
1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.5

1.5.1

1.5.2

1.5.3

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.4.1

1.9

1.9.1

1.9.2

Table	of	Contents
Introduction

Modelling	Document	Inheritance

Accessing	Shapes	Data

AQL

Using	Joins	in	AQL

Using	Dynamic	Attribute	Names

Creating	Test-data	using	AQL

Diffing	Documents

Avoiding	Parameter	Injection

Multiline	Query	Strings

Migrating	named	graph	functions	to	3.0

Migrating	anonymous	graph	functions	to	3.0

Migrating	graph	measurements	to	3.0

Graph

Fulldepth	Graph-Traversal

Using	a	custom	Visitor

Example	AQL	Queries	for	Graphs

Use	Cases	/	Examples

Crawling	Github	with	Promises

Using	ArangoDB	with	Sails.js

Populating	a	Textbox

Exporting	Data

Accessing	base	documents	with	Java

Add	XML	data	to	ArangoDB	with	Java

Administration

Using	Authentication

Importing	Data

Replicating	Data

XCopy	Install	Windows

Silent	NSIS	on	Windows

Migrating	2.8	to	3.0

Show	grants	function

Compiling	/	Build

Compile	on	Debian

Compile	on	Windows

OpenSSL

Running	Custom	Build

Recompiling	jemalloc

Cloud,	DCOS	and	Docker

Running	on	AWS

Update	on	AWS

1

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

1.9.9

1.10

1.10.1

1.10.2

1.10.3

1.10.4

Running	on	Azure

Docker	ArangoDB

Docker	with	NodeJS	App

In	the	GiantSwarm

ArangoDB	in	Mesos

DC/OS:	Full	example

DC/OS:	Choosing	Container	engine

Monitoring

Collectd	-	Replication	Slaves

Collectd	-	Network	usage

Collectd	-	more	Metrics

Collectd	-	Monitoring	Foxx

2

Cookbook
This	cookbook	is	filled	with	recipes	to	help	you	understand	the	multi-model	database	ArangoDB	better	and	to	help	you	with	specific
problems.

You	can	participate	and	write	your	own	recipes.	You	only	need	to	write	a	recipe	in	markdown	and	make	a	pull	request	to	our	repository.

Recipes

There	will	be	some	simple	recipes	to	bring	you	closer	to	ArangoDB	and	show	you	the	amount	of	possibilities	of	our	Database.	There
also	will	be	more	complex	problems	to	show	you	solution	to	specific	problems	and	the	depth	of	ArangoDB.

Every	recipe	is	divided	into	three	parts:

1.	 Problem:	A	description	of	the	problem
2.	 Solution:	A	detailed	solution	of	the	given	problem	with	code	if	any	is	needed
3.	 Comment:	Explanation	of	the	solution.	This	part	is	optional	depending	on	the	complexity	of	the	problem

Every	recipe	has	tags	to	for	a	better	overview:

#api,	#aql,	#arangosh,	#collection,	#database,	#debian,	#docker,	#document,	#driver,	#foxx,	#giantswarm,	#graph,	#howto,	#java,
#javascript,	#join,	#nodejs,	#windows

Introduction

3

https://www.arangodb.com/
https://github.com/arangodb/arangodb/tree/devel/Documentation/Books/Cookbook
https://github.com/arangodb/arangodb/tree/devel/Documentation/Books/Cookbook

Model	document	inheritance

Problem

How	do	you	model	document	inheritance	given	that	collections	do	not	support	that	feature?

Solution

Lets	assume	you	have	three	document	collections:	"subclass",	"class"	and	"superclass".	You	also	have	two	edge	collections:
"sub_extends_class"	and	"class_extends_super".

You	can	create	them	via	arangosh	or	foxx:

var	graph_module	=	require("com/arangodb/general-graph");

var	g	=	graph_module._create("inheritance");

g._extendEdgeDefinitions(graph_module.	_directedRelation("sub_extends_class",	["subclass"],	["class"]));

g._extendEdgeDefinitions(graph_module.	_directedRelation("class_extends_super",	["class"],	["superclass"]));

This	makes	sure	when	using	the	graph	interface	that	the	inheritance	looks	like:

sub	→	class
class	→	super
super	→	sub

To	make	sure	everything	works	as	expected	you	should	use	the	built-in	traversal	in	combination	with	Foxx.	This	allows	you	to	add	the
inheritance	security	layer	easily.	To	use	traversals	in	foxx	simply	add	the	following	line	before	defining	routes:

var	traversal	=	require("org/arangodb/graph/traversal");

var	Traverser	=	traversal.Traverser;

Also	you	can	add	the	following	endpoint	in	Foxx:

var	readerConfig	=	{

		datasource:	traversal.graphDatasourceFactory("inheritance"),

		expander:	traversal.outboundExpander,	//	Go	upwards	in	the	tree

		visitor:	function	(config,	result,	vertex,	path)	{

				for	(key	in	vertex)	{

						if	(vertex.hasOwnProperty(key)	&&	!result.hasOwnProperty(key))	{

								result[key]	=	vertex[key]	//	Store	only	attributes	that	have	not	yet	been	found

						}

				}

		}

};		

controller.get("load/:collection/:key",	function(req,	res)	{

		var	result	=	{};

		var	id	=	res.params("collection")	+	"/"	+	res.params("key");

		var	traverser	=	new	Traverser(readerConfig);

		traverser.traverse(result,	g.getVertex(id));

		res.json(result);

});

This	will	make	sure	to	iterate	the	complete	inheritance	tree	upwards	to	the	root	element	and	will	return	all	values	on	the	path	were	the
first	instance	of	this	value	is	kept

Comment

You	should	go	with	edges	because	it	is	much	easier	to	query	them	if	you	have	a	theoretically	unlimited	depth	in	inheritance.	If	you	have	a
fixed	inheritance	depth	you	could	also	go	with	an	attribute	in	the	document	referencing	the	parent	and	execute	joins	in	AQL.

Modelling	Document	Inheritance

4

Author:	Michael	Hackstein

Tags:	#graph	#document

Modelling	Document	Inheritance

5

https://github.com/mchacki

Accessing	Shapes	Data

Problem

Documents	in	a	collection	may	have	different	shapes	associated	with	them.	There	is	no	way	to	query	the	shapes	data	directly.	So	how	do
you	solve	this	problem?

Solution

There	are	two	possible	ways	to	do	this.

A)	The	fast	way	with	some	random	samplings:

1.	 Ask	for	a	random	document	(db.<collection>.any())	and	note	its	top-level	attribute	names
2.	 Repeat	this	for	at	least	10	times.	After	that	repeat	it	only	if	you	think	it's	worth	it.

Following	is	an	example	of	an	implementation:

attributes(db.myCollection);

function	attributes(collection)	{

		"use	strict"

		var	probes	=	10;

		var	maxRounds	=	3;

		var	threshold	=	0.5;

		var	maxDocuments	=	collection.count();

		if	(maxDocuments	<	probes)	{

				probes	=	maxDocuments;

		}

		if	(probes	===	0)	{

				return	[];

		}

		var	attributes	=	{	};

		while	(maxRounds--)	{

				var	newDocuments	=	0;

				var	n	=	probes;

				while	(n--)	{

						var	doc	=	collection.any();

						var	found	=	false;

						var	keys	=	Object.keys(doc);

				for	(var	i	=	0;	i	<	keys.length;	++i)	{

						if	(attributes.hasOwnProperty(keys[i]))	{

								++attributes[keys[i]];

						}

						else	{

								attributes[keys[i]]	=	1;

								found	=	true;

						}

				}

					if	(found)	{

						++newDocuments;

					}

				}

				if	(newDocuments	/	probes	<=	threshold)	{

						break;

				}

		}

Accessing	Shapes	Data

6

		return	Object.keys(attributes);	

}

B)	The	way	to	find	all	top-level	attributes

If	you	don't	mind	to	make	some	extra	inserts	and	you	don't	care	about	deletion	or	updates	of	documents	you	can	use	the	following:

db._create("mykeys");

db.mykeys.ensureUniqueSkiplist("attribute");

function	insert(collection,	document)	{

		var	result	=	collection.save(document);

		try	{	

				var	keys	=	Objects.keys(document);

				for	(i	=	0;	i	<	keys.length;	++i)	{

						try	{

								db.mykeys.save({	attribute:	keys[i]	});

						}	

								catch	(err1)	{

								//	potential	unique	key	constraint	violations

								}

				}	

		}

		catch	(err2)	{

		}

		return	result;

}

Comment
A)	The	fast	way	with	some	random	samplings:

You	get	some	random	sampling	with	bounded	complexity.	If	you	have	a	variety	of	attributes	you	should	repeat	the	procedure	more	than
10	times.

The	procedure	can	be	implemented	as	a	server	side	action.

B)	The	way	to	find	all	top-level	attributes:

This	procedure	will	not	care	about	updates	or	deletions	of	documents.	Also	only	the	top-level	attribute	of	the	documents	will	be	inserted
and	nested	one	ignored.

The	procedure	can	be	implemented	as	a	server	side	action.

Author:	Arangodb

Tags:	#collection	#database

Accessing	Shapes	Data

7

https://github.com/arangodb

AQL

Using	AQL	in	general

Using	Joins	in	AQL

Using	Dynamic	Attribute	Names

Creating	Test-data	using	AQL

Diffing	Documents

Avoiding	Parameter	Injection

Multiline	Query	Strings

Migrating	from	2.x	to	3.0

Migrating	named	graph	functions	to	3.0

Migrating	anonymous	graph	functions	to	3.0

Migrating	graph	measurements	to	3.0

AQL

8

Using	Joins	in	AQL

Problem

I	want	to	join	documents	from	collections	in	an	AQL	query.

One-to-Many:	I	have	a	collection	users	and	a	collection	cities.	A	user	lives	in	a	city	and	I	need	the	city	information	during	the	query.

Many-To-Many:	I	have	a	collection	authors	and	books.	An	author	can	write	many	books	and	a	book	can	have	many	authors.	I	want
to	return	a	list	of	books	with	their	authors.	Therefore	I	need	to	join	the	authors	and	books.

Solution

Unlike	many	NoSQL	databases,	ArangoDB	does	support	joins	in	AQL	queries.	This	is	similar	to	the	way	traditional	relational	databases
handle	this.	However,	because	documents	allow	for	more	flexibility,	joins	are	also	more	flexible.	The	following	sections	provide	solutions
for	common	questions.

One-To-Many

You	have	a	collection	called	users.	Users	live	in	city	and	a	city	is	identified	by	its	primary	key.	In	principle	you	can	embedded	the	city
document	into	the	users	document	and	be	happy	with	it.

{	

		"_id"	:	"users/2151975421",	

		"_key"	:	"2151975421",	

		"_rev"	:	"2151975421",	

		"name"	:	{	

				"first"	:	"John",	

				"last"	:	"Doe"	

		},	

		"city"	:	{	

				"name"	:	"Metropolis"	

		}	

}

This	works	well	for	many	use	cases.	Now	assume,	that	you	have	additional	information	about	the	city,	like	the	number	of	people	living	in
it.	It	would	be	impractical	to	change	each	and	every	user	document	if	this	numbers	changes.	Therefore	it	is	good	idea	to	hold	the	city
information	in	a	separate	collection.

arangosh>	db.cities.document("cities/2241300989");

{	

		"population"	:	1000,	

		"name"	:	"Metropolis",	

		"_id"	:	"cities/2241300989",	

		"_rev"	:	"2241300989",	

		"_key"	:	"2241300989"	

}

Now	you	instead	of	embedding	the	city	directly	in	the	user	document,	you	can	use	the	key	of	the	city.

arangosh>	db.users.document("users/2290649597");

{	

		"name"	:	{	

				"first"	:	"John",	

				"last"	:	"Doe"	

		},	

		"city"	:	"cities/2241300989",	

		"_id"	:	"users/2290649597",	

		"_rev"	:	"2290649597",	

		"_key"	:	"2290649597"	

}

Using	Joins	in	AQL

9

We	can	now	join	these	two	collections	very	easily.

arangosh>	db._query(

........>"FOR	u	IN	users	"	+	

........>"		FOR	c	IN	cities	"	+	

........>"				FILTER	u.city	==	c._id	RETURN	{	user:	u,	city:	c	}"

........>).toArray()

[

		{	

				"user"	:	{	

						"name"	:	{	

								"first"	:	"John",	

								"last"	:	"Doe"	

						},	

						"city"	:	"cities/2241300989",	

						"_id"	:	"users/2290649597",	

						"_rev"	:	"2290649597",	

						"_key"	:	"2290649597"	

				},	

				"city"	:	{	

						"population"	:	1000,	

						"name"	:	"Metropolis",	

						"_id"	:	"cities/2241300989",	

						"_rev"	:	"2241300989",	

						"_key"	:	"2241300989"	

				}	

		}	

]

Unlike	SQL	there	is	no	special	JOIN	keyword.	The	optimizer	ensures	that	the	primary	index	is	used	in	the	above	query.

However,	very	often	it	is	much	more	convenient	for	the	client	of	the	query	if	a	single	document	would	be	returned,	where	the	city
information	is	embedded	in	the	user	document	-	as	in	the	simple	example	above.	With	AQL	there	you	do	not	need	to	forgo	this
simplification.

arangosh>	db._query(

........>"FOR	u	IN	users	"	+	

........>"		FOR	c	IN	cities	"	+	

........>"				FILTER	u.city	==	c._id	RETURN	merge(u,	{city:	c})"

........>).toArray()

[

		{	

				"_id"	:	"users/2290649597",	

				"_key"	:	"2290649597",	

				"_rev"	:	"2290649597",	

				"name"	:	{	

						"first"	:	"John",	

						"last"	:	"Doe"	

				},	

				"city"	:	{	

						"_id"	:	"cities/2241300989",	

						"_key"	:	"2241300989",	

						"_rev"	:	"2241300989",	

						"population"	:	1000,	

						"name"	:	"Metropolis"	

				}	

		}	

]

So	you	can	have	both:	the	convenient	representation	of	the	result	for	your	client	and	the	flexibility	of	joins	for	your	data	model.

Many-To-Many

In	the	relational	word	you	need	a	third	table	to	model	the	many-to-many	relation.	In	ArangoDB	you	have	a	choice	depending	on	the
information	you	are	going	to	store	and	the	type	of	questions	you	are	going	to	ask.

Assume	that	authors	are	stored	in	one	collection	and	books	in	a	second.	If	all	you	need	is	"which	are	the	authors	of	a	book"	then	you	can
easily	model	this	as	a	list	attribute	in	users.

Using	Joins	in	AQL

10

If	you	want	to	store	more	information,	for	example	which	author	wrote	which	page	in	a	conference	proceeding,	or	if	you	also	want	to
know	"which	books	were	written	by	which	author",	you	can	use	edge	collections.	This	is	very	similar	to	the	"join	table"	from	the
relational	world.

Embedded	Lists

If	you	only	want	to	store	the	authors	of	a	book,	you	can	embed	them	as	list	in	the	book	document.	There	is	no	need	for	a	separate
collection.

arangosh>	db.authors.toArray()

[

		{	

				"_id"	:	"authors/2661190141",	

				"_key"	:	"2661190141",	

				"_rev"	:	"2661190141",	

				"name"	:	{	

						"first"	:	"Maxima",	

						"last"	:	"Musterfrau"	

				}	

		},	

		{	

				"_id"	:	"authors/2658437629",	

				"_key"	:	"2658437629",	

				"_rev"	:	"2658437629",	

				"name"	:	{	

						"first"	:	"John",	

						"last"	:	"Doe"	

				}	

		}	

]

You	can	query	books

arangosh>	db._query("FOR	b	IN	books	RETURN	b").toArray();

[

		{	

				"_id"	:	"books/2681506301",	

				"_key"	:	"2681506301",	

				"_rev"	:	"2681506301",	

				"title"	:	"The	beauty	of	JOINS",	

				"authors"	:	[

						"authors/2661190141",	

						"authors/2658437629"	

]	

		}	

]

and	join	the	authors	in	a	very	similar	manner	given	in	the	one-to-many	section.

arangosh>	db._query(

........>"FOR	b	IN	books	"	+

........>"		LET	a	=	(FOR	x	IN	b.authors	"	+	

........>"													FOR	a	IN	authors	FILTER	x	==	a._id	RETURN	a)	"	+

........>"			RETURN	{	book:	b,	authors:	a	}"

........>).toArray();

[

		{	

				"book"	:	{	

						"title"	:	"The	beauty	of	JOINS",	

						"authors"	:	[

								"authors/2661190141",	

								"authors/2658437629"	

],	

						"_id"	:	"books/2681506301",	

						"_rev"	:	"2681506301",	

						"_key"	:	"2681506301"	

				},	

				"authors"	:	[

						{	

								"name"	:	{	

Using	Joins	in	AQL

11

										"first"	:	"Maxima",	

										"last"	:	"Musterfrau"	

								},	

								"_id"	:	"authors/2661190141",	

								"_rev"	:	"2661190141",	

								"_key"	:	"2661190141"	

						},	

						{	

								"name"	:	{	

										"first"	:	"John",	

										"last"	:	"Doe"	

								},	

								"_id"	:	"authors/2658437629",	

								"_rev"	:	"2658437629",	

								"_key"	:	"2658437629"	

						}	

]	

		}	

]

or	embed	the	authors	directly

arangosh>	db._query(

........>"FOR	b	IN	books	LET	a	=	("	+	

........>"					FOR	x	IN	b.authors	"	+	

........>"								FOR	a	IN	authors	FILTER	x	==	a._id	RETURN	a)"	+

........>"		RETURN	merge(b,	{	authors:	a	})"

........>).toArray();

[

		{	

				"_id"	:	"books/2681506301",	

				"_key"	:	"2681506301",	

				"_rev"	:	"2681506301",	

				"title"	:	"The	beauty	of	JOINS",	

				"authors"	:	[

						{	

								"_id"	:	"authors/2661190141",	

								"_key"	:	"2661190141",	

								"_rev"	:	"2661190141",	

								"name"	:	{	

										"first"	:	"Maxima",	

										"last"	:	"Musterfrau"	

								}	

						},	

						{	

								"_id"	:	"authors/2658437629",	

								"_key"	:	"2658437629",	

								"_rev"	:	"2658437629",	

								"name"	:	{	

										"first"	:	"John",	

										"last"	:	"Doe"	

								}	

						}	

]	

		}	

]

Using	Edge	Collections

If	you	also	want	to	query	which	books	are	written	by	a	given	author,	embedding	authors	in	the	book	document	is	possible,	but	it	is	more
efficient	to	use	a	edge	collections	for	speed.

Or	you	are	publishing	a	proceeding,	then	you	want	to	store	the	pages	the	author	has	written	as	well.	This	information	can	be	stored	in	the
edge	document.

First	create	the	users

arangosh>	db._create("authors");

[ArangoCollection	2926807549,	"authors"	(type	document,	status	loaded)]

arangosh>	db.authors.save({	name:	{	first:	"John",	last:	"Doe"	}	})

Using	Joins	in	AQL

12

{	

		"error"	:	false,	

		"_id"	:	"authors/2935261693",	

		"_rev"	:	"2935261693",	

		"_key"	:	"2935261693"	

}

arangosh>	db.authors.save({	name:	{	first:	"Maxima",	last:	"Musterfrau"	}	})

{	

		"error"	:	false,	

		"_id"	:	"authors/2938210813",	

		"_rev"	:	"2938210813",	

		"_key"	:	"2938210813"	

}

Now	create	the	books	without	any	author	information.

arangosh>	db._create("books");

[ArangoCollection	2928380413,	"books"	(type	document,	status	loaded)]

arangosh>	db.books.save({	title:	"The	beauty	of	JOINS"	});

{	

		"error"	:	false,	

		"_id"	:	"books/2980088317",	

		"_rev"	:	"2980088317",	

		"_key"	:	"2980088317"	

}

An	edge	collection	is	now	used	to	link	authors	and	books.

arangosh>	db._createEdgeCollection("written");

[ArangoCollection	2931132925,	"written"	(type	edge,	status	loaded)]

arangosh>	db.written.save("authors/2935261693",

........>"books/2980088317",

........>{	pages:	"1-10"	})

{	

		"error"	:	false,	

		"_id"	:	"written/3006237181",	

		"_rev"	:	"3006237181",	

		"_key"	:	"3006237181"	

}

arangosh>	db.written.save("authors/2938210813",

........>"books/2980088317",

........>{	pages:	"11-20"	})

{	

		"error"	:	false,	

		"_id"	:	"written/3012856317",	

		"_rev"	:	"3012856317",	

		"_key"	:	"3012856317"	

}

In	order	to	get	all	books	with	their	authors	you	can	use	NEIGHBORS.

arangosh>	db._query(

........>"FOR	b	IN	books	RETURN	"	+	

........>"		{	"	+

........>"				book:	b,	"	+

........>"				authors:	NEIGHBORS(books,"	+	

........>"																							written,"	+	

........>"																							b._id,"	+	

........>"																						'inbound'"	+

........>")	}"

........>).toArray();

[

		{	

				"book"	:	{	

						"_id"	:	"books/2980088317",	

						"_rev"	:	"2980088317",	

						"_key"	:	"2980088317",	

						"title"	:	"The	beauty	of	JOINS"	

Using	Joins	in	AQL

13

				},	

				"authors"	:	[

						{	

								"edge"	:	{	

										"_id"	:	"written/3006237181",	

										"_from"	:	"authors/2935261693",	

										"_to"	:	"books/2980088317",	

										"_rev"	:	"3006237181",	

										"_key"	:	"3006237181",	

										"pages"	:	"1-10"	

								},	

								"vertex"	:	{	

										"_id"	:	"authors/2935261693",	

										"_rev"	:	"2935261693",	

										"_key"	:	"2935261693",	

										"name"	:	{	

												"first"	:	"John",	

												"last"	:	"Doe"	

										}	

								}	

						},	

						{	

								"edge"	:	{	

										"_id"	:	"written/3012856317",	

										"_from"	:	"authors/2938210813",	

										"_to"	:	"books/2980088317",	

										"_rev"	:	"3012856317",	

										"_key"	:	"3012856317",	

										"pages"	:	"11-20"	

								},	

								"vertex"	:	{	

										"_id"	:	"authors/2938210813",	

										"_rev"	:	"2938210813",	

										"_key"	:	"2938210813",	

										"name"	:	{	

												"first"	:	"Maxima",	

												"last"	:	"Musterfrau"	

										}	

								}	

						}	

]	

		}	

]

Or	if	you	want	to	hide	the	information	stored	in	the	edge.

arangosh>	db._query(

........>"FOR	b	IN	books	RETURN	{"	+

........>"					book:	b,	authors:	"	+

........>"										NEIGHBORS(books,	written,	b._id,	'inbound')[*].vertex	}"

........>).toArray();

[

		{	

				"book"	:	{	

						"title"	:	"The	beauty	of	JOINS",	

						"_id"	:	"books/2980088317",	

						"_rev"	:	"2980088317",	

						"_key"	:	"2980088317"	

				},	

				"authors"	:	[

						{	

								"_id"	:	"authors/2935261693",	

								"_rev"	:	"2935261693",	

								"_key"	:	"2935261693",	

								"name"	:	{	

										"first"	:	"John",	

										"last"	:	"Doe"	

								}	

						},	

						{	

								"_id"	:	"authors/2938210813",	

								"_rev"	:	"2938210813",	

								"_key"	:	"2938210813",	

								"name"	:	{	

										"first"	:	"Maxima",	

Using	Joins	in	AQL

14

										"last"	:	"Musterfrau"	

								}	

						}	

]	

		}	

]

Or	again	embed	the	authors	directly	into	the	book	document.

arangosh>	db._query(

........>"FOR	b	IN	books	RETURN	merge("	+

........>"						b,	"	+

........>"								{"	+

........>"										authors:"	+

........>"										NEIGHBORS(books,	written,	b._id,	'inbound')[*].vertex})"

........>).toArray();

[

		{	

				"_id"	:	"books/2980088317",	

				"_rev"	:	"2980088317",	

				"_key"	:	"2980088317",	

				"title"	:	"The	beauty	of	JOINS",	

				"authors"	:	[

						{	

								"_id"	:	"authors/2935261693",	

								"_rev"	:	"2935261693",	

								"_key"	:	"2935261693",	

								"name"	:	{	

										"first"	:	"John",	

										"last"	:	"Doe"	

								}	

						},	

						{	

								"_id"	:	"authors/2938210813",	

								"_rev"	:	"2938210813",	

								"_key"	:	"2938210813",	

								"name"	:	{	

										"first"	:	"Maxima",	

										"last"	:	"Musterfrau"	

								}	

						}	

]	

		}	

]

If	you	need	the	authors	and	their	books,	simply	reverse	the	direction.

arangosh>	db._query(

........>"FOR	a	IN	authors	RETURN	"	+

........>"		merge(a,	"	+

........>"								{books:	NEIGHBORS(authors,	written,	a._id,	'outbound')[*].vertex})"

........>).toArray();

[

		{	

				"_id"	:	"authors/2938210813",	

				"_rev"	:	"2938210813",	

				"_key"	:	"2938210813",	

				"name"	:	{	

						"first"	:	"Maxima",	

						"last"	:	"Musterfrau"	

				},	

				"books"	:	[

						{	

								"_id"	:	"books/2980088317",	

								"_rev"	:	"2980088317",	

								"_key"	:	"2980088317",	

								"title"	:	"The	beauty	of	JOINS"	

						}	

]	

		},	

		{	

				"_id"	:	"authors/2935261693",	

				"_rev"	:	"2935261693",	

Using	Joins	in	AQL

15

				"_key"	:	"2935261693",	

				"name"	:	{	

						"first"	:	"John",	

						"last"	:	"Doe"	

				},	

				"books"	:	[

						{	

								"_id"	:	"books/2980088317",	

								"_rev"	:	"2980088317",	

								"_key"	:	"2980088317",	

								"title"	:	"The	beauty	of	JOINS"	

						}	

]	

		}	

]

Authors:	Frank	Celler

Tags:	#join	#aql

Using	Joins	in	AQL

16

https://github.com/fceller

Using	dynamic	attribute	names	in	AQL

Problem

I	want	an	AQL	query	to	return	results	with	attribute	names	assembled	by	a	function,	or	with	a	variable	number	of	attributes.

This	will	not	work	by	specifying	the	result	using	a	regular	object	literal,	as	object	literals	require	the	names	and	numbers	of	attributes	to
be	fixed	at	query	compile	time.

Solution
There	are	several	solutions	to	getting	dynamic	attribute	names	to	work.

Subquery	solution

A	general	solution	is	to	let	a	subquery	or	another	function	to	produce	the	dynamic	attribute	names,	and	finally	pass	them	through	the
	ZIP()		function	to	create	an	object	from	them.

Let's	assume	we	want	to	process	the	following	input	documents:

{	"name"	:	"test",	"gender"	:	"f",	"status"	:	"active",	"type"	:	"user"	}

{	"name"	:	"dummy",	"gender"	:	"m",	"status"	:	"inactive",	"type"	:	"unknown",	"magicFlag"	:	23	}

Let's	also	assume	our	goal	for	each	of	these	documents	is	to	return	only	the	attribute	names	that	contain	the	letter		a	,	together	with	their
respective	values.

To	extract	the	attribute	names	and	values	from	the	original	documents,	we	can	use	a	subquery	as	follows:

LET	documents	=	[

		{	"name"	:	"test","	gender"	:	"f",	"status"	:	"active",	"type"	:	"user"	},

		{	"name"	:	"dummy",	"gender"	:	"m",	"status"	:	"inactive",	"type"	:	"unknown",	"magicFlag"	:	23	}

]

FOR	doc	IN	documents

		RETURN	(

				FOR	name	IN	ATTRIBUTES(doc)

						FILTER	LIKE(name,	'%a%')

						RETURN	{

								name:	name,

								value:	doc[name]

						}

)

The	subquery	will	only	let	attribute	names	pass	that	contain	the	letter		a	.	The	results	of	the	subquery	are	then	made	available	to	the
main	query	and	will	be	returned.	But	the	attribute	names	in	the	result	are	still		name		and		value	,	so	we're	not	there	yet.

So	let's	also	employ	AQL's		ZIP()		function,	which	can	create	an	object	from	two	arrays:

the	first	parameter	to		ZIP()		is	an	array	with	the	attribute	names
the	second	parameter	to		ZIP()		is	an	array	with	the	attribute	values

Instead	of	directly	returning	the	subquery	result,	we	first	capture	it	in	a	variable,	and	pass	the	variable's		name		and		value		components
into		ZIP()		like	this:

LET	documents	=	[

		{	"name"	:	"test","	gender"	:	"f",	"status"	:	"active",	"type"	:	"user"	},

		{	"name"	:	"dummy",	"gender"	:	"m",	"status"	:	"inactive",	"type"	:	"unknown",	"magicFlag"	:	23	}

]

FOR	doc	IN	documents

		LET	attributes	=	(

Using	Dynamic	Attribute	Names

17

				FOR	name	IN	ATTRIBUTES(doc)

						FILTER	LIKE(name,	'%a%')

						RETURN	{

								name:	name,

								value:	doc[name]

						}

)

		RETURN	ZIP(attributes[*].name,	attributes[*].value)

Note	that	we	have	to	use	the	expansion	operator	([*])	on		attributes		because		attributes		itself	is	an	array,	and	we	want	either	the
	name		attribute	or	the		value		attribute	of	each	of	its	members.

To	prove	this	is	working,	here	is	the	above	query's	result:

[

		{

				"name":	"test",

				"status":	"active"

		},

		{

				"name":	"dummy",

				"status":	"inactive",

				"magicFlag":	23

		}

]

As	can	be	seen,	the	two	results	have	a	different	amount	of	result	attributes.	We	can	also	make	the	result	a	bit	more	dynamic	by	prefixing
each	attribute	with	the	value	of	the		name		attribute:

LET	documents	=	[

		{	"name"	:	"test","	gender"	:	"f",	"status"	:	"active",	"type"	:	"user"	},

		{	"name"	:	"dummy",	"gender"	:	"m",	"status"	:	"inactive",	"type"	:	"unknown",	"magicFlag"	:	23	}

]

FOR	doc	IN	documents

		LET	attributes	=	(

				FOR	name	IN	ATTRIBUTES(doc)

						FILTER	LIKE(name,	'%a%')

						RETURN	{

								name:	CONCAT(doc.name,	'-',	name),

								value:	doc[name]

						}

)

		RETURN	ZIP(attributes[*].name,	attributes[*].value)

That	will	give	us	document-specific	attribute	names	like	this:

[

		{

				"test-name":	"test",

				"test-status":	"active"

		},

		{

				"dummy-name":	"dummy",

				"dummy-status":	"inactive",

				"dummy-magicFlag":	23

		}

]

Using	expressions	as	attribute	names	(ArangoDB	2.5)

If	the	number	of	dynamic	attributes	to	return	is	known	in	advance,	and	only	the	attribute	names	need	to	be	calculated	using	an	expression,
then	there	is	another	solution.

ArangoDB	2.5	and	higher	allow	using	expressions	instead	of	fixed	attribute	names	in	object	literals.	Using	expressions	as	attribute	names
requires	enclosing	the	expression	in	extra		[and]		to	disambiguate	them	from	regular,	unquoted	attribute	names.

Using	Dynamic	Attribute	Names

18

Let's	create	a	result	that	returns	the	original	document	data	contained	in	a	dynamically	named	attribute.	We'll	be	using	the	expression
	doc.type		for	the	attribute	name.	We'll	also	return	some	other	attributes	from	the	original	documents,	but	prefix	them	with	the
documents'		_key		attribute	values.	For	this	we	also	need	attribute	name	expressions.

Here	is	a	query	showing	how	to	do	this.	The	attribute	name	expressions	all	required	to	be	enclosed	in		[and]		in	order	to	make	this
work:

LET	documents	=	[

		{	"_key"	:	"3231748397810",	"gender"	:	"f",	"status"	:	"active",	"type"	:	"user"	},

		{	"_key"	:	"3231754427122",	"gender"	:	"m",	"status"	:	"inactive",	"type"	:	"unknown"	}

]

FOR	doc	IN	documents

		RETURN	{

				[doc.type]	:	{

						[CONCAT(doc._key,	"_gender")]	:	doc.gender,

						[CONCAT(doc._key,	"_status")]	:	doc.status

				}

		}

This	will	return:

[

		{

				"user":	{

						"3231748397810_gender":	"f",

						"3231748397810_status":	"active"

				}

		},

		{

				"unknown":	{

						"3231754427122_gender":	"m",

						"3231754427122_status":	"inactive"

				}

		}

]

Note:	attribute	name	expressions	and	regular,	unquoted	attribute	names	can	be	mixed.

Author:	Jan	Steemann

Tags:	#aql

Using	Dynamic	Attribute	Names

19

https://github.com/jsteemann

Creating	test	data	with	AQL

Problem

I	want	to	create	some	test	documents.

Solution

If	you	haven't	yet	created	a	collection	to	hold	the	documents,	create	one	now	using	the	ArangoShell:

db._create("myCollection");

This	has	created	a	collection	named	myCollection.

One	of	the	easiest	ways	to	fill	a	collection	with	test	data	is	to	use	an	AQL	query	that	iterates	over	a	range.

Run	the	following	AQL	query	from	the	AQL	editor	in	the	web	interface	to	insert	1,000	documents	into	the	just	created	collection:

FOR	i	IN	1..1000

		INSERT	{	name:	CONCAT("test",	i)	}	IN	myCollection

The	number	of	documents	to	create	can	be	modified	easily	be	adjusting	the	range	boundary	values.

To	create	more	complex	test	data,	adjust	the	AQL	query!

Let's	say	we	also	want	a		status		attribute,	and	fill	it	with	integer	values	between		1		to	(including)		5	,	with	equal	distribution.	A	good
way	to	achieve	this	is	to	use	the	modulo	operator	(%):

FOR	i	IN	1..1000

		INSERT	{

				name:	CONCAT("test",	i),

				status:	1	+	(i	%	5)

		}	IN	myCollection

To	create	pseudo-random	values,	use	the		RAND()		function.	It	creates	pseudo-random	numbers	between	0	and	1.	Use	some	factor	to	scale
the	random	numbers,	and		FLOOR()		to	convert	the	scaled	number	back	to	an	integer.

For	example,	the	following	query	populates	the		value		attribute	with	numbers	between	100	and	150	(including):

FOR	i	IN	1..1000

		INSERT	{

				name:	CONCAT("test",	i),

				value:	100	+	FLOOR(RAND()	*	(150	-	100	+	1))

		}	IN	myCollection

After	the	test	data	has	been	created,	it	is	often	helpful	to	verify	it.	The		RAND()		function	is	also	a	good	candidate	for	retrieving	a	random
sample	of	the	documents	in	the	collection.	This	query	will	retrieve	10	random	documents:

FOR	doc	IN	myCollection

		SORT	RAND()

		LIMIT	10

		RETURN	doc

The		COLLECT		clause	is	an	easy	mechanism	to	run	an	aggregate	analysis	on	some	attribute.	Let's	say	we	wanted	to	verify	the	data
distribution	inside	the		status		attribute.	In	this	case	we	could	run:

FOR	doc	IN	myCollection

		COLLECT	value	=	doc.value	WITH	COUNT	INTO	count

		RETURN	{

Creating	Test-data	using	AQL

20

				value:	value,

				count:	count

		}

The	above	query	will	provide	the	number	of	documents	per	distinct		value	.

Author:	Jan	Steemann

Tags:	#aql

Creating	Test-data	using	AQL

21

https://github.com/jsteemann

Diffing	Two	Documents	in	AQL

Problem

How	to	create	a		diff		of	documents	in	AQL

Solution

Though	there	is	no	built-in	AQL	function	to		diff		two	documents,	it	is	easily	possible	to	build	your	own	like	in	the	following	query:

/*	input	document	1*/

LET	doc1	=	{

		"foo"	:	"bar",

		"a"	:	1,

		"b"	:	2

}

/*	input	document	2	*/

LET	doc2	=	{

		"foo"	:	"baz",

		"a"	:	2,

		"c"	:	3

}

/*	collect	attributes	present	in	doc1,	but	missing	in	doc2	*/

LET	missing	=	(

		FOR	key	IN	ATTRIBUTES(doc1)

		FILTER	!	HAS(doc2,	key)

		RETURN	{

				[key]:	doc1[key]

		}

)

/*	collect	attributes	present	in	both	docs,	but	that	have	different	values	*/

LET	changed	=	(

		FOR	key	IN	ATTRIBUTES(doc1)

				FILTER	HAS(doc2,	key)	&&	doc1[key]	!=	doc2[key]

				RETURN	{

						[key]	:	{

								old:	doc1[key],

								new:	doc2[key]

						}

				}

)

/*	collect	attributes	present	in	doc2,	but	missing	in	doc1	*/

LET	added	=	(

		FOR	key	IN	ATTRIBUTES(doc2)

				FILTER	!	HAS(doc1,	key)

				RETURN	{

						[key]	:	doc2[key]

				}

)

/*	return	final	result	*/

RETURN	{

		"missing"	:	missing,

		"changed"	:	changed,

		"added"	:	added

}

Note:	The	query	may	look	a	bit	lengthy,	but	much	of	that	is	due	to	formatting.	A	more	terse	version	can	be	found	below.

The	above	query	will	return	a	document	with	three	attributes:

missing:	Contains	all	attributes	only	present	in	first	document	(i.e.	missing	in	second	document)

Diffing	Documents

22

changed:	Contains	all	attributes	present	in	both	documents	that	have	different	values
added:	Contains	all	attributes	only	present	in	second	document	(i.e.	missing	in	first	document)

For	the	two	example	documents	it	will	return:

[

	{

			"missing"	:	[

					{

							"b"	:	2

					}

],

			"changed"	:	[

					{

							"foo"	:	{

									"old"	:	"bar",

									"new"	:	"baz"

							}

						},

					{

							"a"	:	{

									"old"	:	1,

									"new"	:	2

							}

					}

],

			"added"	:	[

					{

							"c"	:	3

					}

]

	}

]

That	output	format	was	the	first	that	came	to	my	mind.	It	is	of	course	possible	to	adjust	the	query	so	it	produces	a	different	output
format.

Following	is	a	version	of	the	same	query	that	can	be	invoked	from	JavaScript	easily.	It	passes	the	two	documents	as	bind	parameters	and
calls		db._query	.	The	query	is	now	an	one-liner	(less	readable	but	easier	to	copy&paste):

bindVariables	=	{

		doc1	:	{	"foo"	:	"bar",	"a"	:	1,	"b"	:	2	},

		doc2	:	{	"foo"	:	"baz",	"a"	:	2,	"c"	:	3	}

};

query	=	"LET	doc1	=	@doc1,	doc2	=	@doc2,	missing	=	(FOR	key	IN	ATTRIBUTES(doc1)	FILTER	!	HAS(doc2,	key)	RETURN	{	[key]:	doc1[

key]	}),	changed	=	(FOR	key	IN	ATTRIBUTES(doc1)	FILTER	HAS(doc2,	key)	&&	doc1[key]	!=	doc2[key]	RETURN	{	[key]	:	{	old:	doc1[

key],	new:	doc2[key]	}	}),	added	=	(FOR	key	IN	ATTRIBUTES(doc2)	FILTER	!	HAS(doc1,	key)	RETURN	{	[key]	:	doc2[key]	})	RETURN	

{	missing	:	missing,	changed	:	changed,	added	:	added	}";

result	=	db._query(query,	bindVariables).toArray();

Author:	Jan	Steemann

Tags:	#howto	#aql

Diffing	Documents

23

https://github.com/jsteemann

Avoiding	parameter	injection	in	AQL

Problem

I	don't	want	my	AQL	queries	to	be	affected	by	parameter	injection.

What	is	parameter	injection?

Parameter	injection	means	that	potentially	content	is	inserted	into	a	query,	and	that	injection	may	change	the	meaning	of	the	query.	It	is	a
security	issue	that	may	allow	an	attacker	to	execute	arbitrary	queries	on	the	database	data.

It	often	occurs	if	applications	trustfully	insert	user-provided	inputs	into	a	query	string,	and	do	not	fully	or	incorrectly	filter	them.	It	also
occurs	often	when	applications	build	queries	naively,	without	using	security	mechanisms	often	provided	by	database	software	or
querying	mechanisms.

Parameter	injection	examples
Assembling	query	strings	with	simple	string	concatenation	looks	trivial,	but	is	potentially	unsafe.	Let's	start	with	a	simple	query	that's
fed	with	some	dynamic	input	value,	let's	say	from	a	web	form.	A	client	application	or	a	Foxx	route	happily	picks	up	the	input	value,	and
puts	it	into	a	query:

/*	evil	!	*/

var	what	=	req.params("searchValue");		/*	user	input	value	from	web	form	*/

...

var	query	=	"FOR	doc	IN	collection	FILTER	doc.value	==	"	+	what	+	"	RETURN	doc";

db._query(query,	params).toArray();

The	above	will	probably	work	fine	for	numeric	input	values.

What	could	an	attacker	do	to	this	query?	Here	are	a	few	suggestions	to	use	for	the		searchValue		parameter:

for	returning	all	documents	in	the	collection:		1	||	true	
for	removing	all	documents:		1	||	true	REMOVE	doc	IN	collection	//	
for	inserting	new	documents:		1	||	true	INSERT	{	foo:	"bar"	}	IN	collection	//	

It	should	have	become	obvious	that	this	is	extremely	unsafe	and	should	be	avoided.

An	pattern	often	seen	to	counteract	this	is	trying	to	quote	and	escape	potentially	unsafe	input	values	before	putting	them	into	query
strings.	This	may	work	in	some	situations,	but	it's	easy	to	overlook	something	or	get	it	subtly	wrong:

/*	we're	sanitzing	now,	but	it's	still	evil	!	*/

var	value	=	req.params("searchValue").replace(/'/g,	'');

...

var	query	=	"FOR	doc	IN	collection	FILTER	doc.value	==	'"	+	value	+	"'	RETURN	doc";

db._query(query,	params).toArray();

The	above	example	uses	single	quotes	for	enclosing	the	potentially	unsafe	user	input,	and	also	replaces	all	single	quotes	in	the	input	value
beforehand.	Not	only	may	that	change	the	user	input	(leading	to	subtle	errors	such	as	"why	does	my	search	for		O'Brien		don't	return	any
results?"),	but	it	is	also	unsafe.	If	the	user	input	contains	a	backslash	at	the	end	(e.g.		foo	bar\),	that	backslash	will	escape	the	closing
single	quote,	allowing	the	user	input	to	break	out	of	the	string	fence	again.

It	gets	worse	if	user	input	is	inserted	into	the	query	at	multiple	places.	Let's	assume	we	have	a	query	with	two	dynamic	values:

query	=	"FOR	doc	IN	collection	FILTER	doc.value	==	'"	+	value	+	"'	&&	doc.type	==	'"	+	type	+	"'	RETURN	doc";

If	an	attacker	inserted		\		for	parameter		value		and		||	true	REMOVE	doc	IN	collection	//		for	parameter		type	,	then	the	effective
query	would	become

Avoiding	Parameter	Injection

24

FOR	doc	IN	collection	FILTER	doc.value	==	'\'	&&	doc.type	==	'	||	true	REMOVE	doc	IN	collection	//'	RETURN	doc

which	is	highly	undesirable.

Solution

Instead	of	mixing	query	string	fragments	with	user	inputs	naively	via	string	concatenation,	use	either	bind	parameters	or	a	query
builder.	Both	can	help	to	avoid	the	problem	of	injection,	because	they	allow	separating	the	actual	query	operations	(like		FOR	,		INSERT	,
	REMOVE)	from	(user	input)	values.

This	recipe	focuses	on	using	bind	parameters.	This	is	not	to	say	that	query	builders	shouldn't	be	used.	They	were	simply	omitted	here
for	the	sake	of	simplicity.	To	get	started	with	a	using	an	AQL	query	builder	in	ArangoDB	or	other	JavaScript	environments,	have	a	look
at	aqb	(which	comes	bundled	with	ArangoDB).	Inside	ArangoDB,	there	are	also	Foxx	queries	which	can	be	combined	with	aqb.

What	bind	parameters	are

Bind	parameters	in	AQL	queries	are	special	tokens	that	act	as	placeholders	for	actual	values.	Here's	an	example:

FOR	doc	IN	collection

		FILTER	doc.value	==	@what

		RETURN	doc

In	the	above	query,		@what		is	a	bind	parameter.	In	order	to	execute	this	query,	a	value	for	bind	parameter		@what		must	be	specified.
Otherwise	query	execution	will	fail	with	error	1551	(no	value	specified	for	declared	bind	parameter).	If	a	value	for		@what		gets	specified,
the	query	can	be	executed.	However,	the	query	string	and	the	bind	parameter	values	(i.e.	the	contents	of	the		@what		bind	parameter)	will
be	handled	separately.	What's	in	the	bind	parameter	will	always	be	treated	as	a	value,	and	it	can't	get	out	of	its	sandbox	and	change	the
semantic	meaning	of	a	query.

How	bind	parameters	are	used

To	execute	a	query	with	bind	parameters,	the	query	string	(containing	the	bind	parameters)	and	the	bind	parameter	values	are	specified
separately	(note	that	when	the	bind	parameter	value	is	assigned,	the	prefix		@		needs	to	be	omitted):

/*	query	string	with	bind	parameter	*/

var	query	=	"FOR	doc	IN	collection	FILTER	doc.value	==	@what	RETURN	doc";

/*	actual	value	for	bind	parameter	*/

var	params	=	{	what:	42	};

/*	run	query,	specifying	query	string	and	bind	parameter	separately	*/

db._query(query,	params).toArray();

If	a	malicious	user	would	set		@what		to	a	value	of		1	||	true	,	this	wouldn't	do	any	harm.	AQL	would	treat	the	contents	of		@what		as	a
single	string	token,	and	the	meaning	of	the	query	would	remain	unchanged.	The	actually	executed	query	would	be:

FOR	doc	IN	collection

		FILTER	doc.value	==	"1	||	true"

		RETURN	doc

Thanks	to	bind	parameters	it	is	also	impossible	to	turn	a	selection	(i.e.	read-only)	query	into	a	data	deletion	query.

Using	JavaScript	variables	as	bind	parameters

There	is	also	a	template	string	generator	function		aql		that	can	be	used	to	safely	(and	conveniently)	built	AQL	queries	using	JavaScript
variables	and	expressions.	It	can	be	invoked	as	follows:

const	aql	=	require('@arangodb')aql;	//	not	needed	in	arangosh

var	value	=	"some	input	value";

Avoiding	Parameter	Injection

25

https://www.npmjs.com/package/aqb

var	query	=	aql`FOR	doc	IN	collection

		FILTER	doc.value	==	${value}

		RETURN	doc`;

var	result	=	db._query(query).toArray();

Note	that	an	ES6	template	string	is	used	for	populating	the		query		variable.	The	string	is	assembled	using	the		aql		generator	function
which	is	bundled	with	ArangoDB.	The	template	string	can	contain	references	to	JavaScript	variables	or	expressions	via		${...}	.	In	the
above	example,	the	query	references	a	variable	named		value	.	The		aql		function	generates	an	object	with	two	separate	attributes:	the
query	string,	containing	references	to	bind	parameters,	and	the	actual	bind	parameter	values.

Bind	parameter	names	are	automatically	generated	by	the		aql		function:

var	value	=	"some	input	value";

aql`FOR	doc	IN	collection	FILTER	doc.value	==	${value}	RETURN	doc`;

{

		"query"	:	"FOR	doc	IN	collection	FILTER	doc.value	==	@value0	RETURN	doc",

		"bindVars"	:	{

				"value0"	:	"some	input	value"

		}

}

Using	bind	parameters	in	dynamic	queries

Bind	parameters	are	helpful,	so	it	makes	sense	to	use	them	for	handling	the	dynamic	values.	You	can	even	use	them	for	queries	that	itself
are	highly	dynamic,	for	example	with	conditional		FILTER		and		LIMIT		parts.	Here's	how	to	do	this:

/*	note:	this	example	has	a	slight	issue...	hang	on	reading	*/

var	query	=	"FOR	doc	IN	collection";

var	params	=	{	};

if	(useFilter)	{

		query	+=	"	FILTER	doc.value	==	@what";

		params.what	=	req.params("searchValue");

}

if	(useLimit)	{

		/*	not	quite	right,	see	below	*/

		query	+=	"	LIMIT	@offset,	@count";

		params.offset	=	req.params("offset");

		params.count	=	req.params("count");

}

query	+=	"	RETURN	doc";

db._query(query,	params).toArray();

Note	that	in	this	example	we're	back	to	string	concatenation,	but	without	the	problem	of	the	query	being	vulnerable	to	arbitrary
modifications.

Input	value	validation	and	sanitation

Still	you	should	prefer	to	be	paranoid,	and	try	to	detect	invalid	input	values	as	early	as	possible,	at	least	before	executing	a	query	with
them.	This	is	because	some	input	parameters	may	affect	the	runtime	behavior	of	queries	negatively	or,	when	modified,	may	lead	to
queries	throwing	runtime	errors	instead	of	returning	valid	results.	This	isn't	something	an	attacker	should	deserve.

	LIMIT		is	a	good	example	for	this:	if	used	with	a	single	argument,	the	argument	should	be	numeric.	When		LIMIT		is	given	a	string	value,
executing	the	query	will	fail.	You	may	want	to	detect	this	early	and	don't	return	an	HTTP	500	(as	this	would	signal	attackers	that	they
were	successful	breaking	your	application).

Another	problem	with		LIMIT		is	that	high		LIMIT		values	are	likely	more	expensive	than	low	ones,	and	you	may	want	to	disallow	using
	LIMIT		values	exceeding	a	certain	threshold.

Here's	what	you	could	do	in	such	cases:

var	query	=	"FOR	doc	IN	collection	LIMIT	@count	RETURN	doc";

Avoiding	Parameter	Injection

26

/*	some	default	value	for	limit	*/

var	params	=	{	count:	100	};

if	(useLimit)	{

		var	count	=	req.params("count");

		/*	abort	if	value	does	not	look	like	an	integer	*/

		if	(!	preg_match(/^d+$/,	count))	{

				throw	"invalid	count	value!";

		}

		/*	actually	turn	it	into	an	integer	*/

		params.count	=	parseInt(count,	10);	//	turn	into	numeric	value

}

if	(params.count	<	1	||	params.count	>	1000)	{

		/*	value	is	outside	of	accepted	thresholds	*/

		throw	"invalid	count	value!";

}

db._query(query,	params).toArray();

This	is	a	bit	more	complex,	but	that's	a	price	you're	likely	willing	to	pay	for	a	bit	of	extra	safety.	In	reality	you	may	want	to	use	a
framework	for	validation	(such	as	joi	which	comes	bundled	with	ArangoDB)	instead	of	writing	your	own	checks	all	over	the	place.

Bind	parameter	types

There	are	two	types	of	bind	parameters	in	AQL:

bind	parameters	for	values:	those	are	prefixed	with	a	single		@		in	AQL	queries,	and	are	specified	without	the	prefix	when	they	get
their	value	assigned.	These	bind	parameters	can	contain	any	valid	JSON	value.

Examples:		@what	,		@searchValue	

bind	parameters	for	collections:	these	are	prefixed	with		@@		in	AQL	queries,	and	are	replaced	with	the	name	of	a	collection.	When
the	bind	parameter	value	is	assigned,	the	parameter	itself	must	be	specified	with	a	single		@		prefix.	Only	string	values	are	allowed
for	this	type	of	bind	parameters.

Examples:		@@collection	

The	latter	type	of	bind	parameter	is	probably	not	used	as	often,	and	it	should	not	be	used	together	with	user	input.	Otherwise	users	may
freely	determine	on	which	collection	your	AQL	queries	will	operate	(note:	this	may	be	a	valid	use	case,	but	normally	it	is	extremely
undesired).

Authors:	Jan	Steemann

Tags:	#injection	#aql	#security

Avoiding	Parameter	Injection

27

https://www.npmjs.com/package/joi
https://github.com/jsteemann

Writing	multi-line	AQL	queries

Problem

I	want	to	write	an	AQL	query	that	spans	multiple	lines	in	my	JavaScript	source	code,	but	it	does	not	work.	How	to	do	this?

Solution

AQL	supports	multi-line	queries,	and	the	AQL	editor	in	ArangoDB's	web	interface	supports	them	too.

When	issued	programmatically,	multi-line	queries	can	be	a	source	of	errors,	at	least	in	some	languages.	For	example,	JavaScript	is
notoriously	bad	at	handling	multi-line	(JavaScript)	statements,	and	until	recently	it	had	no	support	for	multi-line	strings.

In	JavaScript,	there	are	three	ways	of	writing	a	multi-line	AQL	query	in	the	source	code:

string	concatenation
ES6	template	strings
query	builder

Which	method	works	best	depends	on	a	few	factors,	but	is	often	enough	a	simple	matter	of	preference.	Before	deciding	on	any,	please
make	sure	to	read	the	recipe	for	avoiding	parameter	injection	too.

String	concatenation

We	want	the	query		FOR	doc	IN	collection	FILTER	doc.value	==	@what	RETURN	doc		to	become	more	legible	in	the	source	code.

Simply	splitting	the	query	string	into	three	lines	will	leave	us	with	a	parse	error	in	JavaScript:

/*	will	not	work	*/

var	query	=	"FOR	doc	IN	collection

													FILTER	doc.value	==	@what

													RETURN	doc";

Instead,	we	could	do	this:

var	query	=	"FOR	doc	IN	collection	"	+

												"FILTER	doc.value	==	@what	"	+

												"RETURN	doc";

This	is	perfectly	valid	JavaScript,	but	it's	error-prone.	People	have	spent	ages	on	finding	subtle	bugs	in	their	queries	because	they	missed
a	single	whitespace	character	at	the	beginning	or	start	of	some	line.

Please	note	that	when	assembling	queries	via	string	concatenation,	you	should	still	use	bind	parameters	(as	done	above	with		@what)	and
not	insert	user	input	values	into	the	query	string	without	sanitation.

ES6	template	strings

ES6	template	strings	are	easier	to	get	right	and	also	look	more	elegant.	They	can	be	used	inside	ArangoDB	since	version	2.5.	but	some
other	platforms	don't	support	them	et.	For	example,	they	can't	be	used	in	IE	and	older	node.js	versions.	So	use	them	if	your	environment
supports	them	and	your	code	does	not	need	to	run	on	any	non-ES6	environments.

Here's	the	query	string	declared	via	an	ES6	template	string	(note	that	the	string	must	be	enclosed	in	backticks	now):

var	query	=	`FOR	doc	IN	collection

													FILTER	doc.value	==	@what

													RETURN	doc`;

The	whitespace	in	the	template	string-variant	is	much	easier	to	get	right	than	when	doing	the	string	concatenation.

Multiline	Query	Strings

28

There	are	a	few	things	to	note	regarding	template	strings:

ES6	template	strings	can	be	used	to	inject	JavaScript	values	into	the	string	dynamically.	Substitutions	start	with	the	character
sequence		${	.	Care	must	be	taken	if	this	sequence	itself	is	used	inside	the	AQL	query	string	(currently	this	would	be	invalid	AQL,
but	this	may	change	in	future	ArangoDB	versions).	Additionally,	any	values	injected	into	the	query	string	using	parameter
substitutions	will	not	be	escaped	correctly	automatically,	so	again	special	care	must	be	taken	when	using	this	method	to	keep	queries
safe	from	parameter	injection.

a	multi-line	template	string	will	actually	contain	newline	characters.	This	is	not	necessarily	the	case	when	doing	string	concatenation.
In	the	string	concatenation	example,	we	used	three	lines	of	source	code	to	create	a	single-line	query	string.	We	could	have	inserted
newlines	into	the	query	string	there	too,	but	we	didn't.	Just	to	point	out	that	the	two	variants	will	not	create	bytewise-identical
query	strings.

Please	note	that	when	using	ES6	template	strings	for	your	queries,	you	should	still	use	bind	parameters	(as	done	above	with		@what)	and
not	insert	user	input	values	into	the	query	string	without	sanitation.

There	is	a	convenience	function		aql		which	can	be	used	to	safely	and	easily	build	an	AQL	query	with	substitutions	from	arbitrary
JavaScript	values	and	expressions.	It	can	be	invoked	like	this:

const	aql	=	require("@arangodb").aql;	//	not	needed	in	arangosh

var	what	=	"some	input	value";

var	query	=	aql`FOR	doc	IN	collection

																					FILTER	doc.value	==	${what}

																					RETURN	doc`;

The	template	string	variant	that	uses		aql		is	both	convenient	and	safe.	Internally,	it	will	turn	the	substituted	values	into	bind
parameters.	The	query	string	and	the	bind	parameter	values	will	be	returned	separately,	so	the	result	of		query		above	will	be	something
like:

{

		"query"	:	"FOR	doc	IN	collection	FILTER	doc.value	==	@value0	RETURN	doc",

		"bindVars"	:	{

				"value0"	:	"some	input	value"

		}

}

Query	builder

ArangoDB	comes	bundled	with	a	query	builder	named	aqb.	That	query	builder	can	be	used	to	programmatically	construct	AQL	queries,
without	having	to	write	query	strings	at	all.

Here's	an	example	of	its	usage:

var	qb	=	require("aqb");

var	jobs	=	db._createStatement({

		query:	(

				qb.for('job').in('_jobs')

				.filter(

						qb('pending').eq('job.status')

						.and(qb.ref('@queue').eq('job.queue'))

						.and(qb.ref('@now').gte('job.delayUntil'))

)

				.sort('job.delayUntil',	'ASC')

				.limit('@max')

				.return('job')

),

		bindVars:	{

				queue:	queue._key,

				now:	Date.now(),

				max:	queue.maxWorkers	-	numBusy

		}

}).execute().toArray();

Multiline	Query	Strings

29

https://www.npmjs.com/package/aqb

As	can	be	seen,	aqb	provides	a	fluent	API	that	allows	chaining	function	calls	for	creating	the	individual	query	operations.	This	has	a	few
advantages:

flexibility:	there	is	no	query	string	in	the	source	code,	so	the	code	can	be	formatted	as	desired	without	having	to	bother	about	strings
validation:	the	query	can	be	validated	syntactically	by	aqb	before	being	actually	executed	by	the	server.	Testing	of	queries	also
becomes	easier.	Additionally,	some	IDEs	may	provide	auto-completion	to	some	extend	and	thus	aid	development
security:	built-in	separation	of	query	operations	(e.g.		FOR	,		FILTER	,		SORT	,		LIMIT)	and	dynamic	values	(e.g.	user	input	values)

aqb	can	be	used	inside	ArangoDB	and	from	node.js	and	even	from	within	browsers.

Authors:	Jan	Steemann

Tags:	#aql	#aqb	#es6

Multiline	Query	Strings

30

https://github.com/jsteemann

Migrating	GRAPH_*	Functions	from	2.8	or	earlier	to	3.0

Problem

With	the	release	of	3.0	all	GRAPH	functions	have	been	dropped	from	AQL	in	favor	of	a	more	native	integration	of	graph	features	into
the	query	language.	I	have	used	the	old	graph	functions	and	want	to	upgrade	to	3.0.

Graph	functions	covered	in	this	recipe:

GRAPH_COMMON_NEIGHBORS
GRAPH_COMMON_PROPERTIES
GRAPH_DISTANCE_TO
GRAPH_EDGES
GRAPH_NEIGHBORS
GRAPH_TRAVERSAL
GRAPH_TRAVERSAL_TREE
GRAPH_SHORTEST_PATH
GRAPH_PATHS
GRAPH_VERTICES

Solution	1:	Quick	and	Dirty	(not	recommended)

When	to	use	this	solution

I	am	not	willing	to	invest	a	lot	if	time	into	the	upgrade	process	and	i	am	willing	to	surrender	some	performance	in	favor	of	less	effort.
Some	constellations	may	not	work	with	this	solution	due	to	the	nature	of	user-defined	functions.	Especially	check	for	AQL	queries	that
do	both	modifications	and		GRAPH_*		functions.

Registering	user-defined	functions

This	step	has	to	be	executed	once	on	ArangoDB	for	every	database	we	are	using.

We	connect	to		arangodb		with		arangosh		to	issue	the	following	commands	two:

var	graphs	=	require("@arangodb/general-graph");

graphs._registerCompatibilityFunctions();

These	have	registered	all	old		GRAPH_*		functions	as	user-defined	functions	again,	with	the	prefix		arangodb::	.

Modify	the	application	code

Next	we	have	to	go	through	our	application	code	and	replace	all	calls	to		GRAPH_*		by		arangodb::GRAPH_*	.	Now	run	a	testrun	of	our
application	and	check	if	it	worked.	If	it	worked	we	are	ready	to	go.

Important	Information

The	user	defined	functions	will	call	translated	subqueries	(as	described	in	Solution	2).	The	optimizer	does	not	know	anything	about	these
subqueries	beforehand	and	cannot	optimize	the	whole	plan.	Also	there	might	be	read/write	constellations	that	are	forbidden	in	user-
defined	functions,	therefore	a	"really"	translated	query	may	work	while	the	user-defined	function	work	around	may	be	rejected.

Solution	2:	Translating	the	queries	(recommended)

When	to	use	this	solution

Migrating	named	graph	functions	to	3.0

31

I	am	willing	to	invest	some	time	on	my	queries	in	order	to	get	maximum	performance,	full	query	optimization	and	a	better	control	of	my
queries.	No	forcing	into	the	old	layout	any	more.

Before	you	start

If	you	are	using		vertexExamples		which	are	not	only		_id		strings	do	not	skip	the	GRAPH_VERTICES	section,	because	it	will	describe
how	to	translate	them	to	AQL.	All	graph	functions	using	a	vertexExample	are	identical	to	executing	a	GRAPH_VERTICES	before	and
using	it's	result	as	start	point.	Example	with	NEIGHBORS:

FOR	res	IN	GRAPH_NEIGHBORS(@graph,	@myExample)	RETURN	res

Is	identical	to:

FOR	start	GRAPH_VERTICES(@graph,	@myExample)

		FOR	res	IN	GRAPH_NEIGHBORS(@graph,	start)	RETURN	res

All	non	GRAPH_VERTICES	functions	will	only	explain	the	transformation	for	a	single	input	document's		_id	.

Options	used	everywhere

Option	edgeCollectionRestriction

In	order	to	use	edge	Collection	restriction	we	just	use	the	feature	that	the	traverser	can	walk	over	a	list	of	edge	collections	directly.	So	the
edgeCollectionRestrictions	just	form	this	list	(exampleGraphEdges):

//	OLD

[..]	FOR	e	IN	GRAPH_EDGES(@graphName,	@startId,	{edgeCollectionRestriction:	[edges1,	edges2]})	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	ANY	@startId	edges1,	edges2	RETURN	DISTINCT	e._id

Note:	The		@graphName		bindParameter	is	not	used	anymore	and	probably	has	to	be	removed	from	the	query.

Option	includeData

If	we	use	the	option	includeData	we	simply	return	the	object	directly	instead	of	only	the	_id

Example	GRAPH_EDGES:

//	OLD

[..]	FOR	e	IN	GRAPH_EDGES(@graphName,	@startId,	{includeData:	true})	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	ANY	@startId	GRAPH	@graphName	RETURN	DISTINCT	e

Option	direction

The	direction	has	to	be	placed	before	the	start	id.	Note	here:	The	direction	has	to	be	placed	as	Word	it	cannot	be	handed	in	via	a
bindParameter	anymore:

//	OLD

[..]	FOR	e	IN	GRAPH_EDGES(@graphName,	@startId,	{direction:	'inbound'})	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	INBOUND	@startId	GRAPH	@graphName	RETURN	DISTINCT	e._id

Options	minDepth,	maxDepth

If	we	use	the	options	minDepth	and	maxDepth	(both	default	1	if	not	set)	we	can	simply	put	them	in	front	of	the	direction	part	in	the
Traversal	statement.

Migrating	named	graph	functions	to	3.0

32

Example	GRAPH_EDGES:

//	OLD

[..]	FOR	e	IN	GRAPH_EDGES(@graphName,	@startId,	{minDepth:	2,	maxDepth:	4})	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	2..4	ANY	@startId	GRAPH	@graphName	RETURN	DISTINCT	e._id

Option	maxIteration

The	option		maxIterations		is	removed	without	replacement.	Your	queries	are	now	bound	by	main	memory	not	by	an	arbitrary	number
of	iterations.

GRAPH_VERTICES

First	we	have	to	branch	on	the	example.	There	we	have	three	possibilities:

1.	 The	example	is	an		_id		string.
2.	 The	example	is		null		or		{}	.
3.	 The	example	is	a	non	empty	object	or	an	array.

Example	is	'_id'	string

This	is	the	easiest	replacement.	In	this	case	we	simply	replace	the	function	with	a	call	to		DOCUMENT	:

//	OLD

[..]	GRAPH_VERTICES(@graphName,	@idString)	[..]	

//	NEW

[..]	DOCUMENT(@idString)	[..]

NOTE:	The		@graphName		is	not	required	anymore,	we	may	have	to	adjust	bindParameters.

The	AQL	graph	features	can	work	with	an	id	directly,	no	need	to	call		DOCUMENT		before	if	we	just	need	this	to	find	a	starting	point.

Example	is		null		or	the	empty	object

This	case	means	we	use	all	documents	from	the	graph.	Here	we	first	have	to	now	the	vertex	collections	of	the	graph.

1.	 If	we	only	have	one	collection	(say		vertices)	we	can	replace	it	with	a	simple	iteration	over	this	collection:

//	OLD

[..]	FOR	v	IN	GRAPH_VERTICES(@graphName,	{})	[..]	

//	NEW

[..]	FOR	v	IN	vertices	[..]	

`

NOTE:	The		@graphName		is	not	required	anymore,	we	may	have	to	adjust	bindParameters.

1.	 We	have	more	than	one	collection.	This	is	the	unfortunate	case	for	a	general	replacement.	So	in	the	general	replacement	we	assume
we	do	not	want	to	exclude	any	of	the	collections	in	the	graph.	Than	we	unfortunately	have	to	form	a		UNION	over	all	these
collections.	Say	our	graph	has	the	vertex	collections		vertices1	,		vertices2	,		vertices3		we	create	a	sub-query	for	a	single
collection	for	each	of	them	and	wrap	them	in	a	call	to		UNION	.

//	OLD

[..]	FOR	v	IN	GRAPH_VERTICES(@graphName,	{})	[..]	

//	NEW

[..]

FOR	v	IN	UNION(//	We	start	a	UNION

		(FOR	v	IN	vertices1	RETURN	v),	//	For	each	vertex	collection

		(FOR	v	IN	vertices2	RETURN	v),	//	we	create	the	same	subquery

		(FOR	v	IN	vertices3	RETURN	v)

Migrating	named	graph	functions	to	3.0

33

)	//	Finish	with	the	UNION

[..]	

`

NOTE:	If	you	have	any	more	domain	knowledge	of	your	graph	apply	it	at	this	point	to	identify	which	collections	are	actually	relevant	as
this		UNION		is	a	rather	expensive	operation.

If	we	use	the	option		vertexCollectionRestriction		in	the	original	query.	The		UNION		has	to	be	formed	by	the	collections	in	this
restriction	instead	of	ALL	collections.

Example	is	a	non-empty	object

First	we	follow	the	instructions	for	the	empty	object	above.	In	this	section	we	will	just	focus	on	a	single	collection		vertices	,	the
UNION	for	multiple	collections	is	again	wrapped	around	a	subquery	for	each	of	these	collections	built	in	the	following	way.

Now	we	have	to	transform	the	example	into	an	AQL		FILTER		statement.	Therefore	we	take	all	top-level	attributes	of	the	example	and	do
an	equal	comparison	with	their	values.	All	of	these	comparisons	are	joined	with	an		AND		because	the	all	have	to	be	fulfilled.

Example:

//	OLD

[..]	FOR	v	IN	GRAPH_VERTICES(@graphName,	{foo:	'bar',	the:	{answer:	42}}})	[..]	

//	NEW

[..]	FOR	v	IN	vertices

		FILTER	v.foo	==	'bar'	//	foo:	bar

		AND				v.the	==	{answer:	42}	//the:	{answer:	42}

[..]

Example	is	an	array

The	idea	transformation	is	almost	identical	to	a	single	non-empty	object.	For	each	element	in	the	array	we	create	the	filter	conditions	and
than	we		OR	-combine	them	(mind	the	brackets):

//	OLD

[..]	FOR	v	IN	GRAPH_VERTICES(@graphName,	[{foo:	'bar',	the:	{answer:	42}},	{foo:	'baz'}]))	[..]	

//	NEW

[..]	FOR	v	IN	vertices

		FILTER	(v.foo	==	'bar'	//	foo:	bar

				AND			v.the	==	{answer:	42})	//the:	{answer:	42}

		OR	(v.foo	==	'baz')

[..]

GRAPH_EDGES

The	GRAPH_EDGES	can	be	simply	replaced	by	a	call	to	the	AQL	traversal.

No	options

The	default	options	did	use	a	direction		ANY		and	returned	a	distinct	result	of	the	edges.	Also	it	did	just	return	the	edges		_id		value.

//	OLD

[..]	FOR	e	IN	GRAPH_EDGES(@graphName,	@startId)	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	ANY	@startId	GRAPH	@graphName	RETURN	DISTINCT	e._id

Option	edgeExamples.

See		GRAPH_VERTICES		on	how	to	transform	examples	to	AQL	FILTER.	Apply	the	filter	on	the	edge	variable		e	.

GRAPH_NEIGHBORS

Migrating	named	graph	functions	to	3.0

34

The	GRAPH_NEIGHBORS	is	a	breadth-first-search	on	the	graph	with	a	global	unique	check	for	vertices.	So	we	can	replace	it	by	a	an
AQL	traversal	with	these	options.

No	options

The	default	options	did	use	a	direction		ANY		and	returned	a	distinct	result	of	the	neighbors.	Also	it	did	just	return	the	neighbors		_id	
value.

//	OLD

[..]	FOR	n	IN	GRAPH_NEIGHBORS(@graphName,	@startId)	RETURN	n

//	NEW

[..]	FOR	n	IN	ANY	@startId	GRAPH	@graphName	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	n

Option	neighborExamples

See		GRAPH_VERTICES		on	how	to	transform	examples	to	AQL	FILTER.	Apply	the	filter	on	the	neighbor	variable		n	.

Option	edgeExamples

See		GRAPH_VERTICES		on	how	to	transform	examples	to	AQL	FILTER.	Apply	the	filter	on	the	edge	variable		e	.

However	this	is	a	bit	more	complicated	as	it	interferes	with	the	global	uniqueness	check.	For	edgeExamples	it	is	sufficent	when	any	edge
pointing	to	the	neighbor	matches	the	filter.	Using		{uniqueVertices:	'global'}		first	picks	any	edge	randomly.	Than	it	checks	against	this
edge	only.	If	we	know	there	are	no	vertex	pairs	with	multiple	edges	between	them	we	can	use	the	simple	variant	which	is	save:

//	OLD

[..]	FOR	n	IN	GRAPH_NEIGHBORS(@graphName,	@startId,	{edgeExample:	{label:	'friend'}})	RETURN	e

//	NEW

[..]	FOR	n,	e	IN	ANY	@startId	GRAPH	@graphName	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	FILTER	e.label	==	'friend'	RETURN	

n._id

If	there	may	be	multiple	edges	between	the	same	pair	of	vertices	we	have	to	make	the	distinct	check	ourselfes	and	cannot	rely	on	the
traverser	doing	it	correctly	for	us:

//	OLD

[..]	FOR	n	IN	GRAPH_NEIGHBORS(@graphName,	@startId,	{edgeExample:	{label:	'friend'}})	RETURN	e

//	NEW

[..]	FOR	n,	e	IN	ANY	@startId	GRAPH	@graphName	OPTIONS	{bfs:	true}	FILTER	e.label	==	'friend'	RETURN	DISTINCT	n._id

Option	vertexCollectionRestriction

If	we	use	the	vertexCollectionRestriction	we	have	to	postFilter	the	neighbors	based	on	their	collection.	Therefore	we	can	make	use	of	the
function		IS_SAME_COLLECTION	:

//	OLD

[..]	FOR	n	IN	GRAPH_NEIGHBORS(@graphName,	@startId,	{vertexCollectionRestriction:	['vertices1',	'vertices2']})	RETURN	e

//	NEW

[..]	FOR	n	IN	ANY	@startId	GRAPH	@graphName	OPTIONS	{bfs:	true,	uniqueVertices:	true}	FILTER	IS_SAME_COLLECTION(vertices1,	n)	O

R	IS_SAME_COLLECTION(vertices2,	n)	RETURN	DISTINCT	n._id

GRAPH_COMMON_NEIGHBORS

	GRAPH_COMMON_NEIGHBORS		is	defined	as	two		GRAPH_NEIGHBORS		queries	and	than	forming	the		INTERSECTION		of	both	queries.	How	to
translate	the	options	please	refer	to		GRAPH_NEIGHBORS	.	Finally	we	have	to	build	the	old	result	format		{left,	right,	neighbors}	.	If	you
just	need	parts	of	the	result	you	can	adapt	this	query	to	your	specific	needs.

//	OLD

Migrating	named	graph	functions	to	3.0

35

FOR	v	IN	GRAPH_COMMON_NEIGHBORS(@graphName,	'vertices/1'	,	'vertices/2',		{direction	:	'any'})	RETURN	v

//	NEW

LET	n1	=	(//	Neighbors	for	vertex1Example

		FOR	n	IN	ANY	'vertices/1'	GRAPH	'graph'	OPTIONS	{bfs:	true,	uniqueVertices:	"global"}	RETURN	n._id

)

LET	n2	=	(//	Neighbors	for	vertex2Example

		FOR	n	IN	ANY	'vertices/2'	GRAPH	'graph'	OPTIONS	{bfs:	true,	uniqueVertices:	"global"}	RETURN	n._id

)

LET	common	=	INTERSECTION(n1,	n2)	//	Get	the	intersection

RETURN	{	//	Produce	the	original	result

		left:	'vertices/1',

		right:	'vertices/2,

		neighbors:	common

}

NOTE:	If	you	are	using	examples	instead	of		_ids		you	have	to	add	a	filter	to	make	sure	that	the	left	is	not	equal	to	the	right	start	vertex.
To	give	you	an	example	with	a	single	vertex	collection		vertices	,	the	replacement	would	look	like	this:

//	OLD

FOR	v	IN	GRAPH_COMMON_NEIGHBORS(@graphName,	{name:	"Alice"},	{name:	"Bob"})	RETURN	v

//	NEW

FOR	left	IN	vertices

		FILTER	left.name	==	"Alice"

		LET	n1	=	(FOR	n	IN	ANY	left	GRAPH	'graph'	OPTIONS	{bfs:	true,	uniqueVertices:	"global"}	RETURN	n._id)

		FOR	right	IN	vertices

				FILTER	right.name	==	"Bob"

				FILTER	right	!=	left	//	Make	sure	left	is	not	identical	to	right

				LET	n2	=	(FOR	n	IN	ANY	right	GRAPH	'graph'	OPTIONS	{bfs:	true,	uniqueVertices:	"global"}	RETURN	n._id)

				LET	neighbors	=	INTERSECTION(n1,	n2)

				FILTER	LENGTH(neighbors)	>	0	//	Only	pairs	with	shared	neighbors	should	be	returned

				RETURN	{left:	left._id,	right:	right._id,	neighbors:	neighbors}

GRAPH_PATHS

This	function	computes	all	paths	of	the	entire	graph	(with	a	given	minDepth	and	maxDepth)	as	you	can	imagine	this	feature	is	extremely
expensive	and	should	never	be	used.	However	paths	can	again	be	replaced	by	AQL	traversal.	Assume	we	only	have	one	vertex	collection
	vertices		again.

No	options

By	default	paths	of	length	0	to	10	are	returned.	And	circles	are	not	followed.

//	OLD

RETURN	GRAPH_PATHS('graph')

//	NEW

FOR	start	IN	vertices

FOR	v,	e,	p	IN	0..10	OUTBOUND	start	GRAPH	'graph'	RETURN	{source:	start,	destination:	v,	edges:	p.edges,	vertices:	p.vertices}

followCycles

If	this	option	is	set	we	have	to	modify	the	options	of	the	traversal	by	modifying	the		uniqueEdges		property:

//	OLD

RETURN	GRAPH_PATHS('graph',	{followCycles:	true})

//	NEW

FOR	start	IN	vertices

FOR	v,	e,	p	IN	0..10	OUTBOUND	start	GRAPH	'graph'	OPTIONS	{uniqueEdges:	'none'}	RETURN	{source:	start,	destination:	v,	edges:	p

.edges,	vertices:	p.vertices}

GRAPH_COMMON_PROPERTIES

Migrating	named	graph	functions	to	3.0

36

This	feature	involves	several	full-collection	scans	and	therefore	is	extremely	expensive.	If	you	really	need	it	you	can	transform	it	with	the
help	of		ATTRIBUTES	,		KEEP		and		ZIP	.

Start	with	single	_id

//	OLD

RETURN	GRAPH_COMMON_PROPERTIES('graph',	"vertices/1",	"vertices/2")

//	NEW

LET	left	=	DOCUMENT("vertices/1")	//	get	one	document

LET	right	=	DOCUMENT("vertices/2")	//	get	the	other	one

LET	shared	=	(FOR	a	IN	ATTRIBUTES(left)	//	find	all	shared	attributes

															FILTER	left[a]	==	right[a]

																	OR	a	==	'_id'	//	always	include	_id

																	RETURN	a)

FILTER	LENGTH(shared)	>	1	//	Return	them	only	if	they	share	an	attribute

RETURN	ZIP([left._id],	[KEEP(right,	shared)])	//	Build	the	result

Start	with	vertexExamples

Again	we	assume	we	only	have	a	single	collection		vertices	.	We	have	to	transform	the	examples	into	filters.	Iterate	over	vertices	to	find
all	left	documents.	For	each	left	document	iterate	over	vertices	again	to	find	matching	right	documents.	And	return	the	shared	attributes	as
above:

//	OLD

RETURN	GRAPH_COMMON_PROPERTIES('graph',	{answer:	42},	{foo:	"bar"})

//	NEW

FOR	left	IN	vertices

		FILTER	left.answer	==	42

		LET	commons	=	(

				FOR	right	IN	vertices

						FILTER	right.foo	==	"bar"

						FILTER	left	!=	right

						LET	shared	=	(FOR	a	IN	ATTRIBUTES(left)	

																					FILTER	left[a]	==	right[a]

																					OR	a	==	'_id'

																							RETURN	a)

						FILTER	LENGTH(shared)	>	1

						RETURN	KEEP(right,	shared))

		FILTER	LENGTH(commons)	>	0

		RETURN	ZIP([left._id],	[commons])

GRAPH_SHORTEST_PATH

A	shortest	path	computation	is	now	done	via	the	new	SHORTEST_PATH	AQL	statement.

No	options

//	OLD

FOR	p	IN	GRAPH_SHORTEST_PATH(@graphName,	@startId,	@targetId,	{direction	:	'outbound'})	RETURN	p

//	NEW

LET	p	=	(//	Run	one	shortest	Path

		FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	@startId	TO	@targetId	GRAPH	@graphName

		//	We	return	objects	with	vertex,	edge	and	weight	for	each	vertex	on	the	path

		RETURN	{vertex:	v,	edge:	e,	weight:	(IS_NULL(e)	?	0	:	1)}

)

FILTER	LENGTH(p)	>	0	//	We	only	want	shortest	paths	that	actually	exist

RETURN	{	//	We	rebuild	the	old	format

		vertices:	p[*].vertex,

		edges:	p[*	FILTER	CURRENT.e	!=	null].edge,

		distance:	SUM(p[*].weight)

}

Options	weight	and	defaultWeight

Migrating	named	graph	functions	to	3.0

37

The	new	AQL	SHORTEST_PATH	offers	the	options		weightAttribute		and		defaultWeight	.

//	OLD

FOR	p	IN	GRAPH_SHORTEST_PATH(@graphName,	@startId,	@targetId,	{direction	:	'outbound',	weight:	"weight",	defaultWeight:	80})	RE

TURN	p

//	NEW

LET	p	=	(//	Run	one	shortest	Path

		FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	@startId	TO	@targetId	GRAPH	@graphName

		//	We	return	objects	with	vertex,	edge	and	weight	for	each	vertex	on	the	path

		RETURN	{vertex:	v,	edge:	e,	weight:	(IS_NULL(e)	?	0	:	(IS_NUMBER(e.weight)	?	e.weight	:	80))}

)

FILTER	LENGTH(p)	>	0	//	We	only	want	shortest	paths	that	actually	exist

RETURN	{	//	We	rebuild	the	old	format

		vertices:	p[*].vertex,

		edges:	p[*	FILTER	CURRENT.e	!=	null].edge,

		distance:	SUM(p[*].weight)	//	We	have	to	recompute	the	distance	if	we	need	it

}

GRAPH_DISTANCE_TO

Graph	distance	to	only	differs	by	the	result	format	from		GRAPH_SHORTEST_PATH	.	So	we	follow	the	transformation	for
	GRAPH_SHORTEST_PATH	,	remove	some	unnecessary	parts,	and	change	the	return	format

//	OLD

FOR	p	IN	GRAPH_DISTANCE_TO(@graphName,	@startId,	@targetId,	{direction	:	'outbound'})	RETURN	p

//	NEW

LET	p	=	(//	Run	one	shortest	Path

		FOR	v,	e	IN	OUTBOUND	SHORTEST_PATH	@startId	TO	@targetId	GRAPH	@graphName

		//	DIFFERENCE	we	only	return	the	weight	for	each	edge	on	the	path

		RETURN	IS_NULL(e)	?	0	:	1}	

)

FILTER	LENGTH(p)	>	0	//	We	only	want	shortest	paths	that	actually	exist

RETURN	{	//	We	rebuild	the	old	format

		startVertex:	@startId,

		vertex:	@targetId,

		distance:	SUM(p[*].weight)

}

GRAPH_TRAVERSAL	and	GRAPH_TRAVERSAL_TREE

These	have	been	removed	and	should	be	replaced	by	the	native	AQL	traversal.	There	are	many	potential	solutions	using	the	new	syntax,
but	they	largely	depend	on	what	exactly	you	are	trying	to	achieve	and	would	go	beyond	the	scope	of	this	cookbook.	Here	is	one	example
how	to	do	the	transition,	using	the	world	graph	as	data:

In	2.8,	it	was	possible	to	use		GRAPH_TRAVERSAL()		together	with	a	custom	visitor	function	to	find	leaf	nodes	in	a	graph.	Leaf	nodes	are
vertices	that	have	inbound	edges,	but	no	outbound	edges.	The	visitor	function	code	looked	like	this:

var	aqlfunctions	=	require("org/arangodb/aql/functions");

aqlfunctions.register("myfunctions::leafNodeVisitor",	function	(config,	result,	vertex,	path,	connected)	{

		if	(connected	&&	connected.length	===	0)	{

				return	vertex.name	+	"	("	+	vertex.type	+	")";

		}

});

And	the	AQL	query	to	make	use	of	it:

LET	params	=	{

		order:	"preorder-expander",

		visitor:	"myfunctions::leafNodeVisitor",

		visitorReturnsResults:	true

}

FOR	result	IN	GRAPH_TRAVERSAL("worldCountry",	"worldVertices/world",	"inbound",	params)

		RETURN	result

Migrating	named	graph	functions	to	3.0

38

To	traverse	the	graph	starting	at	vertex		worldVertices/world		using	native	AQL	traversal	and	a	named	graph,	we	can	simply	do:

FOR	v	IN	0..10	INBOUND	"worldVertices/world"	GRAPH	"worldCountry"

		RETURN	v

It	will	give	us	all	vertex	documents	including	the	start	vertex	(because	the	minimum	depth	is	set	to	0).	The	maximum	depth	is	set	to	10,
which	is	enough	to	follow	all	edges	and	reach	the	leaf	nodes	in	this	graph.

The	query	can	be	modified	to	return	a	formatted	path	from	first	to	last	node:

FOR	v,	e,	p	IN	0..10	INBOUND	"worldVertices/world"	GRAPH	"worldCountry"

		RETURN	CONCAT_SEPARATOR("	->	",	p.vertices[*].name)

The	result	looks	like	this	(shortened):

[

		"World",

		"World	->	Africa",

		"World	->	Africa	->	Cote	d'Ivoire",

		"World	->	Africa	->	Cote	d'Ivoire	->	Yamoussoukro",

		"World	->	Africa	->	Angola",

		"World	->	Africa	->	Angola	->	Luanda",

		"World	->	Africa	->	Chad",

		"World	->	Africa	->	Chad	->	N'Djamena",

		...

]

As	we	can	see,	all	possible	paths	of	varying	lengths	are	returned.	We	are	not	really	interested	in	them,	but	we	still	have	to	do	the	traversal
to	go	from	World	all	the	way	to	the	leaf	nodes	(e.g.	Yamoussoukro).	To	determine	if	a	vertex	is	really	the	last	on	the	path	in	the	sense	of
being	a	leaf	node,	we	can	use	another	traversal	of	depth	1	to	check	if	there	is	at	least	one	outgoing	edge	-	which	means	the	vertex	is	not	a
leaf	node,	otherwise	it	is:

FOR	v	IN	0..10	INBOUND	"worldVertices/world"	GRAPH	"worldCountry"

		FILTER	LENGTH(FOR	vv	IN	INBOUND	v	GRAPH	"worldCountry"	LIMIT	1	RETURN	1)	==	0

		RETURN	CONCAT(v.name,	"	(",	v.type,	")")

Using	the	current	vertex		v		as	starting	point,	the	second	traversal	is	performed.	It	can	return	early	after	one	edge	was	followed	(LIMIT
1),	because	we	don't	need	to	know	the	exact	count	and	it	is	faster	this	way.	We	also	don't	need	the	actual	vertex,	so	we	can	just		RETURN
1		as	dummy	value	as	an	optimization.	The	traversal	(which	is	a	sub-query)	will	return	an	empty	array	in	case	of	a	leaf	node,	and		[1]	
otherwise.	Since	we	only	want	the	leaf	nodes,	we		FILTER		out	all	non-empty	arrays	and	what	is	left	are	the	leaf	nodes	only.	The
attributes		name		and		type		are	formatted	the	way	they	were	like	in	the	original	JavaScript	code,	but	now	with	AQL.	The	final	result	is	a
list	of	all	capitals:

[

		"Yamoussoukro	(capital)",

		"Luanda	(capital)",

		"N'Djamena	(capital)",

		"Algiers	(capital)",

		"Yaounde	(capital)",

		"Ouagadougou	(capital)",

		"Gaborone	(capital)",

		"Asmara	(capital)",

		"Cairo	(capital)",

		...

]

There	is	no	direct	substitute	for	the		GRAPH_TRAVERSAL_TREE()		function.	The	advantage	of	this	function	was	that	its	(possibly	highly
nested)	result	data	structure	inherently	represented	the	"longest"	possible	paths	only.	With	native	AQL	traversal,	all	paths	from
minimum	to	maximum	traversal	depth	are	returned,	including	the	"short"	paths	as	well:

FOR	v,	e,	p	IN	1..2	INBOUND	"worldVertices/continent-north-america"	GRAPH	"worldCountry"

		RETURN	CONCAT_SEPARATOR("	<-	",	p.vertices[*]._key)

Migrating	named	graph	functions	to	3.0

39

[

		"continent-north-america	<-	country-antigua-and-barbuda",

		"continent-north-america	<-	country-antigua-and-barbuda	<-	capital-saint-john-s",

		"continent-north-america	<-	country-barbados",

		"continent-north-america	<-	country-barbados	<-	capital-bridgetown",

		"continent-north-america	<-	country-canada",

		"continent-north-america	<-	country-canada	<-	capital-ottawa",

		"continent-north-america	<-	country-bahamas",

		"continent-north-america	<-	country-bahamas	<-	capital-nassau"

]

A	second	traversal	with	depth	=	1	can	be	used	to	check	if	we	reached	a	leaf	node	(no	more	incoming	edges).	Based	on	this	information,	the
"short"	paths	can	be	filtered	out.	Note	that	a	second	condition	is	required:	it	is	possible	that	the	last	node	in	a	traversal	is	not	a	leaf	node
if	the	maximum	traversal	depth	is	exceeded.	Thus,	we	need	to	also	let	paths	through,	which	contain	as	many	edges	as	hops	we	do	in	the
traversal	(here:	2).

FOR	v,	e,	p	IN	1..2	INBOUND	"worldVertices/continent-north-america"	GRAPH	"worldCountry"

		LET	other	=	(

				FOR	vv,	ee	IN	INBOUND	v	GRAPH	"worldCountry"

						//FILTER	ee	!=	e	//	needed	if	traversing	edges	in	ANY	direction

						LIMIT	1

						RETURN	1

)

		FILTER	LENGTH(other)	==	0	||	LENGTH(p.edges)	==	2

		RETURN	CONCAT_SEPARATOR("	<-	",	p.vertices[*]._key)

[

		"continent-north-america	<-	country-antigua-and-barbuda	<-	capital-saint-john-s",

		"continent-north-america	<-	country-barbados	<-	capital-bridgetown",

		"continent-north-america	<-	country-canada	<-	capital-ottawa",

		"continent-north-america	<-	country-bahamas	<-	capital-nassau"

]

The	full	paths	can	be	returned,	but	it	is	not	in	a	tree-like	structure	as	with		GRAPH_TRAVERSAL_TREE()	.	Such	a	data	structure	can	be
constructed	on	client-side	if	really	needed.

FOR	v,	e,	p	IN	1..2	INBOUND	"worldVertices/continent-north-america"	GRAPH	"worldCountry"

		LET	other	=	(FOR	vv,	ee	IN	INBOUND	v	GRAPH	"worldCountry"	LIMIT	1	RETURN	1)

		FILTER	LENGTH(other)	==	0	||	LENGTH(p.edges)	==	2

		RETURN	p

Path	data	(shortened):

[

		{

				"edges":	[

						{

								"_id":	"worldEdges/57585025",

								"_from":	"worldVertices/country-antigua-and-barbuda",

								"_to":	"worldVertices/continent-north-america",

								"type":	"is-in"

						},

						{

								"_id":	"worldEdges/57585231",

								"_from":	"worldVertices/capital-saint-john-s",

								"_to":	"worldVertices/country-antigua-and-barbuda",

								"type":	"is-in"

						}

],

				"vertices":	[

						{

								"_id":	"worldVertices/continent-north-america",

								"name":	"North	America",

								"type":	"continent"

						},

						{

								"_id":	"worldVertices/country-antigua-and-barbuda",

								"code":	"ATG",

Migrating	named	graph	functions	to	3.0

40

								"name":	"Antigua	and	Barbuda",

								"type":	"country"

						},

						{

								"_id":	"worldVertices/capital-saint-john-s",

								"name":	"Saint	John's",

								"type":	"capital"

						}

]

		},

		{

				...

		}

]

The	first	and	second	vertex	of	the	nth	path	are	connected	by	the	first	edge	(p[n].vertices[0]			 	p[n].edges[0]		→		p[n].vertices[1])
and	so	on.	This	structure	might	actually	be	more	convenient	to	process	compared	to	a	tree-like	structure.	Note	that	the	edge	documents
are	also	included,	in	constrast	to	the	removed	graph	traversal	function.

Contact	us	via	our	social	channels	if	you	need	further	help.

Author:	Michael	Hackstein

Tags:	#howto	#aql	#migration

Migrating	named	graph	functions	to	3.0

41

https://github.com/mchacki

Migrating	anonymous	graph	Functions	from	2.8	or	earlier	to	3.0

Problem

With	the	release	of	3.0	all	GRAPH	functions	have	been	dropped	from	AQL	in	favor	of	a	more	native	integration	of	graph	features	into
the	query	language.	I	have	used	the	old	graph	functions	and	want	to	upgrade	to	3.0.

Graph	functions	covered	in	this	recipe:

EDGES
NEIGHBORS
PATHS
TRAVERSAL
TRAVERSAL_TREE

Solution

EDGES

The	EDGES	can	be	simply	replaced	by	a	call	to	the	AQL	traversal.

No	options

The	syntax	is	slightly	different	but	mapping	should	be	simple:

//	OLD

[..]	FOR	e	IN	EDGES(@@edgeCollection,	@startId,	'outbound')	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	OUTBOUND	@startId	@@edgeCollection	RETURN	e

Using	EdgeExamples

Examples	have	to	be	transformed	into	AQL	filter	statements.	How	to	do	this	please	read	the	GRAPH_VERTICES	section	in	Migrating
GRAPH_*	Functions	from	2.8	or	earlier	to	3.0.	Apply	these	filters	on	the	edge	variable		e	.

Option	incluceVertices

In	order	to	include	the	vertices	you	just	use	the	vertex	variable	v	as	well:

//	OLD

[..]	FOR	e	IN	EDGES(@@edgeCollection,	@startId,	'outbound',	null,	{includeVertices:	true})	RETURN	e

//	NEW

[..]	FOR	v,	e	IN	OUTBOUND	@startId	@@edgeCollection	RETURN	{edge:	e,	vertex:	v}

NOTE:	The	direction	cannot	be	given	as	a	bindParameter	any	more	it	has	to	be	hard-coded	in	the	query.

NEIGHBORS

The	NEIGHBORS	is	a	breadth-first-search	on	the	graph	with	a	global	unique	check	for	vertices.	So	we	can	replace	it	by	a	an	AQL
traversal	with	these	options.	Due	to	syntax	changes	the	vertex	collection	of	the	start	vertex	is	no	longer	mandatory	to	be	given.	You	may
have	to	adjust	bindParameteres	for	this	query.

No	options

Migrating	anonymous	graph	functions	to	3.0

42

The	default	options	did	just	return	the	neighbors		_id		value.

//	OLD

[..]	FOR	n	IN	NEIGHBORS(@@vertexCollection,	@@edgeCollection,	@startId,	'outbound')	RETURN	n

//	NEW

[..]	FOR	n	IN	OUTBOUND	@startId	@@edgeCollection	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	n._id

NOTE:	The	direction	cannot	be	given	as	a	bindParameter	any	more	it	has	to	be	hard-coded	in	the	query.

Using	edgeExamples

Examples	have	to	be	transformed	into	AQL	filter	statements.	How	to	do	this	please	read	the	GRAPH_VERTICES	section	in	Migrating
GRAPH_*	Functions	from	2.8	or	earlier	to	3.0.	Apply	these	filters	on	the	edge	variable		e		which	is	the	second	return	variable	of	the
traversal	statement.

However	this	is	a	bit	more	complicated	as	it	interferes	with	the	global	uniqueness	check.	For	edgeExamples	it	is	sufficent	when	any	edge
pointing	to	the	neighbor	matches	the	filter.	Using		{uniqueVertices:	'global'}		first	picks	any	edge	randomly.	Than	it	checks	against	this
edge	only.	If	we	know	there	are	no	vertex	pairs	with	multiple	edges	between	them	we	can	use	the	simple	variant	which	is	save:

//	OLD

[..]	FOR	n	IN	NEIGHBORS(@@vertexCollection,	@@edgeCollection,	@startId,	'outbound',	{label:	'friend'})	RETURN	n

//	NEW

[..]	FOR	n,	e	IN	OUTBOUND	@startId	@@edgeCollection	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}

FILTER	e.label	==	'friend'

RETURN	n._id

If	there	may	be	multiple	edges	between	the	same	pair	of	vertices	we	have	to	make	the	distinct	check	ourselfes	and	cannot	rely	on	the
traverser	doing	it	correctly	for	us:

//	OLD

[..]	FOR	n	IN	NEIGHBORS(@@vertexCollection,	@@edgeCollection,	@startId,	'outbound',	{label:	'friend'})	RETURN	n

//	NEW

[..]	FOR	n,	e	IN	OUTBOUND	@startId	@@edgeCollection	OPTIONS	{bfs:	true}

FILTER	e.label	==	'friend'

RETURN	DISTINCT	n._id

Option	includeData

If	you	want	to	include	the	data	simply	return	the	complete	document	instead	of	only	the		_id	value.

//	OLD

[..]	FOR	n	IN	NEIGHBORS(@@vertexCollection,	@@edgeCollection,	@startId,	'outbound',	null,	{includeData:	true})	RETURN	n

//	NEW

[..]	FOR	n,	e	IN	OUTBOUND	@startId	@@edgeCollection	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	n

PATHS

This	function	computes	all	paths	of	the	entire	edge	collection	(with	a	given	minDepth	and	maxDepth)	as	you	can	imagine	this	feature	is
extremely	expensive	and	should	never	be	used.	However	paths	can	again	be	replaced	by	AQL	traversal.

No	options

By	default	paths	of	length	0	to	10	are	returned.	And	circles	are	not	followed.

//	OLD

RETURN	PATHS(@@vertexCollection,	@@edgeCollection,	"outbound")

//	NEW

FOR	start	IN	@@vertexCollection

Migrating	anonymous	graph	functions	to	3.0

43

FOR	v,	e,	p	IN	0..10	OUTBOUND	start	@@edgeCollection	RETURN	{source:	start,	destination:	v,	edges:	p.edges,	vertices:	p.vertice

s}

followCycles

If	this	option	is	set	we	have	to	modify	the	options	of	the	traversal	by	modifying	the		uniqueEdges		property:

//	OLD

RETURN	PATHS(@@vertexCollection,	@@edgeCollection,	"outbound",	{followCycles:	true})

//	NEW

FOR	start	IN	@@vertexCollection

FOR	v,	e,	p	IN	0..10	OUTBOUND	start	@@edgeCollection	OPTIONS	{uniqueEdges:	'none'}	RETURN	{source:	start,	destination:	v,	edges

:	p.edges,	vertices:	p.vertices}

minDepth	and	maxDepth

If	this	option	is	set	we	have	to	give	these	parameters	directly	before	the	direction.

//	OLD

RETURN	PATHS(@@vertexCollection,	@@edgeCollection,	"outbound",	{minDepth:	2,	maxDepth:	5})

//	NEW

FOR	start	IN	@@vertexCollection

FOR	v,	e,	p	IN	2..5	OUTBOUND	start	@@edgeCollection

RETURN	{source:	start,	destination:	v,	edges:	p.edges,	vertices:	p.vertices}

TRAVERSAL	and	TRAVERSAL_TREE

These	have	been	removed	and	should	be	replaced	by	the	native	AQL	traversal.	There	are	many	potential	solutions	using	the	new	syntax,
but	they	largely	depend	on	what	exactly	you	are	trying	to	achieve	and	would	go	beyond	the	scope	of	this	cookbook.	Here	is	one	example
how	to	do	the	transition,	using	the	world	graph	as	data:

In	2.8,	it	was	possible	to	use		TRAVERSAL()		together	with	a	custom	visitor	function	to	find	leaf	nodes	in	a	graph.	Leaf	nodes	are	vertices
that	have	inbound	edges,	but	no	outbound	edges.	The	visitor	function	code	looked	like	this:

var	aqlfunctions	=	require("org/arangodb/aql/functions");

aqlfunctions.register("myfunctions::leafNodeVisitor",	function	(config,	result,	vertex,	path,	connected)	{

		if	(connected	&&	connected.length	===	0)	{

				return	vertex.name	+	"	("	+	vertex.type	+	")";

		}

});

And	the	AQL	query	to	make	use	of	it:

LET	params	=	{

		order:	"preorder-expander",

		visitor:	"myfunctions::leafNodeVisitor",

		visitorReturnsResults:	true

}

FOR	result	IN	TRAVERSAL(worldVertices,	worldEdges,	"worldVertices/world",	"inbound",	params)	

		RETURN	result

To	traverse	the	graph	starting	at	vertex		worldVertices/world		using	native	AQL	traversal	and	an	anonymous	graph,	we	can	simply	do:

FOR	v	IN	0..10	INBOUND	"worldVertices/world"	worldEdges

		RETURN	v

It	will	give	us	all	vertex	documents	including	the	start	vertex	(because	the	minimum	depth	is	set	to	0).	The	maximum	depth	is	set	to	10,
which	is	enough	to	follow	all	edges	and	reach	the	leaf	nodes	in	this	graph.

The	query	can	be	modified	to	return	a	formatted	path	from	first	to	last	node:

Migrating	anonymous	graph	functions	to	3.0

44

FOR	v,	e,	p	IN	0..10	INBOUND	"worldVertices/world"	e

		RETURN	CONCAT_SEPARATOR("	->	",	p.vertices[*].name)

The	result	looks	like	this	(shortened):

[

		"World",

		"World	->	Africa",

		"World	->	Africa	->	Cote	d'Ivoire",

		"World	->	Africa	->	Cote	d'Ivoire	->	Yamoussoukro",

		"World	->	Africa	->	Angola",

		"World	->	Africa	->	Angola	->	Luanda",

		"World	->	Africa	->	Chad",

		"World	->	Africa	->	Chad	->	N'Djamena",

		...

]

As	we	can	see,	all	possible	paths	of	varying	lengths	are	returned.	We	are	not	really	interested	in	them,	but	we	still	have	to	do	the	traversal
to	go	from	World	all	the	way	to	the	leaf	nodes	(e.g.	Yamoussoukro).	To	determine	if	a	vertex	is	really	the	last	on	the	path	in	the	sense	of
being	a	leaf	node,	we	can	use	another	traversal	of	depth	1	to	check	if	there	is	at	least	one	outgoing	edge	-	which	means	the	vertex	is	not	a
leaf	node,	otherwise	it	is:

FOR	v	IN	0..10	INBOUND	"worldVertices/world"	worldEdges

		FILTER	LENGTH(FOR	vv	IN	INBOUND	v	worldEdges	LIMIT	1	RETURN	1)	==	0

		RETURN	CONCAT(v.name,	"	(",	v.type,	")")

Using	the	current	vertex		v		as	starting	point,	the	second	traversal	is	performed.	It	can	return	early	after	one	edge	was	followed	(LIMIT
1),	because	we	don't	need	to	know	the	exact	count	and	it	is	faster	this	way.	We	also	don't	need	the	actual	vertex,	so	we	can	just		RETURN
1		as	dummy	value	as	an	optimization.	The	traversal	(which	is	a	sub-query)	will	return	an	empty	array	in	case	of	a	leaf	node,	and		[1]	
otherwise.	Since	we	only	want	the	leaf	nodes,	we		FILTER		out	all	non-empty	arrays	and	what	is	left	are	the	leaf	nodes	only.	The
attributes		name		and		type		are	formatted	the	way	they	were	like	in	the	original	JavaScript	code,	but	now	with	AQL.	The	final	result	is	a
list	of	all	capitals:

[

		"Yamoussoukro	(capital)",

		"Luanda	(capital)",

		"N'Djamena	(capital)",

		"Algiers	(capital)",

		"Yaounde	(capital)",

		"Ouagadougou	(capital)",

		"Gaborone	(capital)",

		"Asmara	(capital)",

		"Cairo	(capital)",

		...

]

There	is	no	direct	substitute	for	the		TRAVERSAL_TREE()		function.	The	advantage	of	this	function	was	that	its	(possibly	highly	nested)
result	data	structure	inherently	represented	the	"longest"	possible	paths	only.	With	native	AQL	traversal,	all	paths	from	minimum	to
maximum	traversal	depth	are	returned,	including	the	"short"	paths	as	well:

FOR	v,	e,	p	IN	1..2	INBOUND	"worldVertices/continent-north-america"	worldEdges

		RETURN	CONCAT_SEPARATOR("	<-	",	p.vertices[*]._key)

[

		"continent-north-america	<-	country-antigua-and-barbuda",

		"continent-north-america	<-	country-antigua-and-barbuda	<-	capital-saint-john-s",

		"continent-north-america	<-	country-barbados",

		"continent-north-america	<-	country-barbados	<-	capital-bridgetown",

		"continent-north-america	<-	country-canada",

		"continent-north-america	<-	country-canada	<-	capital-ottawa",

		"continent-north-america	<-	country-bahamas",

		"continent-north-america	<-	country-bahamas	<-	capital-nassau"

]

Migrating	anonymous	graph	functions	to	3.0

45

A	second	traversal	with	depth	=	1	can	be	used	to	check	if	we	reached	a	leaf	node	(no	more	incoming	edges).	Based	on	this	information,	the
"short"	paths	can	be	filtered	out.	Note	that	a	second	condition	is	required:	it	is	possible	that	the	last	node	in	a	traversal	is	not	a	leaf	node
if	the	maximum	traversal	depth	is	exceeded.	Thus,	we	need	to	also	let	paths	through,	which	contain	as	many	edges	as	hops	we	do	in	the
traversal	(here:	2).

FOR	v,	e,	p	IN	1..2	INBOUND	"worldVertices/continent-north-america"	worldEdges

		LET	other	=	(

				FOR	vv,	ee	IN	INBOUND	v	worldEdges

						//FILTER	ee	!=	e	//	needed	if	traversing	edges	in	ANY	direction

						LIMIT	1

						RETURN	1

)

		FILTER	LENGTH(other)	==	0	||	LENGTH(p.edges)	==	2

		RETURN	CONCAT_SEPARATOR("	<-	",	p.vertices[*]._key)

[

		"continent-north-america	<-	country-antigua-and-barbuda	<-	capital-saint-john-s",

		"continent-north-america	<-	country-barbados	<-	capital-bridgetown",

		"continent-north-america	<-	country-canada	<-	capital-ottawa",

		"continent-north-america	<-	country-bahamas	<-	capital-nassau"

]

The	full	paths	can	be	returned,	but	it	is	not	in	a	tree-like	structure	as	with		TRAVERSAL_TREE()	.	Such	a	data	structure	can	be	constructed	on
client-side	if	really	needed.

FOR	v,	e,	p	IN	1..2	INBOUND	"worldVertices/continent-north-america"	worldEdges

		LET	other	=	(FOR	vv,	ee	IN	INBOUND	v	worldEdges	LIMIT	1	RETURN	1)

		FILTER	LENGTH(other)	==	0	||	LENGTH(p.edges)	==	2

		RETURN	p

Path	data	(shortened):

[

		{

				"edges":	[

						{

								"_id":	"worldEdges/57585025",

								"_from":	"worldVertices/country-antigua-and-barbuda",

								"_to":	"worldVertices/continent-north-america",

								"type":	"is-in"

						},

						{

								"_id":	"worldEdges/57585231",

								"_from":	"worldVertices/capital-saint-john-s",

								"_to":	"worldVertices/country-antigua-and-barbuda",

								"type":	"is-in"

						}

],

				"vertices":	[

						{

								"_id":	"worldVertices/continent-north-america",

								"name":	"North	America",

								"type":	"continent"

						},

						{

								"_id":	"worldVertices/country-antigua-and-barbuda",

								"code":	"ATG",

								"name":	"Antigua	and	Barbuda",

								"type":	"country"

						},

						{

								"_id":	"worldVertices/capital-saint-john-s",

								"name":	"Saint	John's",

								"type":	"capital"

						}

]

		},

		{

				...

Migrating	anonymous	graph	functions	to	3.0

46

		}

]

The	first	and	second	vertex	of	the	nth	path	are	connected	by	the	first	edge	(p[n].vertices[0]			 	p[n].edges[0]		→		p[n].vertices[1])
and	so	on.	This	structure	might	actually	be	more	convenient	to	process	compared	to	a	tree-like	structure.	Note	that	the	edge	documents
are	also	included,	in	constrast	to	the	removed	graph	traversal	function.

Contact	us	via	our	social	channels	if	you	need	further	help.

Author:	Michael	Hackstein

Tags:	#howto	#aql	#migration

Migrating	anonymous	graph	functions	to	3.0

47

https://github.com/mchacki

Migrating	GRAPH_*	Measurements	from	2.8	or	earlier	to	3.0

Problem

With	the	release	of	3.0	all	GRAPH	functions	have	been	dropped	from	AQL	in	favor	of	a	more	native	integration	of	graph	features	into
the	query	language.	I	have	used	the	old	graph	functions	and	want	to	upgrade	to	3.0.

Graph	functions	covered	in	this	recipe:

GRAPH_ABSOLUTE_BETWEENNESS
GRAPH_ABSOLUTE_CLOSENESS
GRAPH_ABSOLUTE_ECCENTRICITY
GRAPH_BETWEENNESS
GRAPH_CLOSENESS
GRAPH_DIAMETER
GRAPH_ECCENTRICITY
GRAPH_RADIUS

Solution	1:	User	Defined	Funtions

Registering	user-defined	functions

This	step	has	to	be	executed	once	on	ArangoDB	for	every	database	we	are	using.

We	connect	to		arangodb		with		arangosh		to	issue	the	following	commands	two:

var	graphs	=	require("@arangodb/general-graph");

graphs._registerCompatibilityFunctions();

These	have	registered	all	old		GRAPH_*		functions	as	user-defined	functions	again,	with	the	prefix		arangodb::	.

Modify	the	application	code

Next	we	have	to	go	through	our	application	code	and	replace	all	calls	to		GRAPH_*		by		arangodb::GRAPH_*	.	Now	run	a	testrun	of	our
application	and	check	if	it	worked.	If	it	worked	we	are	ready	to	go.

Important	Information

The	user	defined	functions	will	call	translated	subqueries	(as	described	in	Solution	2).	The	optimizer	does	not	know	anything	about	these
subqueries	beforehand	and	cannot	optimize	the	whole	plan.	Also	there	might	be	read/write	constellations	that	are	forbidden	in	user-
defined	functions,	therefore	a	"really"	translated	query	may	work	while	the	user-defined	function	work	around	may	be	rejected.

Solution	2:	Foxx	(recommended)
The	general	graph	module	still	offers	the	measurement	functions.	As	these	are	typically	computation	expensive	and	create	long	running
queries	it	is	recommended	to	not	use	them	in	combination	with	other	AQL	features.	Therefore	the	best	idea	is	to	offer	these
measurements	directly	via	an	API	using	FOXX.

First	we	create	a	new	Foxx	service.	Then	we	include	the		general-graph		module	in	the	service.	For	every	measurement	we	need	we
simply	offer	a	GET	route	to	read	this	measurement.

As	an	example	we	do	the		GRAPH_RADIUS	:

///	ADD	FOXX	CODE	ABOVE

const	joi	=	require('joi');

Migrating	graph	measurements	to	3.0

48

const	createRouter	=	require('@arangodb/foxx/router');

const	dd	=	require('dedent');

const	router	=	createRouter();

const	graphs	=	require("@arangodb/general-graph");

router.get('/radius/:graph',	function(req,	res)	{

		let	graph;

		//	Load	the	graph

		try	{

				graph	=	graphs._graph(req.graph);

		}	catch	(e)	{

				res.throw('not	found');

		}

		res.json(graphs._radius());	//	Return	the	radius

})

.pathParam('graph',	joi.string().required(),	'The	name	of	the	graph')

.error('not	found',	'Graph	with	this	name	does	not	exist.')

.summary('Compute	the	Radius')

.description(dd`

		This	function	computes	the	radius	of	the	given	graph

		and	returns	it.

`);

Author:	Michael	Hackstein

Tags:	#howto	#aql	#migration

Migrating	graph	measurements	to	3.0

49

https://github.com/mchacki

Graph
Fulldepth	Graph-Traversal

Using	a	custom	Visitor

Example	AQL	Queries	for	Graphs

Graph

50

Fulldepth	Graph-Traversal

Problem

Lets	assume	you	have	a	database	and	some	edges	and	vertices.	Now	you	need	the	node	with	the	most	connections	in	fulldepth.

Solution

You	need	a	custom	traversal	with	the	following	properties:

Store	all	vertices	you	have	visited	already
If	you	visit	an	already	visited	vertex	return	the	connections	+	1	and	do	not	touch	the	edges
If	you	visit	a	fresh	vertex	visit	all	its	children	and	sum	up	their	connections.	Store	this	sum	and	return	it	+	1
Repeat	for	all	vertices.

var	traversal	=	require("org/arangodb/graph/traversal");

var	knownFilter	=	function(config,	vertex,	path)	{

		if	(config.known[vertex._key]	!==	undefined)	{

				return	"prune";

		}

		return	"";

};

var	sumVisitor	=	function(config,	result,	vertex,	path)	{

		if	(config.known[vertex._key]	!==	undefined)	{

				result.sum	+=	config.known[vertex._key];

		}	else	{

				config.known[vertex._key]	=	result.sum;

		}

		result.sum	+=	1;

		return;

};

var	config	=	{

		datasource:	traversal.collectionDatasourceFactory(db.e),	//	e	is	my	edge	collection

		strategy:	"depthfirst",

		order:	"preorder",

		filter:	knownFilter,

		expander:	traversal.outboundExpander,

		visitor:	sumVisitor,

		known:	{}

};

var	traverser	=	new	traversal.Traverser(config);

var	cursor	=	db.v.all();	//	v	is	my	vertex	collection

while(cursor.hasNext())	{

		var	node	=	cursor.next();

		traverser.traverse({sum:	0},	node);

}

config.known;	//	Returns	the	result	of	type	name:	counter.	In	arangosh	this	will	print	out	complete	result

To	execute	this	script	accordingly	replace	db.v	and	db.e	with	your	collections	(v	is	vertices,	e	is	edges)	and	write	it	to	a	file:	(e.g.)
traverse.js	then	execute	it	in	arangosh:

cat	traverse.js	|	arangosh

If	you	want	to	use	it	in	production	you	should	have	a	look	at	the	Foxx	framework	which	allows	you	to	store	and	execute	this	script	on
server	side	and	make	it	accessible	via	your	own	API:	Foxx

Comment

Fulldepth	Graph-Traversal

51

You	only	compute	the	connections	of	one	vertex	once	and	cache	it	then.	Complexity	is	almost	equal	to	the	amount	of	edges.	In	the	code
below	config.known	contains	the	result	of	all	vertices,	you	then	can	add	the	sorting	on	it.

Author:	Michael	Hackstein

Tags:	#graph

Fulldepth	Graph-Traversal

52

https://github.com/mchacki

Using	a	custom	visitor	from	node.js

Problem

I	want	to	traverse	a	graph	using	a	custom	visitor	from	node.js.

Solution

Use	arangojs	and	an	AQL	query	with	a	custom	visitor.

Installing	arangojs

First	thing	is	to	install	arangojs.	This	can	be	done	using	npm	or	bower:

npm	install	arangojs

or

bower	install	arangojs

Example	data	setup

For	the	following	example,	we	need	the	example	graph	and	data	from	here.	Please	download	the	code	from	the	link	and	store	it	in	the
filesystem	using	a	filename	of		world-graph-setup.js	.	Then	start	the	ArangoShell	and	run	the	code	from	the	file:

require("internal").load("/path/to/file/world-graph-setup.js");

The	script	will	create	the	following	two	collections	and	load	some	data	into	them:

	v	:	a	collection	with	vertex	documents
	e	:	an	edge	collection	containing	the	connections	between	vertices	in		v	

Registering	a	custom	visitor	function

Let's	register	a	custom	visitor	function	now.	A	custom	visitor	function	is	a	JavaScript	function	that	is	executed	every	time	the	traversal
processes	a	vertex	in	the	graph.

To	register	a	custom	visitor	function,	we	can	execute	the	following	commands	in	the	ArangoShell:

var	aqlfunctions	=	require("org/arangodb/aql/functions");

aqlfunctions.register("myfunctions::leafNodeVisitor",	function	(config,	result,	vertex,	path,	connected)	{

		if	(connected	&&	connected.length	===	0)	{

				return	vertex.name	+	"	("	+	vertex.type	+	")";

		}

});

Invoking	the	custom	visitor

The	following	code	can	be	run	in	node.js	to	execute	an	AQL	query	that	will	make	use	of	the	custom	visitor:

Database	=	require('arangojs');	

/*	connection	the	database,	change	as	required	*/

db	=	new	Database('http://127.0.0.1:8529');	

/*	the	query	string	*/

Using	a	custom	Visitor

53

https://www.npmjs.com/package/arangojs
https://jsteemann.github.io/downloads/code/world-graph-setup.js

var	query	=	"FOR	result	IN	TRAVERSAL(v,	e,	@vertex,	'inbound',	@options)	RETURN	result";

/*	bind	parameters	*/

var	bindVars	=	{	

		vertex:	"v/world",		/*	our	start	vertex	*/

		options:	{

				order:	"preorder-expander",

				visitor:	"myfunctions::leafNodeVisitor",

				visitorReturnsResults:	true	

		}

};

db.query(query,	bindVars,	function	(err,	cursor)	{

		if	(err)	{

				console.log('error:	%j',	err);

		}	else	{

				cursor.all(function(err2,	list)	{

						if	(err)	{

								console.log('error:	%j',	err2);

						}	else	{

								console.log("all	document	keys:	%j",	list);

						}

				});

		}

});

Author:	Jan	Steemann

Tags:	#graph	#traversal	#aql	#nodejs

Using	a	custom	Visitor

54

https://github.com/jsteemann

AQL	Example	Queries	on	an	Actors	and	Movies	Database

Acknowledgments

On	Stackoverflow	the	user	Vincz	asked	for	some	example	queries	based	on	graphs.	So	credits	for	this	questions	go	to	him.	The	datasets
and	queries	have	been	taken	from	the	guys	of	neo4j.	Credits	and	thanks	to	them.	As	I	also	think	this	examples	are	yet	missing	I	decided	to
write	this	recipe.

Problem

(Copy	from	Stackoverflow)	Given	a	collection	of	actors	and	a	collection	of	movies.	And	a	actIn	edges	collection	(with	a	year	property)
to	connect	the	vertex.

[Actor]	←	act	in	→	[Movie]

How	could	I	get:

All	actors	who	acted	in	"movie1"	OR	"movie2"
All	actors	who	acted	in	both	"movie1"	AND	"movie2"	?
All	common	movies	between	"actor1"	and	"actor2"	?
All	actors	who	acted	in	3	or	more	movies	?
All	movies	where	exactly	6	actors	acted	in	?
The	number	of	actors	by	movie	?
The	number	of	movies	by	actor	?
The	number	of	movies	acted	in	between	2005	and	2010	by	actor	?

Solution

During	this	solution	we	will	be	using	arangosh	to	create	and	query	the	data.	All	the	AQL	queries	are	strings	and	can	simply	be	copied
over	to	your	favorite	driver	instead	of	arangosh.

Create	a	Test	Dataset	in	arangosh:

var	actors	=	db._create("actors");

var	movies	=	db._create("movies");

var	actsIn	=	db._createEdgeCollection("actsIn");

var	TheMatrix	=	movies.save({_key:	"TheMatrix",	title:'The	Matrix',	released:1999,	tagline:'Welcome	to	the	Real	World'})._id;

var	Keanu	=	actors.save({_key:	"Keanu",	name:'Keanu	Reeves',	born:1964})._id;

var	Carrie	=	actors.save({_key:	"Carrie",	name:'Carrie-Anne	Moss',	born:1967})._id;

var	Laurence	=	actors.save({_key:	"Laurence",	name:'Laurence	Fishburne',	born:1961})._id;

var	Hugo	=	actors.save({_key:	"Hugo",	name:'Hugo	Weaving',	born:1960})._id;

var	Emil	=	actors.save({_key:	"Emil",	name:"Emil	Eifrem",	born:	1978});

actsIn.save(Keanu,	TheMatrix,	{roles:	["Neo"],	year:	1999});

actsIn.save(Carrie,	TheMatrix,	{roles:	["Trinity"],	year:	1999});

actsIn.save(Laurence,	TheMatrix,	{roles:	["Morpheus"],	year:	1999});

actsIn.save(Hugo,	TheMatrix,	{roles:	["Agent	Smith"],	year:	1999});

actsIn.save(Emil,	TheMatrix,	{roles:	["Emil"],	year:	1999});	

var	TheMatrixReloaded	=	movies.save({_key:	"TheMatrixReloaded",	title:	"The	Matrix	Reloaded",	released:	2003,	tagline:	"Free	yo

ur	mind"});

actsIn.save(Keanu,	TheMatrixReloaded,	{roles:	["Neo"],	year:	2003});

actsIn.save(Carrie,	TheMatrixReloaded,	{roles:	["Trinity"],	year:	2003});

actsIn.save(Laurence,	TheMatrixReloaded,	{roles:	["Morpheus"],	year:	2003});

actsIn.save(Hugo,	TheMatrixReloaded,	{roles:	["Agent	Smith"],	year:	2003});

var	TheMatrixRevolutions	=	movies.save({_key:	"TheMatrixRevolutions",	title:	"The	Matrix	Revolutions",	released:	2003,	tagline:	

"Everything	that	has	a	beginning	has	an	end"});

actsIn.save(Keanu,	TheMatrixRevolutions,	{roles:	["Neo"],	year:	2003});

actsIn.save(Carrie,	TheMatrixRevolutions,	{roles:	["Trinity"],	year:	2003});

actsIn.save(Laurence,	TheMatrixRevolutions,	{roles:	["Morpheus"],	year:	2003});

Example	AQL	Queries	for	Graphs

55

http://stackoverflow.com/questions/32729314/aql-graph-queries-examples
http://stackoverflow.com/users/1126414/vincz
http://neo4j.com/docs/stable/cypherdoc-movie-database.html

actsIn.save(Hugo,	TheMatrixRevolutions,	{roles:	["Agent	Smith"],	year:	2003});

var	TheDevilsAdvocate	=	movies.save({_key:	"TheDevilsAdvocate",	title:"The	Devil's	Advocate",	released:1997,	tagline:'Evil	has	

its	winning	ways'})._id;

var	Charlize	=	actors.save({_key:	"Charlize",	name:'Charlize	Theron',	born:1975})._id;

var	Al	=	actors.save({_key:	"Al",	name:'Al	Pacino',	born:1940})._id;

actsIn.save(Keanu,	TheDevilsAdvocate,	{roles:	["Kevin	Lomax"],	year:	1997});

actsIn.save(Charlize,	TheDevilsAdvocate,	{roles:	["Mary	Ann	Lomax"],	year:	1997});

actsIn.save(Al,	TheDevilsAdvocate,	{roles:	["John	Milton"],	year:	1997});

var	AFewGoodMen	=	movies.save({_key:	"AFewGoodMen",	title:"A	Few	Good	Men",	released:1992,	tagline:"In	the	heart	of	the	nation'

s	capital,	in	a	courthouse	of	the	U.S.	government,	one	man	will	stop	at	nothing	to	keep	his	honor,	and	one	will	stop	at	nothing

	to	find	the	truth."})._id;

var	TomC	=	actors.save({_key:	"TomC",	name:'Tom	Cruise',	born:1962})._id;

var	JackN	=	actors.save({_key:	"JackN",	name:'Jack	Nicholson',	born:1937})._id;

var	DemiM	=	actors.save({_key:	"DemiM",	name:'Demi	Moore',	born:1962})._id;

var	KevinB	=	actors.save({_key:"KevinB",	name:'Kevin	Bacon',	born:1958})._id;

var	KieferS	=	actors.save({_key:"KieferS",	name:'Kiefer	Sutherland',	born:1966})._id;

var	NoahW	=	actors.save({_key:"NoahW",	name:'Noah	Wyle',	born:1971})._id;

var	CubaG	=	actors.save({_key:"CubaG",	name:'Cuba	Gooding	Jr.',	born:1968})._id;

var	KevinP	=	actors.save({_key:"KevinP",	name:'Kevin	Pollak',	born:1957})._id;

var	JTW	=	actors.save({_key:"JTW",	name:'J.T.	Walsh',	born:1943})._id;

var	JamesM	=	actors.save({_key:"JamesM",	name:'James	Marshall',	born:1967})._id;

var	ChristopherG	=	actors.save({_key:"ChristopherG",	name:'Christopher	Guest',	born:1948})._id;

actsIn.save(TomC,AFewGoodMen,{roles:['Lt.	Daniel	Kaffee'],	year:	1992});

actsIn.save(JackN,AFewGoodMen,{roles:['Col.	Nathan	R.	Jessup'],	year:	1992});

actsIn.save(DemiM,AFewGoodMen,{roles:['Lt.	Cdr.	JoAnne	Galloway'],	year:	1992});

actsIn.save(KevinB,AFewGoodMen,{roles:['Capt.	Jack	Ross'],	year:	1992});

actsIn.save(KieferS,AFewGoodMen,{	roles:['Lt.	Jonathan	Kendrick'],	year:	1992});

actsIn.save(NoahW,AFewGoodMen,{roles:['Cpl.	Jeffrey	Barnes'],	year:	1992});

actsIn.save(CubaG,AFewGoodMen,{	roles:['Cpl.	Carl	Hammaker'],	year:	1992});

actsIn.save(KevinP,AFewGoodMen,{roles:['Lt.	Sam	Weinberg'],	year:	1992});

actsIn.save(JTW,AFewGoodMen,{roles:['Lt.	Col.	Matthew	Andrew	Markinson'],	year:	1992});

actsIn.save(JamesM,AFewGoodMen,{roles:['Pfc.	Louden	Downey'],	year:	1992});

actsIn.save(ChristopherG,AFewGoodMen,{	roles:['Dr.	Stone'],	year:	1992});

var	TopGun	=	movies.save({_key:"TopGun",	title:"Top	Gun",	released:1986,	tagline:'I	feel	the	need,	the	need	for	speed.'})._id;

var	KellyM	=	actors.save({_key:"KellyM",	name:'Kelly	McGillis',	born:1957})._id;

var	ValK	=	actors.save({_key:"ValK",	name:'Val	Kilmer',	born:1959})._id;

var	AnthonyE	=	actors.save({_key:"AnthonyE",	name:'Anthony	Edwards',	born:1962})._id;

var	TomS	=	actors.save({_key:"TomS",	name:'Tom	Skerritt',	born:1933})._id;

var	MegR	=	actors.save({_key:"MegR",	name:'Meg	Ryan',	born:1961})._id;

actsIn.save(TomC,TopGun,{roles:['Maverick'],	year:	1986});

actsIn.save(KellyM,TopGun,{roles:['Charlie'],	year:	1986});

actsIn.save(ValK,TopGun,{roles:['Iceman'],	year:	1986});

actsIn.save(AnthonyE,TopGun,{roles:['Goose'],	year:	1986});

actsIn.save(TomS,TopGun,{roles:['Viper'],	year:	1986});

actsIn.save(MegR,TopGun,{roles:['Carole'],	year:	1986});

var	JerryMaguire	=	movies.save({_key:"JerryMaguire",	title:'Jerry	Maguire',	released:2000,	tagline:'The	rest	of	his	life	begins

	now.'})._id;

var	ReneeZ	=	actors.save({_key:"ReneeZ",	name:'Renee	Zellweger',	born:1969})._id;

var	KellyP	=	actors.save({_key:"KellyP",	name:'Kelly	Preston',	born:1962})._id;

var	JerryO	=	actors.save({_key:"JerryO",	name:"Jerry	O'Connell",	born:1974})._id;

var	JayM	=	actors.save({_key:"JayM",	name:'Jay	Mohr',	born:1970})._id;

var	BonnieH	=	actors.save({_key:"BonnieH",	name:'Bonnie	Hunt',	born:1961})._id;

var	ReginaK	=	actors.save({_key:"ReginaK",	name:'Regina	King',	born:1971})._id;

var	JonathanL	=	actors.save({_key:"JonathanL",	name:'Jonathan	Lipnicki',	born:1996})._id;

actsIn.save(TomC,JerryMaguire,{roles:['Jerry	Maguire'],	year:	2000});

actsIn.save(CubaG,JerryMaguire,{roles:['Rod	Tidwell'],	year:	2000});

actsIn.save(ReneeZ,JerryMaguire,{roles:['Dorothy	Boyd'],	year:	2000});

actsIn.save(KellyP,JerryMaguire,{roles:['Avery	Bishop'],	year:	2000});

actsIn.save(JerryO,JerryMaguire,{roles:['Frank	Cushman'],	year:	2000});

actsIn.save(JayM,JerryMaguire,{roles:['Bob	Sugar'],	year:	2000});

actsIn.save(BonnieH,JerryMaguire,{roles:['Laurel	Boyd'],	year:	2000});

actsIn.save(ReginaK,JerryMaguire,{roles:['Marcee	Tidwell'],	year:	2000});

actsIn.save(JonathanL,JerryMaguire,{roles:['Ray	Boyd'],	year:	2000});

var	StandByMe	=	movies.save({_key:"StandByMe",	title:"Stand	By	Me",	released:1986,	tagline:"For	some,	it's	the	last	real	taste	

of	innocence,	and	the	first	real	taste	of	life.	But	for	everyone,	it's	the	time	that	memories	are	made	of."})._id;

var	RiverP	=	actors.save({_key:"RiverP",	name:'River	Phoenix',	born:1970})._id;

var	CoreyF	=	actors.save({_key:"CoreyF",	name:'Corey	Feldman',	born:1971})._id;

var	WilW	=	actors.save({_key:"WilW",	name:'Wil	Wheaton',	born:1972})._id;

var	JohnC	=	actors.save({_key:"JohnC",	name:'John	Cusack',	born:1966})._id;

var	MarshallB	=	actors.save({_key:"MarshallB",	name:'Marshall	Bell',	born:1942})._id;

actsIn.save(WilW,StandByMe,{roles:['Gordie	Lachance'],	year:	1986});

Example	AQL	Queries	for	Graphs

56

actsIn.save(RiverP,StandByMe,{roles:['Chris	Chambers'],	year:	1986});

actsIn.save(JerryO,StandByMe,{roles:['Vern	Tessio'],	year:	1986});

actsIn.save(CoreyF,StandByMe,{roles:['Teddy	Duchamp'],	year:	1986});

actsIn.save(JohnC,StandByMe,{roles:['Denny	Lachance'],	year:	1986});

actsIn.save(KieferS,StandByMe,{roles:['Ace	Merrill'],	year:	1986});

actsIn.save(MarshallB,StandByMe,{roles:['Mr.	Lachance'],	year:	1986});

var	AsGoodAsItGets	=	movies.save({_key:"AsGoodAsItGets",	title:'As	Good	as	It	Gets',	released:1997,	tagline:'A	comedy	from	the	

heart	that	goes	for	the	throat.'})._id;

var	HelenH	=	actors.save({_key:"HelenH",	name:'Helen	Hunt',	born:1963})._id;

var	GregK	=	actors.save({_key:"GregK",	name:'Greg	Kinnear',	born:1963})._id;

actsIn.save(JackN,AsGoodAsItGets,{roles:['Melvin	Udall'],	year:	1997});

actsIn.save(HelenH,AsGoodAsItGets,{roles:['Carol	Connelly'],	year:	1997});

actsIn.save(GregK,AsGoodAsItGets,{roles:['Simon	Bishop'],	year:	1997});

actsIn.save(CubaG,AsGoodAsItGets,{roles:['Frank	Sachs'],	year:	1997});

var	WhatDreamsMayCome	=	movies.save({_key:"WhatDreamsMayCome",	title:'What	Dreams	May	Come',	released:1998,	tagline:'After	life

	there	is	more.	The	end	is	just	the	beginning.'})._id;

var	AnnabellaS	=	actors.save({_key:"AnnabellaS",	name:'Annabella	Sciorra',	born:1960})._id;

var	MaxS	=	actors.save({_key:"MaxS",	name:'Max	von	Sydow',	born:1929})._id;

var	WernerH	=	actors.save({_key:"WernerH",	name:'Werner	Herzog',	born:1942})._id;

var	Robin	=	actors.save({_key:"Robin",	name:'Robin	Williams',	born:1951})._id;

actsIn.save(Robin,WhatDreamsMayCome,{roles:['Chris	Nielsen'],	year:	1998});

actsIn.save(CubaG,WhatDreamsMayCome,{roles:['Albert	Lewis'],	year:	1998});

actsIn.save(AnnabellaS,WhatDreamsMayCome,{roles:['Annie	Collins-Nielsen'],	year:	1998});

actsIn.save(MaxS,WhatDreamsMayCome,{roles:['The	Tracker'],	year:	1998});

actsIn.save(WernerH,WhatDreamsMayCome,{roles:['The	Face'],	year:	1998});

var	SnowFallingonCedars	=	movies.save({_key:"SnowFallingonCedars",	title:'Snow	Falling	on	Cedars',	released:1999,	tagline:'Firs

t	loves	last.	Forever.'})._id;

var	EthanH	=	actors.save({_key:"EthanH",	name:'Ethan	Hawke',	born:1970})._id;

var	RickY	=	actors.save({_key:"RickY",	name:'Rick	Yune',	born:1971})._id;

var	JamesC	=	actors.save({_key:"JamesC",	name:'James	Cromwell',	born:1940})._id;

actsIn.save(EthanH,SnowFallingonCedars,{roles:['Ishmael	Chambers'],	year:	1999});

actsIn.save(RickY,SnowFallingonCedars,{roles:['Kazuo	Miyamoto'],	year:	1999});

actsIn.save(MaxS,SnowFallingonCedars,{roles:['Nels	Gudmundsson'],	year:	1999});

actsIn.save(JamesC,SnowFallingonCedars,{roles:['Judge	Fielding'],	year:	1999});

var	YouveGotMail	=	movies.save({_key:"YouveGotMail",	title:"You've	Got	Mail",	released:1998,	tagline:'At	odds	in	life...	in	lov

e	on-line.'})._id;

var	ParkerP	=	actors.save({_key:"ParkerP",	name:'Parker	Posey',	born:1968})._id;

var	DaveC	=	actors.save({_key:"DaveC",	name:'Dave	Chappelle',	born:1973})._id;

var	SteveZ	=	actors.save({_key:"SteveZ",	name:'Steve	Zahn',	born:1967})._id;

var	TomH	=	actors.save({_key:"TomH",	name:'Tom	Hanks',	born:1956})._id;

actsIn.save(TomH,YouveGotMail,{roles:['Joe	Fox'],	year:	1998});

actsIn.save(MegR,YouveGotMail,{roles:['Kathleen	Kelly'],	year:	1998});

actsIn.save(GregK,YouveGotMail,{roles:['Frank	Navasky'],	year:	1998});

actsIn.save(ParkerP,YouveGotMail,{roles:['Patricia	Eden'],	year:	1998});

actsIn.save(DaveC,YouveGotMail,{roles:['Kevin	Jackson'],	year:	1998});

actsIn.save(SteveZ,YouveGotMail,{roles:['George	Pappas'],	year:	1998});

var	SleeplessInSeattle	=	movies.save({_key:"SleeplessInSeattle",	title:'Sleepless	in	Seattle',	released:1993,	tagline:'What	if	

someone	you	never	met,	someone	you	never	saw,	someone	you	never	knew	was	the	only	someone	for	you?'})._id;

var	RitaW	=	actors.save({_key:"RitaW",	name:'Rita	Wilson',	born:1956})._id;

var	BillPull	=	actors.save({_key:"BillPull",	name:'Bill	Pullman',	born:1953})._id;

var	VictorG	=	actors.save({_key:"VictorG",	name:'Victor	Garber',	born:1949})._id;

var	RosieO	=	actors.save({_key:"RosieO",	name:"Rosie	O'Donnell",	born:1962})._id;

actsIn.save(TomH,SleeplessInSeattle,{roles:['Sam	Baldwin'],	year:	1993});

actsIn.save(MegR,SleeplessInSeattle,{roles:['Annie	Reed'],	year:	1993});

actsIn.save(RitaW,SleeplessInSeattle,{roles:['Suzy'],	year:	1993});

actsIn.save(BillPull,SleeplessInSeattle,{roles:['Walter'],	year:	1993});

actsIn.save(VictorG,SleeplessInSeattle,{roles:['Greg'],	year:	1993});

actsIn.save(RosieO,SleeplessInSeattle,{roles:['Becky'],	year:	1993});

var	JoeVersustheVolcano	=	movies.save({_key:"JoeVersustheVolcano",	title:'Joe	Versus	the	Volcano',	released:1990,	tagline:'A	st

ory	of	love,	lava	and	burning	desire.'})._id;

var	Nathan	=	actors.save({_key:"Nathan",	name:'Nathan	Lane',	born:1956})._id;

actsIn.save(TomH,JoeVersustheVolcano,{roles:['Joe	Banks'],	year:	1990});

actsIn.save(MegR,JoeVersustheVolcano,{roles:['DeDe',	'Angelica	Graynamore',	'Patricia	Graynamore'],	year:	1990});

actsIn.save(Nathan,JoeVersustheVolcano,{roles:['Baw'],	year:	1990});

var	WhenHarryMetSally	=	movies.save({_key:"WhenHarryMetSally",	title:'When	Harry	Met	Sally',	released:1998,	tagline:'At	odds	in

	life...	in	love	on-line.'})._id;

var	BillyC	=	actors.save({_key:"BillyC",	name:'Billy	Crystal',	born:1948})._id;

var	CarrieF	=	actors.save({_key:"CarrieF",	name:'Carrie	Fisher',	born:1956})._id;

var	BrunoK	=	actors.save({_key:"BrunoK",	name:'Bruno	Kirby',	born:1949})._id;

Example	AQL	Queries	for	Graphs

57

actsIn.save(BillyC,WhenHarryMetSally,{roles:['Harry	Burns'],	year:	1998});

actsIn.save(MegR,WhenHarryMetSally,{roles:['Sally	Albright'],	year:	1998});

actsIn.save(CarrieF,WhenHarryMetSally,{roles:['Marie'],	year:	1998});

actsIn.save(BrunoK,WhenHarryMetSally,{roles:['Jess'],	year:	1998});

All	actors	who	acted	in	"movie1"	OR	"movie2"
Say	we	want	to	find	all	actors	who	acted	in	"TheMatrix"	OR	"TheDevilsAdvocate":

First	lets	try	to	get	all	actors	for	one	movie:

db._query("FOR	x	IN	ANY	'movies/TheMatrix'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	x._id").toArray();

Result:

[

		[

				"actors/Keanu",

				"actors/Hugo",

				"actors/Emil",

				"actors/Carrie",

				"actors/Laurence"

]

]

Now	we	continue	to	form	a	UNION_DISTINCT	of	two	NEIGHBORS	queries	which	will	be	the	solution:

db._query("FOR	x	IN	UNION_DISTINCT	((FOR	y	IN	ANY	'movies/TheMatrix'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETUR

N	y._id),	(FOR	y	IN	ANY	'movies/TheDevilsAdvocate'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	y._id))	RETURN	x"

).toArray();

[

		[

				"actors/Emil",

				"actors/Hugo",

				"actors/Carrie",

				"actors/Laurence",

				"actors/Keanu",

				"actors/Al",

				"actors/Charlize"

]

]

All	actors	who	acted	in	both	"movie1"	AND	"movie2"	?
This	is	almost	identical	to	the	question	above.	But	this	time	we	are	not	intrested	in	a	UNION	but	in	a	INTERSECTION:

db._query("FOR	x	IN	INTERSECTION	((FOR	y	IN	ANY	'movies/TheMatrix'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	

y._id),	(FOR	y	IN	ANY	'movies/TheDevilsAdvocate'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	y._id))	RETURN	x")

.toArray();

[

		[

				"actors/Keanu"

]

]

All	common	movies	between	"actor1"	and	"actor2"	?

Example	AQL	Queries	for	Graphs

58

This	is	actually	identical	to	the	question	about	common	actors	in	movie1	and	movie2.	We	just	have	to	change	the	starting	vertices.	As	an
example	let's	find	all	movies	where	Hugo	Weaving	("Hugo")	and	Keanu	Reeves	are	co-starring:

db._query("FOR	x	IN	INTERSECTION	((FOR	y	IN	ANY	'actors/Hugo'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	y._id

),	(FOR	y	IN	ANY	'actors/Keanu'	actsIn	OPTIONS	{bfs:	true,	uniqueVertices:	'global'}	RETURN	y._id))	RETURN	x").toArray();

[

		[

				"movies/TheMatrixRevolutions",

				"movies/TheMatrixReloaded",

				"movies/TheMatrix"

]

]

All	actors	who	acted	in	3	or	more	movies	?

This	question	is	different,	we	cannot	make	use	of	the	neighbors	function	here.	Instead	we	will	make	use	of	the	edge-index	and	the
COLLECT	statement	of	AQL	for	grouping.	The	basic	idea	is	to	group	all	edges	by	their	startVertex	(which	in	this	dataset	is	always	the
actor).	Then	we	remove	all	actors	with	less	than	3	movies	from	the	result.	As	I	am	also	interested	in	the	number	of	movies	an	actor	has
acted	in,	I	included	the	value	in	the	result	as	well:

db._query("FOR	x	IN	actsIn	COLLECT	actor	=	x._from	WITH	COUNT	INTO	counter	FILTER	counter	>=	3	RETURN	{actor:	actor,	movies:	co

unter}").toArray()

[

		{

				"actor"	:	"actors/Carrie",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/CubaG",

				"movies"	:	4

		},

		{

				"actor"	:	"actors/Hugo",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/Keanu",

				"movies"	:	4

		},

		{

				"actor"	:	"actors/Laurence",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/MegR",

				"movies"	:	5

		},

		{

				"actor"	:	"actors/TomC",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/TomH",

				"movies"	:	3

		}

]

All	movies	where	exactly	6	actors	acted	in	?
The	same	idea	as	in	the	query	before,	but	with	equality	filter,	however	now	we	need	the	movie	instead	of	the	actor,	so	we	return	the	_to
attribute:

Example	AQL	Queries	for	Graphs

59

db._query("FOR	x	IN	actsIn	COLLECT	movie	=	x._to	WITH	COUNT	INTO	counter	FILTER	counter	==	6	RETURN	movie").toArray()

[

		"movies/SleeplessInSeattle",

		"movies/TopGun",

		"movies/YouveGotMail"

]

The	number	of	actors	by	movie	?
We	remember	in	our	dataset	_to	on	the	edge	corresponds	to	the	movie,	so	we	count	how	often	the	same	_to	appears.	This	is	the	number
of	actors.	The	query	is	almost	identical	to	the	ones	before	but	without	the	FILTER	after	COLLECT:

db._query("FOR	x	IN	actsIn	COLLECT	movie	=	x._to	WITH	COUNT	INTO	counter	RETURN	{movie:	movie,	actors:	counter}").toArray()

[

		{

				"movie"	:	"movies/AFewGoodMen",

				"actors"	:	11

		},

		{

				"movie"	:	"movies/AsGoodAsItGets",

				"actors"	:	4

		},

		{

				"movie"	:	"movies/JerryMaguire",

				"actors"	:	9

		},

		{

				"movie"	:	"movies/JoeVersustheVolcano",

				"actors"	:	3

		},

		{

				"movie"	:	"movies/SleeplessInSeattle",

				"actors"	:	6

		},

		{

				"movie"	:	"movies/SnowFallingonCedars",

				"actors"	:	4

		},

		{

				"movie"	:	"movies/StandByMe",

				"actors"	:	7

		},

		{

				"movie"	:	"movies/TheDevilsAdvocate",

				"actors"	:	3

		},

		{

				"movie"	:	"movies/TheMatrix",

				"actors"	:	5

		},

		{

				"movie"	:	"movies/TheMatrixReloaded",

				"actors"	:	4

		},

		{

				"movie"	:	"movies/TheMatrixRevolutions",

				"actors"	:	4

		},

		{

				"movie"	:	"movies/TopGun",

				"actors"	:	6

		},

		{

				"movie"	:	"movies/WhatDreamsMayCome",

				"actors"	:	5

		},

		{

Example	AQL	Queries	for	Graphs

60

				"movie"	:	"movies/WhenHarryMetSally",

				"actors"	:	4

		},

		{

				"movie"	:	"movies/YouveGotMail",

				"actors"	:	6

		}

]

The	number	of	movies	by	actor	?
I	think	you	get	the	picture	by	now	;)

db._query("FOR	x	IN	actsIn	COLLECT	actor	=	x._from	WITH	COUNT	INTO	counter	RETURN	{actor:	actor,	movies:	counter}").toArray()

[

		{

				"actor"	:	"actors/Al",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/AnnabellaS",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/AnthonyE",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/BillPull",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/BillyC",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/BonnieH",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/BrunoK",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/Carrie",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/CarrieF",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/Charlize",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/ChristopherG",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/CoreyF",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/CubaG",

				"movies"	:	4

		},

		{

				"actor"	:	"actors/DaveC",

				"movies"	:	1

Example	AQL	Queries	for	Graphs

61

		},

		{

				"actor"	:	"actors/DemiM",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/Emil",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/EthanH",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/GregK",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/HelenH",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/Hugo",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/JackN",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/JamesC",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JamesM",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JayM",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JerryO",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/JohnC",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JonathanL",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JTW",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/Keanu",

				"movies"	:	4

		},

		{

				"actor"	:	"actors/KellyM",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/KellyP",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/KevinB",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/KevinP",

				"movies"	:	1

Example	AQL	Queries	for	Graphs

62

		},

		{

				"actor"	:	"actors/KieferS",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/Laurence",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/MarshallB",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/MaxS",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/MegR",

				"movies"	:	5

		},

		{

				"actor"	:	"actors/Nathan",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/NoahW",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/ParkerP",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/ReginaK",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/ReneeZ",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/RickY",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/RitaW",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/RiverP",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/Robin",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/RosieO",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/SteveZ",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/TomC",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/TomH",

				"movies"	:	3

		},

		{

				"actor"	:	"actors/TomS",

				"movies"	:	1

Example	AQL	Queries	for	Graphs

63

		},

		{

				"actor"	:	"actors/ValK",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/VictorG",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/WernerH",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/WilW",

				"movies"	:	1

		}

]

The	number	of	movies	acted	in	between	2005	and	2010	by	actor	?
This	query	is	where	a	Multi	Model	database	actually	shines.	First	of	all	we	want	to	use	it	in	production,	so	we	set	a	skiplistindex	on
year.	This	allows	as	to	execute	fast	range	queries	like	between	2005	and	2010.

db.actsIn.ensureSkiplist("year")

Now	we	slightly	modify	our	movies	by	actor	query.	However	my	dataset	contains	only	older	movies,	so	I	changed	the	year	range	from
1990	-	1995:

db._query("FOR	x	IN	actsIn	FILTER	x.year	>=	1990	&&	x.year	<=	1995	COLLECT	actor	=	x._from	WITH	COUNT	INTO	counter	RETURN	{acto

r:	actor,	movies:	counter}").toArray()

[

		{

				"actor"	:	"actors/BillPull",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/ChristopherG",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/CubaG",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/DemiM",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JackN",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JamesM",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/JTW",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/KevinB",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/KevinP",

				"movies"	:	1

		},

Example	AQL	Queries	for	Graphs

64

		{

				"actor"	:	"actors/KieferS",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/MegR",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/Nathan",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/NoahW",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/RitaW",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/RosieO",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/TomC",

				"movies"	:	1

		},

		{

				"actor"	:	"actors/TomH",

				"movies"	:	2

		},

		{

				"actor"	:	"actors/VictorG",

				"movies"	:	1

		}

]

Comment
Author:	Michael	Hackstein

Tags:	#graph	#examples

Example	AQL	Queries	for	Graphs

65

https://github.com/mchacki

Use	Cases	/	Examples
Crawling	Github	with	Promises

Using	ArangoDB	with	Sails.js

Populating	a	Textbox

Exporting	Data

Accessing	base	documents	with	Java

Add	XML	data	to	ArangoDB	with	Java

Use	Cases	/	Examples

66

Crawling	Github	with	Promises

Problem

The	new	ArangoDB	Javascript	driver	no	longer	imposes	any	promises	implementation.	It	follows	the	standard	callback	pattern	with	a
callback	using		err		and		res	.

But	what	if	we	want	to	use	a	promise	library	-	in	this	case	the	most	popular	one	promises?	Lets	give	it	a	try	and	build	a	github	crawler
with	the	new	Javascript	driver	and	promises.

Solution
The	following	source	code	can	be	found	on	github.

Pagination	with	Promises	made	easy

The	github	driver	has	a	function	to	get	all	followers.	However,	the	result	is	paginated.	With	two	helper	functions	and	promises	it	is
straight	forward	to	implement	a	function	to	retrieve	all	followers	of	an	user.

function	extractFollowers	(name)	{

		'use	strict';

		return	new	Promise(function(resolve,	reject)	{

				github.user.getFollowers({	user:	name	},	promoteError(reject,	function(res)	{

						followPages(resolve,	reject,	[],	res);

				}));

		});

}

The		followPages		function	simply	extends	the	result	with	the	next	page	until	the	last	page	is	reached.

function	followPages	(resolve,	reject,	result,	res)	{

		'use	strict';

		var	i;

		for	(i	=	0;		i	<	res.length;		++i)	{

				result.push(res[i]);

		}

		if	(github.hasNextPage(res))	{

				github.getNextPage(res,	promoteError(reject,	function(res)	{

						followPages(resolve,	reject,	result,	res);

				}));

		}

		else	{

				resolve(result);

		}

}

The	promote	error	helper	is	a	convenience	function	to	bridge	callbacks	and	promises.

function	promoteError	(reject,	resolve)	{

		'use	strict';

		return	function(err,	res)	{

				if	(err)	{

						if	(err.hasOwnProperty("message")	&&	/rate	limit	exceeded/.test(err.message))	{

								rateLimitExceeded	=	true;

						}

						console.error("caught	error:	%s",	err);

						reject(err);

Crawling	Github	with	Promises

67

https://github.com/arangodb/arangojs
https://www.npmjs.com/package/promises
https://github.com/fceller/Foxxmender

				}

				else	{

						resolve(res);

				}

		};

}

I've	decided	to	stick	to	the	sequence		reject		(aka		err)	followed	by		resolve		(aka		res)	-	like	the	callbacks.	The		promoteError		can
be	used	for	the	github	callback	as	well	as	the	ArangoDB	driver.

Queues,	Queues,	Queues

I've	only	needed	a	very	simple	job	queue,	so	queue-it	is	a	good	choice.	It	provides	a	very	simple	API	for	handling	job	queues:

POST	/queue/job

POST	/queue/worker

DELETE	/queue/job/:key

The	new	Javascript	driver	allows	to	access	arbitrary	endpoint.	First	install	a	Foxx	implementing	the	queue	microservice	in	an	ArangoDB
instance.

foxx-manager	install	queue-it	/queue

Adding	a	new	job	from	node.js	is	now	easy

function	addJob	(data)	{

		'use	strict';

		return	new	Promise(function(resolve,	reject)	{

				db.endpoint("queue").post("job",	data,	promoteError(reject,	resolve));

		});

}

Transaction

I	wanted	to	crawl	users	and	their	repos.	The	relations	("follows",	"owns",	"is_member",	"stars")	is	stored	in	an	edge	collection.	I	only	add
an	edge	if	it	is	not	already	there.	Therefore	I	check	inside	a	transaction,	if	the	edge	exists	and	add	it,	if	it	does	not.

createRepoDummy(repo.full_name,	data).then(function(dummyData)	{

		return	db.transaction(

				"relations",

				String(function(params)	{

						var	me	=	params[0];

						var	you	=	params[1];

						var	type	=	params[2];

						var	db	=	require("org/arangodb").db;

						if	(db.relations.firstExample({	_from:	me,	_to:	you,	type:	type	})	===	null)	{

								db.relations.save(me,	you,	{	type:	type	});

						}

				}),

				[meId,	"repos/"	+	data._key,	type],

				function(err)	{

						if	(err)	{

								throw	err;

						}

						return	handleDummy(dummyData);

				});

})

Please	note	that	the	action	function	is	executed	on	the	server	and	not	in	the	nodejs	client.	Therefore	we	need	to	pass	the	relevant	data	as
parameters.	It	is	not	possible	to	use	the	closure	variables.

Riding	the	Beast

Crawling	Github	with	Promises

68

https://github.com/arangodb/queue-it

Start	an	ArangoDB	instance	(i.e.	inside	a	docker	container)	and	install	the	simple	queue.

foxx-manager	install	queue-it	/queue

Start	the	arangosh	and	create	collections		users	,		repos		and		relations	.

arangosh>	db._create("users");

arangosh>	db.users.ensureHashIndex("name");

arangosh>	db._create("repos");

arangosh>	db.users.ensureHashIndex("name");

arangosh>	db._createEdgeCollection("relations");

Now	everything	is	initialized.	Fire	up	nodejs	and	start	crawling:

node>	var	crawler	=	require("./crawler");

node>	crawler.github.authenticate({	type:	"basic",	username:	"username",	password:	"password"	})

node>	crawler.addJob({	type:"user",	identifier:"username"	})

node>	crawler.runJobs();

Comment

Please	keep	in	mind	that	this	is	just	an	experiment.	There	is	no	good	error	handling	and	convenience	functions	for	setup	and	start.	It	is
also	not	optimized	for	performance.	For	instance,	it	would	easily	be	possible	to	avoid	nodejs	/	ArangoDB	roundtrips	using	more
transactions.

Sources	used	in	this	example:

ArangoJS
npm	promises
ArangoDB	Foxx	queue-it

The	source	code	of	this	example	is	available	from	Github:	https://github.com/fceller/Foxxmender

Author:	Frank	Celler

Tags:	#foxx	#javascript	#API	#nodejs	#driver

Crawling	Github	with	Promises

69

https://github.com/arangodb/arangojs
https://www.npmjs.com/package/promises
https://github.com/arangodb/queue-it
https://github.com/fceller/Foxxmender
https://github.com/fceller

How	to	use	ArangoDB	with	Sails.js
First	install	the	Sails.js	framework	using	NPM:

npm	install	-g	sails

Now	you	can	create	a	new	Sails.js	app	named		somename		with	the	following	command:

sails	new	somename

Now	we	need	to	add	ArangoDB	to	this	new	application.	First		cd		into	the	freshly	created		somename		directory.	Then	install	the
ArangoDB	adapter	for	Sails.js	with	the	following	command:

npm	install	sails-arangodb

This	however	only	installs	the	necessary	dependency.	We	need	to	configure	the	application	to	load	the	adapter.	Open	the	file
	config/connections.js	.	You	will	see	a	list	of	example	configurations	for	possible	connections	to	databases.	Remove	the	ones	you	don't
need	(or	just	keep	all	of	them),	and	add	the	following	configuration	(adjust	the	host,	port,	database	name	and	graph	name	to	your	needs):

localArangoDB:	{

		adapter:	'sails-arangodb',

		host:	'localhost',

		port:	8529,

		database:	{

				name:	'sails',

				graph:	'sails'

		}

}

Now,	you	can	configure	your	app	to	use	the	ArangoDB	as	your	default	connection.	You	do	this	by	adjusting	the	file		config/models.js	:

module.exports.models	=	{

		connection:	'localArangoDB'	//	this	is	the	name	from	the	connections.js	file

		//	...

};

Your	app	is	now	configured	to	use	ArangoDB	for	all	models	by	default.	You	can	now	for	example	create	a	blueprint	controller	by	typing
the	following	in	your	console:

sails	generate	api	todos

Now	you	can	boot	your	application	with:

sails	lift

You	can	now	access		http://localhost:1337/todos		and	see	an	empty	list	of	todos.	And	then	create	a	todo	by	visiting
	localhost:1337/todos/create?name=john	.	This	will	create	the	according	document	(that	has	an	attribute		name		with	the	value		john)	in
the	todos	collection	of	the	selected	database.	You	will	also	see	the	document	when	you	visit		http://localhost:1337/todos		again.

Author:	Lucas	Dohmen

Tags:	#nodejs

Using	ArangoDB	with	Sails.js

70

http://sailsjs.org
https://github.com/moonglum

Populating	an	autocomplete	textbox

Problem

I	want	to	populate	an	autocomplete	textbox	with	values	from	a	collection.	The	completions	should	adjust	dynamically	based	on	user
input.

Solution

Use	a	web	framework	for	the	client-side	autocomplete	rendering	and	event	processing.	Use	a	collection	with	a	(sorted)	skiplist	index	and
a	range	query	on	it	to	efficiently	fetch	the	completion	values	dynamically.	Connect	the	two	using	a	simple	Foxx	route.

Install	an	example	app

This	app	contains	a	jquery-powered	web	page	with	an	autocomplete	textbox.	It	uses	jquery	autocomplete,	but	every	other	web
framework	will	also	do.

The	app	can	be	installed	as	follows:

in	the	ArangoDB	web	interface,	switch	into	the	Applications	tab
there,	click	Add	Application
switch	on	the	Github	tab
for	Repository,	enter		jsteemann/autocomplete	
for	Version,	enter		master	
click	Install

Now	enter	a	mountpoint	for	the	application.	This	is	the	URL	path	under	which	the	application	will	become	available.	For	the	example
app,	the	mountpoint	does	not	matter.	The	web	page	in	the	example	app	assumes	it	is	served	by	ArangoDB,	too.	So	it	uses	a	relative	URL
	autocomplete	.	This	is	easiest	to	set	up,	but	in	reality	you	might	want	to	have	your	web	page	served	by	a	different	server.	In	this	case,
your	web	page	will	have	to	call	the	app	mountpoint	you	just	entered.

To	see	the	example	app	in	action,	click	on	Open.	The	autocomplete	textbox	should	be	populated	with	server	data	when	at	least	two
letters	are	entered.

Backend	code,	setup	script

The	app	also	contains	a	backend	route		/autocomplete		which	is	called	by	the	web	page	to	fetch	completions	based	on	user	input.	The
HTML	code	for	the	web	page	is	here.

Contained	in	the	app	is	a	setup	script	that	will	create	a	collection	named		completions		and	load	some	initial	data	into	it.	The	example
app	provides	autocompletion	for	US	city	names,	and	the	setup	script	populates	the	collection	with	about	10K	city	names.

The	setup	script	also	creates	a	skiplist	index	on	the	lookup	attribute,	so	this	attribute	can	be	used	for	efficient	filtering	and	sorting	later.
The		lookup		attribute	contains	the	city	names	already	lower-cased,	and	the	original	(pretty)	names	are	stored	in	attribute		pretty	.	This
attribute	will	be	returned	to	users.

Backend	code,	Foxx	route	controller

The	app	contains	a	controller.	The	backend	action		/autocomplete		that	is	called	by	the	web	page	is	also	contained	herein:

controller.get("/autocomplete",	function	(req,	res)	{

		//	search	phrase	entered	by	user

		var	searchString	=	req.params("q").trim()	||	"";

		//	lower	bound	for	search	range

		var	begin	=	searchString.replace(/[^a-zA-Z]/g,	"	").toLowerCase();

		if	(begin.length	===	0)	{

				//	search	phrase	is	empty	-	no	need	to	perfom	a	search	at	all

				res.json([]);

Populating	a	Textbox

71

https://github.com/jsteemann/autocomplete
http://jqueryui.com/autocomplete/
https://github.com/jsteemann/autocomplete/blob/master/assets/index.html
https://github.com/jsteemann/autocomplete/blob/master/scripts/setup.js
https://github.com/jsteemann/autocomplete/blob/master/scripts/setup.js#L10561
https://github.com/jsteemann/autocomplete/blob/master/demo.js

				return;

		}

		//	upper	bound	for	search	range

		var	end	=	begin.substr(0,	begin.length	-	1)	+	String.fromCharCode(begin.charCodeAt(begin.length	-	1)	+	1);

		//	bind	parameters	for	query

		var	queryParams	=	{

				"@collection"	:	"completions",

				"begin"	:	begin,

				"end"	:	end

		};

		//	the	search	query

		var	query	=	"FOR	doc	IN	@@collection	FILTER	doc.lookup	>=	@begin	&&	doc.lookup	<	@end	SORT	doc.lookup	RETURN	{	label:	doc.pre

tty,	value:	doc.pretty,	id:	doc._key	}";

		res.json(db._query(query,	queryParams).toArray());

}

The	backend	code	first	fetches	the	search	string	from	the	URL	parameter		q	.	This	is	what	the	web	page	will	send	us.

Based	on	the	search	string,	a	lookup	range	is	calculated.	First	of	all,	the	search	string	is	lower-cased	and	all	non-letter	characters	are
removed	from	it.	The	resulting	string	is	the	lower	bound	for	the	lookup.	For	the	upper	bound,	we	can	use	the	lower	bound	with	its	last
letter	character	code	increased	by	one.

For	example,	if	the	user	entered		Los	A		into	the	textbox,	the	web	page	will	send	us	the	string		Los	A		in	URL	parameter		q	.	Lower-
casing	and	removing	non-letter	characters	from	the	string,	we'll	get		losa	.	This	is	the	lower	bound.	The	upper	bound	is		losa	,	with	its
last	letter	adjusted	to		b		(i.e.		losb).

Finally,	the	lower	and	upper	bounds	are	inserted	into	the	following	query	using	bind	parameters		@begin		and		@end	:

FOR	doc	IN	@@collection	

		FILTER	doc.lookup	>=	@begin	&&	doc.lookup	<	@end	

		SORT	doc.lookup	

		RETURN	{	

				label:	doc.pretty,	

				value:	doc.pretty,	

				id:	doc._key	

		}

The	city	names	in	the	lookup	range	will	be	returned	sorted.	For	each	city,	three	values	are	returned	(the		id		contains	the	document	key,
the	other	two	values	are	for	display	purposes).	Other	frameworks	may	require	a	different	return	format,	but	that	can	easily	be	done	by
adjusting	the	AQL	query.

Author:	Jan	Steemann

Tags:	#aql	#autocomplete	#jquery

Populating	a	Textbox

72

https://github.com/jsteemann

Exporting	Data	for	Offline	Processing
In	this	recipe	we	will	learn	how	to	use	the	export	API	to	extract	data	and	process	it	with	PHP.	At	the	end	of	the	recipe	you	can	download
the	complete	PHP	script.

Note:	The	following	recipe	is	written	using	an	ArangoDB	server	with	version	2.6	or	higher.	You	can	also	use	the		devel		branch,	since
version	2.6	hasn't	been	an	official	release	yet.

Howto

Importing	example	data

First	of	all	we	need	some	data	in	an	ArangoDB	collection.	For	this	example	we	will	use	a	collection	named		users		which	we	will
populate	with	100.000	example	documents.	This	way	you	can	get	the	data	into	ArangoDB:

#	download	data	file

wget	https://jsteemann.github.io/downloads/code/users-100000.json.tar.gz

#	uncompress	it

tar	xvfz	users-100000.json.tar.gz

#	import	into	ArangoDB	

arangoimp	--file	users-100000.json	--collection	users	--create-collection	true

Setting	up	ArangoDB-PHP

For	this	recipe	we	will	use	the	ArangoDB	PHP	driver:

git	clone	-b	devel	"https://github.com/arangodb/arangodb-php.git"

We	will	now	write	a	simple	PHP	script	that	establishes	a	connection	to	ArangoDB	on	localhost:

<?php

namespace	triagens\ArangoDb;

//	use	the	driver's	autoloader	to	load	classes

require	'arangodb-php/autoload.php';

Autoloader::init();

//	set	up	connection	options

$connectionOptions	=	array(

				//	endpoint	to	connect	to

				ConnectionOptions::OPTION_ENDPOINT					=>	'tcp://localhost:8529',

				//	can	use	Keep-Alive	connection

				ConnectionOptions::OPTION_CONNECTION			=>	'Keep-Alive',

				//	use	basic	authorization

				ConnectionOptions::OPTION_AUTH_TYPE				=>	'Basic',

				//	user	for	basic	authorization

				ConnectionOptions::OPTION_AUTH_USER				=>	'root',

				//	password	for	basic	authorization

				ConnectionOptions::OPTION_AUTH_PASSWD		=>	'',

				//	timeout	in	seconds

				ConnectionOptions::OPTION_TIMEOUT						=>	30,

				//	database	name	

				ConnectionOptions::OPTION_DATABASE					=>	'_system'

);

try	{

		//	establish	connection

		$connection	=	new	Connection($connectionOptions);

		echo	'Connected!'	.	PHP_EOL;

		//	TODO:	now	do	something	useful	with	the	connection!

Exporting	Data

73

https://jsteemann.github.io/blog/2015/04/04/more-efficient-data-exports/
https://jsteemann.github.io/downloads/code/users-100000.json.tar.gz
https://github.com/arangodb/arangodb-php

}	catch	(ConnectException	$e)	{

		print	$e	.	PHP_EOL;

}	catch	(ServerException	$e)	{

		print	$e	.	PHP_EOL;

}	catch	(ClientException	$e)	{

		print	$e	.	PHP_EOL;

}

After	running	the	script	you	should	see		Connected!		in	the	bash	if	successful.

Extracting	the	data

Now	we	can	run	an	export	of	the	data	in	the	collection		users	.	Place	the	following	code	into	the		TODO		part	of	the	first	code:

function	export($collection,	Connection	$connection)	{

		$fp	=	fopen('output.json',	'w');

		if	(!	$fp)	{

				throw	new	Exception('could	not	open	output	file!');

		}

		//	settings	to	use	for	the	export

		$settings	=	array(

						'batchSize'	=>	5000,		//	export	in	chunks	of	5K	documents

						'_flat'	=>	true							//	use	simple	PHP	arrays

);

		$export	=	new	Export($connection,	$collection,	$settings);

		//	execute	the	export.	this	will	return	an	export	cursor

		$cursor	=	$export->execute();

		//	statistics

		$count			=	0;

		$batches	=	0;

		$bytes			=	0;

		//	now	we	can	fetch	the	documents	from	the	collection	in	batches

		while	($docs	=	$cursor->getNextBatch())	{

				$output	=	'';

				foreach	($docs	as	$doc)	{

						$output	.=	json_encode($doc)	.	PHP_EOL;

				}

				//	write	out	chunk

				fwrite($fp,	$output);

				//	update	statistics

				$count	+=	count($docs);

				$bytes	+=	strlen($output);

				++$batches;

		}

		fclose($fp);

		echo	sprintf('written	%d	documents	in	%d	batches	with	%d	total	bytes',

						$count,

						$batches,

						$bytes)	.	PHP_EOL;

}

//	run	the	export

export('users',	$connection);

The	function	extracts	all	documents	from	the	collection	and	writes	them	into	an	output	file		output.json	.	In	addition	it	will	print	some
statistics	about	the	number	of	documents	and	the	total	data	size:

written	100000	documents	in	20	batches	with	40890013	total	bytes

Applying	some	transformations

Exporting	Data

74

We	now	will	use	PHP	to	transform	data	as	we	extract	it:

function	transformDate($value)	{

		return	preg_replace('/^(\\d+)-(\\d+)-(\\d+)$/',	'\\2/\\3/\\1',	$value);

}

function	transform(array	$document)	{

		static	$genders	=	array('male'	=>	'm',	'female'	=>	'f');

		$transformed	=	array(

						'gender'						=>	$genders[$document['gender']],

						'dob'									=>	transformDate($document['birthday']),

						'memberSince'	=>	transformDate($document['memberSince']),

						'fullName'				=>	$document['name']['first']	.	'	'	.	$document['name']['last'],

						'email'							=>	$document['contact']['email'][0]

);

		return	$transformed;

}

function	export($collection,	Connection	$connection)	{

		$fp	=	fopen('output-transformed.json',	'w');

		if	(!	$fp)	{

				throw	new	Exception('could	not	open	output	file!');

		}

		//	settings	to	use	for	the	export

		$settings	=	array(

						'batchSize'	=>	5000,		//	export	in	chunks	of	5K	documents

						'_flat'	=>	true							//	use	simple	PHP	arrays

);

		$export	=	new	Export($connection,	$collection,	$settings);

		//	execute	the	export.	this	will	return	an	export	cursor

		$cursor	=	$export->execute();

		//	now	we	can	fetch	the	documents	from	the	collection	in	batches

		while	($docs	=	$cursor->getNextBatch())	{

				$output	=	'';

				foreach	($docs	as	$doc)	{

						$output	.=	json_encode(transform($doc))	.	PHP_EOL;

				}

				//	write	out	chunk

				fwrite($fp,	$output);

		}

		fclose($fp);

}

//	run	the	export

export('users',	$connection);

With	this	script	the	following	changes	will	be	made	on	the	data:

rewrite	the	contents	of	the		gender	attribute.		female		becomes		f		and		male		becomes		m	
	birthday		now	becomes		dob	
the	date	formations	will	be	changed	from	YYYY-MM-DD	to	MM/DD/YYYY
concatenate	the	contents	of		name.first		and		name.last	
	contact.email		will	be	transformed	from	an	array	to	a	flat	string
every	other	attribute	will	be	removed

Note:	The	output	will	be	in	a	file	named		output-transformed.json	.

Filtering	attributes

Exclude	certain	attributes

Exporting	Data

75

Instead	of	filtering	out	as	done	in	the	previous	example	we	can	easily	configure	the	export	to	exclude	these	attributes	server-side:

//	settings	to	use	for	the	export

$settings	=	array(

		'batchSize'	=>	5000,		//	export	in	chunks	of	5K	documents

		'_flat'	=>	true,						//	use	simple	PHP	arrays

		'restrict'	=>	array(

				'type'	=>	'exclude',

				'fields'	=>	array('_id',	'_rev',	'_key',	'likes')

)

);

This	script	will	exclude	the	attributes		_id	,		_rev	.		_key		and		likes	.

Include	certain	attributes

We	can	also	include	attributes	with	the	following	script:

function	export($collection,	Connection	$connection)	{

		//	settings	to	use	for	the	export

		$settings	=	array(

						'batchSize'	=>	5000,		//	export	in	chunks	of	5K	documents

						'_flat'	=>	true,						//	use	simple	PHP	arrays

						'restrict'	=>	array(

								'type'	=>	'include',

								'fields'	=>	array('_key',	'name')

)

);

		$export	=	new	Export($connection,	$collection,	$settings);

		//	execute	the	export.	this	will	return	an	export	cursor

		$cursor	=	$export->execute();

		//	now	we	can	fetch	the	documents	from	the	collection	in	batches

		while	($docs	=	$cursor->getNextBatch())	{

				$output	=	'';

				foreach	($docs	as	$doc)	{

						$values	=	array(

										$doc['_key'],

										$doc['name']['first']	.	'	'	.	$doc['name']['last']

);

						$output	.=	'"'	.	implode('","',	$values)	.	'"'	.	PHP_EOL;

				}

				//	print	out	the	data	directly	

				print	$output;

		}

}

//	run	the	export

export('users',	$connection);

In	this	script	only	the		_key		and		name		attributes	are	extracted.	In	the	prints	the		_key	/	name		pairs	are	in	CSV	format.

Note:	The	whole	script	can	be	downloaded.

Using	the	API	without	PHP

The	export	API	REST	interface	can	be	used	with	any	client	that	can	speak	HTTP	like	curl.	With	the	following	command	you	can	fetch
the	documents	from	the		users		collection:

curl

		-X	POST

		http://localhost:8529/_api/export?collection=users

--data	'{"batchSize":5000}'

Exporting	Data

76

https://jsteemann.github.io/downloads/code/export-csv.php

The	HTTP	response	will	contatin	a		result		attribute	that	contains	the	actual	documents.	The	attribute		hasMore		will	indicate	if	there
are	more	documents	for	the	client	to	fetch.	The	HTTP	will	also	contain	an	attribute		id		if	set	to	true.

With	the		id		you	can	send	follow-up	requests	like	this:

curl

		-X	PUT

		http://localhost:8529/_api/export/13979338067709

Authors:	Thomas	Schmidts	and	Jan	Steemann

Tags:	#howto	#php

Exporting	Data

77

https://github.com/13abylon
https://github.com/jsteemann

How	to	retrieve	documents	from	ArangoDB	without	knowing
the	structure?

Problem

If	you	use	a	NoSQL	database	it's	common	to	retrieve	documents	with	an	unknown	attribute	structure.	Furthermore,	the	amount	and
types	of	attributes	may	differ	in	documents	resulting	from	a	single	query.	Another	problem	is	that	you	want	to	add	one	ore	more
attributes	to	a	document.

In	Java	you	are	used	to	work	with	objects.	Regarding	the	upper	requirements	it	is	possible	to	directly	retrieve	objects	with	the	same
attribute	structure	as	the	document	out	of	the	database.	Adding	attributes	to	an	object	at	runtime	could	be	very	messy.

Note:	ArangoDB	3.1	and	the	corresponding	Java	driver	is	needed.

Solution

With	the	latest	version	of	the	Java	driver	of	ArangoDB	an	object	called		BaseDocument		is	provided.

The	structure	is	very	simple:	It	only	has	four	attributes:

public	class	BaseDocument	{

				String	id;

				String	key;

				String	revision;

				Map<String,	Object>	properties;

}

The	first	three	attributes	are	the	system	attributes		_id	,		_key		and		_rev	.	The	fourth	attribute	is	a		HashMap	.	The	key	always	is	a
String,	the	value	an	object.	These	properties	contain	all	non	system	attributes	of	the	document.

The	map	can	contain	values	of	the	following	types:

Map

List
Boolean
Number
String
null

Note:		Map		and		List		contain	objects,	which	are	of	the	same	types	as	listed	above.

To	retrieve	a	document	is	similar	to	the	known	procedure,	except	that	you	use		BaseDocument		as	type.

ArangoDB.Builder	arango	=	new	ArangoDB.Builder().builder();

DocumentEntity<BaseDocument>	myObject	=	arango.db().collection("myCollection").getDocument("myDocumentKey",	BaseDocument.class)

;

Other	resources

Accessing	base	documents	with	Java

78

https://github.com/arangodb/arangodb-java-driver#supported-versions

More	documentation	about	the	ArangoDB	Java	driver	is	available:

Tutorial:	Java	in	ten	minutes
Java	driver	at	Github
Example	source	code
JavaDoc

Author:	gschwab,	Mark	Vollmary

Tags:	#java	#driver

Accessing	base	documents	with	Java

79

https://www.arangodb.com/tutorials/tutorial-sync-java-driver/
https://github.com/arangodb/arangodb-java-driver
https://github.com/arangodb/arangodb-java-driver/tree/master/src/test/java/com/arangodb/example
http://arangodb.github.io/arangodb-java-driver/javadoc-4_1/index.html
https://github.com/gschwab
https://github.com/mpv1989

How	to	add	XML	data	to	ArangoDB?

Problem

You	want	to	store	XML	data	files	into	a	database	to	have	the	ability	to	make	queries	onto	them.

Note:	ArangoDB	3.1	and	the	corresponding	Java	driver	is	needed.

Solution
Since	version	3.1.0	the	aragodb-java-driver	supports	writing,	reading	and	querying	of	raw	strings	containing	the	JSON	documents.

With	JsonML	you	can	convert	a	XML	string	into	a	JSON	string	and	back	to	XML	again.

Converting	XML	into	JSON	with	JsonML	example:

String	string	=	"<recipe	name=\"bread\"	prep_time=\"5	mins\"	cook_time=\"3	hours\">	"

								+	"<title>Basic	bread</title>	"

								+	"<ingredient	amount=\"8\"	unit=\"dL\">Flour</ingredient>	"

								+	"<ingredient	amount=\"10\"	unit=\"grams\">Yeast</ingredient>	"

								+	"<ingredient	amount=\"4\"	unit=\"dL\"	state=\"warm\">Water</ingredient>	"

								+	"<ingredient	amount=\"1\"	unit=\"teaspoon\">Salt</ingredient>	"

								+	"<instructions>	"

								+	"<step>Mix	all	ingredients	together.</step>	"

								+	"<step>Knead	thoroughly.</step>	"

								+	"<step>Cover	with	a	cloth,	and	leave	for	one	hour	in	warm	room.</step>	"

								+	"<step>Knead	again.</step>	"

								+	"<step>Place	in	a	bread	baking	tin.</step>	"

								+	"<step>Cover	with	a	cloth,	and	leave	for	one	hour	in	warm	room.</step>	"

								+	"<step>Bake	in	the	oven	at	180(degrees)C	for	30	minutes.</step>	"

								+	"</instructions>	"

								+	"</recipe>	";

JSONObject	jsonObject	=	JSONML.toJSONObject(string);

System.out.println(jsonObject.toString());

The	converted	JSON	string:

{

			"prep_time"	:	"5	mins",

			"name"	:	"bread",

			"cook_time"	:	"3	hours",

			"tagName"	:	"recipe",

			"childNodes"	:	[

						{

									"childNodes"	:	[

												"Basic	bread"

],

									"tagName"	:	"title"

						},

						{

									"childNodes"	:	[

												"Flour"

],

									"tagName"	:	"ingredient",

									"amount"	:	8,

									"unit"	:	"dL"

						},

						{

									"unit"	:	"grams",

									"amount"	:	10,

									"tagName"	:	"ingredient",

									"childNodes"	:	[

												"Yeast"

]

						},

Add	XML	data	to	ArangoDB	with	Java

80

http://www.jsonml.org/

						{

									"childNodes"	:	[

												"Water"

],

									"tagName"	:	"ingredient",

									"amount"	:	4,

									"unit"	:	"dL",

									"state"	:	"warm"

						},

						{

									"childNodes"	:	[

												"Salt"

],

									"tagName"	:	"ingredient",

									"unit"	:	"teaspoon",

									"amount"	:	1

						},

						{

									"childNodes"	:	[

												{

															"tagName"	:	"step",

															"childNodes"	:	[

																		"Mix	all	ingredients	together."

]

												},

												{

															"tagName"	:	"step",

															"childNodes"	:	[

																		"Knead	thoroughly."

]

												},

												{

															"childNodes"	:	[

																		"Cover	with	a	cloth,	and	leave	for	one	hour	in	warm	room."

],

															"tagName"	:	"step"

												},

												{

															"tagName"	:	"step",

															"childNodes"	:	[

																		"Knead	again."

]

												},

												{

															"childNodes"	:	[

																		"Place	in	a	bread	baking	tin."

],

															"tagName"	:	"step"

												},

												{

															"tagName"	:	"step",

															"childNodes"	:	[

																		"Cover	with	a	cloth,	and	leave	for	one	hour	in	warm	room."

]

												},

												{

															"tagName"	:	"step",

															"childNodes"	:	[

																		"Bake	in	the	oven	at	180(degrees)C	for	30	minutes."

]

												}

],

									"tagName"	:	"instructions"

						}

]

}

Saving	the	converted	JSON	to	ArangoDB	example:

ArangoDB.Builder	arango	=	new	ArangoDB.Builder().build();

ArangoCollection	collection	=	arango.db().collection("testCollection")

DocumentCreateEntity<String>	entity	=	collection.insertDocument(

																jsonObject.toString());

String	key	=	entity.getKey();

Add	XML	data	to	ArangoDB	with	Java

81

Reading	the	stored	JSON	as	a	string	and	convert	it	back	to	XML	example:

String	rawJsonString	=	collection.getDocument(key,	String.class);

String	xml	=	JSONML.toString(rawJsonString);

System.out.println(xml);

Example	output:

<recipe	_id="RawDocument/6834407522"	_key="6834407522"	_rev="6834407522"

									cook_time="3	hours"	name="bread"	prep_time="5	mins">

		<title>Basic	bread</title>

		<ingredient	amount="8"	unit="dL">Flour</ingredient>

		<ingredient	amount="10"	unit="grams">Yeast</ingredient>

		<ingredient	amount="4"	state="warm"	unit="dL">Water</ingredient>

		<ingredient	amount="1"	unit="teaspoon">Salt</ingredient>

		<instructions>

				<step>Mix	all	ingredients	together.</step>

				<step>Knead	thoroughly.</step>

				<step>Cover	with	a	cloth,	and	leave	for	one	hour	in	warm	room.</step>

				<step>Knead	again.</step>

				<step>Place	in	a	bread	baking	tin.</step>

				<step>Cover	with	a	cloth,	and	leave	for	one	hour	in	warm	room.</step>

				<step>Bake	in	the	oven	at	180(degrees)C	for	30	minutes.</step>

		</instructions>

</recipe>

Note:	The	fields	mandatory	to	ArangoDB	documents	are	added;	If	they	break	your	XML	schema	you	have	to	remove	them.

Query	raw	data	example:

String	queryString	=	"FOR	t	IN	testCollection	FILTER	t.cook_time	==	'3	hours'	RETURN	t";

ArangoCursor<String>	cursor	=	arango.db().query(queryString,	null,	null,	String.class);

while	(cursor.hasNext())	{

				JSONObject	jsonObject	=	new	JSONObject(cursor.next());

				String	xml	=	JSONML.toString(jsonObject);

				System.out.println("XML	value:	"	+	xml);

}

Other	resources
More	documentation	about	the	ArangoDB	Java	driver	is	available:

Tutorial:	Java	in	ten	minutes
Java	driver	at	Github
Example	source	code
JavaDoc

Author:	Achim	Brandt,	Mark	Vollmary

Tags:	#java	#driver

Add	XML	data	to	ArangoDB	with	Java

82

https://www.arangodb.com/tutorials/tutorial-sync-java-driver/
https://github.com/arangodb/arangodb-java-driver
https://github.com/arangodb/arangodb-java-driver/tree/master/src/test/java/com/arangodb/example
http://arangodb.github.io/arangodb-java-driver/javadoc-4_1/index.html
https://github.com/a-brandt
https://github.com/mpv1989

Administration
Using	Authentication

Importing	Data

Replicating	Data

XCopy	Install	Windows

Migrating	2.8	to	3.0

Administration

83

Using	authentication

Problem

I	want	to	use	authentication	in	ArangoDB.

Solution

In	order	to	make	authentication	work	properly,	you	will	need	to	create	user	accounts	first.

Then	adjust	ArangoDB's	configuration	and	turn	on	authentication	(if	it's	off).

Set	up	or	adjust	user	accounts

ArangoDB	user	accounts	are	valid	throughout	a	server	instance	and	users	can	be	granted	access	to	one	or	more	databases.	They	are
managed	through	the	database	named		_system	.

To	manage	user	accounts,	connect	with	the	ArangoShell	to	the	ArangoDB	host	and	the		_system		database:

$	arangosh	--server.endpoint	tcp://127.0.0.1:8529	--server.database	"_system"

By	default,	arangosh	will	connect	with	a	username		root		and	an	empty	password.	This	will	work	if	authentication	is	turned	off.

When	connected,	you	can	create	a	new	user	account	with	the	following	command:

arangosh>	require("org/arangodb/users").save("myuser",	"mypasswd");

	myuser		will	be	the	username	and		mypasswd		will	be	the	user's	password.	Note	that	running	the	command	like	this	may	store	the
password	literally	in	ArangoShell's	history.

To	avoid	that,	use	a	dynamically	created	password,	e.g.:

arangosh>	passwd	=	require("internal").genRandomAlphaNumbers(20);

arangosh>	require("org/arangodb/users").save("myuser",	passwd);

The	above	will	print	the	password	on	screen	(so	you	can	memorize	it)	but	won't	store	it	in	the	command	history.

While	there,	you	probably	want	to	change	the	password	of	the	default		root		user	too.	Otherwise	one	will	be	able	to	connect	with	the
default		root		user	and	its	empty	password.	The	following	commands	change	the		root		user's	password:

arangosh>	passwd	=	require("internal").genRandomAlphaNumbers(20);

arangosh>	require("org/arangodb/users").update("root",	passwd);

Turn	on	authentication

Authentication	is	turned	on	by	default	in	ArangoDB.	You	should	make	sure	that	it	was	not	turned	off	manually	however.	Check	the
configuration	file	(normally	named		/etc/arangodb.conf)	and	make	sure	it	contains	the	following	line	in	the		server		section:

authentication	=	true

This	will	make	ArangoDB	require	authentication	for	every	request	(including	requests	to	Foxx	apps).

If	you	want	to	run	Foxx	apps	without	HTTP	authentcation,	but	activate	HTTP	authentication	for	the	built-in	server	APIs,	you	can	add
the	following	line	in	the		server		section	of	the	configuration:

authentication-system-only	=	true

Using	Authentication

84

The	above	will	bypass	authentication	for	requests	to	Foxx	apps.

When	finished	making	changes,	you	need	to	restart	ArangoDB:

service	arangodb	restart

Check	accessibility

To	confirm	authentication	is	in	effect,	try	connecting	to	ArangoDB	with	the	ArangoShell:

$	arangosh	--server.endpoint	tcp://127.0.0.1:8529	--server.database	"_system"

The	above	will	implicity	use	a	username		root		and	an	empty	password	when	connecting.	If	you	changed	the	password	of	the		root	
account	as	described	above,	this	should	not	work	anymore.

You	should	also	validate	that	you	can	connect	with	a	valid	user:

$	arangosh	--server.endpoint	tcp://127.0.0.1:8529	--server.database	"_system"	--server.username	myuser

You	can	also	use	curl	to	check	that	you	are	actually	getting	HTTP	401	(Unauthorized)	server	responses	for	requests	that	require
authentication:

$	curl	--dump	-	http://127.0.0.1:8529/_api/version

Author:	Jan	Steemann

Tags:	#authentication	#security

Using	Authentication

85

https://github.com/jsteemann

Importing	data

Problem

I	want	to	import	data	from	a	file	into	ArangoDB.

Solution

ArangoDB	comes	with	a	command-line	tool	utility	named		arangoimp	.	This	utility	can	be	used	for	importing	JSON-encoded,	CSV,	and
tab-separated	files	into	ArangoDB.

	arangoimp		needs	to	be	invoked	from	the	command-line	once	for	each	import	file.	The	target	collection	can	already	exist	or	can	be	created
by	the	import	run.

Importing	JSON-encoded	data

Input	formats

There	are	two	supported	input	formats	for	importing	JSON-encoded	data	into	ArangoDB:

line-by-line	format:	This	format	expects	each	line	in	the	input	file	to	be	a	valid	JSON	objects.	No	line	breaks	must	occur	within
each	single	JSON	object

array	format:	Expects	a	file	containing	a	single	array	of	JSON	objects.	Whitespace	is	allowed	for	formatting	inside	the	JSON	array
and	the	JSON	objects

Here's	an	example	for	the	line-by-line	format	looks	like	this:

{"author":"Frank	Celler","time":"2011-10-26	08:42:49	+0200","sha":"c413859392a45873936cbe40797970f8eed93ff9","message":"first	c

ommit","user":"f.celler"}

{"author":"Frank	Celler","time":"2011-10-26	21:32:36	+0200","sha":"10bb77b8cc839201ff59a778f0c740994083c96e","message":"initial

	release","user":"f.celler"}

...

Here's	an	example	for	the	same	data	in	array	format:

[

		{

				"author":	"Frank	Celler",

				"time":	"2011-10-26	08:42:49	+0200",

				"sha":	"c413859392a45873936cbe40797970f8eed93ff9",

				"message":	"first	commit",

				"user":	"f.celler"

		},

		{

				"author":	"Frank	Celler",

				"time":	"2011-10-26	21:32:36	+0200",

				"sha":	"10bb77b8cc839201ff59a778f0c740994083c96e",

				"message":	"initial	release",

				"user":	"f.celler"

		},

		...

]

Importing	JSON	data	in	line-by-line	format

An	example	data	file	in	line-by-line	format	can	be	downloaded	here.	The	example	file	contains	all	the	commits	to	the	ArangoDB
repository	as	shown	by		git	log	--reverse	.

The	following	commands	will	import	the	data	from	the	file	into	a	collection	named		commits	:

Importing	Data

86

http://jsteemann.github.io/downloads/code/git-commits-single-line.json

#	download	file

wget	http://jsteemann.github.io/downloads/code/git-commits-single-line.json

#	actually	import	data

arangoimp	--file	git-commits-single-line.json	--collection	commits	--create-collection	true

Note	that	no	file	type	has	been	specified	when		arangoimp		was	invoked.	This	is	because		json		is	its	default	input	format.

The	other	parameters	used	have	the	following	meanings:

	file	:	input	filename
	collection	:	name	of	the	target	collection
	create-collection	:	whether	or	not	the	collection	should	be	created	if	it	does	not	exist

The	result	of	the	import	printed	by		arangoimp		should	be:

created:										20039

warnings/errors:		0

total:												20039

The	collection		commits		should	now	contain	the	example	commit	data	as	present	in	the	input	file.

Importing	JSON	data	in	array	format

An	example	input	file	for	the	array	format	can	be	found	here.

The	command	for	importing	JSON	data	in	array	format	is	similar	to	what	we've	done	before:

#	download	file

wget	http://jsteemann.github.io/downloads/code/git-commits-array.json

#	actually	import	data

arangoimp	--file	git-commits-array.json	--collection	commits	--create-collection	true

Though	the	import	command	is	the	same	(except	the	filename),	there	is	a	notable	difference	between	the	two	JSON	formats:	for	the	array
format,		arangoimp		will	read	and	parse	the	JSON	in	its	entirety	before	it	sends	any	data	to	the	ArangoDB	server.	That	means	the	whole
input	file	must	fit	into		arangoimp	's	buffer.	By	default,		arangoimp		will	allocate	a	16	MiB	internal	buffer,	and	input	files	bigger	than	that
will	be	rejected	with	the	following	message:

import	file	is	too	big.	please	increase	the	value	of	--batch-size	(currently	16777216).

So	for	JSON	input	files	in	array	format	it	might	be	necessary	to	increase	the	value	of		--batch-size		in	order	to	have	the	file	imported.
Alternatively,	the	input	file	can	be	converted	to	line-by-line	format	manually.

Importing	CSV	data

Data	can	also	be	imported	from	a	CSV	file.	An	example	file	can	be	found	here.

The		--type		parameter	for	the	import	command	must	now	be	set	to		csv	:

#	download	file

wget	http://jsteemann.github.io/downloads/code/git-commits.csv

#	actually	import	data

arangoimp	--file	git-commits.csv	--type	csv	--collection	commits	--create-collection	true

For	the	CSV	import,	the	first	line	in	the	input	file	has	a	special	meaning:	every	value	listed	in	the	first	line	will	be	treated	as	an	attribute
name	for	the	values	in	all	following	lines.	All	following	lines	should	also	have	the	same	number	of	"columns".

"columns"	inside	the	CSV	input	file	can	be	left	empty	though.	If	a	"column"	is	left	empty	in	a	line,	then	this	value	will	be	omitted	for	the
import	so	the	respective	attribute	will	not	be	set	in	the	imported	document.	Note	that	values	from	the	input	file	that	are	enclosed	in
double	quotes	will	always	be	imported	as	strings.	To	import	numeric	values,	boolean	values	or	the		null		value,	don't	enclose	these

Importing	Data

87

http://jsteemann.github.io/downloads/code/git-commits-array.json
http://jsteemann.github.io/downloads/code/git-commits.csv

values	in	quotes	in	the	input	file.	Note	that	leading	zeros	in	numeric	values	will	be	removed.	Importing	numbers	with	leading	zeros	will
only	work	when	putting	the	numbers	into	strings.

Here	is	an	example	CSV	file:

"author","time","sha","message"

"Frank	Celler","2011-10-26	08:42:49	+0200","c413859392a45873936cbe40797970f8eed93ff9","first	commit"

"Frank	Celler","2011-10-26	21:32:36	+0200","10bb77b8cc839201ff59a778f0c740994083c96e","initial	release"

...

	arangoimp		supports	Windows	(CRLF)	and	Unix	(LF)	line	breaks.	Line	breaks	might	also	occur	inside	values	that	are	enclosed	with	the
quote	character.

The	default	separator	for	CSV	files	is	the	comma.	It	can	be	changed	using	the		--separator		parameter	when	invoking		arangoimp	.	The
quote	character	defaults	to	the	double	quote	(").	To	use	a	literal	double	quote	inside	a	"column"	in	the	import	data,	use	two	double
quotes.	To	change	the	quote	character,	use	the		--quote		parameter.	To	use	a	backslash	for	escaping	quote	characters,	please	set	the
option		--backslash-escape		to		true	.

Changing	the	database	and	server	endpoint

By	default,		arangoimp		will	connect	to	the	default	database	on		127.0.0.1:8529		with	a	user	named		root	.	To	change	this,	use	the
following	parameters:

	server.database	:	name	of	the	database	to	use	when	importing	(default:		_system)
	server.endpoint	:	address	of	the	ArangoDB	server	(default:		tcp://127.0.0.1:8529)

Using	authentication

	arangoimp		will	by	default	send	an	username		root		and	an	empty	password	to	the	ArangoDB	server.	This	is	ArangoDB's	default
configuration,	and	it	should	be	changed.	To	make		arangoimp		use	a	different	username	or	password,	the	following	command-line
arguments	can	be	used:

	server.username	:	username,	used	if	authentication	is	enabled	on	server
	server.password	:	password	for	user,	used	if	authentication	is	enabled	on	server

The	password	argument	can	also	be	omitted	in	order	to	avoid	having	it	saved	in	the	shell's	command-line	history.	When	specifying	a
username	but	omitting	the	password	parameter,		arangoimp		will	prompt	for	a	password.

Additional	parameters

By	default,		arangoimp		will	import	data	into	the	specified	collection	but	will	not	touch	existing	data.	Often	it	is	convenient	to	first
remove	all	data	from	a	collection	and	then	run	the	import.		arangoimp		supports	this	with	the	optional		--overwrite		flag.	When	setting	it
to		true	,	all	documents	in	the	collection	will	be	removed	prior	to	the	import.

Author:	Jan	Steemann

Tags:	#arangoimp	#import

Importing	Data

88

https://github.com/jsteemann

Replicating	data	from	different	databases

Problem

You	have	two	or	more	different	databases	with	various	data	respectively	collections	in	each	one	of	this,	but	you	want	your	data	to	be
collected	at	one	place.

Note:	For	this	solution	you	need	at	least	Arango	2.0	and	you	must	run	the	script	in	every	database	you	want	to	be	collect	data	from.

Solution
First	of	all	you	have	to	start	a	server	on	endpoint:

arangod	--server.endpoint	tcp://127.0.0.1:8529

Now	you	have	to	create	two	collections	and	name	them	data	and	replicationStatus

db._create("data");

db._create("replicationStatus");

Save	the	following	script	in	a	file	named	js/common/modules/org/mysync.js

var	internal	=	require("internal");

//	maximum	number	of	changes	that	we	can	handle

var	maxChanges	=	1000;

//	URL	of	central	node

var	transferUrl	=	"http://127.0.0.1:8599/_api/import?collection=central&type=auto&createCollection=true&complete=true";

var	transferOptions	=	{

		method:	"POST",

		timeout:	60

};

//	the	collection	that	keeps	the	status	of	what	got	replicated	to	central	node

var	replicationCollection	=	internal.db.replicationStatus;

//	the	collection	containing	all	data	changes

var	changesCollection	=	internal.db.data;

function	keyCompare	(l,	r)	{

		if	(l.length	!=	r.length)	{

				return	l.length	-	r.length	<	0	?	-1	:	1;

		}

		//	length	is	equal

		for	(i	=	0;	i	<	l.length;	++i)	{

				if	(l[i]	!=	r[i])	{

						return	l[i]	<	r[i]	?	-1	:	1;

				}

		}

		return	0;

};

function	logger	(msg)	{

		"use	strict";

		require("console").log("%s",	msg);

}

function	replicate	()	{

		"use	strict";

Replicating	Data

89

		var	key	=	"status";	//	const

		var	status,	newStatus;

		try	{

				//	fetch	the	previous	replication	state

				status	=	replicationCollection.document(key);

				newStatus	=	{	_key:	key,	lastKey:	status.lastKey	};

		}

		catch	(err)	{

				//	no	previous	replication	state.	start	from	the	beginning

				newStatus	=	{	_key:	key,	lastKey:	"0"	};

		}

		//	fetch	the	latest	changes	(need	to	reverse	them	because	`last`	returns	newest	changes	first)

		var	changes	=	changesCollection.last(maxChanges).reverse(),	change;

		var	transfer	=	[];

		for	(change	in	changes)	{

				if	(changes.hasOwnProperty(change))	{

						var	doc	=	changes[change];

						if	(keyCompare(doc._key,	newStatus.lastKey)	<=	0)	{

								//	already	handled	in	a	previous	replication	run

								continue;

						}

						//	documents	we	need	to	transfer

						//	if	necessary,	we	could	rewrite	the	documents	here,	e.g.	insert

						//	extra	values,	create	client-specific	keys	etc.

						transfer.push(doc);

						if	(keyCompare(doc._key,	newStatus.lastKey)	>	0)	{

								//	keep	track	of	highest	key

								newStatus.lastKey	=	doc._key;

						}

				}

		}

		if	(transfer.length	===	0)	{

				//	nothing	to	do

				logger("nothing	to	transfer");

				return;

		}

		logger("transferring	"	+	transfer.length	+	"	document(s)");

		//	now	transfer	the	documents	to	the	remote	server

		var	result	=	internal.download(transferUrl,	JSON.stringify(transfer),	transferOptions);

		if	(result.code	>=	200	&&	result.code	<=	202)	{

				logger("central	server	accepted	the	documents:	"	+	JSON.stringify(result));

		}

		else	{

				//	error

				logger("central	server	did	not	accept	the	documents:	"	+	JSON.stringify(result));

				throw	"replication	error";

		}

		//	update	the	replication	state

		if	(status)	{

				//	need	to	update	the	previous	replication	state

				replicationCollection.update(key,	newStatus);

		}

		else	{

				//	need	to	insert	the	replication	state	(1st	time)

				replicationCollection.save(newStatus);

		}

		logger("deleting	old	documents");

		//	finally	remove	all	elements	that	we	transferred	successfully	from	the	changes	collection

		//	no	need	to	keep	them

		transfer.forEach(function	(k)	{

				changesCollection.remove(k);

		});

}

exports.execute	=	function	(param)	{

Replicating	Data

90

		"use	strict";

		logger("replication	wake	up");

		replicate();

		logger("replication	shutdown");

};

Afterwards	change	the	URL	of	the	central	node	in	the	script	to	the	one	you	chosen	before	-	e.g.	tcp://127.0.0.1:8599

Now	register	the	script	as	a	recurring	action:

require("internal").definePeriodic(1,	10,	"org/arangodb/mysync",	"execute",	"");

Note:	At	this	point	you	can	change	the	time	the	script	will	be	executed.

Comment

The	server	started	on	endpoint	will	be	the	central	node.	It	collects	changes	from	the	local	node	by	replicating	its	data.	The	script	will	pick
up	everything	that	has	been	changed	since	the	last	alteration	in	your	data	collection.	Every	10	seconds	-	or	the	time	you	chosen	-	the
script	will	be	executed	and	send	the	changed	data	to	the	central	node	where	it	will	be	imported	into	a	collection	named	central.	After	that
the	transferred	data	will	be	removed	from	the	data	collection.

If	you	want	to	test	your	script	simply	add	some	data	to	your	data	collection	-	e.g.:

for	(i	=	0;	i	<	100;	++i)	db.data.save({	value:	i	});

Author:	Jan	Steemann

Tags:	#database	#collection

Replicating	Data

91

https://github.com/jsteemann

XCopy	install	ArangoDB	on	Windows

Problem

Even	if	there	is	a	nice	guided	installer	for	windows	users,	not	all	users	prefer	this	kind	of	installation.	In	order	to	have	a	portable
application	XCOPY	deployment	is	necessary.

Solution

As	of	Version	2.5.1	ArangoDB	doesn't	rely	on	registry	entries	anymore	so	we	can	deploy	using	a	ZIP-file.

Steps

Unzip	archive

Open	an	explorer,	choose	a	place	where	you	want	ArangoDB	to	be	and	unzip	the	files	there.	It	will	create	its	own	toplevel	directory	with
the	version	number	in	the	string.

Alter	configuration

Optional:

Edit		etc\arangodb3\arangod.conf		if	the	default	values	don't	suit	your	needs	like:

the	location	of	the	database	files
ports	to	bind
storage	engine

and	so	on.

Create	Runtime	directories

	arangod		leans	on	the	existence	of	some	directories	in	the	var	subdirectory,	so	you	should	create	them:

C:\Program	Files\ArangoDB-3.1.11>mkdir	var\lib\arangodb

C:\Program	Files\ArangoDB-3.1.11>mkdir	var\lib\arangodb-apps

Run	arangod

To	start	the	database	simply	run	it:

C:\Program	Files\ArangoDB-3.1.11>usr\bin\arangod

Now	it	takes	a	while	to	open	all	its	databases,	load	system	facilities,	bootstrap	the	JavaScript	environments	and	many	more.	Once	it's
ready	the	output	is:

INFO	ArangoDB	(version	3.1.11	[windows])	is	ready	for	business.	Have	fun!

Now	you	can	open	the	administrative	webinterface	in	your	browser	using	http://127.0.0.1:8529/.

Installing	as	service

If	you	don't	want	to	run		arangod		from	a	cmd-shell	each	time	installing	it	as	a	system	service	is	the	right	thing	to	do.	This	requires
administrative	privileges.	You	need	to	Run	as	Administrator	the	cmd-shell.	First	we	need	to	grant	the	SYSTEM-user	access	to	our
database	directory,	since		arangod		is	going	to	be	running	as	that	user:

XCopy	Install	Windows

92

http://en.wikipedia.org/wiki/Portable_application
http://en.wikipedia.org/wiki/XCOPY_deployment
http://127.0.0.1:8529/

C:\Program	Files\ArangoDB-3.1.11>icacls	var	/grant	SYSTEM:F	/t

Next	we	can	install	the	service	itself:

C:\Program	Files\ArangoDB-3.1.11>usr\bin\arangod	--install-service

Now	you	will	have	a	new	entry	in	the	Services	dialog	labeled	ArangoDB	-	the	multi-purpose	database.	You	can	start	it	there	or	just
do	it	on	the		commandline		using:

C:\Program	Files\ArangoDB-3.1.11>NET	START	ArangoDB

It	will	take	a	similar	amount	of	time	to	start	from	the		comandline		above	till	the	service	is	up	and	running.	Since	you	don't	have	any
console	to	inspect	the	startup,	messages	of	the	severity	FATAL	&	ERROR	are	also	output	into	the	windows	eventlog,	so	in	case	of
failure	you	can	have	a	look	at	the	Eventlog	in	the	Managementconsole

Author:	Wilfried	Goesgens

Tags:	#windows	#install

XCopy	Install	Windows

93

https://github.com/dothebart

Installing	ArangoDB	unattended	under	Windows

Problem

The	Available	NSIS	based	installer	requires	user	interaction;	This	may	be	unwanted	for	unattended	install	i.e.	via	Chocolatey.

Solution

The	NSIS	installer	now	offers	a	"Silent	Mode"	which	allows	you	to	run	it	non	interactive	and	specify	all	choices	available	in	the	UI	via
commandline	Arguments.

The	options	are	as	all	other	NSIS	options	specified	in	the	form	of		/OPTIONNAME=value	.

Supported	options
For	Installation:

PASSWORD	-	Set	the	database	password.	Newer	versions	will	also	try	to	evaluate	a	PASSWORD	environment	variable

INSTDIR	-	Installation	directory.	A	directory	where	you	have	access	to.

DATABASEDIR	-	Database	directory.	A	directory	where	you	have	access	to	and	the	databases	should	be	created.
APPDIR	-	Foxx	Services	directory.	A	directory	where	you	have	access	to.
INSTALL_SCOPE_ALL:

1	-	AllUsers	+Service	-	launch	the	arangodb	service	via	the	Windows	Services,	install	it	for	all	users
0	-	SingleUser	-	install	it	into	the	home	of	this	user,	don'launch	a	service.	Eventually	create	a	desktop	Icon	so	the	user	can	do
this.

DESKTOPICON	-	[0/1]	whether	to	create	Icons	on	the	desktop	to	reference	arangosh	and	the	webinterface
PATH

0	-	don't	alter	the	PATH	environment	at	all
1:

INSTALL_SCOPE_ALL	=	1	add	it	to	the	path	for	all	users
INSTALL_SCOPE_ALL	=	0	add	it	to	the	path	of	the	currently	logged	in	users

STORAGE_ENGINE	-	[auto/mmfiles/rocksdb]	which	storage	engine	to	use	(arangodb	3.2	onwards)

For	Uninstallation:

PURGE_DB	-	[0/1]	if	set	to	1	the	database	files	ArangoDB	created	during	its	lifetime	will	be	removed	too.

Generic	Options	derived	from	NSIS
S	-	silent	-	don't	open	the	UI	during	installation

Silent	NSIS	on	Windows

94

http://nsis.sourceforge.net/Docs/Chapter3.html

Migration	from	ArangoDB	2.8	to	3.0

Problem

I	want	to	use	ArangoDB	3.0	from	now	on	but	I	still	have	data	in	ArangoDB	2.8.	I	need	to	migrate	my	data.	I	am	running	an	ArangoDB
3.0	cluster	(and	possibly	a	cluster	with	ArangoDB	2.8	as	well).

Solution

The	internal	data	format	changed	completely	from	ArangoDB	2.8	to	3.0,	therefore	you	have	to	dump	all	data	using		arangodump		and	then
restore	it	to	the	new	ArangoDB	instance	using		arangorestore	.

General	instructions	for	this	procedure	can	be	found	in	the	manual.	Here,	we	cover	some	additional	details	about	the	cluster	case.

Dumping	the	data	in	ArangoDB	2.8

Basically,	dumping	the	data	works	with	the	following	command	(use		arangodump		from	your	ArangoDB	2.8	distribution!):

arangodump	--server.endpoint	tcp://localhost:8530	--output-directory	dump

or	a	variation	of	it,	for	details	see	the	above	mentioned	manual	page	and	this	section.	If	your	ArangoDB	2.8	instance	is	a	cluster,	simply
use	one	of	the	coordinator	endpoints	as	the	above		--server.endpoint	.

Restoring	the	data	in	ArangoDB	3.0

The	output	consists	of	JSON	files	in	the	output	directory,	two	for	each	collection,	one	for	the	structure	and	one	for	the	data.	The	data
format	is	100%	compatible	with	ArangoDB	3.0,	except	that	ArangoDB	3.0	has	an	additional	option	in	the	structure	files	for	synchronous
replication,	namely	the	attribute		replicationFactor	,	which	is	used	to	specify,	how	many	copies	of	the	data	for	each	shard	are	kept	in
the	cluster.

Therefore,	you	can	simply	use	this	command	(use	the		arangorestore		from	your	ArangoDB	3.0	distribution!):

arangorestore	--server.endpoint	tcp://localhost:8530	--input-directory	dump

to	import	your	data	into	your	new	ArangoDB	3.0	instance.	See	this	page	for	details	on	the	available	command	line	options.	If	your
ArangoDB	3.0	instance	is	a	cluster,	then	simply	use	one	of	the	coordinators	as		--server.endpoint	.

That	is	it,	your	data	is	migrated.

Controling	the	number	of	shards	and	the	replication	factor

This	procedure	works	for	all	four	combinations	of	single	server	and	cluster	for	source	and	destination	respectively.	If	the	target	is	a	single
server	all	simply	works.

So	it	remains	to	explain	how	one	controls	the	number	of	shards	and	the	replication	factor	if	the	destination	is	a	cluster.

If	the	source	was	a	cluster,		arangorestore		will	use	the	same	number	of	shards	as	before,	if	you	do	not	tell	it	otherwise.	Since	ArangoDB
2.8	does	not	have	synchronous	replication,	it	does	not	produce	dumps	with	the		replicationFactor		attribute,	and	so		arangorestore	
will	use	replication	factor	1	for	all	collections.	If	the	source	was	a	single	server,	the	same	will	happen,	additionally,		arangorestore		will
always	create	collections	with	just	a	single	shard.

There	are	essentially	3	ways	to	change	this	behaviour:

1.	 The	first	is	to	create	the	collections	explicitly	on	the	ArangoDB	3.0	cluster,	and	then	set	the		--create-collection	false		flag.	In
this	case	you	can	control	the	number	of	shards	and	the	replication	factor	for	each	collection	individually	when	you	create	them.

2.	 The	second	is	to	use		arangorestore	's	options		--default-number-of-shards		and		--default-replication-factor		(this	option	was

Migrating	2.8	to	3.0

95

https://docs.arangodb.com/2.8/HttpBulkImports/Arangodump.html

introduced	in	Version	3.0.2)	respectively	to	specify	default	values,	which	are	taken	if	the	dump	files	do	not	specify	numbers.	This
means	that	all	such	restored	collections	will	have	the	same	number	of	shards	and	replication	factor.

3.	 If	you	need	more	control	you	can	simply	edit	the	structure	files	in	the	dump.	They	are	simply	JSON	files,	you	can	even	first	use	a
JSON	pretty	printer	to	make	editing	easier.	For	the	replication	factor	you	simply	have	to	add	a		replicationFactor		attribute	to	the
	parameters		subobject	with	a	numerical	value.	For	the	number	of	shards,	locate	the		shards		subattribute	of	the		parameters	
attribute	and	edit	it,	such	that	it	has	the	right	number	of	attributes.	The	actual	names	of	the	attributes	as	well	as	their	values	do	not
matter.	Alternatively,	add	a		numberOfShards		attribute	to	the		parameters		subobject,	this	will	override	the		shards		attribute	(this
possibility	was	introduced	in	Version	3.0.2).

Note	that	you	can	remove	individual	collections	from	your	dump	by	deleting	their	pair	of	structure	and	data	file	in	the	dump	directory.	In
this	way	you	can	restore	your	data	in	several	steps	or	even	parallelise	the	restore	operation	by	running	multiple		arangorestore	
processes	concurrently	on	different	dump	directories.	You	should	consider	using	different	coordinators	for	the	different		arangorestore	
processes	in	this	case.

All	these	possibilities	together	give	you	full	control	over	the	sharding	layout	of	your	data	in	the	new	ArangoDB	3.0	cluster.

Migrating	2.8	to	3.0

96

Show	grants	function

Problem

I'm	looking	for	user	database	grants

Solution

Create	a	global	function	in	your	.arangosh.rc	file	like	this:

global.show_grants	=	function	()	{

								let	stmt;

								stmt=db._createStatement({"query":	"FOR	u	in	_users	RETURN	{\"user\":	u.user,	\"databases\":	u.databases}"});

								console.log(stmt.execute().toString());

};

Now	when	you	enter	in	arangosh,	you	can	call	show_grants()	function.

Function	out	example

[object	ArangoQueryCursor,	count:	3,	hasMore:	false]

[

		{

				"user"	:	"foo",

				"databases"	:	{

						"_system"	:	"rw",

						"bar"	:	"rw"

				}

		},

		{

				"user"	:	"foo2",

				"databases"	:	{

						"bar"	:	"rw"

				}

		},

		{

				"user"	:	"root",

				"databases"	:	{

						"*"	:	"rw"

				}

		}

]

Show	grants	function

97

Compiling	ArangoDB

Problem

You	want	to	modify	sources	or	add	your	own	changes	to	ArangoDB.

Solution

Arangodb,	as	many	other	opensource	projects	nowadays	is	standing	on	the	shoulder	of	giants.	This	gives	us	a	solid	foundation	to	bring
you	a	uniq	feature	set,	but	it	introduces	a	lot	of	dependencies	that	need	to	be	in	place	in	order	to	compile	arangodb.

Since	build	infrastructures	are	very	different	depending	on	the	target	OS,	choose	your	target	from	the	recepies	below.

Compile	on	Debian

Compile	on	Windows

Running	Custom	Build

Recompiling	jemalloc

OpenSSL	1.1

Compiling	/	Build

98

Compiling	on	Debian

Problem

You	want	to	compile	and	run	the	devel	branch,	for	example	to	test	a	bug	fix.	In	this	example	the	system	is	Debian	based.

Solution

This	solution	was	made	using	a	fresh	Debian	Testing	machine	on	Amazon	EC2.	For	completeness,	the	steps	pertaining	to	AWS	are	also
included	in	this	recipe.

Launch	the	VM

Optional

Login	to	your	AWS	account	and	launch	an	instance	of	Debian	Testing.	I	used	an	'm3.xlarge'	since	that	has	a	bunch	of	cores,	more	than
enough	memory,	optimized	network	and	the	instance	store	is	on	SSDs	which	can	be	switched	to	provisioned	IOPs.

The	Current	AMI	ID's	can	be	found	in	the	Debian	Wiki:	https://wiki.debian.org/Cloud/AmazonEC2Image/Jessie

Upgrade	to	the	very	latest	version

Optional

Once	your	EC2	instance	is	up,	login	ad		admin		and		sudo	su		to	become		root	.

First,	we	remove	the	backports	and	change	the	primary	sources.list

rm	-rf	/etc/apt/sources.list.d

echo	"deb					http://http.debian.net/debian	testing	main	contrib"		>	/etc/apt/sources.list

echo	"deb-src	http://http.debian.net/debian	testing	main	contrib"	>>	/etc/apt/sources.list

Update	and	upgrade	the	system.	Make	sure	you	don't	have	any	broken/unconfigured	packages.	Sometimes	you	need	to	run	safe/full
upgrade	more	than	once.	When	you're	done,	reboot.

apt-get	install	aptitude

aptitude	-y	update

aptitude	-y	safe-upgrade

aptitude	-y	full-upgrade

reboot

Install	build	dependencies

Mandatory

Before	you	can	build	ArangoDB,	you	need	a	few	packages	pre-installed	on	your	system.

Login	again	and	install	them.

sudo	aptitude	-y	install	git-core	\

				build-essential	\

				libssl-dev	\

				libjemalloc-dev	\

				cmake	\

				python2.7	\

sudo	aptitude	-y	install	libldap2-dev	#	Enterprise	version	only

Download	the	Source

Compile	on	Debian

99

https://wiki.debian.org/Cloud/AmazonEC2Image/Jessie

Download	the	latest	source	using	git:

unix>	git	clone	git://github.com/arangodb/arangodb.git

This	will	automatically	clone	the	devel	branch.

Note:	if	you	only	plan	to	compile	ArangoDB	locally	and	do	not	want	to	modify	or	push	any	changes,	you	can	speed	up	cloning
substantially	by	using	the	--single-branch	and	--depth	parameters	for	the	clone	command	as	follows:

unix>	git	clone	--single-branch	--depth	1	git://github.com/arangodb/arangodb.git

Setup

Switch	into	the	ArangoDB	directory

unix>	cd	arangodb

unix>	mkdir	build

unix>	cd	build

In	order	to	generate	the	build	environment	please	execute

unix>	cmake	..	

to	setup	the	Makefiles.	This	will	check	the	various	system	characteristics	and	installed	libraries.	If	you	installed	the	compiler	in	a	non
standard	location,	you	may	need	to	specify	it:

cmake	-DCMAKE_C_COMPILER=/opt/bin/gcc	-DCMAKE_CXX_COMPILER=/opt/bin/g++	..

If	you	compile	on	MacOS,	you	should	add	the	following	options	to	the	cmake	command:

cmake	..	-DOPENSSL_ROOT_DIR=/usr/local/opt/openssl	-DCMAKE_OSX_DEPLOYMENT_TARGET=10.11

If	you	also	plan	to	make	changes	to	the	source	code	of	ArangoDB,	you	may	want	to	compile	with	the		Debug		build	type:

cmake	..	-DCMAKE_BUILD_TYPE=Debug

The		Debug		target	enables	additional	sanity	checks	etc.	which	would	slow	down	production	binaries.	If	no	build	type	is	specified,
ArangoDB	will	be	compiled	with	build	type		RelWithDebInfo	,	which	is	a	compromise	between	good	performance	and	medium	debugging
experience.

Other	options	valuable	for	development:

-DUSE_MAINTAINER_MODE=On

Needed	if	you	plan	to	make	changes	to	AQL	language	(which	is	implemented	using	a	lexer	and	parser	files	in		arangod/Aql/grammar.y		and
	arangod/Aql/tokens.ll)	or	if	you	want	to	enable	runtime	assertions.	To	use	the	maintainer	mode,	your	system	has	to	contain	the	tools
FLEX	and	BISON.

-DUSE_BACKTRACE=On

Use	this	option	if	you	want	to	have	C++	stacktraces	attached	to	your	exceptions.	This	can	be	useful	to	more	quickly	locate	the	place
where	an	exception	or	an	assertion	was	thrown.	Note	that	this	option	will	slow	down	the	produces	binaries	a	bit	and	requires	building
with	maintainer	mode.

-DUSE_OPTIMIZE_FOR_ARCHITECTURE=On

Compile	on	Debian

100

This	will	optimize	the	binary	for	the	target	architecture,	potentially	enabling	more	compiler	optimizations,	but	making	the	resulting
binary	less	portable.

ArangoDB	will	then	automatically	use	the	configuration	from	file	etc/relative/arangod.conf.

-DUSE_FAILURE_TESTS=On

This	option	activates	additional	code	in	the	server	that	intentionally	makes	the	server	crash	or	misbehave	(e.g.	by	pretending	the	system
ran	out	of	memory)	when	certain	tests	are	run.	This	option	is	useful	for	writing	tests.

-DUSE_JEMALLOC=Off

By	default	ArangoDB	will	be	built	with	a	bundled	version	of	the	JEMalloc	allocator.	This	however	will	not	work	when	using	runtime
analyzers	such	as	ASAN	or	Valgrind.	In	order	to	use	these	tools	for	instrumenting	an	ArangoDB	binary,	JEMalloc	must	be	turned	off
during	compilation.

shared	memory

Gyp	is	used	as	makefile	generator	by	V8.	Gyp	requires	shared	memory	to	be	available,	which	may	not	if	you	i.e.	compile	in	a	chroot.	You
can	make	it	available	like	this:

none	/opt/chroots/ubuntu_precise_x64/dev/shm	tmpfs	rw,nosuid,nodev,noexec	0	2

devpts				/opt/chroots/ubuntu_precise_x64/dev/pts				devpts				gid=5,mode=620				0		0

Compilation

Compile	the	programs	(server,	client,	utilities)	by	executing

make

in	the	build	subdirectory.	This	will	compile	ArangoDB	and	create	the	binary	executable	in	file		build/bin/arangod	.

Starting	and	testing

Check	the	binary	by	starting	it	using	the	command	line.

unix>	build/bin/arangod	-c	etc/relative/arangod.conf	--server.endpoint	tcp://127.0.0.1:8529	/tmp/database-dir

This	will	start	up	the	ArangoDB	and	listen	for	HTTP	requests	on	port	8529	bound	to	IP	address	127.0.0.1.	You	should	see	the	startup
messages	similar	to	the	following:

2016-06-01T12:47:29Z	[29266]	INFO	ArangoDB	xxx	...	

2016-06-10T12:47:29Z	[29266]	INFO	using	endpoint	'tcp://127.0.0.1.8529'	for	non-encrypted	requests

2016-06-01T12:47:30Z	[29266]	INFO	Authentication	is	turned	on

2016-60-01T12:47:30Z	[29266]	INFO	ArangoDB	(version	xxx)	is	ready	for	business.	Have	fun!

If	it	fails	with	a	message	about	the	database	directory,	please	make	sure	the	database	directory	you	specified	exists	and	can	be	written
into.

Use	your	favorite	browser	to	access	the	URL

http://127.0.0.1:8529/

This	should	bring	up	ArangoDB's	web	interface.

Re-building	ArangoDB	after	an	update

To	stay	up-to-date	with	changes	made	in	the	main	ArangoDB	repository,	you	will	need	to	pull	the	changes	from	it	and	re-run		make	.

Compile	on	Debian

101

Normally,	this	will	be	as	simple	as	follows:

unix>	git	pull

unix>	(cd	build	&&	make)

From	time	to	time	there	will	be	bigger	structural	changes	in	ArangoDB,	which	may	render	the	old	Makefiles	invalid.	Should	this	be	the
case	and		make		complains	about	missing	files	etc.,	the	following	commands	should	fix	it:

unix>	rm	-rf	build/*	

unix>	cd	build	&&	cmake	..	<cmake	options	go	here>

unix>	(cd	build	&&	make)

Note	that	the	above	commands	will	run	a	full	rebuild	of	ArangoDB	and	all	of	its	third-party	components.	That	will	take	a	while	to
complete.

Installation

In	a	local	development	environment	it	is	not	necessary	to	install	ArangoDB	somewhere,	because	it	can	be	started	from	within	the	source
directory	as	shown	above.

If	there	should	be	the	need	to	install	ArangoDB,	execute	the	following	command:

(cd	build	&&	sudo	make	install)

The	server	will	by	default	be	installed	in

/usr/local/sbin/arangod

The	configuration	file	will	be	installed	in

/usr/local/etc/arangodb/arangod.conf

The	database	will	be	installed	in

/usr/local/var/lib/arangodb

The	ArangoShell	will	be	installed	in

/usr/local/bin/arangosh

You	should	add	an	arangodb	user	and	group	(as	root),	plus	make	sure	it	owns	these	directories:

useradd	-g	arangodb	arangodb

chown	-R	arangodb:arangodb	/usr/local/var/lib/arangodb3-apps/

chown	-R	arangodb:arangodb	/tmp/database-dir/

Note:	The	installation	directory	will	be	different	if	you	use	one	of	the		precompiled		packages.	Please	check	the	default	locations	of	your
operating	system,	e.	g.		/etc		and		/var/lib	.

When	upgrading	from	a	previous	version	of	ArangoDB,	please	make	sure	you	inspect	ArangoDB's	log	file	after	an	upgrade.	It	may	also
be	necessary	to	start	ArangoDB	with	the	--database.auto-upgrade	parameter	once	to	perform	required	upgrade	or	initialization	tasks.

Author:	Patrick	Huber	Author:	Wilfried	Goesgens

Tags:	#debian	#driver

Compile	on	Debian

102

https://github.com/stackmagic
https://github.com/dothebart

Compiling	ArangoDB	under	Windows

Problem

I	want	to	compile	ArangoDB	3.0	and	onwards	under	Windows.

Note:	For	this	recipe	you	need	at	least	ArangoDB	3.0;	For	ArangoDB	version	before	3.0	look	at	the	old	Compiling	ArangoDB	under
Windows.

Solution
With	ArangoDB	3.0	a	complete	cmake	environment	was	introduced.	This	also	streamlines	the	dependencies	on	windows.	We	sugest	to
use	chocolatey.org	to	install	most	of	the	dependencies.	For	sure	most	projects	offer	their	own	setup	&	install	packages,	chocolatey	offers
a	simplified	way	to	install	them	with	less	userinteractions.	You	can	even	use	chocolatey	via	the	brand	new	ansibles	2.0	winrm	facility	to
do	unattended	installions	of	some	software	on	windows	-	the	cool	thing	linux	guys	always	told	you	about.

Ingredients

First	install	the	choco	package	manager	by	pasting	this	tiny	cmdlet	into	a	command	window	(needs	to	be	run	with	Administrator
privileges;	Right	click	start	menu,	Command	Prompt	(Admin)):

@powershell	-NoProfile	-ExecutionPolicy	Bypass	-Command	"iex	((new-object	net.webclient).DownloadString('https://chocolatey.org

/install.ps1'))"	&&	SET	PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin

Visual	Studio	and	its	Compiler

Since	choco	currently	fails	to	alter	the	environment	for	Microsoft	Visual	Studio,	we	suggest	to	download	and	install	Visual	Studio	by
hand.	Currently	Visual	Studio	2015	is	the	only	supported	option.

You	need	to	make	sure	that	it	installs	the	option	"Programming	Languages	/	C++",	else	cmake	will	fail	to	dectect	it	later	on.

After	it	successfully	installed,	start	it	once,	so	it	can	finish	its	setup.

More	dependencies

Now	you	can	invoke	the	choco	package	manager	for	an	unattended	install	of	the	dependencies	(needs	to	be	run	with	Administrator
privileges	again):

choco	install	-y	cmake.portable	nsis	python2	procdump	windbg	wget	nuget.commandline

Then	we	fetch	the	OpenSSL	library	via	the	nuget	commandline	client	(doesn't	need	Administrator	privileges):

nuget	install	openssl

Optional

If	you	intend	to	run	the	unittests	or	compile	from	git,	you	also	need	(needs	to	be	run	with	Administrator	privileges	again):

choco	install	-y	git	winflexbison	ruby

Close	and	reopen	the	Administrator	command	window	in	order	to	continue	with	the	ruby	devkit:

choco	install	-y	ruby2.devkit

Compile	on	Windows

103

https://chocolatey.org/
http://docs.ansible.com/ansible/intro_windows.html
https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx
https://openssl.org

And	manually	install	the	requirements	via	the		Gemfile		fetched	from	the	ArangoDB	Git	repository	(needs	to	be	run	with	Administrator
privileges):

wget	https://raw.githubusercontent.com/arangodb/arangodb/devel/UnitTests/HttpInterface/Gemfile

set	PATH=%PATH%;C:\tools\DevKit2\bin;C:\tools\DevKit2\mingw\bin

gem	install	bundler

bundler

Note	that	the	V8	build	scripts	and	gyp	aren't	compatible	with	Python	3.x	hence	you	need	python2!

Building	ArangoDB

Download	and	extract	the	release	tarball	from	https://www.arangodb.com/download/

Or	clone	the	github	repository,	and	checkout	the	branch	or	tag	you	need	(devel,	3.0)

git	clone	https://github.com/arangodb/arangodb.git	-b	devel

cd	arangodb

Generate	the	Visual	studio	project	files,	and	check	back	that	cmake	discovered	all	components	on	your	system:

mkdir	Build64

cd	Build64

cmake	-G	"Visual	Studio	14	Win64"	..

Note	that	in	some	cases	cmake	struggles	to	find	the	proper	python	interpreter	(i.e.	the	cygwin	one	won't	work).	You	can	force	overrule	it
by	appending:

-DPYTHON_EXECUTABLE:FILEPATH=C:/tools/python2/python.exe

You	can	now	load	these	in	the	Visual	Studio	IDE	or	use	cmake	to	start	the	build:

cmake	--build	.	--config	RelWithDebInfo

The	binaries	need	the	ICU	datafile		icudt54l.dat	,	which	is	automatically	copied	into	the	directory	containing	the	executable.

For	development,	unittests	and	documentation:	Cygwin
(Optional)
The	documentation	and	unittests	still	require	a	cygwin	environment.	Here	the	hints	how	to	get	it	properly	installed:

You	need	at	least		make		from	cygwin.	Cygwin	also	offers	a		cmake	.	Do	not	install	the	cygwin	cmake.

You	should	also	issue	these	commands	to	generate	user	informations	for	the	cygwin	commands:

mkpasswd	>	/etc/passwd

mkgroup	>	/etc/group

Turning	ACL	off	(noacl)	for	all	mounts	in	cygwin	fixes	permissions	troubles	that	may	appear	in	the	build:

#	/etc/fstab

#

#				This	file	is	read	once	by	the	first	process	in	a	Cygwin	process	tree.

#				To	pick	up	changes,	restart	all	Cygwin	processes.		For	a	description

#				see	https://cygwin.com/cygwin-ug-net/using.html#mount-table

#	noacl	=	Ignore	Access	Control	List	and	let	Windows	handle	permissions

C:/cygwin64/bin		/usr/bin			ntfs						binary,auto,noacl											0		0

C:/cygwin64/lib		/usr/lib			ntfs						binary,auto,noacl											0		0

C:/cygwin64						/										ntfs						override,binary,auto,noacl		0		0

Compile	on	Windows

104

https://www.arangodb.com/download/
https://www.cygwin.com/

none													/cygdrive		cygdrive		binary,posix=0,user,noacl			0		0

Enable	native	symlinks	for	Cygwin	and	git
Cygwin	will	create	proprietary	files	as	placeholders	by	default	instead	of	actually	symlinking	files.	The	placeholders	later	tell	Cygwin
where	to	resolve	paths	to.	It	does	not	intercept	every	access	to	the	placeholders	however,	so	that	3rd	party	scripts	break.	Windows	Vista
and	above	support	real	symlinks,	and	Cygwin	can	be	configured	to	make	use	of	it:

#	use	actual	symlinks	to	prevent	documentation	build	errors

#	(requires	elevated	rights!)

export	CYGWIN="winsymlinks:native"

Note	that	you	must	run	Cygwin	as	administrator	or	change	the	Windows	group	policies	to	allow	user	accounts	to	create	symlinks
(gpedit.msc		if	available).

BTW:	You	can	create	symlinks	manually	on	Windows	like:

mklink	/H	target/file.ext	source/file.ext

mklink	/D	target/path	source/path

mklink	/J	target/path	source/path/for/junction

And	in	Cygwin:

ln	-s	source	target

Making	the	ICU	database	publically	available
If	you	intend	to	use	the	machine	for	development	purposes,	it	may	be	more	practical	to	copy	it	to	a	common	place:

cp	3rdParty/V8/V8-5.0.71.39/third_party/icu/source/data/in/icudtl.dat	/cygdrive/c/Windows/icudt54l.dat

And	configure	your	environment	(yes	this	instruction	remembers	to	the	hitchhikers	guide	to	the	galaxy...)	so	that		ICU_DATA		points	to
	c:\\Windows	.	You	do	that	by	opening	the	explorer,	right	click	on		This	PC		in	the	tree	on	the	left,	choose		Properties		in	the	opening
window		Advanced	system	settings	,	in	the	Popup		Environment	Variables	,	another	popup	opens,	in	the		System	Variables		part	you
click		New	,	And	variable	name:		ICU_DATA		to	the	value:		c:\\Windows	

Compile	on	Windows

105

Running	Unitests	(Optional)

You	can	then	run	the	unittests	in	the	cygwin	shell	like	that:

build64/bin/RelWithDebInfo/arangosh.exe	\

-c	etc/relative/arangosh.conf	\

--log.level	warning	\

--server.endpoint	tcp://127.0.0.1:1024	\

--javascript.execute	UnitTests/unittest.js	\

		--	\

		all	\

		--ruby	c:/tools/ruby22/bin/ruby	\

		--rspec	c:/tools/ruby22/bin/rspec	\

		--buildType	RelWithDebInfo	\

		--skipNondeterministic	true	\

		--skipTimeCritical	true

		--skipBoost	true	\

		--skipGeo	true

Documentation	(Optional)
NodeJS	(needs	to	be	run	with	Administrator	privileges	again):

choco	install	-y	nodejs

Gitbook:

npm	install	-g	gitbook-cli

Compile	on	Windows

106

Markdown-pp:

git	clone	https://github.com/triAGENS/markdown-pp.git

cd	markdown-pp

python	setup.py	install

Ditaa:

Download	and	install:	http://ditaa.sourceforge.net/#download	

Authors:	Frank	Celler,	Wilfried	Goesgens	and	Simran	Brucherseifer.

Tags:	#windows

Compile	on	Windows

107

https://github.com/fceller
https://github.com/dothebart
https://github.com/Simran-B

OpenSSL
OpenSSL	1.1	is	on	its	way	to	mainstream.	So	far	(ArangoDB	3.2)	has	only	been	thorougly	tested	with	OpenSSL	1.0	and	1.1	is
unsupported.

Building	against	1.1	will	currently	result	in	a	compile	error:

/arangodb/arangodb/lib/SimpleHttpClient/SslClientConnection.cpp:224:14:	error:	use	of	undeclared	identifier	'SSLv2_method'

						meth	=	SSLv2_method();

													^

/arangodb/arangodb/lib/SimpleHttpClient/SslClientConnection.cpp:239:14:	warning:	'TLSv1_method'	is	deprecated	[-Wdeprecated-dec

larations]

						meth	=	TLSv1_method();

													^

/usr/include/openssl/ssl.h:1612:45:	note:	'TLSv1_method'	has	been	explicitly	marked	deprecated	here

DEPRECATEDIN_1_1_0(__owur	const	SSL_METHOD	*TLSv1_method(void))	/*	TLSv1.0	*/

																																												^

/arangodb/arangodb/lib/SimpleHttpClient/SslClientConnection.cpp:243:14:	warning:	'TLSv1_2_method'	is	deprecated	[-Wdeprecated-d

eclarations]

						meth	=	TLSv1_2_method();

You	should	install	openssl	1.0	(should	be	possible	to	install	it	alongside	1.1).

After	that	help	cmake	to	find	the	1.0	variant.

Example	on	Arch	Linux:

cmake	-DOPENSSL_INCLUDE_DIR=/usr/include/openssl-1.0/	-DOPENSSL_SSL_LIBRARY=/usr/lib/libssl.so.1.0.0	-DOPENSSL_CRYPTO_LIBRARY=/

usr/lib/libcrypto.so.1.0.0	<SOURCE_PATH>

After	that	ArangoDB	should	compile	fine.

OpenSSL

108

Running	a	custom	build

Problem

You've	already	built	a	custom	version	of	ArangoDB	and	want	to	run	it.	Possibly	in	isolation	from	an	existing	installation	or	you	may
want	to	re-use	the	data.

Solution

First,	you	need	to	build	your	own	version	of	ArangoDB.	If	you	haven't	done	so	already,	have	a	look	at	any	of	the	Compiling	recipes.

This	recipe	assumes	you're	in	the	root	directory	of	the	ArangoDB	distribution	and	compiling	has	successfully	finished.

Running	in	isolation

This	part	shows	how	to	run	your	custom	build	with	an	empty	database	directory

#	create	data	directory

mkdir	/tmp/arangodb

#	run

bin/arangod	\

				--configuration	etc/relative/arangod.conf\

					--database.directory	/tmp/arangodb

Running	with	data

This	part	shows	how	to	run	your	custom	build	with	the	config	and	data	from	a	pre-existing	stable	installation.

BEWARE	ArangoDB's	developers	may	change	the	db	file	format	and	after	running	with	a	changed	file	format,	there	may	be	no	way	back.
Alternatively	you	can	run	your	build	in	isolation	and	dump	and	restore	the	data	from	the	stable	to	your	custom	build.

When	running	like	this,	you	must	run	the	db	as	the	arangod	user	(the	default	installed	by	the	package)	in	order	to	have	write	access	to	the
log,	database	directory	etc.	Running	as	root	will	likely	mess	up	the	file	permissions	-	good	luck	fixing	that!

#	become	root	first

su

#	now	switch	to	arangod	and	run

su	-	arangod

bin/arangod	--configuration	/etc/arangodb/arangod.conf

Author:	Patrick	Huber

Tags:	#build

Running	Custom	Build

109

https://github.com/stackmagic

Jemalloc
This	article	is	only	relevant	if	you	intend	to	compile	arangodb	on	Ubuntu	16.10	or	debian	testing

On	more	modern	linux	systems	(development/floating	at	the	time	of	this	writing)	you	may	get	compile	/	link	errors	with	arangodb
regarding	jemalloc.	This	is	due	to	compilers	switching	their	default	behaviour	regarding	the		PIC		-	Position	Independend	Code.	It	seems
common	that	jemalloc	remains	in	a	stage	where	this	change	isn't	followed	and	causes	arangodb	to	error	out	during	the	linking	phase.

From	now	on	cmake	will	detect	this	and	give	you	this	hint:

the	static	system	jemalloc	isn't	suitable!	Recompile	with	the	current	compiler	or	disable	using	`-DCMAKE_CXX_FLAGS=-no-pie	-DCM

AKE_C_FLAGS=-no-pie`

Now	you've	got	three	choices.

Doing	without	jemalloc

Fixes	the	compilation	issue,	but	you	will	get	problems	with	the	glibcs	heap	fragmentation	behaviour	which	in	the	longer	run	will	lead	to
an	ever	increasing	memory	consumption	of	ArangoDB.

So,	while	this	may	be	suitable	for	development	/	testing	systems,	its	definitely	not	for	production.

Disabling	PIC	altogether
This	will	build	an	arangod	which	doesn't	use	this	compiler	feature.	It	may	be	not	so	nice	for	development	builds.	It	can	be	achieved	by
specifying	these	options	on	cmake:

-DCMAKE_CXX_FLAGS=-no-pie	-DCMAKE_C_FLAGS=-no-pie

Recompile	jemalloc

The	smartest	way	is	to	fix	the	jemalloc	libraries	packages	on	your	system	so	its	reflecting	that	new	behaviour.	On	debian	/	ubuntu
systems	it	can	be	achieved	like	this:

apt-get	install	automake	debhelper	docbook-xsl	xsltproc	dpkg-dev

apt	source	jemalloc

cd	jemalloc*

dpkg-buildpackage

cd	..

dpkg	-i	*jemalloc*deb

Recompiling	jemalloc

110

Cloud,	DCOS	and	Docker

Amazon	Web	Services	(AWS)

Running	on	AWS

Update	on	AWS

Microsoft	Azure
Running	on	Azure

Docker
Docker	ArangoDB

Docker	with	NodeJS	App

GiantSwarm

In	the	GiantSwarm

Mesos	/	DCOS

ArangoDB	in	Mesos

DC/OS:	Full	example

Cloud,	DCOS	and	Docker

111

Running	ArangoDB	on	AWS
ArangoDB	is	available	as	AMI	on	the	AWS	Marketplace.

(If	you've	already	a	running	ArangoDB	image	on	AWS	and	need	an	update,	please	have	a	look	at	Updating	ArangoDB	on	AWS).

Here	is	a	quick	guide	how	to	start:

Go	the	ArangoDB	marketplace,	select	the	latest	version	and	click	on	Continue
Use	the	1-Click	Launch	tab	and	select	the	size	of	the	instance	(EC2	Instance	Type)	you	wish	to	use.
Now	you	can	continue	with	a	click	on	Accept	Terms	&	Launch	with	1-Click.

Note:	If	you	do	not	have	a	key	pair	a	warning	will	appear	after	clicking	and	you	will	be	asked	to	generate	a	key	pair.

You	successfully	launched	an	ArangoDB	instance	on	AWS.

The	ArangoDB	Web-Interface	can	be	reached	using	the	Access	Software	button	or	via	public	instance	IP	and	the	Port	8529	(e.g.:
http://12.13.14.15:8529)	The	default	user	is		root		and	the	password	is	the		Instance	ID		(You	can	find	the	Instance	ID	on	the	instance
list).

Running	on	AWS

112

https://aws.amazon.com
https://aws.amazon.com/marketplace/search/results/ref=dtl_navgno_search_box?page=1&searchTerms=arangodb
http://12.13.14.15:8529

If	you	want	to	learn	more	about	ArangoDB,	start	with	the	[ArangoDB	First	Steps][../../Manual/GettingStarted/index.html]	in	our
Documentation	or	try	one	of	our	Tutorials	or	Cookbook	recipes.

Author:	Ingo	Friepoertner

Tags	:	#aws,	#amazon,	#howto

Running	on	AWS

113

https://www.arangodb.com/tutorials/
https://github.com/ifcologne

Updating	an	ArangoDB	Image	on	AWS
If	you	run	an	ArangoDB	on	AWS	and	used	the	provided	AMI	in	the	AWS	Marketplace,	you	at	some	point	want	to	update	to	the	latest
release.	The	process	to	submit	and	publish	a	new	ArangoDB	image	to	the	marketplace	takes	some	time	and	you	might	not	find	the	latest
release	in	the	marketplace	store	yet.

However,	updating	to	the	latest	version	is	not	that	hard.

First,	log	in	to	the	virtual	machine	with	the	user	ubuntu	and	the	public	DNS	name	of	the	instance.

ssh	ubuntu@ec2-XX-XX-XXX-XX.us-west-2.compute.amazonaws.com

To	start	an	update	to	a	known	version	of	ArangoDB	you	can	use:

sudo	apt-get	update

sudo	apt-get	install	arangodb=2.5.7

To	upgrade	an	ArangoDB	instance	to	a	new	major	version	(from	2.5.x	to	2.6.x),	use:

sudo	apt-get	install	arangodb

You	might	get	a	warning	that	the	configuration	file	has	changed:

Configuration	file	'/etc/arangodb/arangod.conf'

==>	Modified	(by	you	or	by	a	script)	since	installation.

==>	Package	distributor	has	shipped	an	updated	version.

		What	would	you	like	to	do	about	it	?		Your	options	are:

			Y	or	I		:	install	the	package	maintainer's	version

			N	or	O		:	keep	your	currently-installed	version

					D					:	show	the	differences	between	the	versions

					Z					:	start	a	shell	to	examine	the	situation

The	default	action	is	to	keep	your	current	version.

***	arangod.conf	(Y/I/N/O/D/Z)	[default=N]	?

You	should	stay	with	the	current	configuration	(type	"N"),	as	there	are	some	changes	made	in	the	configuration	for	AWS.	If	you	type	"Y"
you	will	lose	access	from	your	applications	to	the	database	so	make	sure	that	database	directory	and	server	endpoint	are	valid.

	--server.database-directory

				needs	to	be		`/vol/...`	for	AWS

	--server.endpoint

				needs	to	be	`tcp://0.0.0.0:8529`	for	AWS

If	you	update	to	a	new	major	version,	you	will	be	asked	to		upgrade		so	that	a	database	migration	can	be	started:

sudo	service	arangodb	upgrade

sudo	service	arangodb	start

Now	ArangoDB	should	be	back	to	normal.

For	now	we	have	to	stick	with	this	manual	process	but	e	might	create	a	simpler	update	process	in	the	future.	Please	provide	feedback
how	you	use	our	Amazon	AMI	and	how	we	can	improve	your	user	experience.

Author:	Ingo	Friepoertner

Tags:	#aws	#upgrade

Update	on	AWS

114

https://aws.amazon.com/marketplace/search/results/ref=dtl_navgno_search_box?page=1&searchTerms=arangodb

ArangoDB	in	Microsoft	Azure
I	want	to	use	ArangoDB	in	Microsoft	Azure

How	to

The	short	answer	is:	go	to

https://vmdepot.msopentech.com/

type	in	"ArangoDB",	select	the	version	you	require	and	press	"Create	Virtual	Machine".

Follow	the	instructions	given	there	and	within	minutes	you	have	a	running	ArangoDB	instance	in	Microsoft	Azure.	You	will	receive	an
email	as	soon	as	your	machine	is	ready.

Assume	your	machine	is	called		myarangodb	,	than	you	can	access	ArangoDB	pointing	your	browser	to

http://myarangodb.cloudapp.net:8529

Please	note	that	for	security	reasons	the	default	instance	is	password	protected.

However,	the	password	for	"root"	is	empty.	So,	please	log	in	and	change	the	password	as	soon	as	possible.

Authors:	Frank	Celler

Tags:	#azure,	#howto

Running	on	Azure

115

https://github.com/fceller

How	to	run	ArangoDB	in	a	Docker	container

Problem

How	do	you	make	ArangoDB	run	in	a	Docker	container?

Solution

ArangoDB	is	now	available	as	an	official	repository	in	the	Docker	Hub	(@see	documentation	there).

Author:	Frank	Celler

Tags:	#docker	#howto

Docker	ArangoDB

116

https://hub.docker.com/_/arangodb/
https://github.com/fceller

ArangoDB,	NodeJS	and	Docker

Problem

I'm	looking	for	a	head	start	in	using	the	ArangoDB	docker	image.

Solution

We	will	use	the	guesser	game	for	ArangoDB	from

https://github.com/arangodb/guesser

This	is	a	simple	game	guessing	animals	or	things.	It	learns	while	playing	and	stores	the	learned	information	in	an	ArangoDB	instance.	The
game	is	written	using	the	express	framework.

Note:	You	need	to	switch	to	the	docker	branch.

The	game	has	the	two	components

front-end	with	node.js	and	express
back-end	with	ArangoDB	and	Foxx

Therefore	the	guesser	game	needs	two	docker	containers,	one	container	for	the	node.js	server	to	run	the	front-end	code	and	one	container
for	ArangoDB	for	the	storage	back-end.

Node	Server

The	game	is	itself	can	be	install	via	NPM	or	from	github.	There	is	an	image	available	from	dockerhub	called		arangodb/example-guesser	
which	is	based	on	the	Dockerfile	from	github.

You	can	either	build	the	docker	container	locally	or	simply	use	the	available	one	from	docker	hub.

unix>	docker	run	-p	8000:8000	-e	nolink=1	arangodb/example-guesser

Starting	without	a	database	link

Using	DB-Server	http://localhost:8529

Guesser	app	server	listening	at	http://0.0.0.0:8000

This	will	start-up	node	and	the	guesser	game	is	available	on	port	8000.	Now	point	your	browser	to	port	8000.	You	should	see	the	start-
up	screen.	However,	without	a	storage	backend	it	will	be	pretty	useless.	Therefore,	stop	the	container	and	proceed	with	the	next	step.

If	you	want	to	build	the	container	locally,	check	out	the	guesser	game	from

https://github.com/arangodb/example-guesser

Switch	into	the		docker/node		subdirectory	and	execute		docker	build	.	.

ArangoDB

ArangoDB	is	already	available	on	docker,	so	we	start	an	instance

unix>	docker	run	--name	arangodb-guesser	arangodb/arangodb

show	all	options:

		docker	run	-e	help=1	arangodb

starting	ArangoDB	in	stand-alone	mode

Docker	with	NodeJS	App

117

That's	it.	Note	that	in	an	productive	environment	you	would	need	to	attach	a	storage	container	to	it.	We	ignore	this	here	for	the	sake	of
simplicity.

Guesser	Game

Some	Testing

Use	the	guesser	game	image	to	start	the	ArangoDB	shell	and	link	the	ArangoDB	instance	to	it.

unix>	docker	run	--link	arangodb-guesser:db-link	-it	arangodb/example-guesser	arangosh	--server.endpoint	@DB_LINK_PORT_8529_TCP

@

The	parameter		--link	arangodb-guesser:db-link		links	the	running	ArangoDB	into	the	application	container	and	sets	an	environment
variable		DB_LINK_PORT_8529_TCP		which	points	to	the	exposed	port	of	the	ArangoDB	container:

DB_LINK_PORT_8529_TCP=tcp://172.17.0.17:8529

Your	IP	may	vary.	The	command		arangosh	...		at	the	end	of	docker	command	executes	the	ArangoDB	shell	instead	of	the	default	node
command.

Welcome	to	arangosh	2.3.1	[linux].	Copyright	(c)	ArangoDB	GmbH

Using	Google	V8	3.16.14	JavaScript	engine,	READLINE	6.3,	ICU	52.1

Pretty	printing	values.

Connected	to	ArangoDB	'tcp://172.17.0.17:8529'	version:	2.3.1,	database:	'_system',	username:	'root'

Type	'tutorial'	for	a	tutorial	or	'help'	to	see	common	examples

arangosh	[_system]>

The	important	line	is

Connected	to	ArangoDB	'tcp://172.17.0.17:8529'	version:	2.3.1,	database:	'_system',	username:	'root'

It	tells	you	that	the	application	container	was	able	to	connect	to	the	database	back-end.	Press		Control-D		to	exit.

Start	Up	The	Game

Ready	to	play?	Start	the	front-end	container	with	the	database	link	and	initialize	the	database.

unix>	docker	run	--link	arangodb-guesser:db-link	-p	8000:8000	-e	init=1	arangodb/example-guesser

Use	your	browser	to	play	the	game	at	the	address	http://127.0.0.1:8000/.	The

-e	init=1

is	only	need	the	first	time	you	start-up	the	front-end	and	only	once.	The	next	time	you	run	the	front-end	or	if	you	start	a	second	front-
end	server	use

unix>	docker	run	--link	arangodb-guesser:db-link	-p	8000:8000	arangodb/example-guesser

Author:	Frank	Celler

Tags:	#docker

Docker	with	NodeJS	App

118

http://127.0.0.1:8000/
https://github.com/fceller

ArangoDB	in	the	Giant	Swarm	using	Docker	containers

Problem

I	want	to	use	ArangoDB	in	the	Giant	Swarm	with	Docker	containers.

Solution

Giant	Swarm	allows	you	to	describe	and	deploy	your	application	by	providing	a	simple	JSON	description.	The	current	weather	app	is	a
good	example	on	how	to	install	an	application	which	uses	two	components,	namely		node		and		redis	.

My	colleague	Max	has	written	a	guesser	game	with	various	front-ends	and	ArangoDB	as	backend.	In	order	to	get	the	feeling	of	being	part
of	the	Giant	Swarm,	I	have	started	to	set	up	this	game	in	the	swarm.

First	Steps

The	guesser	game	consists	of	a	front-end	written	as	express	application	in	node	and	a	storage	back-end	using	ArangoDB	and	a	small	API
developed	with	Foxx.

The	front-end	application	is	available	as	image

arangodb/example-guesser

and	the	ArangoDB	back-end	with	the	Foxx	API	as

arangodb/example-guesser-db

The	dockerfiles	used	to	create	the	images	are	available	from	github

https://github.com/arangodb/guesser

Set	up	the	Swarm

Set	up	your	swarm	environment	as	described	in	the	documentation.	Create	a	configuration	file	for	the	swarm	called		arangodb.json		and
fire	up	the	application

{

		"app_name":	"guesser",

		"services":	[

				{

						"service_name":	"guesser-game",

						"components":	[

								{

										"component_name":	"guesser-front-end",

										"image":	"arangodb/example-guesser",

										"ports":	[8000],

										"dependencies":	[

												{	"name":	"guesser-back-end",	"port":	8529	}

],

										"domains":	{	"guesser.gigantic.io":	8000	}

								},

								{

										"component_name":	"guesser-back-end",

										"image":	"arangodb/example-guesser-db",

										"ports":	[8529]

								}

]

				}

]

}

In	the	GiantSwarm

119

https://docs.giantswarm.io/guides/your-first-service/nodejs/
https://giantswarm.io

This	defines	an	application		guesser		with	a	single	service		guesser-game	.	This	service	has	two	components		guesser-front-end		and
	guesser-back-end	.	The	docker	images	are	downloaded	from	the	standard	docker	repository.

The	line

"domains":	{	"guesser.gigantic.io":	8000	}

exposes	the	internal	port	8000	to	the	external	port	on	port	80	for	the	host		guesser.gigantic.io	.

In	order	to	tell	Giant	Swarm	about	your	application,	execute

unix>	swarm	create	arangodb.json	

Creating	'arangodb'	in	the	'fceller/dev'	environment...

App	created	successfully!				

This	will	create	an	application	called		guesser	.

unix>	swarm	status	guesser

App	guesser	is	down

service							component										instanceid																												status

guesser-game		guesser-back-end			5347e718-3d27-4356-b530-b24fc5d1e3f5		down

guesser-game		guesser-front-end		7cf25b43-13c4-4dd3-9a2b-a1e32c43ae0d		down

We	see	the	two	components	of	our	application.	Both	are	currently	powered	down.

Startup	the	Guesser	Game

Starting	your	engines	is	now	one	simple	command

unix>	swarm	start	guesser

Starting	application	guesser...

Application	guesser	is	up

Now	the	application	is	up

unix>	swarm	status	guesser

App	guesser	is	up

service							component										instanceid																												status

guesser-game		guesser-back-end			5347e718-3d27-4356-b530-b24fc5d1e3f5		up

guesser-game		guesser-front-end		7cf25b43-13c4-4dd3-9a2b-a1e32c43ae0d		up

Point	your	browser	to

http://guesser.gigantic.io

and	guess	an	animal.

If	you	want	to	check	the	log	files	of	an	instance	you	can	ask	the	swarm	giving	it	the	instance	id.	For	example,	the	back-end

unix>	swarm	logs	5347e718-3d27-4356-b530-b24fc5d1e3f5

2014-12-17	12:34:57.984554	+0000	UTC	-	systemd	-	Stopping	User	guesser-back-end...

2014-12-17	12:36:28.074673	+0000	UTC	-	systemd	-	5cfe11d6-343e-49bb-8029-06333844401f.service	stop-sigterm	timed	out.	Killing.

2014-12-17	12:36:28.077821	+0000	UTC	-	systemd	-	5cfe11d6-343e-49bb-8029-06333844401f.service:	main	process	exited,	code=killed

,	status=9/KILL

2014-12-17	12:36:38.213245	+0000	UTC	-	systemd	-	Stopped	User	guesser-back-end.

2014-12-17	12:36:38.213543	+0000	UTC	-	systemd	-	Unit	5cfe11d6-343e-49bb-8029-06333844401f.service	entered	failed	state.

2014-12-17	12:37:55.074158	+0000	UTC	-	systemd	-	Starting	User	guesser-back-end...

2014-12-17	12:37:55.208354	+0000	UTC	-	docker		-	Pulling	repository	arangodb/example-guesser-db

2014-12-17	12:37:56.995122	+0000	UTC	-	docker		-	Status:	Image	is	up	to	date	for	arangodb/example-guesser-db:latest

2014-12-17	12:37:57.000922	+0000	UTC	-	systemd	-	Started	User	guesser-back-end.

2014-12-17	12:37:57.707575	+0000	UTC	-	docker		-	-->	starting	ArangoDB

In	the	GiantSwarm

120

2014-12-17	12:37:57.708182	+0000	UTC	-	docker		-	-->	waiting	for	ArangoDB	to	become	ready

2014-12-17	12:38:28.157338	+0000	UTC	-	docker		-	-->	installing	guesser	game

2014-12-17	12:38:28.59025	+0000	UTC		-	docker		-	-->	ready	for	business

and	the	front-end

unix>	swarm	logs	7cf25b43-13c4-4dd3-9a2b-a1e32c43ae0d

2014-12-17	12:35:10.139684	+0000	UTC	-	systemd	-	Stopping	User	guesser-front-end...

2014-12-17	12:36:40.32462	+0000	UTC		-	systemd	-	aa7756a4-7a87-4633-bea3-e416d035188b.service	stop-sigterm	timed	out.	Killing.

2014-12-17	12:36:40.327754	+0000	UTC	-	systemd	-	aa7756a4-7a87-4633-bea3-e416d035188b.service:	main	process	exited,	code=killed

,	status=9/KILL

2014-12-17	12:36:50.567911	+0000	UTC	-	systemd	-	Stopped	User	guesser-front-end.

2014-12-17	12:36:50.568204	+0000	UTC	-	systemd	-	Unit	aa7756a4-7a87-4633-bea3-e416d035188b.service	entered	failed	state.

2014-12-17	12:38:04.796129	+0000	UTC	-	systemd	-	Starting	User	guesser-front-end...

2014-12-17	12:38:04.921273	+0000	UTC	-	docker		-	Pulling	repository	arangodb/example-guesser

2014-12-17	12:38:06.459366	+0000	UTC	-	docker		-	Status:	Image	is	up	to	date	for	arangodb/example-guesser:latest

2014-12-17	12:38:06.469988	+0000	UTC	-	systemd	-	Started	User	guesser-front-end.

2014-12-17	12:38:07.391149	+0000	UTC	-	docker		-	Using	DB-Server	http://172.17.0.183:8529

2014-12-17	12:38:07.613982	+0000	UTC	-	docker		-	Guesser	app	server	listening	at	http://0.0.0.0:8000

Scaling	Up

Your	game	becomes	a	success.	Well,	scaling	up	the	front-end	is	trivial.

Simply	change	your	configuration	file	and	recreate	the	application:

{

		"app_name":	"guesser",

		"services":	[

				{

						"service_name":	"guesser-game",

						"components":	[

								{

										"component_name":	"guesser-front-end",

										"image":	"arangodb/example-guesser",

										"ports":	[8000],

										"dependencies":	[

												{	"name":	"guesser-back-end",	"port":	8529	}

],

										"domains":	{	"guesser.gigantic.io":	8000	},

										"scaling_policy":	{	"min":	2,	"max":	2	}

								},

								{

										"component_name":	"guesser-back-end",

										"image":	"arangodb/example-guesser-db",

										"ports":	[8529]

								}

]

				}

]

}

The	important	line	is

"scaling_policy":	{	"min":	2,	"max":	2	}

It	tells	the	swarm	to	use	two	front-end	containers.	In	later	version	of	the		swarm		you	will	be	able	to	change	the	number	of	containers	in	a
running	application	with	the	command:

>	swarm	scaleup	guesser/guesser-game/guesser-front-end	--count=1

Scaling	up	component	guesser/guesser-game/guesser-front-end	by	1...

We	at	ArangoDB	are	hard	at	work	to	make	scaling	up	the	back-end	database	equally	easy.	Stay	tuned	for	new	releases	in	early	2015...

Authors:	Frank	Celler

Tags:	#docker,	#giantswarm,	#howto

In	the	GiantSwarm

121

https://github.com/fceller

In	the	GiantSwarm

122

ArangoDB	on	Apache	Mesos	using	Marathon	and	Docker

Problem

I	want	to	use	ArangoDB	in	Apache	Mesos	with	Docker	containers.

Solution

Mesos	in	its	newest	version	makes	it	very	easy	to	use	ArangoDB,	because	Mesos	has	added	support	for	docker	containers.	Together
with	Marathon	to	start	the	front-end	and	back-end	parts	of	an	application,	installation	is	straight	forward.

My	colleague	Max	has	written	a	guesser	game	with	various	front-ends	and	ArangoDB	as	backend.	In	order	to	get	the	feeling	of	being	part
of	the	Mesosphere,	I	have	started	to	set	up	this	game	in	an	DigitalOcean	environment.

First	Steps

The	guesser	game	consists	of	a	front-end	written	as	express	application	in	node	and	a	storage	back-end	using	ArangoDB	and	a	small	API
developed	with	the	Foxx	microservices	framework.

The	front-end	application	is	available	as	image

arangodb/example-guesser

and	the	ArangoDB	back-end	with	the	Foxx	API	as

arangodb/example-guesser-db

The	dockerfiles	used	to	create	the	images	are	available	from	github

https://github.com/arangodb/guesser

Set	Up	the	Environment

Follow	the	instructions	on	Mesosphere	to	setup	an	environment	with	docker	support.	You	should	end	up	with	ssh	access	to	the	Mesos
master.

Set	Up	the	Application

For	this	tutorial	we	bind	the	database	to	a	fixed	port	on	the	Mesos	environment.	Please	note,	that	the	mesosphere	uses	HAproxy	to	map
the	global	port	to	the	real	host	and	port.	The	servers	created	by	Mesosphere	will	have	a	HAproxy	defined	on	all	masters	and	slaves.

That	means,	if	we	chose		32333		as	service	port	for	the	database,	it	will	be	reachable	on	this	port	on	all	masters	and	slaves.	The	app
definition	for	the	database	looks	like

{

		"id":	"/guesser/database",

		"apps":	[

					{

							"id":	"/guesser/database/arangodb",	

							"container":	{

									"docker":	{

											"image":	"arangodb/example-guesser-db",

											"network":	"BRIDGE",

											"portMappings":	[

															{	"containerPort":	8529,	"hostPort":	0,	"servicePort":	32222,	"protocol":	"tcp"	}

]

									}

							},

ArangoDB	in	Mesos

123

https://docs.mesosphere.com/tutorials/launch-docker-container-on-mesosphere/
https://mesosphere.com
https://mesosphere.github.io/marathon/docs/service-discovery-load-balancing.html
http://mesosphere.github.io/marathon/docs/native-docker.html

							"cpus":	0.2,

							"mem":	512.0,

							"instances":	1

					}

]

}

This	will	start	the	docker	image	for	the	back-end	and	binds	the	port	to	32222.

Inside	the	docker	container	an	environment	variable		HOST		is	set	be	the	mesos	slave	to	point	to	the	slave.	The	front-end	can	therefore
access	port		32222		on	this	host	to	contact	the	HAproxy,	gaining	access	to	the	database.

The	app	definition	for	the	front-end	looks	like

{

		"id":	"/guesser/frontend",

		"apps":	[

					{

							"id":	"/guesser/frontend/node",

							"container":	{

									"docker":	{

											"image":	"arangodb/example-guesser",

											"network":	"BRIDGE",

											"portMappings":	[

															{	"containerPort":	8000,	"hostPort":	0,	"servicePort":	32221,	"protocol":	"tcp"	}

]

									}	

							},

							"cpus":	0.2,

							"mem":	256.0,

							"instances":	1

					}	

]

}

Marathon	allows	to	define	a	group	of	applications	with	dependencies	between	the	components.	The	front-end	depends	on	the	back-end,
therefore	the	complete	group	definitions	looks	like

{

		"id":	"/guesser",

		"groups":	[

		{

				"id":	"/guesser/database",

				"apps":	[

					{

							"id":	"/guesser/database/arangodb",	

							"container":	{

							"docker":	{

									"image":	"arangodb/example-guesser-db",

									"network":	"BRIDGE",

									"portMappings":	[

											{	"containerPort":	8529,	"hostPort":	0,	"servicePort":	32222,	"protocol":	"tcp"	}

]

							}

							},

							"cpus":	0.2,

							"mem":	512.0,

							"instances":	1

					}

]

		},

		{

				"id":	"/guesser/frontend",

				"dependencies":	["/guesser/database"],

				"apps":	[

					{

							"id":	"/guesser/frontend/node",

							"container":	{

							"docker":	{

									"image":	"arangodb/example-guesser",

									"network":	"BRIDGE",

									"portMappings":	[

ArangoDB	in	Mesos

124

											{	"containerPort":	8000,	"hostPort":	0,	"servicePort":	32221,	"protocol":	"tcp"	}

]

							}	

							},

							"cpus":	0.2,

							"mem":	256.0,

							"instances":	1

					}	

]

		}

]

}

This	starts	one	instance	of	the	back-end	called		/guesser/database/arangodb		and	one	instance	of	the	front-end	called
	/guesser/frontend/node	.	The	front-end	depends	on	the	back-end.

In	order	to	fire	up	the	guesser	game	save	the	above	definition	in	a	file		guesser.json		and	execute

curl	-X	PUT	-H	"Accept:	application/json"	-H	"Content-Type:	application/json"		127.0.0.1:8080/v2/groups	-d	"`cat	guesser.json`"

on	the	mesos	master.

If	you	now	switch	to	the	Marathon	console	on	port		8080	,	you	should	see	apps,	namely		/guesser/database/arangodb		and
	/guesser/frontend/node	.

If	you	access	port		32222	,	you	should	see	the	ArangoDB	console.

And	finally,	on	port		32211	,	you	can	play	the	guesser	game.

ArangoDB	in	Mesos

125

Scaling	Up

Your	game	becomes	a	success.	Well,	scaling	up	the	front-end	is	trivial.	Simply,	go	to	the	marathon	page	and	scale	up
	/guesser/frontend/node	.

Authors:	Frank	Celler

Tags:	#docker,	#mesos,	#mesosphere,	#howto

ArangoDB	in	Mesos

126

https://github.com/fceller

Deploying	a	highly	available	application	using	ArangoDB	and
Foxx	on	DC/OS

Problem

How	can	I	deploy	an	application	using	ArangoDB	on	DC/OS	and	make	everything	highly	available?

Solution

To	achieve	this	goal	several	individual	components	have	to	be	combined.

Install	DC/OS

Go	to	https://dcos.io/install/	and	follow	the	instructions	to	install	DC/OS

Also	make	sure	to	install	the	dcos	CLI.

Install	ArangoDB

Once	your	cluster	is	DC/OS	cluster	is	ready	install	the	package		arangodb3		from	the	universe	tab	(default	settings	are	fine)

Detailed	instructions	may	be	found	in	the	first	chapters	of	our	DC/OS	tutorial	here:

https://dcos.io/docs/1.7/usage/tutorials/arangodb/

To	understand	how	ArangoDB	ensures	that	it	is	highly	available	make	sure	to	read	the	cluster	documentation	here:

ArangoDB	Architecture	Documentation

Deploy	a	load	balancer	for	the	coordinators

Once	ArangoDB	is	installed	and	healthy	you	can	access	the	cluster	via	one	of	the	coordinators.

To	do	so	from	the	outside	DC/OS	provides	a	nice	and	secure	gateway	through	their	admin	interface.

However	this	is	intended	to	be	used	from	the	outside	only.	Applications	using	ArangoDB	as	its	data	store	will	want	to	connect	to	the
coordinators	from	the	inside.	You	could	check	the	task	list	within	DC/OS	to	find	out	the	endpoints	where	the	coordinators	are	listening.
However	these	are	not	to	be	trusted:	They	can	fail	at	any	time,	the	number	of	coordinators	might	change	due	to	up-	and	downscaling	or
someone	might	even	kill	a	full	DC/OS	Agent	and	tasks	may	simply	fail	and	reappear	on	a	different	endpoint.

In	short:	Endpoints	are		temporary	.

To	mitigate	this	problem	we	have	built	a	special	load	balancer	for	these	coordinators.

To	install	it:

$	git	clone	https://github.com/arangodb/arangodb-mesos-haproxy

$	cd	arangodb-mesos-haproxy

$	dcos	marathon	app	add	marathon.json

Afterwards	you	can	use	the	following	endpoint	to	access	the	coordinators	from	within	the	cluster:

tcp://arangodb-proxy.marathon.mesos:8529

To	make	it	highly	available	you	can	simply	launch	a	few	more	instances	using	the	marathon	web	interface.	Details	on	how	to	do	this	and
how	to	deploy	an	application	using	the	UI	can	be	found	here:	https://dcos.io/docs/1.7/usage/tutorials/marathon/marathon101/

Our	test	application

DC/OS:	Full	example

127

https://dcos.io/install/
https://dcos.io/docs/1.7/usage/tutorials/arangodb/
https://dcos.io/docs/1.7/usage/tutorials/marathon/marathon101/

Now	that	we	have	setup	ArangoDB	on	DC/OS	it	is	time	to	deploy	our	application.	In	this	example	we	will	use	our	guesser	application
which	you	can	find	here:

https://github.com/arangodb/guesser

This	application	has	some	application	code	and	a	Foxx	microservice.

Deploying	the	Foxx	service

Open	the	ArangoDB	interface	(via	the		Services		tab	in	the	DC/OS	interface)	and	go	to		Services	.

Enter		/guesser		as	mount	directory	Choose		github		on	the	tab	and	enter	the	following	repository:

ArangoDB/guesser

Choose		master		as	version.

Press		Install	

Deploy	the	application

Finally	it	is	time	to	deploy	the	application	code.	We	have	packaged	everything	into	a	docker	container.	The	only	thing	that	is	missing	is
some	connection	info	for	the	database.	This	can	be	provided	via	environment	variables	through	marathon.

Open	the	marathon	webinterface	in	your	DC/OS	cluster	(Services		and	then		marathon).

Then	click		Create	application	

On	the	top	right	you	can	change	to	the	JSON	view.	Paste	the	following	config:

{

		"id":	"/guesser",

		"cmd":	null,

		"cpus":	1,

		"mem":	128,

		"disk":	0,

		"instances":	3,

		"container":	{

				"type":	"DOCKER",

				"volumes":	[],

				"docker":	{

						"image":	"arangodb/example-guesser",

						"network":	"BRIDGE",

						"portMappings":	[

								{

										"containerPort":	8000,

										"hostPort":	0,

										"servicePort":	10004,

										"protocol":	"tcp"

								}

],

						"privileged":	false,

						"parameters":	[],

						"forcePullImage":	true

				}

		},

		"labels":{

				"HAPROXY_GROUP":"external"

		},

		"env":	{

				"ARANGODB_SERVER":	"http://arangodb-proxy.marathon.mesos:8529",

				"ARANGODB_ENDPOINT":	"tcp://arangodb-proxy.marathon.mesos:8529"

		}

}

As	you	can	see	we	are	providing	the		ARANGODB_ENDPOINT		as	an	environment	variable.	The	docker	container	will	take	that	and	use	it	when
connecting.	This	configuration	injection	via	environment	variables	is	considered	a	docker	best	practice	and	this	is	how	you	should
probably	create	your	applications	as	well.

DC/OS:	Full	example

128

https://github.com/arangodb/guesser

Now	we	have	our	guesser	app	started	within	mesos.

It	is	highly	available	right	away	as	we	launched	3	instances.	To	scale	it	up	or	down	simply	use	the	scale	buttons	in	the	marathon	UI.

Make	it	publically	available

For	this	to	work	we	need	another	tool,	namely		marathon-lb	

Install	it:

dcos	package	install	marathon-lb

After	installation	it	will	scan	all	marathon	applications	for	a	special	set	of	labels	and	make	these	applications	available	to	the	public.

To	make	the	guesser	application	available	to	the	public	you	first	have	to	determine	a	hostname	that	points	to	the	external	loadbalancer	in
your	environment.	When	installing	using	the	cloudformation	template	on	AWS	this	is	the	hostname	of	the	so	called		public	slave	.	You
can	find	it	in	the	output	tab	of	the	cloudformation	template.

In	my	case	this	was:

	mop-publicslaveloa-3phq11mb7oez-1979417947.eu-west-1.elb.amazonaws.com	

In	case	there	are	uppercased	letters	please	take	extra	care	to	lowercase	them	as	the	marathon-lb	will	fail	otherwise.

Edit	the	settings	of	the	guesser	app	in	the	marathon	UI	and	add	this	hostname	as	the	label	HAPROXY_0_VHOST	either	using	the	UI	or
using	the	JSON	mode:

[...]

		"labels":	{

				"HAPROXY_GROUP":	"external",

				"HAPROXY_0_VHOST":	"mop-publicslaveloa-3phq11mb7oez-1979417947.eu-west-1.elb.amazonaws.com"

		},

[...]

To	scale	it	up	and	thus	making	it	highly	available	increase	the		instances		count	within	marathon.

For	more	detailed	information	and	more	configuration	options	including	SSL	etc	be	sure	to	check	the	documentation:

https://docs.mesosphere.com/1.7/usage/service-discovery/marathon-lb/usage/

Accessing	the	guesser	game

After	marathon-lb	has	reloaded	its	configuration	(which	should	happen	almost	immediately)	you	should	be	able	to	access	the	guesser
game	by	pointing	a	web	browser	to	your	hostname.

Have	fun!

Conclusion

There	are	quite	a	few	components	involved	in	this	process	but	once	you	are	finished	you	will	have	a	highly	resilient	system	which	surely
was	worth	the	effort.	None	of	the	components	involved	is	a	single	point	of	failure.

Author:	Andreas	Streichardt

Tags:	#docker	#howto	#dcos	#cluster	#ha

DC/OS:	Full	example

129

https://docs.mesosphere.com/1.7/usage/service-discovery/marathon-lb/usage/
https://github.com/m0ppers

Running	ArangoDB	on	DC/OS	with	Mesos	Containers
Since	DC/OS	1.8	a	new	way	of	running	containers	in	Mesos	clouds	has	become	available.	It	re-uses	the	docker	on-disk	format	and
distribution	infrastructure,	but	pairs	it	with	management	features	that	make	it	a	better	fit	for	DC/OS	environments.

With	ArangoDB	3.2.6	we	introduce	the	possibility	to	instanciate	an	ArangoDB	Clusters	using	the	Mesos	containerizer.	You	can	deploy
clusters	with	it	by	unchecking	the		USEDOCKER		checkmark:

Once	the	ArangoDB	framework	task	is	up	and	running	you	can	revalidate	its	running	using	the	Mesos	container	engine	by	clicking	on	the
task,	and	scroll	all	the	way	down	in	the	Details	tab:	

Using	the	DC/OS	cli	we	can	now	also	list	the	running	tasks:

DC/OS:	Choosing	Container	engine

130

#	dcos	task

NAME																				HOST								USER		STATE		ID																																														MESOS	ID

arangodb3															10.0.1.221		root				R				arangodb3.988230ce-b95f-11e7-b0b3-d27390e16c96		4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S4

arangodb3-Agent1								10.0.3.125		root				R				f1bbb380-6650-47c6-a6dd-31256b9db2a7												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S1

arangodb3-Agent2								10.0.0.234		root				R				410e4df2-5dea-4fae-9724-82e382488acd												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S0

arangodb3-Agent3								10.0.0.231		root				R				bbb73025-00da-4bdf-8a6d-e34129e3abaf												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S5

arangodb3-Coordinator1		10.0.3.125		root				R				9eea93a7-2ada-45c2-8bb6-f3f6153b7fd8												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S1

arangodb3-Coordinator2		10.0.0.234		root				R				c49496c2-ea66-4b75-9b0d-4d35e637ca77												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S0

arangodb3-DBServer1					10.0.0.234		root				R				43bdda44-4edb-457a-bde7-44d5711f076d												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S0

arangodb3-DBServer2					10.0.3.125		root				R				ff3ad9fb-d69a-4d1a-9bd7-43e782835d83												4339f842-fb3b-46a6-9cb1-46febc

a9ad31-S1

And	find	the	running	ArangoDB	cluster.	We	can	now	use	the	DC/OS	cli	to	gain	a	shell	on	the	framework	container	by	picking	its	ID	from
the	5th	column:

dcos	task	exec	-it	arangodb3.988230ce-b95f-11e7-b0b3-d27390e16c96	bash

Which	will	give	us	an	interactive	shell	in	that	container.	Since	the	container	is	stripped	down	to	the	bare	minimum,	we	may	want	to	install
a	bunch	of	tools	for	better	inspecting	the	current	state:

root@ip-10-0-1-221:/mnt/mesos/sandbox#	export	PATH=$PATH:/usr/sbin:/sbin;	\

					apt-get	update;	\

					apt-get	install	curl	net-tools	procps	netcat	jq

We	then	can	i.e.	inspect	the	running	tasks:

root@ip-10-0-1-221:/mnt/mesos/sandbox#	ps	-eaf	

UID		PID	PPID	C	STIME	TTY				TIME	CMD

root			1				0	0	08:36	?		00:00:00	/opt/mesosphere/active/mesos/libexec/mesos/mesos-containerizer	launch

root			6				1	0	08:36	?		00:00:00	mesos-executor	--launcher_dir=/opt/mesosphere/active/mesos/libexec/mesos	--sandbox_directory=

/mnt/mesos/sandbo

root		16				6	0	08:36	?		00:00:01	./arangodb-framework	--webui_port=10452	--framework_port=10453	--webui=http://10.0.1.221:1045

2	framework	--fra

root		38			16	0	08:37	?		00:00:00	haproxy	-f	/tmp/arango-haproxy.conf	-sf	37

root		40				1	0	08:42	?		00:00:00	/opt/mesosphere/active/mesos/libexec/mesos/mesos-containerizer	launch

root		41			40	0	08:42	?		00:00:00	bash

root	460			41	0	08:44	?		00:00:00	ps	-eaf

DC/OS:	Choosing	Container	engine

131

Monitoring	ArangoDB	using	collectd

Problem

The	ArangoDB	web	interface	shows	a	nice	summary	of	the	current	state.	I	want	to	see	similar	numbers	in	my	monitoring	system	so	I	can
analyze	the	system	usage	post	mortem	or	send	alarms	on	failure.

Solution

Collectd	is	an	excellent	tool	to	gather	all	kinds	of	metrics	from	a	system	and	deliver	it	to	a	central	monitoring	like	Graphite	and	/	or
Nagios.

Ingredients

For	this	recipe	you	need	to	install	the	following	tools:

collectd	>=	5.4.2	The	aggregation	Daemon
kcollectd	for	inspecting	the	data

Configuring	collectd

For	aggregating	the	values	we	will	use	the	cURL-JSON	plug-in.	We	will	store	the	values	using	the	Round-Robin-Database	writer(RRD)
which		kcollectd		can	later	on	present	to	you.

We	assume	your		collectd		comes	from	your	distribution	and	reads	its	config	from		/etc/collectd/collectd.conf	.	Since	this	file	tends
to	become	pretty	unreadable	quickly,	we	use	the		include		mechanism:

<Include	"/etc/collectd/collectd.conf.d">

		Filter	"*.conf"

</Include>

This	way	we	can	make	each	metric	group	on	compact	set	config	files.	It	consists	of	three	components:

loading	the	plug-in
adding	metrics	to	the	TypesDB
the	configuration	for	the	plug-in	itself

rrdtool

We	will	use	the	Round-Robin-Database	as	storage	backend	for	now.	It	creates	its	own	database	files	of	fixed	size	for	each	specific	time
range.	Later	you	may	choose	more	advanced	writer-plug-ins,	which	may	do	network	distribution	of	your	metrics	or	integrate	the	above
mentioned	Graphite	or	your	already	established	monitoring,	etc.

For	the	RRD	we	will	go	pretty	much	with	defaults:

#	Load	the	plug-in:

LoadPlugin	rrdtool

<Plugin	rrdtool>

			DataDir	"/var/lib/collectd/rrd"

#		CacheTimeout	120

#		CacheFlush	900

#		WritesPerSecond	30

#		CreateFilesAsync	false

#		RandomTimeout	0

#

#	The	following	settings	are	rather	advanced

#	and	should	usually	not	be	touched:

#			StepSize	10

#			HeartBeat	20

Monitoring

132

http://collectd.org
http://graphite.wikidot.com/screen-shots
http://www.nagios.org/
https://collectd.org/
https://www.forwiss.uni-passau.de/~berberic/Linux/kcollectd.html
https://collectd.org/wiki/index.php/Plugin:cURL-JSON
https://collectd.org/wiki/index.php/RRD
http://oss.oetiker.ch/rrdtool/

#			RRARows	1200

#			RRATimespan	158112000

#			XFF	0.1

</Plugin>

cURL	JSON

	Collectd		comes	with	a	wide	range	of	metric	aggregation	plug-ins.	Many	tools	today	use	JSON	as	data	formating	grammar;	so	does
ArangoDB.	Therefore	a	plug-in	offering	to	fetch	JSON	documents	via	HTTP	is	the	perfect	match	as	an	integration	interface:

#	Load	the	plug-in:

LoadPlugin	curl_json

#	we	need	to	use	our	own	types	to	generate	individual	names	for	our	gauges:

TypesDB	"/etc/collectd/collectd.conf.d/arangodb_types.db"

<Plugin	curl_json>

		#	Adjust	the	URL	so	collectd	can	reach	your	arangod:

		<URL	"http://localhost:8529/_db/_system/_admin/aardvark/statistics/short">

			#	Set	your	authentication	to	Aardvark	here:

			#	User	"foo"

			#	Password	"bar"

				<Key	"totalTimeDistributionPercent/values/0">

							Type	"totalTimeDistributionPercent_values"

					</Key>

					<Key	"totalTimeDistributionPercent/cuts/0">

							Type	"totalTimeDistributionPercent_cuts"

					</Key>

					<Key	"requestTimeDistributionPercent/values/0">

							Type	"requestTimeDistributionPercent_values"

					</Key>

					<Key	"requestTimeDistributionPercent/cuts/0">

							Type	"requestTimeDistributionPercent_cuts"

					</Key>

					<Key	"queueTimeDistributionPercent/values/0">

							Type	"queueTimeDistributionPercent_values"

					</Key>

					<Key	"queueTimeDistributionPercent/cuts/0">

							Type	"queueTimeDistributionPercent_cuts"

					</Key>

					<Key	"bytesSentDistributionPercent/values/0">

							Type	"bytesSentDistributionPercent_values"

					</Key>

					<Key	"bytesSentDistributionPercent/cuts/0">

							Type	"bytesSentDistributionPercent_cuts"

					</Key>

					<Key	"bytesReceivedDistributionPercent/values/0">

							Type	"bytesReceivedDistributionPercent_values"

					</Key>

					<Key	"bytesReceivedDistributionPercent/cuts/0">

							Type	"bytesReceivedDistributionPercent_cuts"

					</Key>

					<Key	"numberOfThreadsCurrent">

							Type	"gauge"

					</Key>

					<Key	"numberOfThreadsPercentChange">

							Type	"gauge"

					</Key>

					<Key	"virtualSizeCurrent">

							Type	"gauge"

					</Key>

					<Key	"virtualSizePercentChange">

							Type	"gauge"

					</Key>

					<Key	"residentSizeCurrent">

							Type	"gauge"

					</Key>

					<Key	"residentSizePercent">

							Type	"gauge"

					</Key>

					<Key	"asyncPerSecondCurrent">

							Type	"gauge"

					</Key>

					<Key	"asyncPerSecondPercentChange">

							Type	"gauge"

Monitoring

133

http://json.org

					</Key>

					<Key	"syncPerSecondCurrent">

							Type	"gauge"

					</Key>

					<Key	"syncPerSecondPercentChange">

							Type	"gauge"

					</Key>

					<Key	"clientConnectionsCurrent">

							Type	"gauge"

					</Key>

					<Key	"clientConnectionsPercentChange">

							Type	"gauge"

					</Key>

					<Key	"physicalMemory">

							Type	"gauge"

					</Key>

					<Key	"nextStart">

							Type	"gauge"

					</Key>

					<Key	"waitFor">

							Type	"gauge"

					</Key>

					<Key	"numberOfThreads15M">

							Type	"gauge"

					</Key>

					<Key	"numberOfThreads15MPercentChange">

							Type	"gauge"

					</Key>

					<Key	"virtualSize15M">

							Type	"gauge"

					</Key>

					<Key	"virtualSize15MPercentChange">

							Type	"gauge"

					</Key>

					<Key	"asyncPerSecond15M">

							Type	"gauge"

					</Key>

					<Key	"asyncPerSecond15MPercentChange">

							Type	"gauge"

					</Key>

					<Key	"syncPerSecond15M">

							Type	"gauge"

					</Key>

					<Key	"syncPerSecond15MPercentChange">

							Type	"gauge"

					</Key>

					<Key	"clientConnections15M">

							Type	"gauge"

					</Key>

					<Key	"clientConnections15MPercentChange">

							Type	"gauge"

					</Key>

		</URL>

</Plugin>

To	circumvent	the	shortcoming	of	the	curl_JSON	plug-in	to	only	take	the	last	path	element	as	name	for	the	metric,	we	need	to	give	them
a	name	using	our	own		types.db		file	in		/etc/collectd/collectd.conf.d/arangodb_types.db	:

totalTimeDistributionPercent_values								value:GAUGE:U:U

totalTimeDistributionPercent_cuts								value:GAUGE:U:U

requestTimeDistributionPercent_values								value:GAUGE:U:U

requestTimeDistributionPercent_cuts								value:GAUGE:U:U

queueTimeDistributionPercent_values								value:GAUGE:U:U

queueTimeDistributionPercent_cuts								value:GAUGE:U:U

bytesSentDistributionPercent_values								value:GAUGE:U:U

bytesSentDistributionPercent_cuts								value:GAUGE:U:U

bytesReceivedDistributionPercent_values								value:GAUGE:U:U

bytesReceivedDistributionPercent_cuts								value:GAUGE:U:U

Rolling	your	own

You	may	want	to	monitor	your	own	metrics	from	ArangoDB.	Here	is	a	simple	example	how	to	use	the		config	:

Monitoring

134

{

	"testArray":[1,2],

	"testArrayInbetween":[{"blarg":3},{"blub":4}],

	"testDirectHit":5,

	"testSubLevelHit":{"oneMoreLevel":6}

}

This		config		snippet	will	parse	the	JSON	above:

<Key	"testArray/0">

		Type	"gauge"

		#	Expect:	1

</Key>

<Key	"testArray/1">

		Type	"gauge"

		#	Expect:	2

</Key>

<Key	"testArrayInbetween/0/blarg">

		Type	"gauge"

		#	Expect:	3

</Key>

<Key	"testArrayInbetween/1/blub">

		Type	"gauge"

		#	Expect:	4

</Key>

<Key	"testDirectHit">

		Type	"gauge"

		#	Expect:	5

</Key>

<Key	"testSubLevelHit/oneMoreLevel">

		Type	"gauge"

		#	Expect:	6

</Key

Get	it	served

Now	we	will	(re)start		collectd		so	it	picks	up	our	configuration:

/etc/init.d/collectd	start

We	will	inspect	the	syslog	to	revalidate	nothing	went	wrong:

Mar		3	13:59:52	localhost	collectd[11276]:	Starting	statistics	collection	and	monitoring	daemon:	collectd.

Mar		3	13:59:52	localhost	systemd[1]:	Started	LSB:	manage	the	statistics	collection	daemon.

Mar		3	13:59:52	localhost	collectd[11283]:	Initialization	complete,	entering	read-loop.

	Collectd		adds	the	hostname	to	the	directory	address,	so	now	we	should	have	files	like	these:

	-rw-r--r--	1	root	root	154888	Mar		2	16:53	/var/lib/collectd/rrd/localhost/curl_json-default/gauge-numberOfThreads15M.rrd

Now	we	start		kcollectd		to	view	the	values	in	the	RRD	file:

Monitoring

135

Since	we	started	putting	values	in	just	now,	we	need	to	choose	'last	hour'	and	zoom	in	a	little	more	to	inspect	the	values.

Finished	with	this	dish,	wait	for	more	metrics	to	come	in	other	recipes.

Author:	Wilfried	Goesgens

Tags:	#json	#monitoring

Monitoring

136

https://github.com/dothebart

Monitoring	replication	slave
Note:	this	recipe	is	working	with	ArangoDB	2.5,	you	need	a	collectd	curl_json	plugin	with	correct	boolean	type	mapping.

Problem

How	to	monitor	the	slave	status	using	the		collectd	curl_JSON		plugin.

Solution

Since	arangodb	reports	the	replication	status	in	JSON,	integrating	it	with	the	collectd	curl_JSON	plugin	should	be	an	easy	exercise.
However,	only	very	recent	versions	of	collectd	will	handle	boolean	flags	correctly.

Our	test	master/slave	setup	runs	with	the	the	master	listening	on		tcp://127.0.0.1:8529		and	the	slave	(which	we	query)	listening	on
	tcp://127.0.0.1:8530	.	They	replicate	a	dabatase	by	the	name		testDatabase	.

Since	replication	appliers	are	active	per	database	and	our	example	doesn't	use	the	default		_system	,	we	need	to	specify	its	name	in	the
URL	like	this:		_db/testDatabase	.

We	need	to	parse	a	document	from	a	request	like	this:

curl	--dump	-	http://localhost:8530/_db/testDatabase/_api/replication/applier-state

If	the	replication	is	not	running	the	document	will	look	like	that:

{

		"state":	{

				"running":	false,

				"lastAppliedContinuousTick":	null,

				"lastProcessedContinuousTick":	null,

				"lastAvailableContinuousTick":	null,

				"safeResumeTick":	null,

				"progress":	{

						"time":	"2015-11-02T13:24:07Z",

						"message":	"applier	shut	down",

						"failedConnects":	0

				},

				"totalRequests":	1,

				"totalFailedConnects":	0,

				"totalEvents":	0,

				"totalOperationsExcluded":	0,

				"lastError":	{

						"time":	"2015-11-02T13:24:07Z",

						"errorMessage":	"no	start	tick",

						"errorNum":	1413

				},

				"time":	"2015-11-02T13:31:53Z"

		},

		"server":	{

				"version":	"2.7.0",

				"serverId":	"175584498800385"

		},

		"endpoint":	"tcp://127.0.0.1:8529",

		"database":	"testDatabase"

}

A	running	replication	will	return	something	like	this:

{

		"state":	{

				"running":	true,

				"lastAppliedContinuousTick":	"1150610894145",

				"lastProcessedContinuousTick":	"1150610894145",

Collectd	-	Replication	Slaves

137

				"lastAvailableContinuousTick":	"1151639153985",

				"safeResumeTick":	"1150610894145",

				"progress":	{

						"time":	"2015-11-02T13:49:56Z",

						"message":	"fetching	master	log	from	tick	1150610894145",

						"failedConnects":	0

				},

				"totalRequests":	12,

				"totalFailedConnects":	0,

				"totalEvents":	2,

				"totalOperationsExcluded":	0,

				"lastError":	{

						"errorNum":	0

				},

				"time":	"2015-11-02T13:49:57Z"

		},

		"server":	{

				"version":	"2.7.0",

				"serverId":	"175584498800385"

		},

		"endpoint":	"tcp://127.0.0.1:8529",

		"database":	"testDatabase"

}

We	create	a	simple	collectd	configuration	in		/etc/collectd/collectd.conf.d/slave_testDatabase.conf		that	matches	our	API:

TypesDB	"/etc/collectd/collectd.conf.d/slavestate_types.db"

<Plugin	curl_json>

		#	Adjust	the	URL	so	collectd	can	reach	your	arangod	slave	instance:

		<URL	"http://localhost:8530/_db/testDatabase/_api/replication/applier-state">

			#	Set	your	authentication	to	that	database	here:

			#	User	"foo"

			#	Password	"bar"

				<Key	"state/running">

							Type	"boolean"

					</Key>

				<Key	"state/totalOperationsExcluded">

							Type	"counter"

					</Key>

				<Key	"state/totalRequests">

							Type	"counter"

					</Key>

				<Key	"state/totalFailedConnects">

							Type	"counter"

					</Key>

		</URL>

</Plugin>

To	get	nice	metric	names,	we	specify	our	own		types.db		file	in		/etc/collectd/collectd.conf.d/slavestate_types.db	:

boolean																					value:ABSOLUTE:0:1

So,	basically		state/running		will	give	you		0	/	1		if	its	(not	/)	running	through	the	collectd	monitor.

Author:	Wilfried	Goesgens

Tags:	#monitoring	#foxx	#json

Collectd	-	Replication	Slaves

138

https://github.com/dothebart

Monitoring	ArangoDB	Cluster	network	usage

Problem

We	run	a	cluster	and	want	to	know	whether	the	traffic	is	unbalanced	or	something	like	that.	We	want	a	cheap	estimate	which	host	has
how	much	traffic.

Solution

As	we	already	run	Collectd	as	our	metric-hub,	we	want	to	utilize	it	to	also	give	us	these	figures.	A	very	cheap	way	to	generate	these
values	are	the	counters	in	the	IPTables	firewall	of	our	system.

Ingredients

For	this	recipe	you	need	to	install	the	following	tools:

collectd:	the	aggregation	Daemon
kcollectd	for	inspecting	the	data
iptables	-	should	come	with	your	Linux	distribution
ferm	for	compact	firewall	code
we	base	on	Monitoring	with	Collecd	recipe	for	understanding	the	basics	about	collectd

Getting	the	state	and	the	Ports	of	your	cluster

Now	we	need	to	find	out	the	current	configuration	of	our	cluster.	For	the	time	being	we	assume	you	simply	issued

./scripts/startLocalCluster.sh

to	get	you	set	up.	So	you	know	you've	got	two	DB-Servers	-	one	Coordinator,	one	agent:

ps	-eaf	|grep	arango

arangod				21406					1		1	16:59	pts/14			00:00:00	bin/etcd-arango	--data-dir	/var/tmp/tmp-21550-1347489353/shell_server/agentar

ango4001	--name	agentarango4001	--bind-addr	127.0.0.1:4001	--addr	127.0.0.1:4001	--peer-bind-addr	127.0.0.1:7001	--peer-addr	12

7.0.0.1:7001	--initial-cluster-state	new	--initial-cluster	agentarango4001=http://127.0.0.1:7001

arangod				21408					1		4	16:56	pts/14			00:00:01	bin/arangod	--database.directory	cluster/data8629	--cluster.agency-endpoint	t

cp://localhost:4001	--cluster.my-address	tcp://localhost:8629	--server.endpoint	tcp://localhost:8629	--cluster.my-local-info	db

server:localhost:8629	--log.file	cluster/8629.log	--cluster.my-id	Pavel

arangod				21410					1		5	16:56	pts/14			00:00:02	bin/arangod	--database.directory	cluster/data8630	--cluster.agency-endpoint	t

cp://localhost:4001	--cluster.my-address	tcp://localhost:8630	--server.endpoint	tcp://localhost:8630	--cluster.my-local-info	db

server:localhost:8630	--log.file	cluster/8630.log	--cluster.my-id	Perry

arangod				21416					1		5	16:56	pts/14			00:00:02	bin/arangod	--database.directory	cluster/data8530	--cluster.agency-endpoint	t

cp://localhost:4001	--cluster.my-address	tcp://localhost:8530	--server.endpoint	tcp://localhost:8530	--cluster.my-local-info	co

ordinator:localhost:8530	--log.file	cluster/8530.log	--cluster.my-id	Claus

We	can	now	check	which	ports	they	occupied:

netstat	-aplnt	|grep	arango

tcp								0						0	127.0.0.1:7001										0.0.0.0:*															LISTEN						21406/etcd-arango

tcp								0						0	127.0.0.1:4001										0.0.0.0:*															LISTEN						21406/etcd-arango

tcp								0						0	127.0.0.1:8530										0.0.0.0:*															LISTEN						21416/arangod

tcp								0						0	127.0.0.1:8629										0.0.0.0:*															LISTEN						21408/arangod

tcp								0						0	127.0.0.1:8630										0.0.0.0:*															LISTEN						21410/arangod

The	agent	has	7001	and	4001.	Since	it's	running	in	single	server	mode	its	cluster	port	(7001)	should	not	show	any	traffic,	port	4001
is	the	interesting	one.
Claus	-	This	is	the	coordinator.	Your	Application	will	talk	to	it	on	port	8530
Pavel	-	This	is	the	first	DB-Server;	Claus	will	talk	to	it	on	port	8629
Perry	-	This	is	the	second	DB-Server;	Claus	will	talk	to	it	on	port	8630

Collectd	-	Network	usage

139

http://collectd.org
https://collectd.org/
https://www.forwiss.uni-passau.de/~berberic/Linux/kcollectd.html
http://en.wikipedia.org/wiki/Iptables
http://ferm.foo-projects.org/download/2.2/ferm.html#basic_iptables_match_keywords

Configuring	IPTables	/	ferm

Since	the	usual	solution	using	shell	scripts	calling	iptables	brings	the	DRY	principle	to	a	grinding	hold,	we	need	something	better.	Here
ferm	comes	to	the	rescue	-	It	enables	you	to	produce	very	compact	and	well	readable	firewall	configurations.

According	to	the	ports	we	found	in	the	last	section,	we	will	configure	our	firewall	in		/etc/ferm/ferm.conf	,	and	put	the	identities	into	the
comments	so	we	have	a	persistent	naming	scheme:

#	blindly	forward	these	to	the	accounting	chain:

@def	$ARANGO_RANGE=4000:9000;

@def	&TCP_ACCOUNTING($PORT,	$COMMENT,	$SRCCHAIN)	=	{

				@def	$FULLCOMMENT=@cat($COMMENT,	"_",	$SRCCHAIN);

				dport	$PORT	mod	comment	comment	$FULLCOMMENT	NOP;

}

@def	&ARANGO_ACCOUNTING($CHAINNAME)	=	{

#	The	coordinators:

				&TCP_ACCOUNTING(8530,	"Claus",	$CHAINNAME);

#	The	db-servers:

				&TCP_ACCOUNTING(8629,	"Pavel",	$CHAINNAME);

				&TCP_ACCOUNTING(8630,	"Perry",	$CHAINNAME);

#	The	agency:

				&TCP_ACCOUNTING(4001,	"etcd_client",	$CHAINNAME);

#	it	shouldn't	talk	to	itself	if	it	is	only	running	with	a	single	instance:

				&TCP_ACCOUNTING(7007,	"etcd_cluster",	$CHAINNAME);

}

table	filter	{

				chain	INPUT	{

								proto	tcp	dport	$ARANGO_RANGE	@subchain	"Accounting"	{

												&ARANGO_ACCOUNTING("input");

								}

								policy	DROP;

								#	connection	tracking

								mod	state	state	INVALID	DROP;

								mod	state	state	(ESTABLISHED	RELATED)	ACCEPT;

								#	allow	local	packet

								interface	lo	ACCEPT;

								#	respond	to	ping

								proto	icmp	ACCEPT;	

								#	allow	IPsec

								proto	udp	dport	500	ACCEPT;

								proto	(esp	ah)	ACCEPT;

								#	allow	SSH	connections

								proto	tcp	dport	ssh	ACCEPT;

				}

				chain	OUTPUT	{

								policy	ACCEPT;

								proto	tcp	dport	$ARANGO_RANGE	@subchain	"Accounting"	{

												&ARANGO_ACCOUNTING("output");

								}

								#	connection	tracking

								#mod	state	state	INVALID	DROP;

								mod	state	state	(ESTABLISHED	RELATED)	ACCEPT;

				}

				chain	FORWARD	{

								policy	DROP;

								#	connection	tracking

								mod	state	state	INVALID	DROP;

								mod	state	state	(ESTABLISHED	RELATED)	ACCEPT;

				}

}

Note:	This	is	a	very	basic	configuration,	mainly	with	the	purpose	to	demonstrate	the	accounting	feature	-	so	don't	run	this	in	production)

Collectd	-	Network	usage

140

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://ferm.foo-projects.org/download/2.2/ferm.html#basic_iptables_match_keywords

After	activating	it	interactively	with

ferm	-i	/etc/ferm/ferm.conf

We	now	use	the	iptables	command	line	utility	directly	to	review	the	status	our	current	setting:

iptables	-L	-nvx

Chain	INPUT	(policy	DROP	85	packets,	6046	bytes)

				pkts						bytes	target					prot	opt	in					out					source															destination

				7636		1821798	Accounting		tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpts:4000:9000

							0								0	DROP							all		--		*						*							0.0.0.0/0												0.0.0.0/0												state	INVALID

			14700	14857709	ACCEPT					all		--		*						*							0.0.0.0/0												0.0.0.0/0												state	RELATED,ESTABLISHED

					130					7800	ACCEPT					all		--		lo					*							0.0.0.0/0												0.0.0.0/0

							0								0	ACCEPT					icmp	--		*						*							0.0.0.0/0												0.0.0.0/0

							0								0	ACCEPT					udp		--		*						*							0.0.0.0/0												0.0.0.0/0												udp	dpt:500

							0								0	ACCEPT					esp		--		*						*							0.0.0.0/0												0.0.0.0/0

							0								0	ACCEPT					ah			--		*						*							0.0.0.0/0												0.0.0.0/0

							0								0	ACCEPT					tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:22

Chain	FORWARD	(policy	DROP	0	packets,	0	bytes)

				pkts						bytes	target					prot	opt	in					out					source															destination

							0								0	DROP							all		--		*						*							0.0.0.0/0												0.0.0.0/0												state	INVALID

							0								0	ACCEPT					all		--		*						*							0.0.0.0/0												0.0.0.0/0												state	RELATED,ESTABLISHED

Chain	OUTPUT	(policy	ACCEPT	296	packets,	19404	bytes)

				pkts						bytes	target					prot	opt	in					out					source															destination

				7720		1882404	Accounting		tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpts:4000:9000

			14575	14884356	ACCEPT					all		--		*						*							0.0.0.0/0												0.0.0.0/0												state	RELATED,ESTABLISHED

Chain	Accounting	(2	references)

				pkts						bytes	target					prot	opt	in					out					source															destination

					204				57750												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:8530	/*	Claus_input	*/

						20				17890												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:8629	/*	Pavel_input	*/

					262				97352												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:8630	/*	Perry_input	*/

				2604			336184												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:4001	/*	etcd_client_inpu

t	*/

							0								0												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:7007	/*	etcd_cluster_inp

ut	*/

					204				57750												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:8530	/*	Claus_output	*/

						20				17890												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:8629	/*	Pavel_output	*/

					262				97352												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:8630	/*	Perry_output	*/

				2604			336184												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:4001	/*	etcd_client_outp

ut	*/

							0								0												tcp		--		*						*							0.0.0.0/0												0.0.0.0/0												tcp	dpt:7007	/*	etcd_cluster_out

put	*/

You	can	see	nicely	the	Accounting	sub-chain	with	our	comments.	These	should	be	pretty	straight	forward	to	match.	We	also	see	the	pkts
and	bytes	columns.	They	contain	the	current	value	of	these	counters	of	your	system.

Read	more	about	linux	firewalling	and	ferm	configuration	to	be	sure	you	do	the	right	thing.

Configuring	Collectd	to	pick	up	these	values

Since	your	system	now	generates	these	numbers,	we	want	to	configure	collectd	with	its	iptables	plugin	to	aggregate	them.

We	do	so	in	the		/etc/collectd/collectd.conf.d/iptables.conf	:

LoadPlugin	iptables

<Plugin	iptables>

		Chain	filter	"Accounting"	"Claus_input"

		Chain	filter	"Accounting"	"Pavel_input"

		Chain	filter	"Accounting"	"Perry_input"

		Chain	filter	"Accounting"	"etcd_client_input"

		Chain	filter	"Accounting"	"etcd_cluster_input"

		Chain	filter	"Accounting"	"Claus_output"

		Chain	filter	"Accounting"	"Pavel_output"

		Chain	filter	"Accounting"	"Perry_output"

		Chain	filter	"Accounting"	"etcd_client_output"

		Chain	filter	"Accounting"	"etcd_cluster_output"

</Plugin>

Collectd	-	Network	usage

141

http://lartc.org
http://ferm.foo-projects.org/download/2.2/ferm.html
https://collectd.org/wiki/index.php/Plugin:IPTables

Now	we	restart	collectd	with		/etc/init.d/collectd	restart	,	watch	the	syslog	for	errors.	If	everything	is	OK,	our	values	should	show
up	in:

/var/lib/collectd/rrd/localhost/iptables-filter-Accounting/ipt_packets-Claus_output.rrd

We	can	inspect	our	values	with	kcollectd:

Author:	Wilfried	Goesgens

Tags:	#monitoring

Collectd	-	Network	usage

142

https://github.com/dothebart

Monitoring	other	relevant	metrics	of	ArangoDB

Problem

Aside	of	the	values	which	ArangoDB	already	offers	for	monitoring,	other	system	metrics	may	be	relevant	for	continuously	operating
ArangoDB.	be	it	a	single	instance	or	a	cluster	setup.	Collectd	offers	a	pleathora	of	plugins	-	lets	have	a	look	at	some	of	them	which	may
be	useful	for	us.

Solution

Ingedients

For	this	recipe	you	need	to	install	the	following	tools:

collectd:	The	metrics	aggregation	Daemon
we	base	on	Monitoring	with	Collecd	recipe	for	understanding	the	basics	about	collectd

Disk	usage

You	may	want	to	monitor	that	ArangoDB	doesn't	run	out	of	disk	space.	The	df	Plugin	can	aggregate	these	values	for	you.

First	we	need	to	find	out	which	disks	are	used	by	your	ArangoDB.	By	default	you	need	to	find	/var/lib/arango	in	the	mountpoints.
Since	nowadays	many	virtual	file	systems	are	also	mounted	on	a	typical	*nix	system	we	want	to	sort	the	output	of	mount:

mount	|	sort

/dev/sda3	on	/local/home	type	ext4	(rw,relatime,data=ordered)

/dev/sda4	on	/	type	ext4	(rw,relatime,data=ordered)

/dev/sdb1	on	/mnt	type	vfat	(rw,relatime,fmask=0022,dmask=0022,codepage=437,iocharset=utf8,shortname=mixed,errors=remount-ro)

binfmt_misc	on	/proc/sys/fs/binfmt_misc	type	binfmt_misc	(rw,relatime)

cgroup	on	/sys/fs/cgroup/blkio	type	cgroup	(rw,nosuid,nodev,noexec,relatime,blkio)

....

udev	on	/dev	type	devtmpfs	(rw,relatime,size=10240k,nr_inodes=1022123,mode=755)

So	here	we	can	see	the	mountpoints	are		/	,		/local/home	,		/mnt/		so		/var/lib/		can	be	found	on	the	root	partition	(/)		/dev/sda3	
here.	A	production	setup	may	be	different	so	the	OS	doesn't	interfere	with	the	services.

The	collectd	configuration		/etc/collectd/collectd.conf.d/diskusage.conf		looks	like	this:

LoadPlugin	df

<Plugin	df>

		Device	"/dev/sda3"

		#		Device	"192.168.0.2:/mnt/nfs"

		#		MountPoint	"/home"

		#		FSType	"ext4"

		#		ignore	rootfs;	else,	the	root	file-system	would	appear	twice,	causing

		#		one	of	the	updates	to	fail	and	spam	the	log

		FSType	rootfs

		#	ignore	the	usual	virtual	/	temporary	file-systems

		FSType	sysfs

		FSType	proc

		FSType	devtmpfs

		FSType	devpts

		FSType	tmpfs

		FSType	fusectl

		FSType	cgroup

		IgnoreSelected	true

		#		ReportByDevice	false

		#		ReportReserved	false

		#		ReportInodes	false

		#		ValuesAbsolute	true

		#		ValuesPercentage	false

</Plugin>

Collectd	-	more	Metrics

143

https://collectd.org/wiki/index.php/Table_of_Plugins
https://collectd.org/
https://collectd.org/wiki/index.php/Plugin:DF

Disk	I/O	Usage

Another	interesting	metric	is	the	amount	of	data	read/written	to	disk	-	its	an	estimate	how	busy	your	ArangoDB	or	the	whole	system
currently	is.	The	Disk	plugin	aggregates	these	values.

According	to	the	mountpoints	above	our	configuration		/etc/collectd/collectd.conf.d/disk_io.conf		looks	like	this:

LoadPlugin	disk

<Plugin	disk>

		Disk	"hda"

		Disk	"/sda[23]/"

		IgnoreSelected	false

</Plugin>

CPU	Usage

While	the	ArangoDB	self	monitoring	already	offers	some	overview	of	the	running	threads	etc.	you	can	get	a	deeper	view	using	the
Process	Plugin.

If	you're	running	a	single	Arango	instance,	a	simple	match	by	process	name	is	sufficient,
	/etc/collectd/collectd.conf.d/arango_process.conf		looks	like	this:

LoadPlugin	processes

<Plugin	processes>

		Process	"arangod"

</Plugin>

If	you're	running	a	cluster,	you	can	match	the	specific	instances	by	command-line	parameters,
	/etc/collectd/collectd.conf.d/arango_cluster.conf		looks	like	this:

LoadPlugin	processes

<Plugin	processes>

		ProcessMatch	"Claus"	"/usr/bin/arangod	.*--cluster.my-id	Claus.*"

		ProcessMatch	"Pavel"	"/usr/bin/arangod	.*--cluster.my-id	Pavel.*"

		ProcessMatch	"Perry"	"/usr/bin/arangod	.*--cluster.my-id	Perry.*"

		Process	"etcd-arango"

</Plugin>

More	Plugins

As	mentioned	above,	the	list	of	available	plugins	is	huge;	Here	are	some	more	one	could	be	interested	in:

use	the	CPU	Plugin	to	monitor	the	overall	CPU	utilization
use	the	Memory	Plugin	to	monitor	main	memory	availability
use	the	Swap	Plugin	to	see	whether	excess	RAM	usage	forces	the	system	to	page	and	thus	slow	down
Ethernet	Statistics	with	whats	going	on	at	your	Network	cards	to	get	a	more	broad	overview	of	network	traffic
you	may	Tail	logfiles	like	an	apache	request	log	and	pick	specific	requests	by	regular	expressions
Parse	tabular	files	in	the		/proc		file	system
you	can	use	filters	to	reduce	the	amount	of	data	created	by	plugins	(i.e.	if	you	have	many	CPU	cores,	you	may	want	the	combined
result).	It	can	also	decide	where	to	route	data	and	to	which	writer	plugin
while	you	may	have	seen	that	metrics	are	stored	at	a	fixed	rate	or	frequency,	your	metrics	(i.e.	the	durations	of	web	requests)	may
come	in	a	random	&	higher	frequency.	Thus	you	want	to	burn	them	down	to	a	fixed	frequency,	and	know	Min/Max/Average/Median.
So	you	want	to	Aggregate	values	using	the	statsd	pattern.
You	may	start	rolling	your	own	in	Python,	java,	Perl	or	for	sure	in	C,	the	language	collectd	is	implemented	in

Finally	while	kcollectd	is	nice	to	get	a	quick	success	at	inspecting	your	collected	metrics	during	working	your	way	into	collectd,	its	not	as
sufficient	for	operating	a	production	site.	Since	collectds	default	storage	RRD	is	already	widespread	in	system	monitoring,	there	are	many
webfrontents	to	choose	for	the	visualization.	Some	of	them	replace	the	RRD	storage	by	simply	adding	a	writer	plugin,	most	prominent
the	Graphite	graphing	framework	with	the	Graphite	writer	which	allows	you	to	combine	random	metrics	in	single	graphs	-	to	find
coincidences	in	your	data	you	never	dreamed	of.

If	you	already	run	Nagios	you	can	use	the	Nagios	tool	to	submit	values.

Collectd	-	more	Metrics

144

https://collectd.org/wiki/index.php/Plugin:Disk
https://collectd.org/wiki/index.php/Plugin:Processes
https://collectd.org/wiki/index.php/CPU
https://collectd.org/wiki/index.php/Plugin:Memory
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#plugin_swap
https://collectd.org/wiki/index.php/Plugin:Ethstat
https://collectd.org/wiki/index.php/Plugin:Tail
https://collectd.org/wiki/index.php/Plugin:Table
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#filter_configuration
https://collectd.org/wiki/index.php/Plugin:StatsD
https://collectd.org/wiki/index.php/Plugin:Python
https://collectd.org/wiki/index.php/Plugin:Java
https://collectd.org/wiki/index.php/Plugin:Perl
https://collectd.org/wiki/index.php/Plugin_architecture
https://collectd.org/wiki/index.php/List_of_front-ends
http://graphite.wikidot.com/screen-shots
https://collectd.org/wiki/index.php/Plugin:Write_Graphite
http://metrics20.org/media/
http://www.nagios.org
https://collectd.org/documentation/manpages/collectd-nagios.1.shtml

We	hope	you	now	have	a	good	overview	of	whats	possible,	but	as	usual	its	a	good	idea	to	browse	the	Fine	Manual.

Author:	Wilfried	Goesgens

Tags:	#monitoring

Collectd	-	more	Metrics

145

https://collectd.org/documentation.shtml
https://github.com/dothebart

Monitoring	your	Foxx	applications
Note:	this	recipe	is	working	with	ArangoDB	2.5	Foxx

Problem

How	to	integrate	a	Foxx	application	into	a	monitoring	system	using	the		collectd	curl_JSON		plugin.

Solution

Since	Foxx	native	tongue	is	JSON,	integrating	it	with	the	collectd	curl_JSON	plugin	should	be	an	easy	exercise.	We	have	a	Foxx-
Application	which	can	receive	Data	and	write	it	into	a	collection.	We	specify	an	easy	input	Model:

Model	=	Foxx.Model.extend({

		schema:	{

				//	Describe	the	attributes	with	Joi	here

				'_key':	Joi.string(),

				'value':	Joi.number()

		}

});

And	use	a	simple	Foxx-Route	to	inject	data	into	our	collection:

/**	Creates	a	new	FirstCollection

	*

	*	Creates	a	new	FirstCollection-Item.	The	information	has	to	be	in	the

	*	requestBody.

	*/

controller.post('/firstCollection',	function	(req,	res)	{

		var	firstCollection	=	req.params('firstCollection');

		firstCollection.attributes.Date	=	Date.now();

		res.json(FirstCollection_repo.save(firstCollection).forClient());

}).bodyParam('firstCollection',	{

		description:	'The	FirstCollection	you	want	to	create',

		type:	FirstCollection

});

Which	we	may	do	using		cURL	:

echo	'{"value":1	,"_key":"13"}'	|	\

		curl	-d	@-		http://localhost:8529/_db/_system/collectable_foxx/data/firstCollection/firstCollection

We'd	expect	the	value	to	be	in	the	range	of	1	to	5.	Maybe	the	source	of	this	data	is	a	web-poll	or	something	similar.

We	now	add	another	Foxx-route	which	we	want	to	link	with		collectd	:

/**

	*	we	use	a	group-by	construct	to	get	the	values:

	*/

var	db	=	require('org/arangodb').db;

var	searchQuery	=	'FOR	x	IN	@@collection	FILTER	x.Date	>=	@until	collect	value=x.value	with	count	into	counter	RETURN	{[[CONCAT

("choice",	value)]	:	counter	}';

controller.get('/firstCollection/lastSeconds/:nSeconds',	function	(req,	res)	{

		var	until	=	Date.now()	-	req.params('nSeconds')	*	1000;

		res.json(

				db._query(searchQuery,	{

						'@collection':	FirstCollection_repo.collection.name(),

						'until':	until

				}).toArray()

);

}).pathParam('nSeconds',	{

		description:	'look	up	to	n	Seconds	into	the	past',

Collectd	-	Monitoring	Foxx

146

		type:	joi.string().required()

});

We	inspect	the	return	document	using	curl	and	jq	for	nice	formatting:

curl	'http://localhost:8529/_db/_system/collectable_foxx/data/firstCollection/firstCollection/lastSeconds/10'	|jq	"."

[

		{

				"1":	3

				"3":	7

		}

]

We	have	to	design	the	return	values	in	a	way	that	collectd's	config	syntax	can	simply	grab	it.	This	Route	returns	an	object	with	flat	key
values	where	keys	may	range	from	0	to	5.	We	create	a	simple	collectd	configuration	in		/etc/collectd/collectd.conf.d/foxx_simple.conf	
that	matches	our	API:

#	Load	the	plug-in:

LoadPlugin	curl_json

#	we	need	to	use	our	own	types	to	generate	individual	names	for	our	gauges:

TypesDB	"/etc/collectd/collectd.conf.d/foxx_simple_types.db"

<Plugin	curl_json>

		#	Adjust	the	URL	so	collectd	can	reach	your	arangod:

		<URL	"http://localhost:8529/_db/_system/collectable_foxx/data/firstCollection/firstCollection/lastSeconds/10">

			#	Set	your	authentication	to	Aardvark	here:

			#	User	"foo"

			#	Password	"bar"

				<Key	"choice0">

							Type	"the_values"

					</Key>

				<Key	"choice1">

							Type	"first_values"

					</Key>

				<Key	"choice2">

							Type	"second_values"

					</Key>

				<Key	"choice3">

							Type	"third_values"

					</Key>

				<Key	"choice4">

							Type	"fourth_values"

					</Key>

				<Key	"choice5">

							Type	"fifth_values"

					</Key>

		</URL>

</Plugin>

To	get	nice	metric	names,	we	specify	our	own		types.db		file	in		/etc/collectd/collectd.conf.d/foxx_simple_types.db	:

the_values				value:GAUGE:U:U

first_values				value:GAUGE:U:U

second_values				value:GAUGE:U:U

third_values				value:GAUGE:U:U

fourth_values				value:GAUGE:U:U

fifth_values				value:GAUGE:U:U

Author:	Wilfried	Goesgens

Tags:	#monitoring	#foxx	#json

Collectd	-	Monitoring	Foxx

147

http://stedolan.github.io/jq/
https://github.com/dothebart

	Introduction
	Modelling Document Inheritance
	Accessing Shapes Data
	AQL
	Using Joins in AQL
	Using Dynamic Attribute Names
	Creating Test-data using AQL
	Diffing Documents
	Avoiding Parameter Injection
	Multiline Query Strings
	Migrating named graph functions to 3.0
	Migrating anonymous graph functions to 3.0
	Migrating graph measurements to 3.0

	Graph
	Fulldepth Graph-Traversal
	Using a custom Visitor
	Example AQL Queries for Graphs

	Use Cases / Examples
	Crawling Github with Promises
	Using ArangoDB with Sails.js
	Populating a Textbox
	Exporting Data
	Accessing base documents with Java
	Add XML data to ArangoDB with Java

	Administration
	Using Authentication
	Importing Data
	Replicating Data
	XCopy Install Windows
	Silent NSIS on Windows
	Migrating 2.8 to 3.0
	Show grants function

	Compiling / Build
	Compile on Debian
	Compile on Windows
	OpenSSL
	Running Custom Build
	Recompiling jemalloc

	Cloud, DCOS and Docker
	Running on AWS
	Update on AWS
	Running on Azure
	Docker ArangoDB
	Docker with NodeJS App
	In the GiantSwarm
	ArangoDB in Mesos
	DC/OS: Full example
	DC/OS: Choosing Container engine

	Monitoring
	Collectd - Replication Slaves
	Collectd - Network usage
	Collectd - more Metrics
	Collectd - Monitoring Foxx

