	just	partially	update,	but	completely	replace	existing	documents,	use	the	REPLACE	operation.	The	following	query	replaces	all
documents	in	the	collection	backup	with	the	documents	found	in	collection	users.	Documents	common	to	both	collections	will	be
replaced.	All	other	documents	will	remain	unchanged.	Documents	are	compared	using	their	_key	attributes:

FOR	u	IN	users

Data-modification	queries

168

		REPLACE	u	IN	backup

The	above	query	will	fail	if	there	are	documents	in	collection	users	that	are	not	in	collection	backup	yet.	In	this	case,	the	query	would
attempt	to	replace	documents	that	do	not	exist.	If	such	case	is	detected	while	executing	the	query,	the	query	will	abort.	In	single-server
mode,	all	changes	made	by	the	query	will	also	be	rolled	back.

To	make	the	query	succeed	for	such	case,	use	the	ignoreErrors	query	option:

FOR	u	IN	users

		REPLACE	u	IN	backup	OPTIONS	{	ignoreErrors:	true	}

Removing	documents
Deleting	documents	can	be	achieved	with	the	REMOVE	operation.	To	remove	all	users	within	a	certain	age	range,	we	can	use	the	following
query:

FOR	u	IN	users

		FILTER	u.active	==	true	&&	u.age	>=	35	&&	u.age	<=	37

		REMOVE	u	IN	users

Creating	documents

To	create	new	documents,	there	is	the	INSERT	operation.	It	can	also	be	used	to	generate	copies	of	existing	documents	from	other
collections,	or	to	create	synthetic	documents	(e.g.	for	testing	purposes).	The	following	query	creates	1000	test	users	in	collection	users
with	some	attributes	set:

FOR	i	IN	1..1000

		INSERT	{

				id:	100000	+	i,

				age:	18	+	FLOOR(RAND()	*	25),

				name:	CONCAT('test',	TO_STRING(i)),

				active:	false,

				gender:	i	%	2	==	0	?	'male'	:	'female'

		}	IN	users

Copying	data	from	one	collection	into	another

To	copy	data	from	one	collection	into	another,	an	INSERT	operation	can	be	used:

FOR	u	IN	users

		INSERT	u	IN	backup

This	will	copy	over	all	documents	from	collection	users	into	collection	backup.	Note	that	both	collections	must	already	exist	when	the
query	is	executed.	The	query	might	fail	if	backup	already	contains	documents,	as	executing	the	insert	might	attempt	to	insert	the	same
document	(identified	by	_key	attribute)	again.	This	will	trigger	a	unique	key	constraint	violation	and	abort	the	query.	In	single-server
mode,	all	changes	made	by	the	query	will	also	be	rolled	back.	To	make	such	copy	operation	work	in	all	cases,	the	target	collection	can	be
emptied	before,	using	a	REMOVE	query.

Handling	errors
In	some	cases	it	might	be	desirable	to	continue	execution	of	a	query	even	in	the	face	of	errors	(e.g.	"document	not	found").	To	continue
execution	of	a	query	in	case	of	errors,	there	is	the	ignoreErrors	option.

To	use	it,	place	an	OPTIONS	keyword	directly	after	the	data	modification	part	of	the	query,	e.g.

FOR	u	IN	users

		REPLACE	u	IN	backup	OPTIONS	{	ignoreErrors:	true	}

Data-modification	queries

169

This	will	continue	execution	of	the	query	even	if	errors	occur	during	the	REPLACE	operation.	It	works	similar	for	UPDATE,	INSERT,
and	REMOVE.

Altering	substructures
To	modify	lists	in	documents	we	have	to	work	with	temporary	variables.	We	will	collect	the	sublist	in	there	and	alter	it.	We	choose	a
simple	boolean	filter	condition	to	make	the	query	better	comprehensible.

First	lets	create	a	collection	with	a	sample:

database	=	db._create('complexCollection')

database.save({

		"topLevelAttribute"	:	"a",

		"subList"	:	[

				{

						"attributeToAlter"	:	"oldValue",

						"filterByMe"	:	true

				},

				{

						"attributeToAlter"	:	"moreOldValues",

						"filterByMe"	:	true

				},

				{

						"attributeToAlter"	:	"unchangedValue",

						"filterByMe"	:	false

				}

]

})

Heres	the	Query	which	keeps	the	subList	on	alteredList	to	update	it	later:

FOR	document	in	complexCollection

		LET	alteredList	=	(

				FOR	element	IN	document.subList

							LET	newItem	=	(!	element.filterByMe	?

																						element	:

																						MERGE(element,	{	attributeToAlter:	"shiny	New	Value"	}))

							RETURN	newItem)

		UPDATE	document	WITH	{	subList:		alteredList	}	IN	complexCollection

While	the	query	as	it	is	is	now	functional:

db.complexCollection.toArray()

[

		{

				"_id"	:	"complexCollection/392671569467",

				"_key"	:	"392671569467",

				"_rev"	:	"392799430203",

				"topLevelAttribute"	:	"a",

				"subList"	:	[

						{

								"filterByMe"	:	true,

								"attributeToAlter"	:	"shiny	New	Value"

						},

						{

								"filterByMe"	:	true,

								"attributeToAlter"	:	"shiny	New	Value"

						},

						{

								"filterByMe"	:	false,

								"attributeToAlter"	:	"unchangedValue"

						}

]

		}

]

Data-modification	queries

170

It	will	probably	be	soonish	a	performance	bottleneck,	since	it	modifies	all	documents	in	the	collection	regardless	whether	the	values
change	or	not.	Therefore	we	want	to	only	UPDATE	the	documents	if	we	really	change	their	value.	Hence	we	employ	a	second	FOR	to
test	whether	subList	will	be	altered	or	not:

FOR	document	in	complexCollection

		LET	willUpdateDocument	=	(

				FOR	element	IN	docToAlter.subList

						FILTER	element.filterByMe	LIMIT	1	RETURN	1)

		FILTER	LENGTH(willUpdateDocument)	>	0

		LET	alteredList	=	(

				FOR	element	IN	document.subList

							LET	newItem	=	(!	element.filterByMe	?

																						element	:

																						MERGE(element,	{	attributeToAlter:	"shiny	New	Value"	}))

							RETURN	newItem)

		UPDATE	document	WITH	{	subList:		alteredList	}	IN	complexCollection

Data-modification	queries

171

Combining	queries

Subqueries

Wherever	an	expression	is	allowed	in	AQL,	a	subquery	can	be	placed.	A	subquery	is	a	query	part	that	can	introduce	its	own	local
variables	without	affecting	variables	and	values	in	its	outer	scope(s).

It	is	required	that	subqueries	be	put	inside	parentheses	(and)	to	explicitly	mark	their	start	and	end	points:

FOR	p	IN	persons

		LET	recommendations	=	(

				FOR	r	IN	recommendations

						FILTER	p.id	==	r.personId

						SORT	p.rank	DESC

						LIMIT	10

						RETURN	r

)

		RETURN	{	person	:	p,	recommendations	:	recommendations	}

FOR	p	IN	persons

		COLLECT	city	=	p.city	INTO	g

		RETURN	{

				city	:	city,

				numPersons	:	LENGTH(g),

				maxRating:	MAX(

						FOR	r	IN	g

						RETURN	r.p.rating

)}

Subqueries	may	also	include	other	subqueries.

Note	that	subqueries	always	return	a	result	array,	even	if	there	is	only	a	single	return	value:

RETURN	(RETURN	1)

[[1]]

To	avoid	such	a	nested	data	structure,	FIRST()	can	be	used	for	example:

RETURN	FIRST(RETURN	1)

[1]

Subqueries

172

Projections	and	Filters

Returning	unaltered	documents

To	return	three	complete	documents	from	collection	users,	the	following	query	can	be	used:

FOR	u	IN	users	

		LIMIT	0,	3

		RETURN	u

[

		{	

				"_id"	:	"users/229886047207520",	

				"_rev"	:	"229886047207520",	

				"_key"	:	"229886047207520",	

				"active"	:	true,	

				"id"	:	206,	

				"age"	:	31,	

				"gender"	:	"f",	

				"name"	:	"Abigail"	

		},	

		{	

				"_id"	:	"users/229886045175904",	

				"_rev"	:	"229886045175904",	

				"_key"	:	"229886045175904",	

				"active"	:	true,	

				"id"	:	101,	

				"age"	:	36,	

				"name"	:	"Fred",	

				"gender"	:	"m"	

		},	

		{	

				"_id"	:	"users/229886047469664",	

				"_rev"	:	"229886047469664",	

				"_key"	:	"229886047469664",	

				"active"	:	true,	

				"id"	:	208,	

				"age"	:	29,	

				"name"	:	"Mary",	

				"gender"	:	"f"	

		}

]

Note	that	there	is	a	LIMIT	clause	but	no	SORT	clause.	In	this	case	it	is	not	guaranteed	which	of	the	user	documents	are	returned.
Effectively	the	document	return	order	is	unspecified	if	no	SORT	clause	is	used,	and	you	should	not	rely	on	the	order	in	such	queries.

Projections

To	return	a	projection	from	the	collection	users	use	a	modified	RETURN	instruction:

FOR	u	IN	users	

		LIMIT	0,	3

		RETURN	{	

				"user"	:	{	

						"isActive"	:	u.active	?	"yes"	:	"no",	

						"name"	:	u.name	

				}	

		}

[

		{	

				"user"	:	{	

						"isActive"	:	"yes",	

						"name"	:	"John"	

				}	

Projections	and	filters

173

		},	

		{	

				"user"	:	{	

						"isActive"	:	"yes",	

						"name"	:	"Anthony"	

				}	

		},	

		{	

				"user"	:	{	

						"isActive"	:	"yes",	

						"name"	:	"Fred"	

				}	

		}

]

Filters

To	return	a	filtered	projection	from	collection	users,	you	can	use	the	FILTER	keyword.	Additionally,	a	SORT	clause	is	used	to	have	the
result	returned	in	a	specific	order:

FOR	u	IN	users	

		FILTER	u.active	==	true	&&	u.age	>=	30

		SORT	u.age	DESC

		LIMIT	0,	5

		RETURN	{	

				"age"	:	u.age,	

				"name"	:	u.name	

		}

[

		{	

				"age"	:	37,	

						"name"	:	"Sophia"	

		},	

		{	

				"age"	:	37,	

				"name"	:	"John"	

		},	

		{	

				"age"	:	36,	

				"name"	:	"Emma"	

		},	

		{	

				"age"	:	36,	

				"name"	:	"Fred"	

		},	

		{	

				"age"	:	34,	

				"name"	:	"Madison"	

		}	

]

Projections	and	filters

174

Joins
So	far	we	have	only	dealt	with	one	collection	(users)	at	a	time.	We	also	have	a	collection	relations	that	stores	relationships	between	users.
We	will	now	use	this	extra	collection	to	create	a	result	from	two	collections.

First	of	all,	we'll	query	a	few	users	together	with	their	friends'	ids.	For	that,	we'll	use	all	relations	that	have	a	value	of	friend	in	their	type
attribute.	Relationships	are	established	by	using	the	friendOf	and	thisUser	attributes	in	the	relations	collection,	which	point	to	the	userId
values	in	the	users	collection.

Join	tuples

We'll	start	with	a	SQL-ish	result	set	and	return	each	tuple	(user	name,	friends	userId)	separately.	The	AQL	query	to	generate	such	result
is:

FOR	u	IN	users

		FILTER	u.active	==	true

		LIMIT	0,	4

		FOR	f	IN	relations

				FILTER	f.type	==	"friend"	&&	f.friendOf	==	u.userId

				RETURN	{

						"user"	:	u.name,

						"friendId"	:	f.thisUser

				}

[

		{

				"user"	:	"Abigail",

				"friendId"	:	108

		},

		{

				"user"	:	"Abigail",

				"friendId"	:	102

		},

		{

				"user"	:	"Abigail",

				"friendId"	:	106

		},

		{

				"user"	:	"Fred",

				"friendId"	:	209

		},

		{

				"user"	:	"Mary",

				"friendId"	:	207

		},

		{

				"user"	:	"Mary",

				"friendId"	:	104

		},

		{

				"user"	:	"Mariah",

				"friendId"	:	203

		},

		{

				"user"	:	"Mariah",

				"friendId"	:	205

		}

]

We	iterate	over	the	collection	users.	Only	the	'active'	users	will	be	examined.	For	each	of	these	users	we	will	search	for	up	to	4	friends.	We
locate	friends	by	comparing	the	userId	of	our	current	user	with	the	friendOf	attribute	of	the	relations	document.	For	each	of	those
relations	found	we	return	the	users	name	and	the	userId	of	the	friend.

Horizontal	lists

Joins

175

Note	that	in	the	above	result,	a	user	can	be	returned	multiple	times.	This	is	the	SQL	way	of	returning	data.	If	this	is	not	desired,	the
friends'	ids	of	each	user	can	be	returned	in	a	horizontal	list.	This	will	return	each	user	at	most	once.

The	AQL	query	for	doing	so	is:

FOR	u	IN	users

		FILTER	u.active	==	true	LIMIT	0,	4

		RETURN	{

				"user"	:	u.name,

				"friendIds"	:	(

						FOR	f	IN	relations

								FILTER	f.friendOf	==	u.userId	&&	f.type	==	"friend"

								RETURN	f.thisUser

)

		}

[

		{

				"user"	:	"Abigail",

				"friendIds"	:	[

						108,

						102,

						106

]

		},

		{

				"user"	:	"Fred",

				"friendIds"	:	[

						209

]

		},

		{

				"user"	:	"Mary",

				"friendIds"	:	[

						207,

						104

]

		},

		{

				"user"	:	"Mariah",

				"friendIds"	:	[

						203,

						205

]

		}

]

In	this	query	we	are	still	iterating	over	the	users	in	the	users	collection	and	for	each	matching	user	we	are	executing	a	subquery	to	create
the	matching	list	of	related	users.

Self	joins

To	not	only	return	friend	ids	but	also	the	names	of	friends,	we	could	"join"	the	users	collection	once	more	(something	like	a	"self	join"):

FOR	u	IN	users

		FILTER	u.active	==	true

		LIMIT	0,	4

		RETURN	{

				"user"	:	u.name,

				"friendIds"	:	(

						FOR	f	IN	relations

								FILTER	f.friendOf	==	u.userId	&&	f.type	==	"friend"

								FOR	u2	IN	users

										FILTER	f.thisUser	==	u2.useId

										RETURN	u2.name

)

		}

[

Joins

176

		{

				"user"	:	"Abigail",

				"friendIds"	:	[

						"Jim",

						"Jacob",

						"Daniel"

]

		},

		{

				"user"	:	"Fred",

				"friendIds"	:	[

						"Mariah"

]

		},

		{

				"user"	:	"Mary",

				"friendIds"	:	[

						"Isabella",

						"Michael"

]

		},

		{

				"user"	:	"Mariah",

				"friendIds"	:	[

						"Madison",

						"Eva"

]

		}

]

This	query	will	then	again	in	term	fetch	the	clear	text	name	of	the	friend	from	the	users	collection.	So	here	we	iterate	the	users	collection,
and	for	each	hit	the	relations	collection,	and	for	each	hit	once	more	the	users	collection.

Outer	joins

Lets	find	the	lonely	people	in	our	database	-	those	without	friends.

FOR	user	IN	users

		LET	friendList	=	(

				FOR	f	IN	relations

						FILTER	f.friendOf	==	u.userId

						RETURN	1

)

		FILTER	LENGTH(friendList)	==	0

		RETURN	{	"user"	:	user.name	}

[

		{

				"user"	:	"Abigail"

		},

		{

				"user"	:	"Fred"

		}

]

So,	for	each	user	we	pick	the	list	of	their	friends	and	count	them.	The	ones	where	count	equals	zero	are	the	lonely	people.	Using
RETURN	1	in	the	subquery	saves	even	more	precious	CPU	cycles	and	gives	the	optimizer	more	alternatives.

Index	usage

Especially	on	joins	you	should	make	sure	indices	can	be	used	to	speed	up	your	query.	Please	note	that	sparse	indices	don't	qualify	for
joins:

In	joins	you	typically	would	also	want	to	join	documents	not	containing	the	property	you	join	with.	However	sparse	indices	don't
contain	references	to	documents	that	don't	contain	the	indexed	attributes	-	thus	they	would	be	missing	from	the	join	operation.	For	that
reason	you	should	provide	non-sparse	indices.

Joins

177

Pitfalls

Since	we're	free	of	schemata,	there	is	by	default	no	way	to	tell	the	format	of	the	documents.	So,	if	your	documents	don't	contain	an
attribute,	it	defaults	to	null.	We	can	however	check	our	data	for	accuracy	like	this:

RETURN	LENGTH(FOR	u	IN	users	FILTER	u.userId	==	null	RETURN	1)

[

		10000

]

RETURN	LENGTH(FOR	f	IN	relations	FILTER	f.friendOf	==	null	RETURN	1)

[

		10000

]

So	if	the	above	queries	return	10k	matches	each,	the	result	of	the	Join	tuples	query	will	become	100,000,000	items	larger	and	use	much
memory	plus	computation	time.	So	it	is	generally	a	good	idea	to	revalidate	that	the	criteria	for	your	join	conditions	exist.

Using	indices	on	the	properties	can	speed	up	the	operation	significantly.	You	can	use	the	explain	helper	to	revalidate	your	query	actually
uses	them.

If	you	work	with	joins	on	edge	collections	you	would	typically	aggregate	over	the	internal	fields	_id,	_from	and	_to	(where	_id	equals
userId,	_from	friendOf	and	_to	would	be	thisUser	in	our	examples).	ArangoDB	implicitly	creates	indices	on	them.

Joins

178

Grouping
To	group	results	by	arbitrary	criteria,	AQL	provides	the	COLLECT	keyword.	COLLECT	will	perform	a	grouping,	but	no	aggregation.
Aggregation	can	still	be	added	in	the	query	if	required.

Ensuring	uniqueness

COLLECT	can	be	used	to	make	a	result	set	unique.	The	following	query	will	return	each	distinct		age		attribute	value	only	once:

FOR	u	IN	users

				COLLECT	age	=	u.age

				RETURN	age

This	is	grouping	without	tracking	the	group	values,	but	just	the	group	criterion	(age)	value.

Grouping	can	also	be	done	on	multiple	levels	using	COLLECT:

FOR	u	IN	users

				COLLECT	status	=	u.status,	age	=	u.age

				RETURN	{	status,	age	}

Alternatively	RETURN	DISTINCT	can	be	used	to	make	a	result	set	unique.	RETURN	DISTINCT	supports	a	single	criterion	only:

FOR	u	IN	users

				RETURN	DISTINCT	u.age

Note:	the	order	of	results	is	undefined	for	RETURN	DISTINCT.

Fetching	group	values

To	group	users	by	age,	and	return	the	names	of	the	users	with	the	highest	ages,	we'll	issue	a	query	like	this:

FOR	u	IN	users

				FILTER	u.active	==	true

				COLLECT	age	=	u.age	INTO	usersByAge

				SORT	age	DESC	LIMIT	0,	5

				RETURN	{

								age,

								users:	usersByAge[*].u.name

				}

[

		{	"age":	37,	"users":	["John",	"Sophia"]	},

		{	"age":	36,	"users":	["Fred",	"Emma"]	},

		{	"age":	34,	"users":	["Madison"]	},

		{	"age":	33,	"users":	["Chloe",	"Michael"]	},

		{	"age":	32,	"users":	["Alexander"]	}

]

The	query	will	put	all	users	together	by	their	age	attribute.	There	will	be	one	result	document	per	distinct	age	value	(let	aside	the
LIMIT).	For	each	group,	we	have	access	to	the	matching	document	via	the	usersByAge	variable	introduced	in	the	COLLECT	statement.

Variable	Expansion

The	usersByAge	variable	contains	the	full	documents	found,	and	as	we're	only	interested	in	user	names,	we'll	use	the	expansion	operator
[*]	to	extract	just	the	name	attribute	of	all	user	documents	in	each	group:

usersByAge[*].u.name

Grouping

179

The	[*]	expansion	operator	is	just	a	handy	short-cut.	We	could	also	write	a	subquery:

(FOR	temp	IN	usersByAge	RETURN	temp.u.name)

Grouping	by	multiple	criteria

To	group	by	multiple	criteria,	we'll	use	multiple	arguments	in	the	COLLECT	clause.	For	example,	to	group	users	by	ageGroup	(a	derived
value	we	need	to	calculate	first)	and	then	by	gender,	we'll	do:

FOR	u	IN	users

				FILTER	u.active	==	true

				COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5,

												gender	=	u.gender	INTO	group

				SORT	ageGroup	DESC

				RETURN	{

								ageGroup,

								gender

				}

[

		{	"ageGroup":	35,	"gender":	"f"	},

		{	"ageGroup":	35,	"gender":	"m"	},

		{	"ageGroup":	30,	"gender":	"f"	},

		{	"ageGroup":	30,	"gender":	"m"	},

		{	"ageGroup":	25,	"gender":	"f"	},

		{	"ageGroup":	25,	"gender":	"m"	}

]

Counting	group	values

If	the	goal	is	to	count	the	number	of	values	in	each	group,	AQL	provides	the	special	COLLECT	WITH	COUNT	INTO	syntax.	This	is	a
simple	variant	for	grouping	with	an	additional	group	length	calculation:

FOR	u	IN	users

				FILTER	u.active	==	true

				COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5,

												gender	=	u.gender	WITH	COUNT	INTO	numUsers

				SORT	ageGroup	DESC

				RETURN	{

								ageGroup,

								gender,

								numUsers

				}

[

		{	"ageGroup":	35,	"gender":	"f",	"numUsers":	2	},

		{	"ageGroup":	35,	"gender":	"m",	"numUsers":	2	},

		{	"ageGroup":	30,	"gender":	"f",	"numUsers":	4	},

		{	"ageGroup":	30,	"gender":	"m",	"numUsers":	4	},

		{	"ageGroup":	25,	"gender":	"f",	"numUsers":	2	},

		{	"ageGroup":	25,	"gender":	"m",	"numUsers":	2	}

]

Aggregation

Adding	further	aggregation	is	also	simple	in	AQL	by	using	an	AGGREGATE	clause	in	the	COLLECT:

FOR	u	IN	users

				FILTER	u.active	==	true

				COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5,

												gender	=	u.gender

				AGGREGATE	numUsers	=	LENGTH(1),

														minAge	=	MIN(u.age),

														maxAge	=	MAX(u.age)

				SORT	ageGroup	DESC

Grouping

180

				RETURN	{

								ageGroup,

								gender,

								numUsers,

								minAge,

								maxAge

				}

[

		{

				"ageGroup":	35,

				"gender":	"f",

				"numUsers":	2,

				"minAge":	36,

				"maxAge":	39,

		},

		{

				"ageGroup":	35,

				"gender":	"m",

				"numUsers":	2,

				"minAge":	35,

				"maxAge":	39,

		},

		...

]

We	have	used	the	aggregate	functions	LENGTH	here	(it	returns	the	length	of	an	array).	This	is	the	equivalent	to	SQL's		SELECT	g,
COUNT(*)	FROM	...	GROUP	BY	g	.	In	addition	to	LENGTH	AQL	also	provides	MAX,	MIN,	SUM	and	AVERAGE,
VARIANCE_POPULATION,	VARIANCE_SAMPLE,	STDDEV_POPULATION	and	STDDEV_SAMPLE	as	basic	aggregation	functions.

In	AQL	all	aggregation	functions	can	be	run	on	arrays	only.	If	an	aggregation	function	is	run	on	anything	that	is	not	an	array,	a	warning
will	be	produced	and	the	result	will	be	null.

Using	an	AGGREGATE	clause	will	ensure	the	aggregation	is	run	while	the	groups	are	built	in	the	collect	operation.	This	is	normally	more
efficient	than	collecting	all	group	values	for	all	groups	and	then	doing	a	post-aggregation.

Post-aggregation

Aggregation	can	also	be	performed	after	a	COLLECT	operation	using	other	AQL	constructs,	though	performance-wise	this	is	often
inferior	to	using	COLLECT	with	AGGREGATE.

The	same	query	as	before	can	be	turned	into	a	post-aggregation	query	as	shown	below.	Note	that	this	query	will	build	and	pass	on	all
group	values	for	all	groups	inside	the	variable	g,	and	perform	the	aggregation	at	the	latest	possible	stage:

FOR	u	IN	users

				FILTER	u.active	==	true

				COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5,

												gender	=	u.gender	INTO	g

				SORT	ageGroup	DESC

				RETURN	{

								ageGroup,

								gender,

								numUsers:	LENGTH(g[*]),

								minAge:	MIN(g[*].u.age),

								maxAge:	MAX(g[*].u.age)

				}

[

		{

				"ageGroup":	35,

				"gender":	"f",

				"numUsers":	2,

				"minAge":	36,

				"maxAge":	39,

		},

		{

				"ageGroup":	35,

				"gender":	"m",

Grouping

181

				"numUsers":	2,

				"minAge":	35,

				"maxAge":	39,

		},

		...

]

This	is	in	constrast	to	the	previous	query	that	used	an	AGGREGATE	clause	to	perform	the	aggregation	during	the	collect	operation,	at	the
earliest	possible	stage.

Post-filtering	aggregated	data

To	filter	the	results	of	a	grouping	or	aggregation	operation	(i.e.	something	similar	to	HAVING	in	SQL),	simply	add	another	FILTER	clause
after	the	COLLECT	statement.

For	example,	to	get	the	3	ageGroups	with	the	most	users	in	them:

FOR	u	IN	users

				FILTER	u.active	==	true

				COLLECT	ageGroup	=	FLOOR(u.age	/	5)	*	5	INTO	group

				LET	numUsers	=	LENGTH(group)

				FILTER	numUsers	>	2	/*	group	must	contain	at	least	3	users	in	order	to	qualify	*/

				SORT	numUsers	DESC

				LIMIT	0,	3

				RETURN	{

								"ageGroup":	ageGroup,

								"numUsers":	numUsers,

								"users":	group[*].u.name

				}

[

		{

				"ageGroup":	30,

				"numUsers":	8,

				"users":	[

						"Abigail",

						"Madison",

						"Anthony",

						"Alexander",

						"Isabella",

						"Chloe",

						"Daniel",

						"Michael"

]

		},

		{

				"ageGroup":	25,

				"numUsers":	4,

				"users":	[

						"Mary",

						"Mariah",

						"Jim",

						"Diego"

]

		},

		{

				"ageGroup":	35,

				"numUsers":	4,

				"users":	[

						"Fred",

						"John",

						"Emma",

						"Sophia"

]

		}

]

To	increase	readability,	the	repeated	expression	LENGTH(group)	was	put	into	a	variable	numUsers.	The	FILTER	on	numUsers	is	the
equivalent	an	SQL	HAVING	clause.

Grouping

182

Grouping

183

Combining	Graph	Traversals

Finding	the	start	vertex	via	a	geo	query

Our	first	example	will	locate	the	start	vertex	for	a	graph	traversal	via	a	geo	index.	We	use	the	city	graph	and	its	geo	indices:

arangosh>	var	examples	=	require("@arangodb/graph-examples/example-graph.js");

arangosh>	var	g	=	examples.loadGraph("routeplanner");

arangosh>	var	bonn=[50.7340,	7.0998];

arangosh>	db._query(`FOR	startCity	IN

........>													WITHIN(germanCity,	@lat,	@long,	@radius)

........>															RETURN	startCity`,

........>			{lat:	bonn[0],	long:	bonn[1],	radius:	400000}

........>).toArray()

show	execution	results
We	search	all	german	cities	in	a	range	of	400	km	around	the	ex-capital	Bonn:	Hamburg	and	Cologne.	We	won't	find	Paris	since	its	in	the
	frenchCity		collection.

arangosh>	db._query(`FOR	startCity	IN

........>													WITHIN(germanCity,	@lat,	@long,	@radius)

........>															FOR	v,	e,	p	IN	1..1	OUTBOUND	startCity

........>																	GRAPH	'routeplanner'

........>					RETURN	{startcity:	startCity._key,	traversedCity:	v}`,

........>	{

........>		lat:	bonn[0],

........>		long:	bonn[1],

........>		radius:	400000

........>	}).toArray()

show	execution	results
The	geo	index	query	returns	us		startCity		(Cologne	and	Hamburg)	which	we	then	use	as	starting	point	for	our	graph	traversal.	For
simplicity	we	only	return	their	direct	neighbours.	We	format	the	return	result	so	we	can	see	from	which		startCity		the	traversal	came.

Alternatively	we	could	use	a		LET		statement	with	a	subquery	to	group	the	traversals	by	their		startCity		efficiently:

arangosh>	db._query(`FOR	startCity	IN

........>												WITHIN(germanCity,	@lat,	@long,	@radius)

........>														LET	oneCity	=	(FOR	v,	e,	p	IN	1..1	OUTBOUND	startCity

........>																GRAPH	'routeplanner'	RETURN	v)

........>														return	{startCity:	startCity._key,	connectedCities:	oneCity}`,

........>	{

........>		lat:	bonn[0],

........>		long:	bonn[1],

........>		radius:	400000

........>	}).toArray();

show	execution	results
Finally,	we	clean	up	again:

arangosh>	examples.dropGraph("routeplanner");

true

Traversals

184

Traversals

185

Queries	without	collections
Following	is	a	query	that	returns	a	string	value.	The	result	string	is	contained	in	an	array	because	the	result	of	every	valid	query	is	an
array:

RETURN	"this	will	be	returned"

[

		"this	will	be	returned"	

]

Here	is	a	query	that	creates	the	cross	products	of	two	arrays	and	runs	a	projection	on	it,	using	a	few	of	AQL's	built-in	functions:

FOR	year	in	[2011,	2012,	2013]

		FOR	quarter	IN	[1,	2,	3,	4]

				RETURN	{	

						"y"	:	"year",	

						"q"	:	quarter,	

						"nice"	:	CONCAT(quarter,	"/",	year)	

				}

[

		{	"y"	:	"year",	"q"	:	1,	"nice"	:	"1/2011"	},	

		{	"y"	:	"year",	"q"	:	2,	"nice"	:	"2/2011"	},	

		{	"y"	:	"year",	"q"	:	3,	"nice"	:	"3/2011"	},	

		{	"y"	:	"year",	"q"	:	4,	"nice"	:	"4/2011"	},	

		{	"y"	:	"year",	"q"	:	1,	"nice"	:	"1/2012"	},	

		{	"y"	:	"year",	"q"	:	2,	"nice"	:	"2/2012"	},	

		{	"y"	:	"year",	"q"	:	3,	"nice"	:	"3/2012"	},	

		{	"y"	:	"year",	"q"	:	4,	"nice"	:	"4/2012"	},	

		{	"y"	:	"year",	"q"	:	1,	"nice"	:	"1/2013"	},	

		{	"y"	:	"year",	"q"	:	2,	"nice"	:	"2/2013"	},	

		{	"y"	:	"year",	"q"	:	3,	"nice"	:	"3/2013"	},	

		{	"y"	:	"year",	"q"	:	4,	"nice"	:	"4/2013"	}	

]

Queries	without	collections

186

Extending	AQL	with	User	Functions
AQL	comes	with	a	built-in	set	of	functions,	but	it	is	not	a	fully-featured	programming	language.

To	add	missing	functionality	or	to	simplify	queries,	users	may	add	their	own	functions	to	AQL	in	the	selected	database.	These	functions
are	written	in	JavaScript,	and	are	deployed	via	an	API;	see	Registering	Functions.

In	order	to	avoid	conflicts	with	existing	or	future	built-in	function	names,	all	user	defined	functions	(UDF)	have	to	be	put	into	separate
namespaces.	Invoking	a	UDF	is	then	possible	by	referring	to	the	fully-qualified	function	name,	which	includes	the	namespace,	too;	see
Conventions.

Technical	Details

Known	Limitations

UDFs	have	some	implications	you	should	be	aware	of.	Otherwise	they	can	introduce	serious	effects	on	the	performance	of	your
queries	and	the	resource	usage	in	ArangoDB.

Since	the	optimizer	doesn't	know	anything	about	the	nature	of	your	function,	the	optimizer	can't	use	indices	for	UDFs.	So	you	should
never	lean	on	a	UDF	as	the	primary	criterion	for	a		FILTER		statement	to	reduce	your	query	result	set.	Instead,	put	a	another		FILTER	
statement	in	front	of	it.	You	should	make	sure	that	this		FILTER		statement	is	effective	to	reduce	the	query	result	before	passing	it	to
your	UDF.

Rule	of	thumb	is,	the	closer	the	UDF	is	to	your	final		RETURN		statement	(or	maybe	even	inside	it),	the	better.

When	used	in	clusters,	UDFs	are	always	executed	on	the	coordinator.

Using	UDFs	in	clusters	may	result	in	a	higher	resource	allocation	in	terms	of	used	V8	contexts	and	server	threads.	If	you	run	out	of	these
resources,	your	query	may	abort	with	a	cluster	backend	unavailable	error.

To	overcome	these	mentioned	limitations,	you	may	want	to	increase	the	number	of	available	V8	contexts	(at	the	expense	of	increased
memory	usage),	and	the	number	of	available	server	threads.

Deployment	Details

Internally,	UDFs	are	stored	in	a	system	collection	named		_aqlfunctions		of	the	selected	database.	When	an	AQL	statement	refers	to
such	a	UDF,	it	is	loaded	from	that	collection.	The	UDFs	will	be	exclusively	available	for	queries	in	that	particular	database.

Since	the	coordinator	doesn't	have	own	local	collections,	the		_aqlfunctions		collection	is	sharded	across	the	cluster.	Therefore	(as	usual),
it	has	to	be	accessed	through	a	coordinator	-	you	mustn't	talk	to	the	shards	directly.	Once	it	is	in	the		_aqlfunctions		collection,	it	is
available	on	all	coordinators	without	additional	effort.

Keep	in	mind	that	system	collections	are	excluded	from	dumps	created	with	arangodump	by	default.	To	include	AQL	UDF	in	a	dump,
the	dump	needs	to	be	started	with	the	option	--include-system-collections	true.

User	Functions

187

Conventions

Naming

Built-in	AQL	functions	that	are	shipped	with	ArangoDB	reside	in	the	namespace	_aql,	which	is	also	the	default	namespace	to	look	in	if
an	unqualified	function	name	is	found.

To	refer	to	a	user-defined	AQL	function,	the	function	name	must	be	fully	qualified	to	also	include	the	user-defined	namespace.	The	::
symbol	is	used	as	the	namespace	separator.	Users	can	create	a	multi-level	hierarchy	of	function	groups	if	required:

MYGROUP::MYFUNC()

MYFUNCTIONS::MATH::RANDOM()

Note:	Adding	user	functions	to	the	_aql	namespace	is	disallowed	and	will	fail.

User	function	names	are	case-insensitive	like	all	function	names	in	AQL.

Variables	and	side	effects
User	functions	can	take	any	number	of	input	arguments	and	should	provide	one	result	via	a		return		statement.	User	functions	should	be
kept	purely	functional	and	thus	free	of	side	effects	and	state,	and	state	modification.

Modification	of	global	variables	is	unsupported,	as	is	changing	the	data	of	any	collection	from	inside	an	AQL	user	function.

User	function	code	is	late-bound,	and	may	thus	not	rely	on	any	variables	that	existed	at	the	time	of	declaration.	If	user	function	code
requires	access	to	any	external	data,	it	must	take	care	to	set	up	the	data	by	itself.

All	AQL	user	function-specific	variables	should	be	introduced	with	the		var		keyword	in	order	to	not	accidentally	access	already	defined
variables	from	outer	scopes.	Not	using	the		var		keyword	for	own	variables	may	cause	side	effects	when	executing	the	function.

Here	is	an	example	that	may	modify	outer	scope	variables		i		and		name	,	making	the	function	not	side-effect	free:

function	(values)	{

		for	(i	=	0;	i	<	values.length;	++i)	{

				name	=	values[i];

				if	(name	===	"foo")	{

						return	i;

				}

		}

		return	null;

}

The	above	function	can	be	made	free	of	side	effects	by	using	the		var		or		let		keywords,	so	the	variables	become	function-local
variables:

function	(values)	{

		for	(var	i	=	0;	i	<	values.length;	++i)	{

				var	name	=	values[i];

				if	(name	===	"foo")	{

						return	i;

				}

		}

		return	null;

}

Input	parameters

In	order	to	return	a	result,	a	user	function	should	use	a		return		instruction	rather	than	modifying	its	input	parameters.

Conventions

188

AQL	user	functions	are	allowed	to	modify	their	input	parameters	for	input	parameters	that	are	null,	boolean,	numeric	or	string	values.
Modifying	these	input	parameter	types	inside	a	user	function	should	be	free	of	side	effects.	However,	user	functions	should	not	modify
input	parameters	if	the	parameters	are	arrays	or	objects	and	as	such	passed	by	reference,	as	that	may	modify	variables	and	state	outside
of	the	user	function	itself.

Return	values

User	functions	must	only	return	primitive	types	(i.e.	null,	boolean	values,	numeric	values,	string	values)	or	aggregate	types	(arrays	or
objects)	composed	of	these	types.	Returning	any	other	JavaScript	object	type	(Function,	Date,	RegExp	etc.)	from	a	user	function	may
lead	to	undefined	behavior	and	should	be	avoided.

Enforcing	strict	mode

By	default,	any	user	function	code	will	be	executed	in	sloppy	mode,	not	strict	or	strong	mode.	In	order	to	make	a	user	function	run	in
strict	mode,	use		"use	strict"		explicitly	inside	the	user	function,	e.g.:

function	(values)	{

		"use	strict"

		for	(var	i	=	0;	i	<	values.length;	++i)	{

				var	name	=	values[i];

				if	(name	===	"foo")	{

						return	i;

				}

		}

		return	null;

}

Any	violation	of	the	strict	mode	will	trigger	a	runtime	error.

Conventions

189

Registering	and	Unregistering	User	Functions
AQL	user	functions	can	be	registered	in	the	selected	database	using	the	aqlfunctions	object	as	follows:

var	aqlfunctions	=	require("@arangodb/aql/functions");

To	register	a	function,	the	fully	qualified	function	name	plus	the	function	code	must	be	specified.	This	can	easily	be	done	in	arangosh.
The	HTTP	Interface	also	offers	User	Functions	management.

Documents	in	the	_aqlfunctions	collection	(or	any	other	system	collection)	should	not	be	accessed	directly,	but	only	via	the	dedicated
interfaces.	Otherwise	you	might	see	caching	issues	or	accidentally	break	something.	The	interfaces	will	ensure	the	correct	format	of	the
documents	and	invalidate	the	UDF	cache.

Registering	an	AQL	user	function

For	testing,	it	may	be	sufficient	to	directly	type	the	function	code	in	the	shell.	To	manage	more	complex	code,	you	may	write	it	in	the
code	editor	of	your	choice	and	save	it	as	file.	For	example:

/*	path/to/file.js	*/

'use	strict';

function	greeting(name)	{

				if	(name	===	undefined)	{

								name	=	"World";

				}

				return	`Hello	${name}!`;

}

module.exports	=	greeting;

Then	require	it	in	the	shell	in	order	to	register	a	user-defined	function:

arangosh>	var	func	=	require("path/to/file.js");

arangosh>	aqlfunctions.register("HUMAN::GREETING",	func,	true);

Note	that	a	return	value	of	false	means	that	the	function		HUMAN::GREETING		was	newly	created,	and	not	that	it	failed	to	register.	true	is
returned	if	a	function	of	that	name	existed	before	and	was	just	updated.

	aqlfunctions.register(name,	code,	isDeterministic)	

Registers	an	AQL	user	function,	identified	by	a	fully	qualified	function	name.	The	function	code	in	code	must	be	specified	as	a	JavaScript
function	or	a	string	representation	of	a	JavaScript	function.	If	the	function	code	in	code	is	passed	as	a	string,	it	is	required	that	the	string
evaluates	to	a	JavaScript	function	definition.

If	a	function	identified	by	name	already	exists,	the	previous	function	definition	will	be	updated.	Please	also	make	sure	that	the	function
code	does	not	violate	the	Conventions	for	AQL	functions.

The	isDeterministic	attribute	can	be	used	to	specify	whether	the	function	results	are	fully	deterministic	(i.e.	depend	solely	on	the	input
and	are	the	same	for	repeated	calls	with	the	same	input	values).	It	is	not	used	at	the	moment	but	may	be	used	for	optimizations	later.

The	registered	function	is	stored	in	the	selected	database's	system	collection	_aqlfunctions.

The	function	returns	true	when	it	updates/replaces	an	existing	AQL	function	of	the	same	name,	and	false	otherwise.	It	will	throw	an
exception	when	it	detects	syntactially	invalid	function	code.

Examples

require("@arangodb/aql/functions").register("MYFUNCTIONS::TEMPERATURE::CELSIUSTOFAHRENHEIT",

function	(celsius)	{

		return	celsius	*	1.8	+	32;

});

Registering	Functions

190

The	function	code	will	not	be	executed	in	strict	mode	or	strong	mode	by	default.	In	order	to	make	a	user	function	being	run	in	strict	mode,
use		use	strict		explicitly,	e.g.:

require("@arangodb/aql/functions").register("MYFUNCTIONS::TEMPERATURE::CELSIUSTOFAHRENHEIT",

function	(celsius)	{

		"use	strict";

		return	celsius	*	1.8	+	32;

});

You	can	access	the	name	under	which	the	AQL	function	is	registered	by	accessing	the		name		property	of		this		inside	the	JavaScript
code:

require("@arangodb/aql/functions").register("MYFUNCTIONS::TEMPERATURE::CELSIUSTOFAHRENHEIT",

function	(celsius)	{

		"use	strict";

		if	(typeof	celsius	===	"undefined")	{

				const	error	=	require("@arangodb").errors.ERROR_QUERY_FUNCTION_ARGUMENT_NUMBER_MISMATCH;

				AQL_WARNING(error.code,	require("util").format(error.message,	this.name,	1,	1));

		}

		return	celsius	*	1.8	+	32;

});

	AQL_WARNING()		is	automatically	available	to	the	code	of	user-defined	functions.	The	error	code	and	message	is	retrieved	via		@arangodb	
module.	The	argument	number	mismatch	message	has	placeholders,	which	we	can	substitute	using	format():

invalid	number	of	arguments	for	function	'%s()',	expected	number	of	arguments:	minimum:	%d,	maximum:	%d

In	the	example	above,		%s		is	replaced	by		this.name		(the	AQL	function	name),	and	both		%d		placeholders	by		1		(number	of	expected
arguments).	If	you	call	the	function	without	an	argument,	you	will	see	this:

arangosh>	db._query("RETURN	MYFUNCTIONS::TEMPERATURE::CELSIUSTOFAHRENHEIT()")

[object	ArangoQueryCursor,	count:	1,	hasMore:	false,	warning:	1541	-	invalid

number	of	arguments	for	function	'MYFUNCTIONS::TEMPERATURE::CELSIUSTOFAHRENHEIT()',

expected	number	of	arguments:	minimum:	1,	maximum:	1]

[

		null

]

Deleting	an	existing	AQL	user	function

	aqlfunctions.unregister(name)	

Unregisters	an	existing	AQL	user	function,	identified	by	the	fully	qualified	function	name.

Trying	to	unregister	a	function	that	does	not	exist	will	result	in	an	exception.

Examples

require("@arangodb/aql/functions").unregister("MYFUNCTIONS::TEMPERATURE::CELSIUSTOFAHRENHEIT");

Unregister	Group

delete	a	group	of	AQL	user	functions		aqlfunctions.unregisterGroup(prefix)	

Unregisters	a	group	of	AQL	user	function,	identified	by	a	common	function	group	prefix.

This	will	return	the	number	of	functions	unregistered.

Examples

require("@arangodb/aql/functions").unregisterGroup("MYFUNCTIONS::TEMPERATURE");

require("@arangodb/aql/functions").unregisterGroup("MYFUNCTIONS");

Registering	Functions

191

http://nodejs.org/api/util.html

Listing	all	AQL	user	functions

	aqlfunctions.toArray()	

Returns	all	previously	registered	AQL	user	functions,	with	their	fully	qualified	names	and	function	code.

The	result	may	optionally	be	restricted	to	a	specified	group	of	functions	by	specifying	a	group	prefix:

	aqlfunctions.toArray(prefix)	

Examples

To	list	all	available	user	functions:

require("@arangodb/aql/functions").toArray();

To	list	all	available	user	functions	in	the	MYFUNCTIONS	namespace:

require("@arangodb/aql/functions").toArray("MYFUNCTIONS");

To	list	all	available	user	functions	in	the	MYFUNCTIONS::TEMPERATURE	namespace:

require("@arangodb/aql/functions").toArray("MYFUNCTIONS::TEMPERATURE");

Registering	Functions

192

AQL	Execution	and	Performance
This	chapter	describes	AQL	features	related	to	query	executions	and	query	performance.

Execution	statistics:	A	query	that	has	been	executed	also	returns	statistics	about	its	execution.

Query	parsing:	Clients	can	use	ArangoDB	to	check	if	a	given	AQL	query	is	syntactically	valid.

Query	execution	plan:	If	it	is	unclear	how	a	given	query	will	perform,	clients	can	retrieve	a	query's	execution	plan	from	the	AQL
query	optimizer	without	actually	executing	the	query;	this	is	called	explaining.

The	AQL	query	optimizer:	AQL	queries	are	sent	through	an	optimizer	before	execution.	The	task	of	the	optimizer	is	to	create	an
initial	execution	plan	for	the	query,	look	for	optimization	opportunities	and	apply	them.

The	AQL	query	result	cache:	an	optional	query	result	cache	is	used	to	avoid	repeated	calculation	of	the	same	query	results.

Execution	and	Performance

193

Query	statistics
A	query	that	has	been	executed	will	always	return	execution	statistics.	Execution	statistics	can	be	retrieved	by	calling		getExtra()		on	the
cursor.	The	statistics	are	returned	in	the	return	value's		stats		attribute:

arangosh>	db._query(`

........>			FOR	i	IN	1..@count	INSERT

........>					{	_key:	CONCAT('anothertest',	TO_STRING(i))	}

........>					INTO	mycollection`,

........>		{count:	100},

........>		{},

........>		{fullCount:	true}

........>).getExtra();

arangosh>	db._query({

........>		"query":	`FOR	i	IN	200..@count	INSERT

........>														{	_key:	CONCAT('anothertest',	TO_STRING(i))	}

........>														INTO	mycollection`,

........>		"bindVars":	{count:	300},

........>		"options":	{	fullCount:	true}

........>	}).getExtra();

show	execution	results
The	meaning	of	the	statistics	attributes	is	as	follows:

writesExecuted:	the	total	number	of	data-modification	operations	successfully	executed.	This	is	equivalent	to	the	number	of
documents	created,	updated	or	removed	by		INSERT	,		UPDATE	,		REPLACE		or		REMOVE		operations.
writesIgnored:	the	total	number	of	data-modification	operations	that	were	unsuccessful,	but	have	been	ignored	because	of	query
option		ignoreErrors	.
scannedFull:	the	total	number	of	documents	iterated	over	when	scanning	a	collection	without	an	index.	Documents	scanned	by
subqueries	will	be	included	in	the	result,	but	not	no	operations	triggered	by	built-in	or	user-defined	AQL	functions.
scannedIndex:	the	total	number	of	documents	iterated	over	when	scanning	a	collection	using	an	index.	Documents	scanned	by
subqueries	will	be	included	in	the	result,	but	not	no	operations	triggered	by	built-in	or	user-defined	AQL	functions.
filtered:	the	total	number	of	documents	that	were	removed	after	executing	a	filter	condition	in	a		FilterNode	.	Note	that
	IndexRangeNode	s	can	also	filter	documents	by	selecting	only	the	required	index	range	from	a	collection,	and	the		filtered		value
only	indicates	how	much	filtering	was	done	by		FilterNode	s.
fullCount:	the	total	number	of	documents	that	matched	the	search	condition	if	the	query's	final		LIMIT		statement	were	not	present.
This	attribute	will	only	be	returned	if	the		fullCount		option	was	set	when	starting	the	query	and	will	only	contain	a	sensible	value
if	the	query	contained	a		LIMIT		operation	on	the	top	level.

Query	statistics

194

Parsing	queries
Clients	can	use	ArangoDB	to	check	if	a	given	AQL	query	is	syntactically	valid.	ArangoDB	provides	an	HTTP	REST	API	for	this.

A	query	can	also	be	parsed	from	the	ArangoShell	using		ArangoStatement	's		parse		method.	The		parse		method	will	throw	an	exception
if	the	query	is	syntactically	invalid.	Otherwise,	it	will	return	the	some	information	about	the	query.

The	return	value	is	an	object	with	the	collection	names	used	in	the	query	listed	in	the		collections		attribute,	and	all	bind	parameters
listed	in	the		bindVars		attribute.	Additionally,	the	internal	representation	of	the	query,	the	query's	abstract	syntax	tree,	will	be	returned
in	the		AST		attribute	of	the	result.	Please	note	that	the	abstract	syntax	tree	will	be	returned	without	any	optimizations	applied	to	it.

arangosh>	var	stmt	=	db._createStatement(

........>	"FOR	doc	IN	@@collection	FILTER	doc.foo	==	@bar	RETURN	doc");

arangosh>	stmt.parse();

show	execution	results

Parsing	queries

195

Explaining	queries
If	it	is	unclear	how	a	given	query	will	perform,	clients	can	retrieve	a	query's	execution	plan	from	the	AQL	query	optimizer	without
actually	executing	the	query.	Getting	the	query	execution	plan	from	the	optimizer	is	called	explaining.

An	explain	will	throw	an	error	if	the	given	query	is	syntactically	invalid.	Otherwise,	it	will	return	the	execution	plan	and	some
information	about	what	optimizations	could	be	applied	to	the	query.	The	query	will	not	be	executed.

Explaining	a	query	can	be	achieved	by	calling	the	HTTP	REST	API.	A	query	can	also	be	explained	from	the	ArangoShell	using
	ArangoStatement	's		explain		method.

By	default,	the	query	optimizer	will	return	what	it	considers	to	be	the	optimal	plan.	The	optimal	plan	will	be	returned	in	the		plan	
attribute	of	the	result.	If		explain		is	called	with	option		allPlans		set	to		true	,	all	plans	will	be	returned	in	the		plans		attribute
instead.	The	result	object	will	also	contain	an	attribute	warnings,	which	is	an	array	of	warnings	that	occurred	during	optimization	or
execution	plan	creation.

Each	plan	in	the	result	is	an	object	with	the	following	attributes:

nodes:	the	array	of	execution	nodes	of	the	plan.	The	list	of	available	node	types	can	be	found	here
estimatedCost:	the	total	estimated	cost	for	the	plan.	If	there	are	multiple	plans,	the	optimizer	will	choose	the	plan	with	the	lowest
total	cost.
collections:	an	array	of	collections	used	in	the	query
rules:	an	array	of	rules	the	optimizer	applied.	The	list	of	rules	can	be	found	here
variables:	array	of	variables	used	in	the	query	(note:	this	may	contain	internal	variables	created	by	the	optimizer)

Here	is	an	example	for	retrieving	the	execution	plan	of	a	simple	query:

arangosh>	var	stmt	=	db._createStatement(

........>	"FOR	user	IN	_users	RETURN	user");

arangosh>	stmt.explain();

show	execution	results
As	the	output	of		explain		is	very	detailed,	it	is	recommended	to	use	some	scripting	to	make	the	output	less	verbose:

arangosh>	var	formatPlan	=	function	(plan)	{

........>				return	{	estimatedCost:	plan.estimatedCost,

........>								nodes:	plan.nodes.map(function(node)	{

........>	return	node.type;	})	};	};

arangosh>	formatPlan(stmt.explain().plan);

show	execution	results
If	a	query	contains	bind	parameters,	they	must	be	added	to	the	statement	before		explain		is	called:

arangosh>	var	stmt	=	db._createStatement(

........>	`FOR	doc	IN	@@collection	FILTER	doc.user	==	@user	RETURN	doc`

........>);

arangosh>	stmt.bind({	"@collection"	:	"_users",	"user"	:	"root"	});

arangosh>	stmt.explain();

show	execution	results
In	some	cases	the	AQL	optimizer	creates	multiple	plans	for	a	single	query.	By	default	only	the	plan	with	the	lowest	total	estimated	cost
is	kept,	and	the	other	plans	are	discarded.	To	retrieve	all	plans	the	optimizer	has	generated,		explain		can	be	called	with	the	option
	allPlans		set	to		true	.

In	the	following	example,	the	optimizer	has	created	two	plans:

Explaining	queries

196

arangosh>	var	stmt	=	db._createStatement(

........>	"FOR	user	IN	_users	FILTER	user.user	==	'root'	RETURN	user");

arangosh>	stmt.explain({	allPlans:	true	}).plans.length;

1

To	see	a	slightly	more	compact	version	of	the	plan,	the	following	transformation	can	be	applied:

arangosh>	stmt.explain({	allPlans:	true	}).plans.map(

........>	function(plan)	{	return	formatPlan(plan);	});

show	execution	results
	explain		will	also	accept	the	following	additional	options:

maxPlans:	limits	the	maximum	number	of	plans	that	are	created	by	the	AQL	query	optimizer
optimizer.rules:	an	array	of	to-be-included	or	to-be-excluded	optimizer	rules	can	be	put	into	this	attribute,	telling	the	optimizer	to
include	or	exclude	specific	rules.	To	disable	a	rule,	prefix	its	name	with	a		-	,	to	enable	a	rule,	prefix	it	with	a		+	.	There	is	also	a
pseudo-rule		all	,	which	will	match	all	optimizer	rules.

The	following	example	disables	all	optimizer	rules	but		remove-redundant-calculations	:

arangosh>	stmt.explain({	optimizer:	{

........>	rules:	["-all",	"+remove-redundant-calculations"]	}	});

show	execution	results
The	contents	of	an	execution	plan	are	meant	to	be	machine-readable.	To	get	a	human-readable	version	of	a	query's	execution	plan,	the
following	commands	can	be	used:

arangosh>	var	query	=	"FOR	doc	IN	mycollection	FILTER	doc.value	>	42	RETURN	doc";

arangosh>	require("@arangodb/aql/explainer").explain(query,	{colors:false});

show	execution	results
The	above	command	prints	the	query's	execution	plan	in	the	ArangoShell	directly,	focusing	on	the	most	important	information.

Explaining	queries

197

The	AQL	query	optimizer
AQL	queries	are	sent	through	an	optimizer	before	execution.	The	task	of	the	optimizer	is	to	create	an	initial	execution	plan	for	the	query,
look	for	optimization	opportunities	and	apply	them.	As	a	result,	the	optimizer	might	produce	multiple	execution	plans	for	a	single	query.
It	will	then	calculate	the	costs	for	all	plans	and	pick	the	plan	with	the	lowest	total	cost.	This	resulting	plan	is	considered	to	be	the	optimal
plan,	which	is	then	executed.

The	optimizer	is	designed	to	only	perform	optimizations	if	they	are	safe,	in	the	meaning	that	an	optimization	should	not	modify	the
result	of	a	query.	A	notable	exception	to	this	is	that	the	optimizer	is	allowed	to	change	the	order	of	results	for	queries	that	do	not
explicitly	specify	how	results	should	be	sorted.

Execution	plans

The		explain		command	can	be	used	to	query	the	optimal	executed	plan	or	even	all	plans	the	optimizer	has	generated.	Additionally,
	explain		can	reveal	some	more	information	about	the	optimizer's	view	of	the	query.

Inspecting	plans	using	the	explain	helper

The		explain		method	of		ArangoStatement		as	shown	in	the	next	chapters	creates	very	verbose	output.	You	can	work	on	the	output
programmatically,	or	use	this	handsome	tool	that	we	created	to	generate	a	more	human	readable	representation.

You	may	use	it	like	this:	(we	disable	syntax	highlighting	here)

arangosh>	db._create("test");

arangosh>	for	(i	=	0;	i	<	100;	++i)	{	db.test.save({	value:	i	});	}

arangosh>	db.test.ensureIndex({	type:	"skiplist",	fields:	["value"]	});

arangosh>	var	explain	=	require("@arangodb/aql/explainer").explain;

arangosh>	explain("FOR	i	IN	test	FILTER	i.value	>	97	SORT	i.value	RETURN	i.value",	

{colors:false});

show	execution	results

Execution	plans	in	detail

Let's	have	a	look	at	the	raw	json	output	of	the	same	execution	plan	using	the		explain		method	of		ArangoStatement	:

arangosh>	stmt	=	db._createStatement("FOR	i	IN	test	FILTER	i.value	>	97	SORT	i.value	

RETURN	i.value");

arangosh>	stmt.explain();

show	execution	results
As	you	can	see,	the	result	details	are	very	verbose	so	we	will	not	show	them	in	full	in	the	next	sections.	Instead,	let's	take	a	closer	look	at
the	results	step	by	step.

Execution	nodes

In	general,	an	execution	plan	can	be	considered	to	be	a	pipeline	of	processing	steps.	Each	processing	step	is	carried	out	by	a	so-called
execution	node

The		nodes		attribute	of	the		explain		result	contains	these	execution	nodes	in	the	execution	plan.	The	output	is	still	very	verbose,	so
here's	a	shorted	form	of	it:

arangosh>	stmt.explain().plan.nodes.map(function	(node)	{	return	node.type;	});

show	execution	results

Optimizing	queries

198

Note	that	the	list	of	nodes	might	slightly	change	in	future	versions	of	ArangoDB	if	new	execution	node	types	get	added	or	the	optimizer
create	somewhat	more	optimized	plans).

When	a	plan	is	executed,	the	query	execution	engine	will	start	with	the	node	at	the	bottom	of	the	list	(i.e.	the	ReturnNode).

The	ReturnNode's	purpose	is	to	return	data	to	the	caller.	It	does	not	produce	data	itself,	so	it	will	ask	the	node	above	itself,	this	is	the
CalculationNode	in	our	example.	CalculationNodes	are	responsible	for	evaluating	arbitrary	expressions.	In	our	example	query,	the
CalculationNode	will	evaluate	the	value	of		i.value	,	which	is	needed	by	the	ReturnNode.	The	calculation	will	be	applied	for	all	data	the
CalculationNode	gets	from	the	node	above	it,	in	our	example	the	IndexNode.

Finally,	all	of	this	needs	to	be	done	for	documents	of	collection		test	.	This	is	where	the	IndexNode	enters	the	game.	It	will	use	an	index
(thus	its	name)	to	find	certain	documents	in	the	collection	and	ship	it	down	the	pipeline	in	the	order	required	by		SORT	i.value	.	The
IndexNode	itself	has	a	SingletonNode	as	its	input.	The	sole	purpose	of	a	SingletonNode	node	is	to	provide	a	single	empty	document	as
input	for	other	processing	steps.	It	is	always	the	end	of	the	pipeline.

Here's	a	summary:

SingletonNode:	produces	an	empty	document	as	input	for	other	processing	steps.
IndexNode:	iterates	over	the	index	on	attribute		value		in	collection		test		in	the	order	required	by		SORT	i.value	.
CalculationNode:	evaluates	the	result	of	the	calculation		i.value	>	97		to		true		or		false	
CalculationNode:	calculates	return	value		i.value	
ReturnNode:	returns	data	to	the	caller

Optimizer	rules

Note	that	in	the	example,	the	optimizer	has	optimized	the		SORT		statement	away.	It	can	do	it	safely	because	there	is	a	sorted	skiplist
index	on		i.value	,	which	it	has	picked	in	the	IndexNode.	As	the	index	values	are	iterated	over	in	sorted	order	anyway,	the	extra
SortNode	would	have	been	redundant	and	was	removed.

Additionally,	the	optimizer	has	done	more	work	to	generate	an	execution	plan	that	avoids	as	much	expensive	operations	as	possible.	Here
is	the	list	of	optimizer	rules	that	were	applied	to	the	plan:

arangosh>	stmt.explain().plan.rules;

show	execution	results
Here	is	the	meaning	of	these	rules	in	context	of	this	query:

	move-calculations-up	:	moves	a	CalculationNode	as	far	up	in	the	processing	pipeline	as	possible
	move-filters-up	:	moves	a	FilterNode	as	far	up	in	the	processing	pipeline	as	possible
	remove-redundant-calculations	:	replaces	references	to	variables	with	references	to	other	variables	that	contain	the	exact	same
result.	In	the	example	query,		i.value		is	calculated	multiple	times,	but	each	calculation	inside	a	loop	iteration	would	produce	the
same	value.	Therefore,	the	expression	result	is	shared	by	several	nodes.
	remove-unnecessary-calculations	:	removes	CalculationNodes	whose	result	values	are	not	used	in	the	query.	In	the	example	this
happens	due	to	the		remove-redundant-calculations		rule	having	made	some	calculations	unnecessary.
	use-indexes	:	use	an	index	to	iterate	over	a	collection	instead	of	performing	a	full	collection	scan.	In	the	example	case	this	makes
sense,	as	the	index	can	be	used	for	filtering	and	sorting.
	remove-filter-covered-by-index	:	remove	an	unnessary	filter	whose	functionality	is	already	covered	by	an	index.	In	this	case	the
index	only	returns	documents	matching	the	filter.
	use-index-for-sort	:	removes	a		SORT		operation	if	it	is	already	satisfied	by	traversing	over	a	sorted	index

Note	that	some	rules	may	appear	multiple	times	in	the	list,	with	number	suffixes.	This	is	due	to	the	same	rule	being	applied	multiple
times,	at	different	positions	in	the	optimizer	pipeline.

Collections	used	in	a	query

The	list	of	collections	used	in	a	plan	(and	query)	is	contained	in	the		collections		attribute	of	a	plan:

arangosh>	stmt.explain().plan.collections

show	execution	results

Optimizing	queries

199

The		name		attribute	contains	the	name	of	the		collection	,	and		type		is	the	access	type,	which	can	be	either		read		or		write	.

Variables	used	in	a	query

The	optimizer	will	also	return	a	list	of	variables	used	in	a	plan	(and	query).	This	list	will	contain	auxiliary	variables	created	by	the
optimizer	itself.	This	list	can	be	ignored	by	end	users	in	most	cases.

Cost	of	a	query

For	each	plan	the	optimizer	generates,	it	will	calculate	the	total	cost.	The	plan	with	the	lowest	total	cost	is	considered	to	be	the	optimal
plan.	Costs	are	estimates	only,	as	the	actual	execution	costs	are	unknown	to	the	optimizer.	Costs	are	calculated	based	on	heuristics	that
are	hard-coded	into	execution	nodes.	Cost	values	do	not	have	any	unit.

Retrieving	all	execution	plans

To	retrieve	not	just	the	optimal	plan	but	a	list	of	all	plans	the	optimizer	has	generated,	set	the	option		allPlans		to		true	:

This	will	return	a	list	of	all	plans	in	the		plans		attribute	instead	of	in	the		plan		attribute:

arangosh>	stmt.explain({	allPlans:	true	});

show	execution	results

Retrieving	the	plan	as	it	was	generated	by	the	parser	/	lexer

To	retrieve	the	plan	which	closely	matches	your	query,	you	may	turn	off	most	optimization	rules	(i.e.	cluster	rules	cannot	be	disabled	if
you're	running	the	explain	on	a	cluster	coordinator)	set	the	option		rules		to		-all	:

This	will	return	an	unoptimized	plan	in	the		plan	:

arangosh>	stmt.explain({	optimizer:	{	rules:	["-all"]	}	});

show	execution	results
Note	that	some	optimizations	are	already	done	at	parse	time	(i.e.	evaluate	simple	constant	calculation	as		1	+	1)

Turning	specific	optimizer	rules	off

Optimizer	rules	can	also	be	turned	on	or	off	individually,	using	the		rules		attribute.	This	can	be	used	to	enable	or	disable	one	or	multiple
rules.	Rules	that	shall	be	enabled	need	to	be	prefixed	with	a		+	,	rules	to	be	disabled	should	be	prefixed	with	a		-	.	The	pseudo-rule		all	
matches	all	rules.

Rules	specified	in		rules		are	evaluated	from	left	to	right,	so	the	following	works	to	turn	on	just	the	one	specific	rule:

arangosh>	stmt.explain({	optimizer:	{	rules:	["-all",	"+use-index-range"]	}	});

show	execution	results
By	default,	all	rules	are	turned	on.	To	turn	off	just	a	few	specific	rules,	use	something	like	this:

arangosh>	stmt.explain({	optimizer:	{	rules:	["-use-index-range",	"-use-index-for-sort"]	

}	});

show	execution	results
The	maximum	number	of	plans	created	by	the	optimizer	can	also	be	limited	using	the		maxNumberOfPlans		attribute:

arangosh>	stmt.explain({	maxNumberOfPlans:	1	});

show	execution	results

Optimizing	queries

200

Optimizer	statistics

The	optimizer	will	return	statistics	as	a	part	of	an		explain		result.

The	following	attributes	will	be	returned	in	the		stats		attribute	of	an		explain		result:

	plansCreated	:	total	number	of	plans	created	by	the	optimizer
	rulesExecuted	:	number	of	rules	executed	(note:	an	executed	rule	does	not	indicate	a	plan	was	actually	modified	by	a	rule)
	rulesSkipped	:	number	of	rules	skipped	by	the	optimizer

Warnings

For	some	queries,	the	optimizer	may	produce	warnings.	These	will	be	returned	in	the		warnings		attribute	of	the		explain		result:

arangosh>	var	stmt	=	db._createStatement("FOR	i	IN	1..10	RETURN	1	/	0")

arangosh>	stmt.explain().warnings;

show	execution	results
There	is	an	upper	bound	on	the	number	of	warning	a	query	may	produce.	If	that	bound	is	reached,	no	further	warnings	will	be	returned.

Things	to	consider	for	optimizing	queries

While	the	optimizer	can	fix	some	things	in	queries,	its	not	allowed	to	take	some	assumptions,	that	you,	the	user,	knowing	what	queries
are	intended	to	do	can	take.	It	may	pull	calculations	to	the	front	of	the	execution,	but	it	may	not	cross	certain	borders.

So	in	certain	cases	you	may	want	to	move	calculations	in	your	query,	so	they're	cheaper.	Even	more	expensive	is	if	you	have	calculacions
that	are	executed	in	javascript:

arangosh>	db._explain('FOR	x	IN	1..10	LET	then=DATE_NOW()	FOR	y	IN	1..10	LET	

now=DATE_NOW()	LET	nowstr=CONCAT(now,	x,	y,	then)	RETURN	nowstr',	{},	{colors:	false})

arangosh>	db._explain('LET	now=DATE_NOW()	FOR	x	IN	1..10	FOR	y	IN	1..10	LET	

nowstr=CONCAT(now,	x,	y,	now)	RETURN	nowstr',	{},	{colors:	false})

show	execution	results
You	can	see,	that	the	optimizer	found		1..10		is	specified	twice,	but	can	be	done	first	one	time.

While	you	may	see	time	passing	by	during	the	execution	of	the	query	and	its	calls	to		DATE_NOW()		this	may	not	be	the	desired	thing	in
first	place.	The	queries	V8	Expressions	will	however	also	use	significant	resources,	since	its	executed	10	x	10	times	=>	100	times.	Now	if
we	don't	care	for	the	time	ticking	by	during	the	query	execution,	we	may	fetch	the	time	once	at	the	startup	of	the	query,	which	will	then
only	give	us	one	V8	expression	at	the	very	start	of	the	query.

Next	to	bringing	better	performance,	this	also	obeys	the	DRY	principle.

Optimization	in	a	cluster

When	you're	running	AQL	in	the	cluster,	the	parsing	of	the	query	is	done	on	the	coordinator.	The	coordinator	then	chops	the	query	into
snipets,	which	are	to	remain	on	the	coordinator,	and	others	that	are	to	be	distributed	over	the	network	to	the	shards.	The	cutting	sites	are
interconnected	via	Scatter-,	Gather-	and	RemoteNodes.

These	nodes	mark	the	network	borders	of	the	snippets.	The	optimizer	strives	to	reduce	the	amount	of	data	transfered	via	these	network
interfaces	by	pushing		FILTER	s	out	to	the	shards,	as	it	is	vital	to	the	query	performance	to	reduce	that	data	amount	to	transfer	over	the
network	links.

Snippets	marked	with	DBS 	are	executed	on	the	shards,	COOR	ones	are	excuted	on	the	coordinator.

As	usual,	the	optimizer	can	only	take	certain	assumptions	for	granted	when	doing	so,	i.e.	user-defined	functions	have	to	be
executed	on	the	coordinator.	If	in	doubt,	you	should	modify	your	query	to	reduce	the	number	interconnections	between	your
snippets.

When	optimizing	your	query	you	may	want	to	look	at	simpler	parts	of	it	first.

Optimizing	queries

201

https://en.wikipedia.org/wiki/Don't_repeat_yourself

List	of	execution	nodes

The	following	execution	node	types	will	appear	in	the	output	of		explain	:

SingletonNode:	the	purpose	of	a	SingletonNode	is	to	produce	an	empty	document	that	is	used	as	input	for	other	processing	steps.
Each	execution	plan	will	contain	exactly	one	SingletonNode	as	its	top	node.
EnumerateCollectionNode:	enumeration	over	documents	of	a	collection	(given	in	its	collection	attribute)	without	using	an	index.
IndexNode:	enumeration	over	one	or	many	indexes	(given	in	its	indexes	attribute)	of	a	collection.	The	index	ranges	are	specified	in	the
condition	attribute	of	the	node.
EnumerateListNode:	enumeration	over	a	list	of	(non-collection)	values.
FilterNode:	only	lets	values	pass	that	satisfy	a	filter	condition.	Will	appear	once	per	FILTER	statement.
LimitNode:	limits	the	number	of	results	passed	to	other	processing	steps.	Will	appear	once	per	LIMIT	statement.
CalculationNode:	evaluates	an	expression.	The	expression	result	may	be	used	by	other	nodes,	e.g.	FilterNode,	EnumerateListNode,
SortNode	etc.
SubqueryNode:	executes	a	subquery.
SortNode:	performs	a	sort	of	its	input	values.
AggregateNode:	aggregates	its	input	and	produces	new	output	variables.	This	will	appear	once	per	COLLECT	statement.
ReturnNode:	returns	data	to	the	caller.	Will	appear	in	each	read-only	query	at	least	once.	Subqueries	will	also	contain	ReturnNodes.
InsertNode:	inserts	documents	into	a	collection	(given	in	its	collection	attribute).	Will	appear	exactly	once	in	a	query	that	contains	an
INSERT	statement.
RemoveNode:	removes	documents	from	a	collection	(given	in	its	collection	attribute).	Will	appear	exactly	once	in	a	query	that
contains	a	REMOVE	statement.
ReplaceNode:	replaces	documents	in	a	collection	(given	in	its	collection	attribute).	Will	appear	exactly	once	in	a	query	that	contains	a
REPLACE	statement.
UpdateNode:	updates	documents	in	a	collection	(given	in	its	collection	attribute).	Will	appear	exactly	once	in	a	query	that	contains
an	UPDATE	statement.
UpsertNode:	upserts	documents	in	a	collection	(given	in	its	collection	attribute).	Will	appear	exactly	once	in	a	query	that	contains	an
UPSERT	statement.
NoResultsNode:	will	be	inserted	if	FILTER	statements	turn	out	to	be	never	satisfiable.	The	NoResultsNode	will	pass	an	empty	result
set	into	the	processing	pipeline.

For	queries	in	the	cluster,	the	following	nodes	may	appear	in	execution	plans:

ScatterNode:	used	on	a	coordinator	to	fan-out	data	to	one	or	multiple	shards.
GatherNode:	used	on	a	coordinator	to	aggregate	results	from	one	or	many	shards	into	a	combined	stream	of	results.
DistributeNode:	used	on	a	coordinator	to	fan-out	data	to	one	or	multiple	shards,	taking	into	account	a	collection's	shard	key.
RemoteNode:	a	RemoteNode	will	perform	communication	with	another	ArangoDB	instances	in	the	cluster.	For	example,	the	cluster
coordinator	will	need	to	communicate	with	other	servers	to	fetch	the	actual	data	from	the	shards.	It	will	do	so	via	RemoteNodes.	The
data	servers	themselves	might	again	pull	further	data	from	the	coordinator,	and	thus	might	also	employ	RemoteNodes.	So,	all	of	the
above	cluster	relevant	nodes	will	be	accompanied	by	a	RemoteNode.

List	of	optimizer	rules

The	following	optimizer	rules	may	appear	in	the		rules		attribute	of	a	plan:

	move-calculations-up	:	will	appear	if	a	CalculationNode	was	moved	up	in	a	plan.	The	intention	of	this	rule	is	to	move	calculations
up	in	the	processing	pipeline	as	far	as	possible	(ideally	out	of	enumerations)	so	they	are	not	executed	in	loops	if	not	required.	It	is
also	quite	common	that	this	rule	enables	further	optimizations	to	kick	in.
	move-filters-up	:	will	appear	if	a	FilterNode	was	moved	up	in	a	plan.	The	intention	of	this	rule	is	to	move	filters	up	in	the
processing	pipeline	as	far	as	possible	(ideally	out	of	inner	loops)	so	they	filter	results	as	early	as	possible.
	sort-in-values	:	will	appear	when	the	values	used	as	right-hand	side	of	an		IN		operator	will	be	pre-sorted	using	an	extra	function
call.	Pre-sorting	the	comparison	array	allows	using	a	binary	search	in-list	lookup	with	a	logarithmic	complexity	instead	of	the	default
linear	complexity	in-list	lookup.
	remove-unnecessary-filters	:	will	appear	if	a	FilterNode	was	removed	or	replaced.	FilterNodes	whose	filter	condition	will	always
evaluate	to	true	will	be	removed	from	the	plan,	whereas	FilterNode	that	will	never	let	any	results	pass	will	be	replaced	with	a
NoResultsNode.
	remove-redundant-calculations	:	will	appear	if	redundant	calculations	(expressions	with	the	exact	same	result)	were	found	in	the
query.	The	optimizer	rule	will	then	replace	references	to	the	redundant	expressions	with	a	single	reference,	allowing	other	optimizer

Optimizing	queries

202

rules	to	remove	the	then-unneeded	CalculationNodes.
	remove-unnecessary-calculations	:	will	appear	if	CalculationNodes	were	removed	from	the	query.	The	rule	will	removed	all
calculations	whose	result	is	not	referenced	in	the	query	(note	that	this	may	be	a	consequence	of	applying	other	optimizations).
	remove-redundant-sorts	:	will	appear	if	multiple	SORT	statements	can	be	merged	into	fewer	sorts.
	interchange-adjacent-enumerations	:	will	appear	if	a	query	contains	multiple	FOR	statements	whose	order	were	permuted.
Permutation	of	FOR	statements	is	performed	because	it	may	enable	further	optimizations	by	other	rules.
	remove-collect-variables	:	will	appear	if	an	INTO	clause	was	removed	from	a	COLLECT	statement	because	the	result	of	INTO	is
not	used.	May	also	appear	if	a	result	of	a	COLLECT	statement's	AGGREGATE	variables	is	not	used.
	propagate-constant-attributes	:	will	appear	when	a	constant	value	was	inserted	into	a	filter	condition,	replacing	a	dynamic
attribute	value.
	replace-or-with-in	:	will	appear	if	multiple	OR-combined	equality	conditions	on	the	same	variable	or	attribute	were	replaced	with
an	IN	condition.
	remove-redundant-or	:	will	appear	if	multiple	OR	conditions	for	the	same	variable	or	attribute	were	combined	into	a	single
condition.
	use-indexes	:	will	appear	when	an	index	is	used	to	iterate	over	a	collection.	As	a	consequence,	an	EnumerateCollectionNode	was
replaced	with	an	IndexNode	in	the	plan.
	remove-filter-covered-by-index	:	will	appear	if	a	FilterNode	was	removed	or	replaced	because	the	filter	condition	is	already
covered	by	an	IndexNode.
	remove-filter-covered-by-traversal	:	will	appear	if	a	FilterNode	was	removed	or	replaced	because	the	filter	condition	is	already
covered	by	an	TraversalNode.
	use-index-for-sort	:	will	appear	if	an	index	can	be	used	to	avoid	a	SORT	operation.	If	the	rule	was	applied,	a	SortNode	was
removed	from	the	plan.
	move-calculations-down	:	will	appear	if	a	CalculationNode	was	moved	down	in	a	plan.	The	intention	of	this	rule	is	to	move
calculations	down	in	the	processing	pipeline	as	far	as	possible	(below	FILTER,	LIMIT	and	SUBQUERY	nodes)	so	they	are	executed
as	late	as	possible	and	not	before	their	results	are	required.
	patch-update-statements	:	will	appear	if	an	UpdateNode	was	patched	to	not	buffer	its	input	completely,	but	to	process	it	in	smaller
batches.	The	rule	will	fire	for	an	UPDATE	query	that	is	fed	by	a	full	collection	scan,	and	that	does	not	use	any	other	indexes	and
subqueries.
	optimize-traversals	:	will	appear	if	either	the	edge	or	path	output	variable	in	an	AQL	traversal	was	optimized	away,	or	if	a
FILTER	condition	from	the	query	was	moved	in	the	TraversalNode	for	early	pruning	of	results.
	inline-subqueries	:	will	appear	when	a	subquery	was	pulled	out	in	its	surrounding	scope,	e.g.		FOR	x	IN	(FOR	y	IN	collection
FILTER	y.value	>=	5	RETURN	y.test)	RETURN	x.a		would	become		FOR	tmp	IN	collection	FILTER	tmp.value	>=	5	LET	x	=	tmp.test
RETURN	x.a	

	geo-index-optimizer	:	will	appear	when	a	geo	index	is	utilized.
	fulltext-index-optimizer	:	will	appear	when	the	fulltext	index	is	used
	remove-sort-rand	:	will	appear	when	a	SORT	RAND()	expression	is	removed	by	moving	the	random	iteration	into	an
EnumerateCollectionNode.	This	optimizer	rule	is	specific	for	the	MMFiles	storage	engine.
	reduce-extraction-to-projection	:	will	appear	when	an	EnumerationCollectionNode	that	would	have	extracted	an	entire	document
was	modified	to	return	only	a	projection	of	each	document.	This	optimizer	rule	is	specific	for	the	RocksDB	storage	engine.

The	following	optimizer	rules	may	appear	in	the		rules		attribute	of	cluster	plans:

	distribute-in-cluster	:	will	appear	when	query	parts	get	distributed	in	a	cluster.	This	is	not	an	optimization	rule,	and	it	cannot	be
turned	off.
	scatter-in-cluster	:	will	appear	when	scatter,	gather,	and	remote	nodes	are	inserted	into	a	distributed	query.	This	is	not	an
optimization	rule,	and	it	cannot	be	turned	off.
	distribute-filtercalc-to-cluster	:	will	appear	when	filters	are	moved	up	in	a	distributed	execution	plan.	Filters	are	moved	as	far
up	in	the	plan	as	possible	to	make	result	sets	as	small	as	possible	as	early	as	possible.
	distribute-sort-to-cluster	:	will	appear	if	sorts	are	moved	up	in	a	distributed	query.	Sorts	are	moved	as	far	up	in	the	plan	as
possible	to	make	result	sets	as	small	as	possible	as	early	as	possible.
	remove-unnecessary-remote-scatter	:	will	appear	if	a	RemoteNode	is	followed	by	a	ScatterNode,	and	the	ScatterNode	is	only
followed	by	calculations	or	the	SingletonNode.	In	this	case,	there	is	no	need	to	distribute	the	calculation,	and	it	will	be	handled
centrally.
	undistribute-remove-after-enum-coll	:	will	appear	if	a	RemoveNode	can	be	pushed	into	the	same	query	part	that	enumerates	over
the	documents	of	a	collection.	This	saves	inter-cluster	roundtrips	between	the	EnumerateCollectionNode	and	the	RemoveNode.

Optimizing	queries

203

Note	that	some	rules	may	appear	multiple	times	in	the	list,	with	number	suffixes.	This	is	due	to	the	same	rule	being	applied	multiple
times,	at	different	positions	in	the	optimizer	pipeline.

Optimizing	queries

204

The	AQL	query	result	cache
AQL	provides	an	optional	query	result	cache.

The	purpose	of	the	query	cache	is	to	avoid	repeated	calculation	of	the	same	query	results.	It	is	useful	if	data-reading	queries	repeat	a	lot
and	there	are	not	many	write	queries.

The	query	cache	is	transparent	so	users	do	not	need	to	manually	invalidate	results	in	it	if	underlying	collection	data	are	modified.

Modes
The	cache	can	be	operated	in	the	following	modes:

	off	:	the	cache	is	disabled.	No	query	results	will	be	stored
	on	:	the	cache	will	store	the	results	of	all	AQL	queries	unless	their		cache		attribute	flag	is	set	to		false	
	demand	:	the	cache	will	store	the	results	of	AQL	queries	that	have	their		cache		attribute	set	to		true	,	but	will	ignore	all	others

The	mode	can	be	set	at	server	startup	and	later	changed	at	runtime.

Query	eligibility
The	query	cache	will	consider	two	queries	identical	if	they	have	exactly	the	same	query	string.	Any	deviation	in	terms	of	whitespace,
capitalization	etc.	will	be	considered	a	difference.	The	query	string	will	be	hashed	and	used	as	the	cache	lookup	key.	If	a	query	uses	bind
parameters,	these	will	also	be	hashed	and	used	as	the	cache	lookup	key.

That	means	even	if	the	query	string	for	two	queries	is	identical,	the	query	cache	will	treat	them	as	different	queries	if	they	have	different
bind	parameter	values.	Other	components	that	will	become	part	of	a	query's	cache	key	are	the		count		and		fullCount		attributes.

If	the	cache	is	turned	on,	the	cache	will	check	at	the	very	start	of	execution	whether	it	has	a	result	ready	for	this	particular	query.	If	that	is
the	case,	the	query	result	will	be	served	directly	from	the	cache,	which	is	normally	very	efficient.	If	the	query	cannot	be	found	in	the
cache,	it	will	be	executed	as	usual.

If	the	query	is	eligible	for	caching	and	the	cache	is	turned	on,	the	query	result	will	be	stored	in	the	query	cache	so	it	can	be	used	for
subsequent	executions	of	the	same	query.

A	query	is	eligible	for	caching	only	if	all	of	the	following	conditions	are	met:

the	server	the	query	executes	on	is	not	a	coordinator
the	query	string	is	at	least	8	characters	long
the	query	is	a	read-only	query	and	does	not	modify	data	in	any	collection
no	warnings	were	produced	while	executing	the	query
the	query	is	deterministic	and	only	uses	deterministic	functions

The	usage	of	non-deterministic	functions	leads	to	a	query	not	being	cachable.	This	is	intentional	to	avoid	caching	of	function	results
which	should	rather	be	calculated	on	each	invocation	of	the	query	(e.g.		RAND()		or		DATE_NOW()).

The	query	cache	considers	all	user-defined	AQL	functions	to	be	non-deterministic	as	it	has	no	insight	into	these	functions.

Cache	invalidation
The	query	cache	results	are	fully	or	partially	invalidated	automatically	if	queries	modify	the	data	of	collections	that	were	used	during	the
computation	of	the	cached	query	results.	This	is	to	protect	users	from	getting	stale	results	from	the	query	cache.

This	also	means	that	if	the	cache	is	turned	on,	then	there	is	an	additional	cache	invalidation	check	for	each	data-modification	operation
(e.g.	insert,	update,	remove,	truncate	operations	as	well	as	AQL	data-modification	queries).

Example

Caching	query	results

205

If	the	result	of	the	following	query	is	present	in	the	query	cache,	then	either	modifying	data	in	collection		users		or	in	collection
	organizations		will	remove	the	already	computed	result	from	the	cache:

FOR	user	IN	users

		FOR	organization	IN	organizations

				FILTER	user.organization	==	organization._key

				RETURN	{	user:	user,	organization:	organization	}

Modifying	data	in	other	collections	than	the	named	two	will	not	lead	to	this	query	result	being	removed	from	the	cache.

Performance	considerations
The	query	cache	is	organized	as	a	hash	table,	so	looking	up	whether	a	query	result	is	present	in	the	cache	is	relatively	fast.	Still,	the	query
string	and	the	bind	parameter	used	in	the	query	will	need	to	be	hashed.	This	is	a	slight	overhead	that	will	not	be	present	if	the	cache	is
turned	off	or	a	query	is	marked	as	not	cacheable.

Additionally,	storing	query	results	in	the	cache	and	fetching	results	from	the	cache	requires	locking	via	an	R/W	lock.	While	many	thread
can	read	in	parallel	from	the	cache,	there	can	only	be	a	single	modifying	thread	at	any	given	time.	Modifications	of	the	query	cache
contents	are	required	when	a	query	result	is	stored	in	the	cache	or	during	cache	invalidation	after	data-modification	operations.	Cache
invalidation	will	require	time	proportional	to	the	number	of	cached	items	that	need	to	be	invalidated.

There	may	be	workloads	in	which	enabling	the	query	cache	will	lead	to	a	performance	degradation.	It	is	not	recommended	to	turn	the
query	cache	on	in	workloads	that	only	modify	data,	or	that	modify	data	more	often	than	reading	it.	Turning	on	the	query	cache	will	also
provide	no	benefit	if	queries	are	very	diverse	and	do	not	repeat	often.	In	read-only	or	read-mostly	workloads,	the	query	cache	will	be
beneficial	if	the	same	queries	are	repeated	lots	of	times.

In	general,	the	query	cache	will	provide	the	biggest	improvements	for	queries	with	small	result	sets	that	take	long	to	calculate.	If	query
results	are	very	big	and	most	of	the	query	time	is	spent	on	copying	the	result	from	the	cache	to	the	client,	then	the	cache	will	not	provide
much	benefit.

Global	configuration
The	query	cache	can	be	configured	at	server	start	using	the	configuration	parameter		--query.cache-mode	.	This	will	set	the	cache	mode
according	to	the	descriptions	above.

After	the	server	is	started,	the	cache	mode	can	be	changed	at	runtime	as	follows:

require("@arangodb/aql/cache").properties({	mode:	"on"	});

The	maximum	number	of	cached	results	in	the	cache	for	each	database	can	be	configured	at	server	start	using	the	configuration	parameter
	--query.cache-entries	.	This	parameter	can	be	used	to	put	an	upper	bound	on	the	number	of	query	results	in	each	database's	query
cache	and	thus	restrict	the	cache's	memory	consumption.

The	value	can	also	be	adjusted	at	runtime	as	follows:

require("@arangodb/aql/cache").properties({	maxResults:	200	});

Per-query	configuration

When	a	query	is	sent	to	the	server	for	execution	and	the	cache	is	set	to		on		or		demand	,	the	query	executor	will	look	into	the	query's
	cache		attribute.	If	the	query	cache	mode	is		on	,	then	not	setting	this	attribute	or	setting	it	to	anything	but		false		will	make	the	query
executor	consult	the	query	cache.	If	the	query	cache	mode	is		demand	,	then	setting	the		cache		attribute	to		true		will	make	the	executor
look	for	the	query	in	the	query	cache.	When	the	query	cache	mode	is		off	,	the	executor	will	not	look	for	the	query	in	the	cache.

The		cache		attribute	can	be	set	as	follows	via	the		db._createStatement()		function:

var	stmt	=	db._createStatement({	

		query:	"FOR	doc	IN	users	LIMIT	5	RETURN	doc",

Caching	query	results

206

		cache:	true		/*	cache	attribute	set	here	*/

});	

stmt.execute();

When	using	the		db._query()		function,	the		cache		attribute	can	be	set	as	allows:

db._query({	

		query:	"FOR	doc	IN	users	LIMIT	5	RETURN	doc",

		cache:	true		/*	cache	attribute	set	here	*/

});

The		cache		attribute	can	be	set	via	the	HTTP	REST	API		POST	/_api/cursor	,	too.

Each	query	result	returned	will	contain	a		cached		attribute.	This	will	be	set	to		true		if	the	result	was	retrieved	from	the	query	cache,
and		false		otherwise.	Clients	can	use	this	attribute	to	check	if	a	specific	query	was	served	from	the	cache	or	not.

Restrictions

Query	results	that	are	returned	from	the	query	cache	do	not	contain	any	execution	statistics,	meaning	their	extra.stats	attribute	will	not	be
present.	Additionally,	query	results	returned	from	the	cache	will	not	contain	profile	information	even	if	the	profile	option	was	set	to	true
when	invoking	the	query.

Caching	query	results

207

Common	Errors

String	concatenation

In	AQL,	strings	must	be	concatenated	using	the	CONCAT()	function.	Joining	them	together	with	the		+		operator	is	not	supported.
Especially	as	JavaScript	programmer	it	is	easy	to	walk	into	this	trap:

RETURN	"foo"	+	"bar"	//	[0]

RETURN	"foo"	+	123			//	[123]

RETURN	"123"	+	200			//	[323]

The	arithmetic	plus	operator	expects	numbers	as	operands,	and	will	try	to	implicitly	cast	them	to	numbers	if	they	are	of	different	type.
	"foo"		and		"bar"		are	casted	to		0		and	then	added	to	together	(still	zero).	If	an	actual	number	is	added,	that	number	will	be	returned
(adding	zero	doesn't	change	the	result).	If	the	string	is	a	valid	string	representation	of	a	number,	then	it	is	casted	to	a	number.	Thus,	adding
	"123"		and		200		results	in	two	numbers	being	added	up	to		323	.

To	concatenate	elements	(with	implicit	casting	to	string	for	non-string	values),	do:

RETURN	CONCAT("foo",	"bar")	//	["foobar"]

RETURN	CONCAT("foo",	123)			//	["foo123"]

RETURN	CONCAT("123",	200)			//	["123200"]

Unexpected	long	running	queries

Slow	queries	can	have	various	reasons	and	be	legitimate	for	queries	with	a	high	computational	complexity	or	if	they	touch	a	lot	of	data.
Use	the	Explain	feature	to	inspect	execution	plans	and	verify	that	appropriate	indexes	are	utilized.	Also	check	for	mistakes	such	as
references	to	the	wrong	variables.

A	literal	collection	name,	which	is	not	part	of	constructs	like		FOR	,		UPDATE	...	IN		etc.,	stands	for	an	array	of	all	documents	of	that
collection	and	can	cause	an	entire	collection	to	be	materialized	before	further	processing.	It	should	thus	be	avoided.

Check	the	execution	plan	for		/*	all	collection	documents	*/		and	verify	that	it	is	intended.	You	should	also	see	a	warning	if	you	execute
such	a	query:

collection	'coll'	used	as	expression	operand

For	example,	instead	of:

RETURN	coll[*	LIMIT	1]

...	with	the	execution	plan	...

Execution	plan:

	Id			NodeType										Est.			Comment

		1			SingletonNode								1			*	ROOT

		2			CalculationNode						1					-	LET	#2	=	coll			/*	all	collection	documents	*/[*	LIMIT		0,	1]			/*	v8	expression	*/

		3			ReturnNode											1					-	RETURN	#2

...	you	can	use	the	following	equivalent	query:

FOR	doc	IN	coll

				LIMIT	1

				RETURN	doc

...	with	the	(better)	execution	plan:

Execution	plan:

	Id			NodeType																		Est.			Comment

Common	Errors

208

		1			SingletonNode																1			*	ROOT

		2			EnumerateCollectionNode					44					-	FOR	doc	IN	Characters			/*	full	collection	scan	*/

		3			LimitNode																				1							-	LIMIT	0,	1

		4			ReturnNode																			1							-	RETURN	doc

Similarly,	make	sure	you	have	not	confused	any	variable	names	with	collection	names	by	accident:

LET	names	=	["John",	"Mary",	...]

//	supposed	to	refer	to	variable	"names",	not	collection	"Names"

FOR	name	IN	Names

				...

Common	Errors

209

	Introduction
	Tutorial
	Basic CRUD
	Matching documents
	Sorting and limiting
	Joining together
	Graph traversal
	Geospatial queries

	How to invoke AQL
	with Arangosh
	with the Web Interface

	AQL Fundamentals
	AQL Syntax
	Data types
	Bind Parameters
	Type and value order
	Accessing data from collections
	Query Results
	Query Errors

	Operators
	Data Queries
	High level Operations
	FOR
	RETURN
	FILTER
	SORT
	LIMIT
	LET
	COLLECT
	REMOVE
	UPDATE
	REPLACE
	INSERT
	UPSERT
	WITH

	Functions
	Type cast
	String
	Numeric
	Date
	Array
	Object / Document
	Geo
	Fulltext
	Miscellaneous

	Graphs
	Traversals explained
	Traversals
	Shortest Path

	Advanced Features
	Array Operators

	Usual Query Patterns
	Counting
	Data-modification queries
	Subqueries
	Projections and filters
	Joins
	Grouping
	Traversals
	Queries without collections

	User Functions
	Conventions
	Registering Functions

	Execution and Performance
	Query statistics
	Parsing queries
	Explaining queries
	Optimizing queries
	Caching query results

	Common Errors

